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Doubly-Indexed Dynamical Systems: 
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Dept. of Electrical Engineering, University of Padova, Padova, Italy 

Abstract. Doubly-indexed dynamical systems provide a state space realiza- 
tion of two-dimensional filters which includes previous state models. Alge- 
braic criteria for testing structural properties (reachability, observability, 
internal stability) are introduced. 

I. Introduction 

State space representations of two-dimensional filters are a recent field of 
investigation; yet there are quite a few contributions [3, 6-12, 16-20, 24]. 

At first sight these contributions look hard to compare since they are based 
on state space models having different structures. 

If we consider these differences from the realization point of view, it turns 
out that the state space models we find in the literature realize transfer function 
classes of different sizes. The recursiveness of the state equations implies the 
rationality of the transfer function; nevertheless the realization of a generic 
(strictly causal) rational transfer function cannot be achieved by every model. 
For instance, the model proposed by Attasi [3] realizes only the subclass of 
recognizable transfer functions (also called "separable filters,'). 

As proved in [6, 9], the state space models introduced by Roesser [20] and 
by Fornasini-Marchesini [6, 7, 9] realize the whole class of causal rational 
functions in two indeterminates. We will show that if we consider any model so 
far presented in the literature, this can be embedded in the Fornasini-Marchesini 
model [9] extended to include all causal (not only strictly causal) transfer 
functions. Moreover it is interesting to notice that the embedding of the Roesser 
model preserves the dimension of the local state space, whereas the reverse 
embedding requires in general increasing the dimension of the local state space. 
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Recently Kung-Lrvy-Morf-Kailath [16, 17] considered the Roesser model as 
a starting point for extending Rosenbrock's theory of coprimeness [21] to 2-D 
systems. This approach led to the concepts of modal-controllability and modal- 
observability and to defining as minimal realizations those which are both 
modal-controllable and modal-observable. This theory looks very interesting 
from an algebraic standpoint but unfortunately so far it does not reach a 
consistent conclusion. Actually the existence of realizations which are both 
modal-controllable and modal-observable has been only conjectured by Kung- 
Lrvy-Morf-Kailath on the basis of low order examples. 

Since the comparison between available state space models indicates that 
the model introduced by the authors is the most general, we shall focus our 
attention to analyze its structural properties. 

We shall first extend from [7] and [9] the concepts of local reachability and 
observability and their properties. Then the definition of internal stability will be 
naturally introduced and we shall develop a stability criterion and connections 
between internal and external stability. 

2. State Space Models 

A detailed discussion of the realization theory for two dimensional filters has 
been presented in [6, 7]. So, in this section we shall introduce directly a state 
space model without deriving it from the definition of the state via Nerode 
equivalence classes. 

We shall first list some notations: 

K arbitrary field 
K[zI,z2] ring of polynomials in two indeterminates over the field K 
K[[Zl,Z2] ] ring of formal power series in two indeterminates over the field K 
K[(zl,z2) ] subring of rational power series 
Ko[(Zl,Z2) ] ideal generated by z I and z 2 in K[(zl,z2) ]. 

A generic element in K[[z~,z2] ] will be denoted by 

s -- Zh,k(s, zPz )z z  

where (s,z~zk)E K is the coefficient of the monomial zhz~. 
Let us introduce the following definition. 

Definition. A doubly-indexed linear, stationary, finite-dimensional, dynamical 
system (DIDS) E=(AI,A2,B1,B2,C ) is defined by the first order partial dif- 
ference equation 

x(h + 1,k+ 1) = Alx(h + 1,k) + A2x(h,k+ 1) + Blu(h+ 1,k) + B2u(h,k+ 1) 

(1) 
y(h,k) = Cx(h,k) 

where u(h,k), the input value at (h,k) andy(h,k), the output value at (h,k), are 
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in K and h,kEZ,  A i E K  "x", B i E K  "xl, C E K  Ix", i= 1,2 and xEXff i  K" (local 
state space). 

Let oy be a partially ordered set. A cross-cut C C 6y is a set of incomparable 
points such that if i E •  exactly one of the following is true [19]: 

(a) i E ~  
(b) i > j  for somej  E 
(c) i < j  for somej  E 

The partition induced on P by a cross-cut C evidentiates three disjoint sets 
of points. We shall call present, future, and past with respect to C the sets of 
points satisfying (a), (b), (c) respectively. 

In Z x Z partially ordered by the product of the orderings, the cross-cut 
through the point (i , j)e Z X 7/is uniquely determined as the set 

{ ( i+m, j -m) ,  mET~} ~ Ci+j 

Introduce the following notation. 

9(, r = {x(h,k): x(h,k) EX,(h,k)EGr} 

Given a cross-cut C, CT/xZ (see Fig. 1), the solution of equation (1) in the 

Xr 

" / [O,r ) 

past , / [ 1 ' r -1 )  
) //" j 

/~r 
-1,2 ) r 

x (r,o)j 'future 

/ / ~  (r,O) 

Fig. 1. 
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future is uniquely determined by %r and by the input values on 8~ 
future set with respect to C~. 

Let 9( o =0. The following rational power series: 

and on the 

s x = C ( I -  A lzl - A2zz)-I(BIZ- 1 -1- 9222) (2) 

represents the output function of X corresponding to the input function u----- 
Y.h,kU(h,k)z~z~ = 1. 

The series sx is called transfer function of 21. 
Let E start from %r =0, then the output function y corresponding to an 

input u is given by 

y = SxU 

Definition. A DIDS 21 is a zero-state realization of a series s EK[[zl,z2] ] if 
s = s x. The dimension of the realization is the dimension of the local state space 
X. 

Then the following proposition holds: 

Proposition 1. Let S EK[[zI,Z2] ]. Then there exists a DIDS which is a zero-state 
realization of s if and only if  s E Ko[(zl,z2)]. 

Proof. The necessity is a trivial consequence of (2). 
Conversely let s EKo[(Zl,Z2)]. This means that s= n(zl,z2)p-l(zl ,zz),  n,p E 

K[zl,z2], n(0,0)=0 andp(0 ,0)=  1. Consider two polynomials u and ~r in the ring 
K(41,42) of noncommutative polynomials such that their commutative images 
are n and p respectively. 

The commutative image of the noncommutative series ~ = mr-~ is the series 
s. Since o is recognizable [5], there exist an integer N and matrices A I,A2E 
K N×u, B E K  N×I and C E K  l x N  such that 

oo oo 
0 = C ( I - A 1 4 1 - A 2 4 2 ) - I 9  = C E k ( A 1 4 1  +A242)k9  = C E k ( A 1 4 1  +A242)k9  

0 1 

= C(I- A 141 - A242) - 1(9141 + B242) 

where we put B~ =A~B, Bz=AzB.  
Since the projection map from the algebra of noncommutative power series 

K((41,42)) onto K[[zl,z2] ] is an algebra homomorphism, the series s can be 
expressed as 

S = C ( I - -  m iZl - m2z2)- l (WlZ 1 q-- W2z2) 

Then the DI DS 21 = (A 1, A 2, B1, B2, C ) is a zero-state realization of s. [ ]  

Remark. See [9] for an explicit construction of A 1,A2, B l, B2, C. 
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We shall now prove that the models investigated by Roesser [11, 12, 20], 
Kung-Lrvy-Morf-Kailath [16], Fomasini-Marchesini [6, 7] and, afortiori,  Attasi 
[3] can be embedded in (1). 

In fact, consider first the model introduced in [6, 7]: 

~ ( h +  1 ,k+ 1) = Xl.~(h + 1,k) + A--2.~(h, k + 1) + Xo~(h ,k  ) + l~u(h,k)  

y ( h , k )  = C~(h,  k) (3) 

The model of Attasi is a special case of (3) when A0 = - AIA2 = - A--2A 1 .  
An embedding of (3) in (1) is accomplished assuming in (1) as local state the 

following vector: 

x(h,k) = 

g(h,~) 
~(h,k- 1) 
u(h,~-l) 

so that model (3) can be rewritten in form (1) with 

A I = I  0 ' A 2 =  0 0 
0 0 0 0 [o] 

e ,  = o , ~ = , c = [ c o o ] -  
I 

Roesser's model can be described as follows: 

xh(h + 1,k) 1~2 ] u(h,k) 

xh(h'k) ] 
y(h,~) = [ d ,~d~ ] x°(h,k) 

d 

where x h is called the horizontal state and x v the vertical state. 
It is clear that assuming in (1) the vector 

(4) 

x(h,k) = [ xh(h'k) 
~°(h,~) ] 
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as local state space, model (4) can be recast in form (1) with 

A] [0 A2 
Al-- 33 4 0 

B1 
L B2 0 

It is interesting to notice that in Roesser's model the local state is the direct 
sum of the horizontal and vertical states, so that the embedding above does not 
require any increasing of dimension. Conversely, embedding (1) in (4) cannot be 
accomplished in general without increasing the dimension of the state space. 

In fact for this embedding we need a preliminary increase of dimension to 
be able to put matrices Ai, B i and C of (1) in the partitioned form (5). 

Example. Consider the rational function (z 1 + z 2 ) ( 1 -  gl--Z2) -1" A realization 
in form (1) is Z=(1 ,  1, 1, 1, 1). Clearly the dimension of a realization in Roesser's 
form is at least two. 

The idea of splitting the local state space X in horizontal and vertical 
components, which leads to Roesser's model, impl ies that  the structure of the 
updating equations is not invariant under similarity transformations in X. 
Clearly equations (1) keep their structure under such transformations. 

3. Structural Properties of State Space Representations 

Reachability and observability notions for DIDS have been introduced in [6, 9, 
20]. We shall now adjust them to model (1) for obtaining reachability and 
observability criteria. 

We say that a local state ~ E  X is reachable from zero initial states if there 
exists an input u ~ K[[zl,z2] ] and integers i >  0 , j  > 0 such that x( i , j )= ~, when Z 
starts from 9(o identically zero. 

Since the DIDS we consider are stationary, we introduce the following 
definitions: 

Definition. A state x E X  is reachable 
B2z2)u, 1) for some u E K[ z - l z - i q 1 , 2 .~" 

The reachable local state space is 

if x = ( ( I - A l z i - A z z 2 ) - l ( B l z l  - 

X a = { x : x = ( ( I - A , z l - A 2 z 2 ) - I ( B l Z l  + Bzz2)u, 1 ) , u E K [ z ~ - l , z 2 ' ] }  

The realization Y. is L-reachable if X =  X R. 

We introduce the following matrices M o. E K" x,:  

MO ( ( i _ A , Z l  - - I  i j = - -  m 2 z 2 )  , Z l Z 2 ) .  

(i.e., Moo=I,  MIo=A1, Mol--A 2, M20--- A 2, MII = A IAz + A2A1 .. . .  ). 
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Then the columns of the infinite matrix 

@%o = [ W192 M,oB, MIoB2 + Mo, B , . . .  M i_ I,jBI + Mi,j_ IB2.. .  ] 

span X R. Consequently system ~ is L-reachable if R~o is full rank. 
Also the notion of indistinguishable states is extended to this system. 

Definition. A state x E X is indistinguishable from the state 0 ~ X if 

C ( I -  A IZl -- A2Z2)- Ix ----- 0 

The indistinguishable local state space X 1 is defined as: 

X ' =  { x : x ~ _ X , C ( I - A l z , - A 2 z 2 ) - ' x = O }  

The subspace X 1 coincides with the null space of the matrix: 

C 
CMto 

O~ = CMol 

CM2o 

65 

The realization Z is L-observable if X ~= {0} c X ,  i.e. if O~ is full rank. 
The rank evaluation of 0oo and @~ can be reduced to compute the rank of 

two finite dimensional submatrices, by using the following extension of the 
Cayley-Hamilton theorem. 

Prolmsition 2. Let ( I - A l z l - A 2 z 2 )  - l =  i j Y, ijMijzlz 2. Then the M o. with i + j > n  
are linear combinations of the M U with i + j  <n, i.e. 

span(Mo., i,j ~ 2v) _- span(Mo, i,j >/O, i + j  <<. n - 1) 

The proof is a straightforward consequence of the identity: 

YU Muz ~z~ det( z 1- lz f  ' I  - A l z f  I - A 2z ~ ') 

= zF 'z£ I Adj(z ? 'z£ q -  A , z £ '  - A2z;- ) 

An immediate application of Proposition 2 is the result that the rank of ~Loo 
coincides with the rank of the n × ½(n + 2 ) ( n -  1) submatrix of ~oo : 

=- [ BI B2 MloB1MIoB2 + MoIBI . . . Mo,,,_ 1B2 ] 
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Analogously the rank of (900 is the rank of its ½(n + 1)n × n submatrix: 

C 
CMlo 

(9 = CMol 

CMo,.-I 

Let Y. = (AI,A2,B1, B2, C) be a realization of a rational series s and assume 
that E is not L-reachable. An L-reachable realization having as state space the 
reachable state space X R of 2, can be obtained following a procedure analogous 
to that outlined in [9, 10]. In a similar way it is possible to derive an L-observ- 
able realization whose dimension is the rank of (9. 

In [16, 17], Kung-L6vy-Morf-Kailath considered the controllability prob- 
lems of Roesser's model through the extension of the coprimeness property to 
matrices with entries in K[Zl,Z2]. 

The transfer function of Roesser's state space description has the following 
structure: 

sR = [ClC21t _~3 z21i_~4] B2] (6) 

which is a particular form of (2), as we can see comparing (5) and (6). 
The system matrix appearing in (6) shows the peculiar property of being 

partitioned in block-matrices each containing either z~ or z 2 separately. 
Kung-L6vy-Morf-Kailath were motivated by this fact to define the system 

(4) to be modal-controllable and modal-observable if the matrix pairs 

(Iz l' ° 1 z li and / Izl° 1 )0 
are left-coprime and right-coprime respectively. 

The analysis of modal-controllability and modal-observability can be based 
on the following interesting coprimeness criterion [Kung-L6vy-Morf-Kailath]: 

Let M(Zl,Z2) and N(zpz2) be polynomial matrices of size n×  n and m×  n 
with entries in K[zpz2]. Then M(zpz2) and N(Zl,Z2) are right-coprime if and 
only if 

[ M(~'1'~'2) ] = 
rank N(~.l,~.2) ] n 

for any generic point (~l, f2) of any algebraic curve generated by the irreducible 
factors of detM(Zl,Z2). 

In this framework, the interesting problem to be solved relies in establishing 
whether realizations both modal-controllable and modal-observable do exist. 
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This kind of realization would be rather interesting since the dimension of 
the local state space would be minimal with respect to Roesser's model. Of 
course, since Roesser's models are a subclass of models (1), a modal-controllable 
and modal-observable Roesser's realization of a transfer function is not in 
general minimal in the class of realization (1). However, Kung-L6vy-Morf- 
Kailath failed to prove the existence of such realizations. 

4. Stability 

The stability problem for two-dimensional filters in input-output form has been 
investigated by several authors [1, 2, 4, 14, 15, 23]. Attasi [3] was considering the 
stability of realizations of separable two-dimensional filters, i.e. DIDS having 
transfer functions with structure C ( I -  AlZ~ - !)- l ( I -  A2z f 1)- 1~ and A IA2 = 
A2A 1. Obviously, the factorized form of the system matrix in the product 
( I - A l Z l ) - l ( I - A 2 z 2 ) - l  reduces the stability problem to the stability analysis of 
X 1 and/T 2 separately. 

• In this section we shall deal with the stability of DIDS represented by model 
(1). 

From now on we assume that K =  R and the euclidean norm in X =  R". 
Moreover we introduce 

II%rll = Ilsup[I x ( r - n , n ) l [  
n~Z 

We therefore have the following definition. 

Definition. Let Z be described by equations (1). The system E is asymptotically 
stable if assuming u = 0  and 119QII finite I1%i[1~0 as i ~ +  ~ .  

As is well known, the asymptotic stability analysis of discrete time linear 
systems reduces to investigating the position of the zeros of the characteristic 
polynomial of the one-step state transition matrix A. 

The asymptotic stability of a DIDS Z=(AI,A2,B1,B2, C) is related to the 
algebraic curve defined in C x C by the equation 

d e t ( I -  zlA i - z2A2) = 0 

as stated in the following Proposition. 

Proposition 3. Let E be as in (1). Then Z & asymptotically stable if  and only if 
the polynomial det(I - A izi - A2z z) is not zero in the closed polydisc: 

~1 = ((Zl,g2) eCXC:lZ1]  < l, [Z2[ < l)  

Proof Sufficiency. Let de t ( I - z lA l - z2A2)4=O in P1 and call V the algebraic 
curve defined by d e t ( I -  A ~z I - A2z2) = O. Since V and •1 are closed, V A PI = 
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implies that there exists e > 0 such that the polydisc 

~,+~ = ( ( z , , = = ) e c x c :  I=11 < 1+~, I==1 < l+e} 

does not intersect V. 
Then the rational matrix ( I - A l Z l - A 2 z 2 )  can be inverted in P i+ ,  and its 

McLaurin series expansion, given b y  

( I -  A 1 z 1 -  A2z2) -1..,~. ZijMij.2~zJ2 (7) 

converges normally in the interior of PI+~ [13]. 
It follows that the series ~ullguI I converges. Consequently x,+j.rllnoll~O 

as r-o oo, [22]. This implies the asymptotic stability of Z. For, assume II %11 finite 
and pick in %r, r > 0, any local state x(m, r - m ) ,  then 

-<< ~ [IMoll I lx(m-i ,r-m-j)l l  <<-I1%11 ~ IIM0II 
i+j=r i+j=r 

Necessity. Assume Y. be asymptotically stable. Then for any x EX,  Mux-oO as 
i + j  > oo. This fact and 

n 

IlM011 < ~kl[Moekll, 
1 

(with { e k }7 the standard basis in X = R ~) imply 

lim IIMu[ I < 
i +j--~oo 

n 

lim ~kllMuekl I =0 
i +j--~oo I 

By Abel's Lemma, the series Eo.Muz~z ~ converges in the interior of PI. Then 
( I - A i z  I -A2z2) is invertible in the interior of P~. 

The proof will be completed by showing that d e t ( I - A  lZl-  A2z2)~0 on the 
boundary PPI of °~ I. For, let (a~,a2) belong to pP~ and assume that 

d e t ( I -  A lal - A2a2) = 0 

Hence there exists a nonzero vector v E C" which satisfies v = A  ~atv + A2a2v. It 
is not restrictive to assume that l ad-  - 1, so that it makes sense to consider 
5( 0 = { x,, _, } with 

= 0  if n < 0  
x, ,_,  =aa{-,a;v+ ff~-,d;6 i f n > 0 ,  a E C  
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Assume now that a = e ~ and write a I = e -j~ and v = r + j w .  Then the state values 
on (k, 0), k---0, 1, 2 . . . .  are given by the sequence 

x(k ,O)  = 2 r c o s ( k 0 + ~ )  - 2wsin(k0+~p), k - 0,1,2 . . . . .  

and it is always possible to select a phase ~p which makes the sequence not 
infinitesimal as k goes to infinity. [ ]  

As far as stability criteria are concerned, the result presented in Proposition 
3 makes those tests elaborated for input-output stability [1, 2, 4, 14, 15, 23] 
suitable for asymptotic stability analysis. In fact for a two-dimensional filter, 
with transfer function p(z~, z2 ) /q ( z  l, z2), q(0, 0 )=  1, to be input-output stable it is 
necessary and sufficient that q(zl ,zz) not be zero in ~1. 

Coprimeness properties are relevant in analyzing the relations between 
input-output stability and asymptotic stability of DIDS. For this, it is important 
to note [16] that if E=(A~,A2,B1,B2,C ) is a realization of a transfer function 
p(zl,z2)/q(zl,z2) with p and q relatively prime and 

and 
(i) ( C , I - A I g  I - A2z2) 

(ii) ( I - m l g l - m 2 z 2 , W l Z l  + B2z2) 

are left-coprime 

are right-coprime, 

then d e t ( I -  A l Zl - A 2Z2) = q(zl, z2)" 
Realizations satisfying (i) and (ii) will be called coprime. 
For DIDS, input-output stability and internal stability are related as shown 

in the following Corollary: 

Corollary. Let 2~ =(A1,A2,BI,B2, C). Then we have the following implications: 

Y~ asymptotically stable ~ Z input-output stable 

E asymptotically stable ~ Y. input-output stable + Y~ coprime 

In the Appendix we shall show that any transfer function p(z l , z2) /q (z l , z2)  
admits coprime realizations, so it is always possible to construct asymptotically 
stable realizations starting from stable transfer functions. 

Appendix 

A coprime realization E = (A1,A2, B1, B2, C) of the transfer function 

P(gl'Z2) = bloZl + bolZ2 + " " + bomz~ n 

q(zl ,z2) 1 + alozl + aolz2 + . . . + ao,,,z ~' 
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is g iven by: 

F OI i i i ' I . . . . . .  1010101 4 +-+-+- "  
[ 0 l l  I 
+-H--~ 

AI= 

A2= 

i 0 1 0 1 1 1 0  I 

Iolo]ol+to' 

] I°: 
I I 
I I 
I I 

I I 
I I 

-- ~-i--i--.h--L--.F 
~0101010 

+-+-I~-T-H-n 1 0 1 1  0 I 0 I +-÷--~---~--~ 
1 0 1 1  I 0 l 

i; ;i;io  
1 0 1  i 01 I O~ 0 

+_:. ,  _ + _ ~ -  - 

, O n  l i  0 
i I 

- T - - - - T  - - -  ~ ,  - -  
1 0 1 0 1 1  
t I 

--T T - ' r -  - r  "-,--'--'-,-,--'-'-'-" 
0 0 I 0 I I 0 I 0 I 0 0 I 0 0 0 I 0 0 
--J ..L I l I I I -L I ' ._J__ I I--__ 

- ~ - -  - - i - - - - I  T - - i - - - I - -  ~ - - r - - I - -  I T - - ,  
"SmO . . . .  a l m - l l - a o m l  . . . . . . . . . . . . .  I - a 3 0  I -a21  -a12  - a 0 3  - a 2 0  " a l l  -e lO2. I -BlO -aC 
- I I I I I I I i , I i l I 

i I I I i r~o i ....... 1 010 ~ 1 ¢ 
L _ ÷  - F - - k - + " -  4 -  

I 0 I 
~ - ÷ .  

] 
I 

I 

I 
I 
I 
I 

ro!o-to!oq ~_~__~_+__L_+ 
I I 

0 0 i0 I 0 1 0 1 "-'~--+--'--~-- f--l- 
I 0 0 I 1 1 0  I 

+ - - * - - - F - ~ - - - t - - .  n 
i i i i 0 0 0 0 

I t I I 
- r " -  T - - i -  - ~ - -  I 

l O d e 0 1 0 ,  I 
I - - ~ - - ~ - - 2 - ~  
;o',oIo,o I 
L _ . I .  m --I- - .  L. - - , L - -  

' 0  i 1 1 0 J  
i I i 
I-- r---,--" l 

I 0 I O i O : 
-~-  . . . .  7 - - ", 

I O ~  O J  
. . . . . . . . . . .  : - 2  ............... +q 
~" 'C2_, . -_. . ,  . . . .  , , - -+- . .+- -~-  - ~  . . . .  -~- , - -~ 

I I I ( i -- o o , o  o o,o,o,o o,o,o,ol 
i m & a i i ~ $ ¢ , I I , 

BI= 

io I 

B2= 

0 

4 

0 
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By direct inspection we can see that the realization above satisfies 

d e t ( I -  A lZl - A292) = q(z 1, z2) 

This identity tells us that the realization E is coprime. In fact if, for instance, 
C and ( I - A  1z l -  A2z~ ) were not left-coprime, a square matrix S with entries in 
K[zl, Zu] and degz,(detS)> 0 or degz2(detS ) > 0 would exist such that 

C = V S  

( I - A l Z l - A 2 z 2 )  = TS 

T h u s  

q(zl,z2) = det(I-  A lz~-A2z2) = det TdetS 

and 

p(z ,z9 
q(zl,z2) 
- -  = C ( I - A 1 z  I - A 2 z 2 ) - l ( W l Z  1_[_ B2z2) 

1 
= VSS - I T - l ( B l z  I + B2z2) - det T Vadj T(BlZ l + B2z2) 

This would imply that det S is a common factor of p and q, contradicting the 
assumption of the relative primeness of p and q. 
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