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A~traet .  Given a Hilbert space H, let H 1 and H 2 be two arbitrary 
subspaces. The problem of finding all minimal splitting subspaces of H with 
respect to H l and H 2 is solved. This result is applied to the stochastic 
realization problem. Each minimal stochastic realization of a given vector 
process y defines a family of state spaces. It is shown that these families are 
precisely those families of minimal splitting subspaces (with respect to the 
past and the future of y)  which satisfy a certain growth condition. 

1. Introduction 

The problem of finding all minimal Markovian (state space) representations of a 
given random process {y(t); t E T }  is known as the stochastic realization prob- 
lem. It has been studied extensively in recent years both in its deterministic [2, 3, 
16] and its probabilistic [1, 4-6,  9, ! 0, 12-15] aspects. In this paper we extend 
and unify the axiomatic state space approaches presented in [5] and [15]. 

The notion of minimal splitting subspace, a generalization of a concept 
introduced in [7], was applied to this problem in [9] and [5]. This is a natural 
approach, for, at any given time t ET,  a minimal splitting subspace X t (with 
respect to the spaces spanned by the past and the future of y) can be interpreted 
as a subspace of smallest size containing all the information from the past 
needed in predicting the future and all the information in the future required to 
estimate the past, making it an obvious candidate for a state space. A dynamical 
state space description will then require considering families {Xt; t ~ T )  of 
minimal splitting subspaces. However, as we shall see below, an arbitrary such 
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family will not in general yield a stochastic realization. For this to be the case, 
we need to impose a natural growth condition. 

We begin this paper by solving the general problem of finding all minimal 
splitting subspaces with respect to two arbitrary subspaces. This is a geometric 
problem in Hilbert space, and it contains as a special case, the splitting subspace 
problem of the stochastic realization problem. Secondly we apply these results to 
the problem of finding all Markovian representations of an arbitrary stochastic 
vector process. 

2. Some Preliminaries and Notations 

Let H be a Hilbert space, whose inner product is denoted (-, .). For two 
subspaces A and B of H (all subspaces are taken to be closed), A _1_ B means that 
A and B are orthogonal, A ~3 B denotes direct sum, A • B is the subspace of A 
orthogonal to B, A k/B is the closed linear hull of A and B, and A ± is the 
orthogonal complement of A in H. The ortho_gonal projection of ?~ ~ H onto A is 
denoted EA~ or E{)qA).  Let ff.AB or E(BIA } be the smallest subspace 
containing EAB, i.e., the closure of EAB. 

We shall write A i S  IX if the three subspaces A, B and X satisfy the 
condition 

(a,fl) = (EXa, EX1 ~) for all a ~ A , / 3  ~ B .  (1) 

It can be seen that (1) is equivalent to each of the conditions 

e ( . l e v x )  = E{ lx) 

E{ f l lAVX } = E{ B]X } 

and, if X C A, also to 

for all a E A (2) 

for all/~ E B (3) 

(A @ X) i B. (4) 

3. Minimal Splitting Subspaces 

Let H l and H 2 be two arbitrary subspaces of H and define H 0 to be the vector 
sum of these, i.e., H 0 = H I V H  2. 

Definition 1. A subspace X C H is a splitting subspace (with respect to H I and 
Hz) if 

i H IX. (5) 

A splitting subspace X is minimal if there is no proper subspace of X satisfying 
(5) and internal if X C Ho. 

The following lemma will be useful in testing the minimality of a splitting 
subspace. 
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Lemma 1. Let X be a splitting subspace and assume that X =  X 1 (~ X 2 where X 1 
and X 2 are subspaces of X. Then X 1 is a splitting subspace if and only if 

EX2H1-J- EX2H2. (6) 

Proof (Cf. [15].) Take )~EH 1 and TI~H 2. Then, in view of (5), 

()t, rt) -- ( e x x ,  EXr)) = (EX,X, EXx.o) + (EX2X, EX2r).) 

Hence, (6) is equivalent to ()~,~)=(EX'h, EX'r)) for all h ~ H  l and ~ ~H2,  which 
is the same as H 1 .J_ H 2 I X  1 . [] 

The purpose of this section is to solve Problem P1. 

Problem P1. Find all minimal splitting subspaces. 
Let us also consider the following problem. 

Problem P2. Find all splitting subspaces X such that 

X f') H 1 ± = 0 (7) 

X 71 HE ± = 0 (8) 

Remark 1. Using the orthogonal decomposition 

A = / 7 ( B I A  ) ( D ( A n B ± ) ,  (9) 

which holds for any subspaces A and B of H, we see that (7) and (8) are 
equivalent to 

X = / 7 { H ,  IX ) (7)' 

and 

X = f f , {Hz lX  } (8)' 

respectively. 

Proposition 1. Problems P1 and P2 are equivalent. 

Proof.__ (i) Let X be a solution of P1. Using (9) we can write X---XI(DX z where 
X x = EXHt and X 2 = X  ¢q H1 ±. Obviously EX2HI =0, and therefore (6) holds. 
Hence X~ is a splitting subspace (Lemma 1). Then, since X is a minimal splitting 
subspace, X l = X, and thus (7) holds. In the same way we show (8). Therefore X 
is a solution of P2. 

(ii) Let X be a solution of P2, and let X l be any splitting subspace contained 
in X. To see that X is a solution of P1 it remains to show that X2: = X @ X ~  =0. 
By Lemma 1, (6) holds. Now, in view of X 2 c X and condition (7)', ff~X2H l = 
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~x~ff~XH I ~ff~X2xffiX 2. In the same way, using (8)', it can be shown that 
EX2H2--X2, and therefore, due to (6), X2=0. []  

From Proposition 1 we see that our main problem P 1 can be replaced by the 
mathematically more convenient problem P2. To solve P2 we shall first study 
minimal splitting subspaces satisfying one of the conditions (7) and (8), say (7). 

Lemma 2. The subspace X C H is a splitting subspace satisfying (7) if and only if 
X = if,{ n l l s  } for some subspace S D H2. 

Proof (Cf. [6].) (if): Let X = g { H I I S  } where S D H  2. Then ES~---EXh for 
each )~ ~ H I. Since S ~ H2VX, this implies that En2VX~ = EX)~ for each )~ ~ HI, 
i.e., in view of (2), Hj l H2IX. Hence X is a splitting subspace satisfying_(7)'. 

_ (only if): Let X be a splitting subspace satisfying (7). Then, X =  EXHI = 
E n~VXHj, by condition (2), and hence X =/T(HIIS ) with S-- H2VX D H 2. [] 

Then, by introducing the additional condition (8), we obtain the following 
theorem which gives the solution of P 1. For this we first need to define the frame 
space 

H D  = E { H,  IH } (10) 

which is itself a (nonminimal) internal splitting subspace [5]. 

Theorem 1. The subspace X is a minimal splitting subspace if and only if 
X=/T{HllS ) for some subspace S such that H 2 C S c(H2VHD)~)Ho ±. 

We need the following lemma to prove this theorem. 

Lemma 3. Let S D H2. Then ES(H1 fq H2 ±) =(ESH1)A HE ±. 

Proof By definition, ES(Hl fq//2")= (ES)q)~H1 and )~_I_H2). But ~_I_H 2 is 
equivalent to En2)~=O, which, in view of S3H2,  is the same as En2ES)~=O or 
E s)~ e H2 ±. [] 

Proof of Theorem 1. In view of Lemma 2 and condition (8), it only remains to 
show that S c(H2VH°)(gHo ± if and only if (ESH1)N H2 a" ---0. But, by Lemma 
3, the latter condition is equivalent to S c ( H  1N H2±) ±. Now, using formula (9), 
it is seen that Ho=(H2VH~(9(HlfqH2±), and therefore (HtRH2±)±= 
( 2vnD)en0 ±. [] 

Corollary 1. The subspace X is an internal minimal splitting subspace if and only 
if X=ff.(  HllS) for some subspace S such that H2c S c H2V H 0. 

Theorem 1 provides a parameterization of the set of minimal splitting 
subspaces. We shall now show that the mapping S ~ X  is one to one if S is 
restricted to Ho, in which case we obtain precisely the internal minimal splitting 
subspaces. 

Prolmsition 2. Let S be a subspace such that S D H2, and define X= E{ H~IS }. 
Then S = ( H 2 V X ) ~ K  for some subspace K CHo ±. If S c H  o, K=0. 
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Proof. Clearly S DH2VX, and therefore S = ( H 2 V X ) ~ K  for some subspace 
K. We will show that K C H0 ±. To this end, as in the proof of Lemma 2, first 
note that ES~=EX~ for each ;~EH 1. Since SDH2VX,  this implies that 
ES~=EH2VXX for all ~ ,~H 1, and consequently K_LH 1. Since, in addition 
K Z  H 2 (by definition), K Z  H o. [] 

4. Applications to the Stochastic Realization Problem 

Given a probability space (f~, ~, P), let H be a subspace of Lz(~2, oy, p )  consist- 
ing of centered real Gaussian stochastic variables. Such a space is called a 
Gaussian space [8]; it is a Hilbert space with inner product (~,7/)= E { ~ ) ,  where 
E (- )  denotes mathematical expectation. For any finite-dimensional stochastic 
vector ~ whose components ~1,~2 .. . . .  ~p belong to H, let H(~) be the Gaussian 
subspace generated by ~, i.e. the closed linear hull in H of the components of ~. 
This definition immediately generalizes to the case where ~ takes values in an 
arbitrary real separable Hilbert space E, the components now being given by 
~k = (~,ek), where (ek; k ~ Z  + ) is any basis in E and ( . ,  . )  is the inner product 
there. (Obviously H(~') does not depend on the choice of basis.) If (z(t); t ~T} 
is a stochastic vector process such that the components of z(t) belong to H for 
each t ET, we shall write H(z) to denote VteTH(z(t)). 

Now let {y(t); t ~T} be a wide sense separable [11] centered m-dimensional 
real Gaussian stochastic process such that H(y)C H. The basic problem, to be 
formulated more precisely below, is to determine all possible Markovian state- 
space representations of y such that the state process x satisfies H(x)C H. To 
exploit the theory of minimal splitting subspaces developed in Section 3 for this 
purpose, we need to define the past space Ht-(y) and the future space Ht+(y) for 
each t ~ T  in such a way that Ht-(y ) is nondecreasing and Ht+(y) is nonincreas- 
ing as a function of t and H,-(y)VHt+(y) = H(y). Here we shall take Ht-(y) 
and Ht+(y) to be the closed linear hulls of (y(s); s<t} and (y(s); s>~t) 
respectively, but other definitions are possible; in the definition of Ht-(y) we 
may take s < t instead, and in some applications it is better to let Ht-(y ) and 
Ht+(y) be generated by the past and future increments o fy  [5, 15]. In the setting 
of Section 3 the subspaces H(y), Ht+(y) and Ht-(y ) will play the roles of H 0, 
H 1 and H 2 respectively. 

Definition 2. A (Gaussian) stochastic dynamical system on H is a pair (x,y) of 
centered (jointly Gaussian) stochastic processes (x(t); t ET)  and (y(t); t ET),  
taking values in a real separable Hilbert space E and in R m respectively, such 
that both H(x) and H(y) are contained in H and such that, for every t ~T, the 
Gaussian subspace Xt: = H(x(t)) generated by the random vector x(t) satisfies 

[ - , -  (y )vx , -  ] ± [/-/,+ (y)vx,  + ]Ix, ( l l )  

where Xt-: = V~<,X~ and X,+= Vs>~tXr The processes x and y are called the 
state process and the output process respectively, and X t is the state space at time 
t. The stochastic system is finite dimensional if d i m E <  oo. 
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Remark 2. Trivially, the family {Xt; t ~ T )  of state spaces satisfies the condi- 
tions 

(i) { X t ; t ~ T  ) is Markovian, i.e. Xt + .LXt-[X t for all t E T .  This is equiv- 
alent to saying that { x(t); t ~ T )  is a Markov process. 

(ii) for each t ~ T ,  X t is a splitting subspace with respect to Ht-(y) and 
Ht+ (Y). [] 

We shall say that two stochastic systems (defined on the same Gaussian 
space) are equivalent if, for each t ~ T, their output processes agree a.s. and their 
state spaces are the same. Hence equivalent stochastic systems can have dif- 
ferent state processes but these are related by trivial coordinate transformations 
in the state spaces. 

As an example let us consider a discrete-time stochastic system with T =  Z +. 

Proposit ion 3. All finite dimensional stochastic systems (x,y) with T - - Z  + have a 
representation of type 

x(t+ 1) = A(t)x(t) + B(t)w(t); x(O) = x o (12a) 

y(t) = C(t)x(t) + D(t)w(t), (12b) 

where (A(t),B(t), C(t),D(t); t E Z + ) are matrices of appropriate dimensions, x o is 
a zero-mean Gaussian random vector, and w is a unitary Gaussian white noise 
process independent of x o. Conversely, any pair (x,y) of stochastic processes 
satisfying (12) is a stochastic system. 

Proof. O) Let (x,y) be a stochastic system with T = Z  + and the state process x 
taking values in R". We shall prove that (x,y) satisfies a representation (12). To 
this end first note that 

y(t) ] y(t) + ~ y(t) ] 
(13) 

Now, (11) and (2) imply that Ett'-(y)vx'-~=gXt)k for all )~Ht+(y )VXt  +, and 
consequently there are matrices A(t) and C(t) such that 

E. lx(,+l)l (A(,) 
y(t) I = c(t) l x(t)" (14) 

The second term of (13) is a white noise process; it is the innovation process of 

x(t+ By normalizing we obtain 
l) 

y(t) ]" 

Et~l,-(y)vx,-l~ ( x(t  + 1) 

where w is a unitary Gaussian white noise and B(t) and D(t) are matrices such 

B(t) I has full rank. Hence (x,y) satisfies (12). It remains to show that that D(t) ] 
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xo± H(w ). But, since ~[ D( t) ) has full rank, (15) implies that w( t) ~[ Ht- (y) V 

Xt-] ~- for all t ~ Z  +. Hence xoZH(w ). (ii) Assume that (x,y) satisfies (12), and, 
for each t ~ Z  +, let X t be the Gaussian space generated by x(t). Since w is a 
white noise process and xo±Ht+(w), Xo~Ht- (w  ) is orthogonal to Ht+(w) or 
equivalently 

E Xo ,H, - (w)  ] ± E (16) 

(property (4)). From (12) it is easy to see that H t - ( y ) V X  t- CXo@Ht-(w ) and 
that Ht+(y)VXt+cHt+(w)~Xt  and therefore (11) holds. Hence (x,y) is a 
stochastic system. []  

Similar results hold for continuous-time processes and stationary processes 
defined on the whole real line. 

Definition 3. A stochastic realization (or Markovian representation) of (y(t);  t E 
T) on H is a stochastic system (x,z) on H such that, for all t ~T ,z (  t)=y( t) a.s. 
The realization is said to be finite dimensional if the stochastic system is finite 
dimensional and internal if X t C H(y) for t ET.  

Proposition 4. Every wide sense separable centered Gaussian stochastic process 
(y(t);  t ~ T )  has a stochastic realization on H(y). 

Proof For each t ~T,  set X t = Ht-(y). Since trivially Ht-(y)±H(y) lHt-(y) ,Xt ,  
thus defined, satisfies (11) for all t ~T .  For each t ET, choose an orthonormal 
basis (~1,~2,~3 . . . .  ) in Xt; this can be done due to the separability. Setting 
Xk : "=£k/k, we have Y.Xk2< o0 a.s. Now define x( t)= Y~xkek, where (el,eE, e 3 . . . .  } 
is an orthonormal basis in some separable Hilbert space E. Then x(t) takes 
values in E and (x,y) is a stochastic realization on H. Of course, we may as well 
set X t = Ht+ (y) or n(y) .  [] 

The basic problem in realization theory is to find the smallest possible state 
spaces. Of course, in general, the choice in the proof of Theorem 2 will not 
suffice for this purpose. We need a concept of minimality. To this end first note 
that the family % of all subspaces of H is a partially ordered set with respect to 
vector space inclusion. 

Definition 4. A stochastic realization (x,y) on H is m&imal at time t if the 
corresponding state space X t is minimal with respect to the ordering of the 
partially ordered set %,i.e. if there is no proper subspace of X t for which (11) 
holds. We say that (x,y) is minimal if it is minimal at each time t E T .  

Proposition 5 (Ruckebusch). A stochastic realization is minimal if and only if it 
is both observable and constructible, i.e., for every t @T, 

Xt N [Ht+(y)] ± = 0 (observability) (17) 

Xt N [H~-(y) ]  ± = 0 (constructibility). (18) 
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The proof of this result is a trivial generalization of one given in [15] for the 
stationary case. 

Minimal splitting subspaces with respect to the past and future spaces of y 
are natural candidates for state spaces in the stochastic realization problem. If 
we consider splitting subspaces contained in the past space or in the future space 
only, the Markov property is a direct consequence of the splitting property. In 
general, however, we must impose a certain growth condition, as described in 
the following theorem. 

Theorem 3. A family (Xt; t ~T)  of separable subspaces of H defines a minimal 
stochastic realization (x,y) (in the sense that X t is the Gaussian space generated by 
x(t) for each t ET)  if and only if 

(i) for each t E T ,  X t is a minimal splitting subspace with respect to H t - ( y  ) 
and Ht+ (y); 

(ii) there exists a family ( Z t ; t E T )  of subspaces, with the property ZtC 
[H(y)VXt+] ± for all t E T  such that the family {St; t ET), where S t : = [ H t - ( Y ) V  
Xt] ~ Z t, is nondecreasing, i.e. S¢ C St whenever "r <~ t. 

Proof (if): By Condition (i), Lemma 2, and Proposition 2, X t = 
E(Ht+(y)][Ht - (y )VXt]~Kt )  where Kt_l_Ht+(y). Therefore, since in addition 
Z t ±  Ht+(y), X t = ff~( Ht+(y)lSt). Consequently, in view of (9), 

S, O X t  = St n [n t+(y)]  ±, (19) 

which is nondecreasing in t, for { St ) and {[H, + (y)]± } are. Hence, since trivially 
(s, ex,)±s, ,  (s,(3s,)±s, +. By (19), we also have (S tGXt)ZHt+(y) ,  and 
therefore, in view of property (4), S,±[H,+(y)VX,+]IX,. But, due to condition 
(ii), H t - ( y ) V X  t- C S t, and consequently (11) holds. Then, choosing a basis in X, 
for each tET,  as in the proof of Proposition 4, produces the required state 
process. The stochastic realization (x,y).is minimal, for {Xt; t ~T} is a family of 
minimal splitting subspaces. 

(only if): Let (x,y) be a minimal stochastic realization with spaces (Xt; t E 
T}. Then, Condition (i) follows from Remark 2 (ii) and, as for the minimality, 
from Propositions 1 and 5; note that conditions (7)-(8) and (17)-(18) are 
identical. To show that Condition (ii) holds, set Z t : = [ H t-  (y) V Xt - ] G [ H, - (y) V 
Xt]. Then St = H t - ( y ) V X , - ,  which is nondecreasing. It remains to show that 
Z, c [H(y )VXt+]  ±. It follows from (11), (4) and the definition of Z t that 

z, c [ n,-(y)vx,- ] ± ( (y)vx, + ] ox,}. (20) 

Since, in addition Z t .J_ [ Ht - (y )  V Xt] , Z t_l_[ H(y)  V Xt +] as required. [] 
We obtain a simpler version of this theorem by restricting our attention to 

internal realizations. 

Corollary 3. A family ( X t ; t ~ T  } of subspaces of H(y)  defines a m&imal 
stochastic realization of y if and only if Condition (i) of Theorem 3 holds and the 
family (St; t ET), where here S t : = Ht- (y) V Xt, is nondecreasing. 
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Proof. (if): Noting that H(y) is separable, this part follows immediately from 
Theorem 3. 

(only if): It only remains to show that Z, = 0  for all t ET. But, by definition, 
Zt C Ht-(y)k/Xt-  C H(y). Therefore, in order to satisfy the condition Z t c [ H ( y )  
V Xt+ ] ±, we must have Zt=O. [] 

Comparing Corollaries 1 and 3 we can see from Proposition 2 that, in 
general, there exist families of (internal) minimal splitting subspaces which do 
not evolve in time in a Markovian fashion. To see this, we may choose a family 
(St; t E T) which is not nondecreasing. 
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