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Summary. - In  this paper we give a criterion /or boundedness on the Hardy spaces ]or 
]unctions M(C~) of the sublaplacian ~ on a strati]ied group. The criterion requires that 
the ]unction M satis]ies locally a Besov condition. The proo] is based on the atomic aq~d 
molecular characterization o] Hardy spaces. 

O. - Introduction. 

Let  G be ~ stratified Lie group. Then the subluplacian ~f is a nonnegat ive 
essentially self adjoint  operator  when restr icted to functions of compact  support.  
Thus the funct ion M(~q ~) can be defined by  the spectral  theorem ~ecording to the 

prescript ion 
oo 

dE( ) 
0 

where E(2) is the  spectral  resolution of ~F. If  M is a bounded Borel  funct ion on 
(0, co) the  operator  M ( ~ )  is bounded on L 2, the  space of square integrable func- 
tions on G with respect to the Haa r  measure. 

A na tura l  problem is to s tudy the boundedness of the operator  2d(ge) on various 
spaces of distributions on G, in terms o f  smoothness properties of the funct ion M. 
When  G is the Heisenberg group this problem was invest igated by  the authors  
[DMM], [)/[1], who gave a criterion for the boundedness of M ( ~ )  on the  spnees L*, 
1 < p  < co. HUL~ICKI and STEI~ [FS] proved the following Mareinkiewicz-type 
multiplier theorem on any  stratified Lie group G. 

THEOREM. -- Suppose M is of class C ~ on (0, oc) and 

sup [)/~d"(;,)i =< C <  
A>O 

for O ~ j ~ ? .  

I f  r is a positive integer and s > r - ~  (3Q/2)4 -2  (where Q is the  homogeneous 
dimension of the  group) then  M ( ~ )  is bounded oll H~ for Q/(Q + r) < p < oo. 

(*) Entrata in Redazione il 10 dicelnbre 1985; versione rivedut~ il 3 luglio 1986. 
Inditizzo degli AA. : L. DE MICHEL,: Dipartimento di Matematica, Universits di Milano, 

20133 Milano, Italy; G. I~AUCERI: Is~itu~o di Matematica, Universit~ di Genova, 16132 Go- 
nova, Italy. 
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Here  H~, 0 < p _--< o% is the H a r d y  space on G defined ei ther  in t e rms  of maxi-  

ma l  funct ions or in t e rms  os an a tomic  decomposi t ion [FS]. I n  par t icular  for 
l < p _ <  co H ~ = a 5  ~. 

I%eeently the  second n a m e d  au thor  [M2] improved  the  mul t ip l ier  t heorem of 

Hulanieki  and  Stein for the  range  1 < p < ~ ,  replacing the smoothness  condit ion 

on M b y  a f ract ional  order condition of order s > (Q/2) ~- 1. Frac t iona l  versions 
of the  mult ipl iers  theorem for H~ when G = R ~ are not  new [C], [CT], [TW]. I n  
par t icular  TAIBLESON and WEIss  expressed the  condit ion oi1 the  mult ipl ier  M as 

a requi rement  t h a t  M is locally in a Lipschi tz-Besov space A(s; 2, 2) and  BAERN- 
STEIN and SAWYEn [BS] p roved  a sharp general izat ion of the i r  theorem.  

The purpose  of this pape r  is to p rove  a f ract ional  mult ipl ier  t heorem for opera- 
tors M ( ~ )  act ing on the  H a r d y  spaces H ~, 0 < p < 0% on a stratif ied group G. 

For  M:  R - >  C let  

A~+~ M - -  A~(A~ M )  k > 0 A~ M = M A ~ M ( x )  - -  M ( z  + h ) - -  M ( x ) ,  ,, - -  , = , . 

I f  1 _< z --< 0% s > 0, k is an  integer  > s and  A > 0, we say t h a t  the  funct ion M 

satisfies condition C(s; ~, c% A) if 

i) IM(;,)t <= A for  all  ~ > O, 
2it 

ii) R ~*-1 sup h -**|  [A~M(~)]~dA =< A ~ 
h > 0  ,1 

/~/2 

for every R > 0. 
Thus a funct ion M satisfies a condit ion C(s; ~, 0% A) if M is bounded  on R+ 

and M and its dilates M(R~), R > O, arc locally in the  Lipsehi tz-Besov space 

A(s; T, ~ )  un i formly  wi th  respect  to R. 

THEORE~ 1. -- Suppose M satisfies condi~Aon C(s; ~, 0% A). I f  r > 0 (not neces- 
sar i ly  an integer) and  s > r ~- (Q/2) -~ i t hen  the opera tor  M ( ~ )  is bounded  on- 

H ~ for Q/(Q -~ r) < p < oo and  is weak t y p e  (1 - -  1). 3Ioreover  there  exists a con 
s tan t  C > 0 ,  independent  of M and ], such t h a t  ] I M ( ~ f ) ] ] I ~  CA]]]IIn~ for all 
] e e l .  

An immedia te  consequence of Theorem 1 is the  following corollary whose sta-  
t e m e n t  should be  compared  with  t h a t  of [TW, Th. 4.9]. 

COrOLLArY 2. - Le t  0 < p  __< 1. Suppose t h a t  M satisfies a condition C(s; ~, c% A) 
for some s > Q(p-l_ 2-1) _~ 1. Then  M ( ~ )  is bounded  on H~. 

The proof  of Theorem 1 is based on the  a tomic  and molecular  character izat ions 
of H "  [FS], [TW], [He]. l~amely we shall p rove  t h a t  the  opera tor  M(s  can be 
decomposed into a sum of operators  ~ Mi(~e) where each s u m m a n d  is bounded  

on H~, since it  maps  p - a t om s  into p-molecules,  and the  series converges in the  space 
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of all bounded  operators  on H~. We  now describe the  contents  of the  remaining  
sections of the  paper .  

I n  w 1 we briefly summar ize  the  features  of analysis on stratified groups we shall 

need in the  sequel. I n  w 2 we describe the  molecular  character izat ion of the  H a r d y  
spaces on stratif ied groups. The last  section is devoted  to the  proof  of Theorem 1. 

1.  - P r e l i m i n a r i e s  o n  s t ra t i f i ed  g r o u p s .  

The ma in  reference for the  content  of this section is the  monograph  b y  FOLLANI) 

and  STEIN [ F S ] ,  tO which we refer  the  reader  for all unexpla ined te rminology and  
nota t ion.  

A stratif ied group is a connected s imply  connected ni lpotent  Lie group G whose 
Lie algebra ~7 is the  direct sum of vec tor  subspaees V~, j = 1, ... , m , s  rich t h a t  

[V o Vj] c Vi+~ and V~ generates  2 as an algebra.  The algebra j7 is equipped wi th  
a fami ly  of dilations {G~: t >  0} which are the  algebra au tomorphisms  defined b y  

- i = l  - j = l  

We shall denote  also by  dt the  corresponding group dilations, wri t ing tx instead 
of c3tx whenever  x e G, t > 0. We  shall denote  b y  

Q =  i j d i m ( V j )  
j = l  

the  homogeneous dimension of G. A homogeneous norm on G is a cont inuous func- 
t ion x--> Ix[ f rom G to [0, c~), which is C ~ on G~{0} and satisfies Ix-l[ = [xl, 

[tx I = tlx I for all x c G, t >  0; Ix[ = 0 if and  only if x - - 0  (the group ident i ty) .  
Moreover  there  exists a cons tant  y => 1 such t h a t  [xy[ g y(Ix[ -t- [Y]) for all x, y e  G. 

Actual ly  GmVA~C~ [Gu] has shown tha t  every  n i lpotent  Lie group with  dilations 
has a no rm with y = 1. Hencefor th  we assume t h a t  G is equipped with  a fixed 
homogeneous no rm satisfying Ixyl g Ixl + [Yl, x, y e G. The homogeneous norm 
defines a left  i nva r i an t  metr ic  d on G b y  d(x, y) = [x-lyl,  x, y e G. Thus for every  

x e G and r > 0 the  ball  of center  x and  radius r, B(r,  x) = {y ~ G: Ix-ly] < r}, is 

the  left  t rans la te  b y  x of B(r,  0), which is in tu rn  the  image under  d~ of B(1, 0). 

We  consider ;7 as the  Lie a lgebra  of all left  i n v a r i a n t - v e c t o r  fields on G and 
fix a basis X1, ..., X .  of ~ such t h a t  each X~ is an eigenvector  for the  dil~tions {dr} 
wi th  eigenvMue dj and  X~, ..., X is a basis for V~. We denote  b y  Y~ ..., ~g. the  
corresponding basis for r ight  invar ian t  vector  fields, i.e. 

(~ t=0  
]~/(,~) = ~ / ( e x p  (~x~)~ )  . 
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I f  I = (i~, ..., i~) e N" is a mult i index we set Izx = y~, ... ]:~. Then Izz is a r ight  

invar iant  differential operator,  homogeneous of degree d(I)----~ d~i~ with respect 
to the  dilations St, t > 0. ~ ~=~ 

The sublaplacian ~ ---- --  ~ X ~ is a second order, hypoe]]iptie nonnegat ive  dif- 

ferentiM operator  on G, whoso restr ict ion to smooth functions with compact  support  
is essentially self adjoint.  Le t  {E(~): / > 0} be its spectral  resolution. Thus if M is 
a bounded Borel  funct ion on (0, co) the operator  

c~ 

~(~) =f]f(~) d~(~) 
0 

is bounded on L ~ and commutes with left  translations. Thus, by  Schwartz~s kernel 
theorem, there  exists a t empered  distr ibution K on G such tha t  M ( ~ ) F - - - - ~ .  K,  
for all functions ~ in the  Schwartz space 5:. Fo r  every  t > 0 ]et 

oo 

= f . 
0 

Then the  distr ibution kernel of the operator  M(tte) is Kr where Kr the 
distr ibution defined by  

( K v 7  , ~)  --  (K ,  ~. a rT)  for ~ e S : .  

A polynomial  on G is a function P on G such tha t  P o e x p  is a polynomial  on # 
(exp is the  exponential  map from # to G). Ev e ry  polynomial  on G can be wri t ten 
uniquely  as ~ finite sum 

I 

where UJ ~ Sjoexp and ~1)..., ~n is the  basis of 2"  dual  to the basis X1, ..., X ,  

of g. The monomiM Ux is homogeneous of degree d(I) : ~ d~ik. The homogeneous 
k = l  

degree of P is max  {d(I): a I r 0}. If  a e N we note  by  ~ the  space of polynomials 
of homogeneous degree ~ a. Note tha t  ~ is invar iant  under  left  and right transla- 
tions [FS, Prop.  1.25]. 

I f  �9 e G, a e N and / is a funct ion whose derivatives ! : I /  are continuous func- 
tions in a neighborhood of x for d(I)<__ a, the  r ight  Taylor  polynomial  of / at  x 
of homogeneous degree a is the unique P : ~  such tha t  X q ~ , : ( 0 ) =  Yx/(x) for 
d(I) <= a. The right Taylor  polynomial  of homogeneous degree a of ~ distr ibution 
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T ~ ~ is the  unique polynomial  

P . , f  ---~ ~. ai~] * , a ~ 9  a~ 
d(i)  <= a 

such t ha t  :g~/~.,~(0)-= Y~T(-) for  d ( I ) g  a. 

LElVL'~_ 1.1. - Le t  T e 5  ~' and P 
nomial  of T of homogeneous degree a. 
d(J) ~ a. Moreover for every ~o e ~o 

= ~ a ~  ~, azeCJ ', be the  r ight  Taylor  poly- 
Then a~ is a linear combination of the XJT, 

d(D_~a 

P~,z.v(y) = (P. ,~(y).  T)(x) = <P~_,, ~(y), T(z)>. 

PROOF. - The first s ta tement  is an easy consequence of [FS, pp. 24, 25]. The 
formulas for P~,~,*T and Px, T*e follow at  once from the definition of Taylor  poly- 
nomial.  

2. - The molecular characterization of  Hardy spaces. 

The molecular theory  of H a r d y  spaces, initially developed for H 1 in the very  
general context  of spaces of homogeneous type  in [CW], was extended to all H v 
spaces, 0 < p _< 1, in various par t icular  situations in [Ct~], [TW], [He]. In  partic-  
ular in [He] t t E ~ E R  developed a molecular theory  for the H a r d y  spaces on the 
Heisenberg group. Since the same ideas work, with obvious modifications, in the  
context  of stratified groups, in this section we shall limit ourselves to a brief  descrip- 
t ion of the  main results of the theory.  

Oa a stratified group G the H a r d y  spaces H~ can be defined by  means of the 
(( heat  maximal  funct ion ~> [FS]. Namely,  let  W~, t > 0 be the hea t  kernel  on G, 

i . e .  the  kernel  of the  operator  e x p ( - - t ~ ) ,  t >  0. Then {W~: t > 0 }  is a commu- 
ta t ive  approximate  iden t i ty  on G and, for every  0 < t =< 0% H~ is the space of all 
distributions J ~ '  such tha t  J*(x) : sup I] * W~(x)l is in L ". The quasi norm on H~ 

t>0 
is HJI[~- = li]*H~- If  p >  1, H~ = L~. When 0 < p ~  1 the  elements of H~ can be 
decomposed into e lementary  building blocks: the (/), q, s)-atems. Suppose 0 < p =< 
_< 1 _< q =< c~, s is an integer. We call the ordered triple (p, q, s) admissible if 
p < q and s => [ Q ( p - 1 -  1)] (the integer pa r t  of Q ( p - ~ -  1)). Suppose t h a t  (p, q, s) 
is admissible. A (p, q, s)-atom centered at  x0 e G is a compact ly  supported L ~ lunc- 
t ion f such tha t  there  is a ball B of center  Xo whose closure contains supp (]) and 
ilJlt~ <= IB] (1/~)-0/~), and ] is or thogonal  to all polynomials in ~ , .  
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TKEORE)I [FS]. - :Let (p, q~ 8) be an admissible triple. Then any  ] in H~ can 
be represented as a l inear combinat ion  of (p, q, s)-atoms 

where the  ]~ are (p, q, s) a toms and the  sum converges in H~. ~foreover I I ] ] ] , ~  
inf { ( ~  IX~[~)~/~: ~ Xs]~ is a decomposi t ion of ] into (p, q, s)-atoms}. 
The theory  of molecules is an extension of a tomic  H v theory  with  i m p o r t a n t  

applicat ions to the  s tudy  of convolut ion operators .  I f  (p, q~ s) is an admissible tr iple 
and s > m a x  {s/Q, p - l _  1} we set 

a = l - - p - 1 ~ - s ~  b = l - - q - l ~ s .  

Then a (p, q, s, @molecule  centered a t  xo is a L~ funct ion M satisfying:  

i) M[xo~ xl~b e L ~, 

ii) I]M]I~/b I]M[xolx] Qb lIla -(~/b) = ~ ( M )  ~ c~, 

iii) ~M(x) P(x) dx = 0 ~or every  P ~ ~ .  

~ ( M )  is called the  molecular  norm of M. An easy adap ta t ion  of the  a rguments  
of [TW],  [He] shows tha t  every  (p, q, s)-a tom ] is a (p~ q, s, e)-molecule for any  

e > m a x  (s/Q, p - ~ - 1 )  and ~ ( ] ) <  C, where C is a cons tant  independent  of the  
a tom.  Moreover  any  (p, q, s, s)-molecule'  M is in H~ and IIMI]H~ < C'~(M) ,  where 
C' is independent  of the  molecule M. 

As a consequence of the  molecular  character izat ion of H~, to show t h a t  a l inear 
m a p  T is bounded  on H~ i t  is sufficient to show tha t  whenever  ] is a p - a t o m  then  
T / i s  a p-molecule  and Yt(T]) g C for some cons tant  C independent  of ]. We  shall 
exploit  this approach  to obta in  es t imates  of certain operators  on H ,  spaces t h a t  
will be  useful in the  proof  of the  mult ipl ier  theorem.  

THEORE~I 2.1. -- Le t  k be  a t empered  distr ibution on G such t ha t :  

(2.1) 

(2.2) 

(2.3) 

Ili*klE~A]lil]~, for every f ~ ,  

there  exist a e N;  r ~> m a x  (a, [Q(p-1 _ 1)]) and  a measurab le  ~a-vMued 
funct ion x - ~ P ~  a lmost  everywhere  defined on G such t h a t :  
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Then the  opera tor  K / =  ] �9 k is bounded  on H~ for p > Q/(Q ~- r) and there  exists 
a constant  C = C(Q, r) such t h a t  []K]]]H~< CA[I]]I~ , for all ]~Hv.  

P g o o r .  - Le t  s be an integer  such t h a t  r > s > m a x  (a, [Q(p-~- 1)]). Then the  

tr iple (p, 2, s) and the  quadruple  (p, 2, s, r/Q) are admissible. We shall p rove  t h a t  
if ] is a (p, 2, s ) -a tom then  K] is a (p, 2, s, r/Q)-molecule whose molecular  norm 

satisfies ~(K]) < CA. Assume t h a t  supp (]) c {x: Ix[ ~ R} and let  a = 1 - -  p-~ -~ 

~- (r/Q), b : �89 -}- (r/Q). Then b y  (2.2): 

On the other hand 

(f )~ )' ~, Ixlr  If , k(x)l~ lxl~+- dz § l ] , l~ (x) i~ lz i~+ '~ /x  : I~ + I2 

Izl<2R Iz[>2/~ 

To es t imate  11 we use (2.2): 

~1 =< (2R) ~ I[i* ~I[2 < r r) ARQ~. 

To es t imate  Is  we use Schwarz-HSlder,  (2.3) and  the fact  t h a t  ] is or thogonM to ~a  
for a g s: 

<f 
i2 �89 

Iz[> 2:~ t~,l 

Thus ~(K])<= C(Q, r)A. Since K] is obviously  orthogonM to ~a ,  the  theorem is 
proved.  

3. - Proof  o f  the  mult ipl ier  theorem.  

We shall begin by  establishing some weighted no rm inequalities lor  the  distri- 
but ion  kernels of the  operators  M(~f) ,  when M is a funct ion wi th  compac t  suppor t  

in R + in a Besov space on R. ~u recM1 t h a t  for s > 0 the  Besov space A(s; 1, oo) 
on R is the  space of all funct ion ] ~ Z~(R) such t h a t  the  norm 

(3.1) l!/[]l + sup [hi -~ ][~Yl]I 
Ihl>O 

is finite for some, and hence for all, integers k > s. For  every  s > 0 let  k(s) be the  
smallest  integer  s t r ic t ly  grea ter  t h a n  s and  denote  b y  [][~;1,o~ the  no rm defined b y  
(3.1) when k : k(s). 
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LEM~A 3.1. -- Suppose ~ > O, 1 g p __< 2 and M is a funct ion in A(s; 1, oo) such 
tha t  supp ( M ) c  [�89 2]. Le t  H be the  distr ibution kernel  of the  operator  M(s 
Then H is in C ~ H s > ~p-1 -~ (Q/2)(2p - ~ -  1) + 1 then,  for every  mult i index I, 
l ~ H  ~ L ~ and 

(3.2) 

P~ooF. - Assume first tha t  the est imate holds for I = 0. Le t  co(x) = (1 ~- lxi) ~. 
Then by  [FS, Lemma 1.10] ~o satisfies co(x) = co(x-X), co@y) < co(x)co(y) for x, y e G. 
Thus if g e L~(~(x) dx), t e L ~ ( ~ ( x )  ax) then ] ,  g e L~(co(~) dx) and 

Let  _71/1(,t) = exp (~)M(~). Then M l S A ( s ;  1, c~) and I M I I ~ ; ~ , ~  IMI~;~,~. More- 
over H -~ W~ * H~, where H1 is the  kernel  of M~(~)  and W~ is the heat  kernel. 
Hence H is C ~ and  :YZH---- (17~W~). H~. Then, since W ~ e 5  p and (3.2) holds for 
I = 0 by  hypothesis :  

I t  remains only to prove the  est imate (3.2) for I = 0. Le t  zv(t) = M(--  in t), for 
0 < t < 1, and F(t) = 0 otherwise. Then supp (F) c [e -~, e -~] and the A(s; 1, cr 
norms of F and M are comparable.  As in [FS, Lemma 6.35] we expand F in a 
Fourier  series on ( - - z , z ) :  i v ( t ) =  ~a,~e i'~*. Then F ( 0 ) =  ~ a , , ~ =  0 and [a~l<  

-<_ ~lFl.;x,~(1 + Iml) -~. But ~ ~ 

M(~.) = F(e-~) : ~ a,~[exp ( i m e - ~ )  - -  1] 
m~Z 

and hence 

m#O 

where 

(3.3) Era(x) = ~ (im)~ W~(x) 
~=1 k! 

x ~ G  

is the  distr ibution kernel  of the  operator  exp (ime - z )  - -1 ,  and 

Hence  we only need to prove the est imate 
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for all ~ > 0, 1 < p ~ 2 and m e Z~{0}. By  a theorem of HuI~AI~IC:KI [H1], [H21 
there exist two constants k > 0, 0 > 1 such tha t  

f eDIWt(x) dx <~ kO t t > 0 4 

The function W t = Wt/2 , W ~  is positive definite. 
Thus ][Wt[]~-----Wd0)= t-~/~Wl(O) and, by  H61der's inequali ty 

re< Iw,(x)j~ dx < li w, ll~-lf r dx < klCt-(~-'Q~. 

Hence, by  (3.3) and Minkowski's inequali ty 

On tile other hand we have 

(3.6) il~.0il= < r176 § 1] for m r 0 .  

Indeed let A be the closed subalgebra of L i generated by the functions W,, t > 0. 
By  [HJ] A is a commutat ive  Banaeh , -subalgebra of L ~ whose maximal  ideal space 
is homeomorphic to [0, oo). Moreover, if we denote by f the Gelfand transform of 
l e A ,  then l ~ , ( 2 ) = e  -a~, t > 0 ,  ~ > 0 ,  and for all ] 6 A N L  ~. 

(3.7) I[]I[~ = r  a v~-* d,~ . 
0 

Then by (3.3) and (3.7) E~ ~ A  (3 Z ~ and 

co 

C[ln~/2 (Iml) § 1] .  
0 

I~ow w e  c h o o s e  A = pIm101/~ a n d  e s t i m a t e  separately the  integrals of Ix[ ~ [E~(x)I~ 
over the regions Ix 1 < A  and Ix[ > A. By  Holder 's inequali ty and (3.6) 

Izl<~ I.,l_-<~ 

On the other hand by (3.5) 

<_ sup (I~Io~-~E)[ e~J IEo(~)I ~ d._< k~X~e-~ exp (p >10"~) = ~>~ 
-->I_~.~ d - -  

i l l  

Izl>A 

for [m] large enough. Since the est imate (3.4) is easy for smaU Ira] the 1emma is 
proved. 
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LEIVI~A 3.2. -- Le t  M ~ A(s; 1, c~) be  a funct ion such t h a t  supp (M) c [�89 2] and 
denote  b y  H the  dis tr ibut ion kernel  of M(s Le t  P~,s be  the  r ight  Tay lor  poly- 

nomial  of H at  x of homogeneous degree a ~ N. Then if 0 < r < a d- 1 and  s > r d- 
d- (Q/2) d- 1 there  exist  constants  ~ C~ > 0 such t h a t  

(3.s) R-C-" f f I~(yx)- P~,.(y)l~ylxl ~+~ ~ . ~  c~[MI~;~,j~ ~ 
a I~l<l~ 

for all 0 < R g l .  I f  r > a ,  r > 0  and  s > r ~ - ( Q / 2 )  d - 1  there  exist two con- 

stunts  ~, C~ > 0 such t h a t  

(3.9) R-~-~t~J~ ~ f I~(y~)- Po,.(Y)I~dYI~? +" ~<-- C~IMI.:~,~ R-~ 
IvI<i~ 

for all R~I. 

P ~ oos .  - Le t  M~(2) = exp (2)M(X). Then H : W x .  H1 and I F I I ~ ; 1 , ~  [FI~;x,oo. 
Le t  P~ = P~,w~ be the  r ight  Tay lor  po lynomia l  of W~ at  x of homogeneous  degree a. 

Thus b y  I~emma 1.1 P~,u(Y)= (P(Y)* Hx)(x) and 

a lvI<n a Ivl<~ a 

where A~(u) = W,(yu) -- P,~(y). Since, for g > 0, IxV ~ ~(~)(Ixz-*l= + Izl=), the  la t te r  

in tegral  is bounded  b y  

I,l<~ 
where 

B ( ~ )  = IA~(~)llul'Q/~)+r, ~(u) = I~(~)I I~l (Q~)+~ �9 

Now, b y  the  r ight  invar ian t  Taylor  inequal i ty  for stratif ied groups [FS, (1.44)] we 

have  for lYl < R:  

IWI(Y x) - P~(Y)I ~ C(a)lyI~+l~(x) 

where W(x) = sup {IYxWl(zx)l: [zl ~ b~+lR, d(I)  = a ~- 1} and  b > 0 is a cons tant  

which depends only on the  group G. Hence  ~ is a fas t  decreasing funct ion and  

I[A~II1 = f lw~(yx) --  P~(Y)I dx <= C(~)lyio+~fv(x) dx =< Cllyl~ 

moreover ,  since s > r + ( Q / 2 ) +  1, b y  L e m m a  3.1: 
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On the other h~n4 

:l ~ I1 dx  <- C(a) ly  ~ �9 

Thus 

~tence 

where a = 2 ( a ~ - l - - r ) > O .  

f Itt(y~)-- ~.,.(y)l~dylx[Q+'dx~_ C~[MI~;~,~ f fy[2(a+l) dy <= C7 M[2S; 1, r ~Q+2t'+o" 
ivl<~ 

This proves (3.8). To prove (3.9) write 

P~,,(y) = ~ a~(x)~X(Y) 
d(I)~a 

where~ by Lemma 1.17 a~(x) is ~ linear combination of YJH(x), d(J) ~ a. Since 

IH(y~) - ~ . , ( y ) l  ~ =< Cs(IH(yx)[ ~ + ~ {a~(x)12 I~(y)12) 
a(~)<a 

we have to est imate 

T ~ R-Q-2~f 

and several terms of the form 

for  d(I )  <= a. 
variables we have 

f IH(yx)]~ ~ylxl ~§ d~ 

To estimate T l e *  z ~ yx. Then, since [z] ~ I x ] -  [y] ~ R, changing 

r~l>R 
fill(z)[ ~ ly-lz?+~* dy czz~ C',R-Q-'~Q f Ill(z)[ ~ lzl~+'dz. 

because ly-lz] ~ [Yl -~ [zl ~ R ~ [z I ~ 2[z I. t~ence by Lemma 3.1 

(3.10) 1' < Clo R-2' [~1~ 1,~. 

Next we est imate the terms T(I). Since the function ~i are homogeneous of degree 
d(I)~ we have 

C12R~+ ~ . 
J 
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On the  other  hand,  if (~ > 0 is such t h a t  s > r + (Q/2) + 1 + (~/2), then,  since a2 
is a linear combinat ion of ](JH, d(J) ~ a~ by  Lemma 3.1 we have 

(3.12) 
I~1>~ 

Thus by  (3.11), (3.12) 

(3.13) T ( I ) <  ~ I~t,rlu ~2(a-~)-~< 

provided R _--> 1, d(I) g a. Hence (3.9) follows from (3.10) and (3.13) and the  lemma 
is proved.  

l~ow we are ready to finish the  proof of Theorem 1.1. We shall prove tha t  if M 
satisfies condition C(s; ~, 0% A) and s > r ~- (Q/2) ~- 1, r > 0, then  M ( s  ~) is botmded 
on H~ for Q/(Q ~- r) < p =< 1. The result for 1 < p < oo and the  weak type  (1 -- 1) 
est imate will follow by  interpolat ion and dual i ty  [FS, Th. 3.34, 3.37]. Clearly we 
m a y  assume tha t  r is not  an integer. 

Le t  K be the  kernel  of the  operator  M ( ~ ) .  By  Theorem 2.1 we only need to 
show tha t  K ~ Z~oo(~\{O}) and there  e ~ s t  a ~ N, a <  ," and a ~o-Valued funct ion 
x - >  _P~ almost  everywhere defined on G such tha t  

(3.]4) snpR- -" [ dy r 
~>o  d d 

lvl<~ M>2~ 

Let  ~ e  C~(R) be a funct ion such tha t  supp (~0) c [�89 2] and ~ ~(2-~2) ~ 1 for 2V= O. 
j eg  

Since M satisfies condition C(s; ~, c~, A) i t  is easy to see tha t  the functions Mj(~) = 
M(2~2)~(~) are in A(s; 1, c~) uniformly with respect to  j ~nd there  exists ~ con- 

s tunt  C~ > 0 such tha t  

(3.15) j e z .  

Let  ~Sj, Hi ,  Kr be the  kernels of the operators ~(2-J~f), M~.(.~), Mj(2-LSf), j ~ Z, 
respectively. Then Hi,  Kj  are in C ~, while t j  is in 5 p by  [5~, Prop.  2.7]. Moreover 
Kj(x) : K .  r162 : 2Jr162162 and K : ~ K j  in ~ ' .  Le t  a be the integer pa r t  

jeZ 

of r. Then, since r is not  an integer, r -- 1 < a < r. We shall prove tha t  for every  
mult i index I, such tha t  d ( I ) ~  a, XZK ~ L~oo(G~{0)). Indeed,  by  the  homogenei ty  
of the  differential operator  Iz• we have:  

f I  K (z)I dx = 2 I  H (y)I 
lxl>.~ IV I :  > 2112z~ 
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:Now, applying Lemma 3.1~ first for a = 0, then  for o: ---- Q 4- 2r, and using (3.15) 
we obtain 

(3.16) 

(3.17) 

f [Y~H~(y)f ~ dy <=fl X~H~(Y)[ ~ dy <__ C~A ~ , 
Ivl> 2z'L~ a 

f I ~• ~ ~y ~ (2~/~)-(~+2~)fiyl~i]_~• ~ ay ~ C~(2~/~)- (~+~)A ~ . 
lY] >2~/~ 

Thus by Minkowski's inequali ty:  

where we used (3.16) to est imate the terms with j < 0 and (3.17) to estimate those 
with i ~ 0. Thus Y~K e L~oo(G~{0}) for d(I) ~ a and the right Taylor polynomial 
P~,~ of K at  x of homogeneous degree a is well defined for almost every x. Let  P~,~- 
be the right Taylor polynomial of Ks ---- ~ * K ~t x of homogeneous degree a. By  
Lemma 1.1 P ~(y)=  [~5 .  P.~(y)](x). Thus, to prove (3.14) with P~ = P~,~ we 
only need to show tha t  the series 

(3.18) 

converges and its sum is bounded by  ~ / ~ A .  Let  Q,,j be the right Taylor poly- 
nomial at  x of homogeneous degree a of Hi .  In  view of Lemma 3.2 and (3.15) we 
have 

(3.19) 
{ C~A2R~ 

dyl l dx =< 
1~l>2~ Ivl<~ C6 A2R-~ 

for 0 ~ R g l ,  

for l g R ,  

where a, 6 > 0. Since P~,j(y) oJQ/2,~ ~,j/2o,~ (3.19) yields -~. ~ ' . ~ 2 ~ / ~ x , ~  ~ ) )  

1~t>2R lvl <-~ 

= (2J/"R)-~-2"f f[Hj(vz)-Q~,j(v)12dvlzl ~+2~ dz <= CTA2min ((2J12R) ~, (2J/2R)-~). 

This shows tha t  the series (3.18) converges and its sum is bounded by ~ / ~ A  where 
C1 is a constant  independent  of R. So the proof is complete. 
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