H? Multipliers on Stratified Groups (¥).

LeonEDE DE MICHELE - GIANCARLO MAUCERI

Summary. — In this paper we give a criterion for boundedness on ihe Hardy spaces for
functions M(F) of the sublaplacian & on a stratified group. The coriterion requirves thatl
the function M satisfies locally a Besov condition. The proof is based on the atomic and
molecular characterization of Hardy spaces.

0. — Introduction.

Let @ be a stratified Lie group. Then the sublaplacian ¥ is a nonnegative
essentially self adjoint operator when restrieted to functions of compact support.
Thus the function M (%) can be defined by the spectral theorem according tc the
prescription

M(Z) = f M(R) dE(A)

where E(4) is the spectral resolution of . If M is a bounded Borel function on
(0, o) the operator M(Z) is bounded on L2, the space of square integrable func-
tions on G with respect to the Haar measure.

A natural problem is to study the boundedness of the operator M (%) on various
spaces of distributions on &, in terms .of smoothness properties of the function M.
When G is the Heisenberg group this problem was investigated by the authors
[DMM], [M1], who gave a criterion for the boundedness of M (%) on the spaces IL?,
1< p< co. HULANICKI and SteIN [FS] proved the following Marcinkiewicz-type
multiplier theorem on any stratified Lie group G.

THEOREM. — Suppose M is of class C° on (0, oo) and
sup [V HPA)E=0< oo for 05§35,
=0

If r is a positive integer and s> 7 -} (3Q/2) + 2 (where ¢ is the homogeneous
dimension of the group) then M (%) is bounded on H? for ¢/(Q - r) < p < oo.

(*) Entrata in Redazione il 10 dicembre 1985; versione riveduta il 3 Inglio 1986.
Inditizzo degli AA.: L. Dr MicuELE: Dipartimento di Matematica, Universita di Milano,
20133 Milano, Italy; G. MavucrrI: Istituto di Matematica, Universita di Genova, 16132 Ge-
nova, Italy.



354 LeoNEDE DE MICHELE - GIANCARLO MAUCERI: H? multipliers, ecc.

Here H?, 0 << p < oo, is the Hardy space on & defined either in terms of maxi-
mal functions or in terms of an atomic decomposition [FS]. In particular for
1<p= oo Hr = I»,

Recently the second named suthor [M2] improved the multiplier theorem of
Hulanicki and Stein for the range 1 < p < oo, replacing the smoothness condition
on M by a fractional order condition of order s> (Q/2) - 1. Fractional versions
of the multipliers theorem for H» when ¢ = R» are not new [C], [CT], [TW]. In
particular TATBLESON and WEIss expressed the condition on the multiplier M as
a requirement that M is locally in a Lipschitz-Besov space A(s; 2, 2) and BAERN-
STEIN and SAWYER [BS] proved a sharp generalization of their theorem.

The purpose of this paper is to prove a fractional multiplier theorem for opera-
tors M (%) acting on the Hardy spaces H?, 0 < p << oo, on a stratified group G.
For M: R - C let

A M) = M@+ 1)~ Mw), ATM=A4AHM), k=20, AM=DM.

If1<7=< o0, §>0, k is an integer > s and 4 > 0, we say that the function M
satisfies condition C(s; 7, oo, 4) if ’

1) M) <A forall >0,
2R

i) R sup b7 [4EM(A)FdA< AT
Rj2

|h{>0

for every R > 0.

Thus & function M satisfies a condition C(s; 7, oo, 4) if M is bounded on R
and M and its dilates M(RA), B> 0, are locally in the Lipschitz-Besov space
A(s; 7, oo) uniformly with respect to R.

THEOREM 1. — Suppose M satisfies condition C(s; 7, oo, 4). If > 0 (not neces-
sarily an integer) and s > 7 + (¢/2) -+ 1 then the operator M (%) is bounded on-
H» for Q/(Q + r) < p < oo and is weak type (1 — 1). Moreover there exists a con
stant ¢ > 0, independent of M and f, such that |M(L)f|g, = CA|f|g, for all
fe He.

An immediate consequence of Theorem 1 is the following corollary whose sta-
tement should be compared with that of [TW, Th. 4.9].

COROLLARY 2. — Let 0 < p < 1. Suppose that M satisfies a condition C(s; 7, oo, 4)
for some s> Q(p~'— 2-1) 1. Then M(%) is bounded on He.

The proof of Theorem 1 is based on the atomic and molecular characterizations
of H» [FS], [TW], [He]. Namely we shall prove that the operator M(Z) can be

decomposed into a sum of operators > M,(¥) where each summand is bounded
[

on H», gince it maps p-atoms into p-molecules, and the series converges in the space
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of all bounded operators on H?. We now describe the contents of the remaining
sections of the paper.

In § 1 we briefly summarize the features of analysis on stratified groups we shall
need in the sequel. In § 2 we describe the molecular characterization of the Hardy
spaces on stratified groups. The last section is devoted to the proof of Theorem 1.

1. — Preliminaries on stratified groups.

The main reference for the content of this section is the monograph by FOLLAND
and STEIN [FS], to which we refer the reader for all unexplained terminology and
notation.

A gtratified group is a connected simply connected nilpotent Lie group @ whose
Lie algebra ¢ is the direct sum of vector subspaces V;, j =1, ..., m,s uch that
[Viy Vilc Vi, and Vy generates g as an algebra. The algebra g is equipped with
a family of dilations {d,: > 0} which are the algebra automorphisms defined by

8, (:Ll X,.) — étfx,. (X,eV)).

We shall denote also by J, the corresponding group dilations, writing t» instead
of 6,7 whenever €@, t> 0. We ghall denote by

Q=Y jdim (V)

the homogeneous dimension of ¢. A homogeneous norm on @ is a continuous func-
tion # — |#| from G to [0, oo), which is ° on G\{0} and satisfies |o—1| = |a],
ftx| = tjo| for all xe @, > 0; |o| = 0 if and only if = 0 (the group identity).
Moreover there exists a constant y = 1 such that |zy| < y(|z| + |y|) for all 2,yeG.
Actually GuivArcH [Gu] has shown that every nilpotent Lie group with dilations
has a norm with y = 1. Henceforth we assume that G is equipped with a fixed
homogeneous norm satisfying |oy| < |#| + [y|, #, y € ¢. The homogeneous norm
defines a left invariant metric d on @ by d(», y) = |[z~'y|, @, y € G. Thus for every
€@ and r> 0 the ball of center x and radius r, B(r, #) = {y € G: [wv1y| < 7}, is
the left translate by « of B(r, 0), which is in turn the image under &, of B(1, 0).

We consider 4 as the Lie algebra of all left invariant vector fields on G and
fix a basis X, ..., X, of # such that each X, is an eigenvector for the dilations {d,}
with eigenvalue d; and X, ..., X, is a basis for V;. We denote by Y., ..., Y, the
corresponding basis for right invariant vector fields, i.e.

, a4, -
Y, f(x) = pr flexp (1X;)x) .
t=0



356 LEONEDE DE MICHELE - GIANCARLO MAUCERI: H? multipliers, ece.

If I = (4, ..,1%,) €N is a multiindex we set ¥’ = Y}*... Y/». Then Y’ is a right

invariant differential operator, homogeneous of degree d(I) = > d,i, with respect
to the dilations &, t>0. k=1
The sublaplacian & = — 3 X7 is a second order, hypoelliptic nonnegative dif-
§=1 .
ferential operator on G, whose restriction to smooth functions with compact support
is essentially self adjoint. Let {E(A): 1 > 0} be its spectral resolution. Thus if M is

a bounded Borel funetion on (0, co) the operator
M(P) = f M(2) dB()
0

is bounded on L? and commutes with left translations. Thus, by Schwartz’s kernel
theorem, there exists a tempered distribution K on & such that M(Z)p =9 = K,
for all functions ¢ in the Schwartz space .. For every ¢ > 0 let

MiP) = f M(t2) AB(A) .
0

Then the distribution kernel of the operator M(t¥) is K -, where K ,; is the
distribution defined by

<K«/?’ §0> = <-K7 @'a\/?> for 17 es .

A polynomial on G is a function P on @ such that Poexp is a polynomial on g
(exp is the exponential map from g to G). Every polynomial on G can be written
uniquely as a finite sum

P:;am’, a,eC, o =nk..nr

where 7; = £;oexp and &, ..., &, is the basis of ¢* dual to the basis X, .., X,
n

of g. The monomial %’ is homogeneous of degree d(I) = > d,i;. The homogeneous
k=1

degree of P is max {d(I): a, 5= 0}. If a € N we note by £, the space of polynomials
of homogeneous degree = ¢. Note that £ is invariant under left and right transla-
tions [F'S, Prop. 1.25].

If 2@, ac N and f is a funetion whose derivatives Y'f are continuous fune-
tions in a neighborhood of # for d(I} < a, the right Taylor polynomial of f at x
of homogeneous degree « is the unique P, €, such that Y'P, (0) = Y f(x) for
d(I) < a. The right Taylor polynomial of homogeneous degree a of a distribution
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Te% is the unique polynomial

P,=2ay, aqc
dhZa

such that Y'P (0) = Y'T(-) for d(I) = a.

Lemma 1.1. — Let Te¥' and P .= > a,%', a,€%”, be the right Taylor poly-
nomial of T of homogeneous degree a. Then ¢, is a linear combination of the Y’T,
d(J) < a. Moreover for every p e

Px,:p'T(?/) = (99* P,T(y))(x) = 2 (‘P* “z(x)) 771(3/) 3

dI)Za

‘Pm,T‘(p(y) = (P,q;(i'/) * T)(J/‘) = <Pm—z, qJ(y)’ T(Z)> .

Proor. — The first statement is an easy consequence of [FS, pp. 24, 25]. The
formulas for P, ,.p and P, ., follow at once from the definition of Taylor poly-
nomial.

— The molecular characterization of Hardy spaces.

The molecular theory of Hardy spaces, initially developed for H*® in the very
general context of spaces of homogeneous type in [CW], was extended to all H»
spaces, 0 < p <1, in various particular situations in [CR], [TW], [He]. In partic-
ular in [He] HEMLER developed 2 molecular theory for the Hardy spaces on the
Heisenberg group. Since the same ideas work, with obvious modifications, in the
context of stratified groups, in this section we shall limit ourselves to a brief deserip-
tion of the main results of the theory.

On a stratified group G the Hardy spaces H? can be defined by means of the

« heat maximal funetion » [FS]. Namely, let W,, ¢>> 0 be the heat kernel on @,

-i.e. the kernel of the operator exp (— t.#), ¢>0. Then {W,: ¢> 0} is a commu-

tative approximate identity on G and, for every 0 < ¢ = oo, H? is the space of all

distributions f € &’ such that f*(z) = sup |f # W,(x)| is in L». The quasi norm on H?
>

is |f]%2. = [if*]2. I p>1, H» = L». When 0 < p =<1 the elements of H” can be
decomposed into elementary building blocks: the (p, g, s)-atems. Suppose 0 < p =
1< g= oo, s is an integer. We call the ordered triple (p, ¢, s) admissible if
p<gq and s=[@(p~*— 1)] (the integer part of @(p—*— 1)). Suppose that (p, g, s)
is admissible. A (p, ¢, s)-atom ecentered at x, € G is 2 compactly supported L¢ func-
tion f such that there is a ball B of center z, whose closure contains supp (f) and
ifl, < |B[Y0=Q/D and f is orthogonal to all polynomials in &,.
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TuEorEM [FS]. — Let (p, ¢, s) be an admissible triple. Then any f in H? can
be represented as a linear combination of (p, ¢, s)-atoms

where the f; are (p, g, s) atoms and the sum converges in H». Moreover |f| .~
~inf {(3 |4?)¥7: 3 A;f; is a decomposition of f into (p, g, s)-atoms}.

The theory of molecules is an extension of atomic H? theory with important
applications to the study of convolution operators. If (p, g, s) is an admissible triple
and e > max {s/@, p~*— 1} we set

a=1—p't+e, b=1l—g'+s¢.

Then a (p, g, s, ¢)-molecule centered at x, is a L¢ function M satisfying:
1) Moy a|%e LY
) M| Mg 2@ [ = R(M) < oo

iiiy [M(x)P(x)dw = 0 for every Pe Z,.

N(M) is called the molecular norm of M. An easy adaptation of the arguments
of [TW], [He] shows that every (p, g, s)-atom f is a (p, g, s, £)-molecule for any
&> max (s/¢, p~*— 1) and RN(f) < C, where C is a constant independent of the
atom. Moreover any (p, g, s, ¢)-molecule’ M is in H? and | M g =< O'N(M), where
¢’ is independent of the molecule M.

As a consequence of the molecular characterization of H?, to show that a linear
map T is bounded on H? it is sufficient to show that whenever f is a p-atom then
Tf is a p-molecule and R(Tf) < C for some constant € independent of f. We shall
exploit this approach to obtain estimates of certain operators on H? spaces that
will be useful in the proof of the multiplier theorem.

THEOREM 2.1. — Let k be a tempered distribution on G such that:

(2.1) ke L, on &N\ {0},
(2.2)  |fxk[,= A]f]., for every fes,
(2.3) there exist a e N; > max (a, [Q(p~* — 1)]) and é; measurable Z -valued

function # — P, almost everywhere defined on @ such that:

sup R-9-2" | dy [B(ya) — Po(y)[? |92 do < A2,
&0 [vj<R |z{>2R
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Then the operator Kf = f# & is bounded on H? for p > @/(Q -+ r) and there exists
a constant € = O(Q, r) such that |Kf|gz < CA|f|g., for all fe He.

ProoF. — Let s be an integer such that » > s = max (a, [@(p~*— 1)]). Then the
triple (p, 2, s) and the quadruple (p, 2, 8, #/}) are admissible. We ghall prove that
if fis a (p, 2, s)-atom then Kf is a (p, 2, s, r/@)-molecule whose melecular norm
satisfies N(Kf) < CA. Assume that supp (f)c {z: |#|< R} and let ¢ =1— p~t+

+ (@), b=1%+ (r/@). Then by (2.2):

”f % kng/b < Aa/bRQ(a—b)a/b .

On the other hand

%

| |miw/2>+ff*kuz§( f !Mk(w)lﬂxl@*“dm)#( f |F B(2)

|#|=2R |2]|>2R

H
2 | ter dw) =L+1,.

To estimate I, we use (2.2):
I, < 2R [f % k|, < O(Q, r) AR

To estimate I, we use Schwarz-Holder, (2.3) and the fact that f is orthogonal to &,
for o < s:

o

!

L= f(y)[k(y*lx)—wa*l)]dyfImimrdw]”gARw.

i
l#|>2R lv]<B

Thus N(Kf) =< C(@, r)A. Since Kf is obviously orthegonal to &, the theorem is
proved.

3. — Proof of the multiplier theorem.

We shall begin by establishing some weighted norm inequalities for the distri-
bution kernels of the operators M (%), when 3 is a function with compact support
in R" in a Besov space on R. We recall that for s > 0 the Besov space A(s; 1, co)
on R is the space of all function fe L}(R) such that the norm

(3.1) I+ sup [~ [4%f]
|n]>0

is finite for some, and hence for all, infegers k > s. For every s > 0 let k(s) be the
smallest integer strietly greater than s and denote by || the norm defined by
(3.1) when k = k(s).

8;1,00
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LeMmA 3.1, — Suppose « >0, 1 < p < 2 and M is a funetion in A(s; 1, co) such
that supp (M)c[i, 2]. Let H be the distribution kernel of the operator M(.2).
Then H is in C*. If s > ap~t -} (@/2)(2p~* — 1) + 1 then, for every multiindex I,
Y'He L? and
(3.2) [l | P H@) do < 0, p, 3, @, DI, -

PROOF. — Assume first that the estimate holds for I = 0. Let w(z) = (1 + |»|)".
Then by [FS, Lemma 1.10] w satisfies o(@) = o(@Y), olry) < o@)wly) for z,y € G.
Thus if g€ L*(w(@) dw), fe L (wV?(x)dz) then fs* ge L?(w(@) dr) and

17 % gllzoar = 191zo) 1Fz2oris) -

Let M,(A) = exp (A)M(A). Then M,e A(s; 1, co) and |M,|;, .~ |M|,;,, . More-
over H = W,% H,, where H, is the kernel of M,(¥) and W, is the heat kernel.
Hence H is ¢ and Y'H = (Y'W,)* H,. Then, since W, €% and (3.2) holds for
I = 0 by hypothesis:

| YIHHL,,(w)é | H, HLP(w)H ¥ W1”1;1(w1l1') < O(I, o, p)| H, ”Llf(w)é O, o, p, Q, S)lMls;l,oo .

It remains only to prove the estimate (3.2) for 7 = 0. Let F(t) = M(— In ), for
0<t<1, and F(t) = 0 otherwise. Then supp (F)c [¢7?, ¢*] and the A(s; 1, co)
norms of F and M are comparable. As in [FS, Lemma 6.35] we expand F in a
Fourier series on (— =z, n): F(t) = Y a,¢™. Then F(0)= > a, =0 and |a.|=
< 0P|,y (1 + ). But o

M(A) = F(e ) = Y an[exp (ime2) — 1]

mezZ

and hence
H(@) =3 a,B,.(x)
m#EQD
where
o0 " AV
(3.3) B =S v, e
= k!

is the distribution kernel of the operator exp (ime™¥)— 1, and
|aml é OlMls;l,oc(l "I— Iml)*s *
Hence we only need to prove the estimate

64 ([loF Bl do) = Ofa. p, @m0 () +1]
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for all x=0, 1< p <2 and meZ\J0}. By a theorem of Hurawioxr [H1], [H21
there exist two constants k>0, 6> 1 such that

[W o) do K, 1>0.

The function W, = W, % Wj, is positive definite.
Thus |W,].= W,(0)=t%2W,(0) and, by Holder’s inequality

felzl (W (@) do< | thfglfelﬂw,(m) Ao < by 6P~ 0D
Hence, by (3.3) and Minkowski’s ingquality
(3.5) ( f ol B, (@) |7 dx) 1 < Iy exp (|m|0Y) .
On the other hand we have

(3.6) [Bnle < C[In* (jm]) +1] for m£0.

Indeed let 4 be the closed subalgebra of Li generated by the functions W,, ¢ > 0.
By [HJ] A is a commutative Banach %-subalgebra of L' whose maximal ideal space
is homeomorphie to [0, co). Moreover, if we denote by f the Gelfand transform of
fed, then W, A)=e*, t>0, 1=0, and for all fe 4N L=

[+

(3.7) 1713 = o@ [1f oy 2o an.

0

Then by (3.3) and (3.7) H,e 4N L2 and

e

[ Bl = 0(6)]lexp (ime) — 1

22951 dA < OIn% (fm) + 1]

Now we choose 4 = p|m|0¥» and estimate separately the integrals of [o]|*|E,(x)|”
over the regions || < A4 and |z| > 4. By Holder’s inequality and (3.6)

[ = ([ wpemac) ™ ym1z < 00,2, 03 455w

ol =4 o] =4
On the other hand by (3.5)
f < sup (lwf“e—lwi)felwl [, (@) ]? dw < k3.A% ¢~ exp (p|m|6"7) = k3 A”

ez 4
|o]>4

for |m| large enough. Since the estimate (3.4) is easy for small |m| the lemma is
proved.
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Lemma 3.2, - Let M € A(s; 1, oo) be a function such that supp (M) c [%, 2] and
denote by H the distribution kernel of M(.Z). Let P, be the right Taylor poly-
nomial of H at 2 of homogeneous degree ac N. Then if 0 <r<<a -+ 1 and s >r +
L (@/2) + 1 there exist constants ¢, C; > 0 such that

(3.8) B [ [ o) = Poly)? dylo| do < O Ml o B

¢ [v]<R

for all 0<R<1. If r=a, r>0 and s>r-- (¢/2) + 1 there exist two con-
gtants d, €, > 0 such that

(3.9) Re-wr f |H (y) — Py a(y)|? dy|o]**" do < Co| M |,1, B

lz|>2R |v|<B

for all R=1.

Proor. — Let M,() = exp (A) M(A). Then H = W, H; and [F,|;; o~ [Fls;1, 00
Let P, = P, ; be the right Taylor polynomial of W, at =z of homogeneous degree a.
Thus by Lemma 1.1 P,u(y) = (P(y)* H,)(») and

f [H(y®) — Pou(y)|? dyle|* do = f f [ f A (z2~%) Hy(2) dzlady[wlélﬁr A
¢ lu<E ¢ l<B ¢

where A4 (u) = W, (yu)— P,(y). Since, for « =0, |o|* = O(e)(|wz=t|* + |2|%), the latter
integral is bounded by

o@{ [ (1B, 7,13+ 14, 0]z) ay}
fv]< _

where "

B (u) = |4, (w)|[u@>+,  C(u) = [Hy(u)| [u|@2+r .

v

Now, by the right invariant Taylor inequality for stratified groups [FS, (1.44)] we
have for |y|< R:

W(y2) — Puly)| < Ola)yle+1g(@)

where @(z) = sup {|¥'Wy(es)|: 2| = b* 'R, d(I}) = o -+ 1} and b>0 is a constant
which depends only on the group G. Hence ¢ is a fast decreasing function and

14,1, = [W,(g2) — P(y)] o < O(a)ly[+*[9(@) do < Culy |+ .
Moreover, since s > 4 (@/2) + 1, by Lemma 3.1:

1]0”2 é 02[M1|s:1,oc é 03|Mls;1,oo .
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On the other hand

18,12 =[[4,(0)] lo| 2+ do < C@ly [+ ( [9la) | do) < Clyler

Thus
14,% O3 + |B,* H ;= |4, 11105 + |B, 1] |H, ;= O, M, o g™ .
Hence
[ 1) = Poat) dyle|™ do< O, [yl ay < 6, 3], ROore
@& |yl<R lv| <R

where ¢ = 2(¢ + 1 — 7) > 0. This proves (3.8). To prove (3.9) write

Pw,H(y) :;i(gsal(w) nl(y)

where, by Lemma 1.1, a,(x) is a linear combination of Y'H(z), d(J)} < a. Since

[H(ys) — Pon(y)|? = Co(|H(ya)|? +d(gs la,(®)* In" (@) )
we have to estimate

T = R-o-u f f \H (y) |2 dy ||+ dee

|#|>2R |v]<R

and several terms of the form

1) =Eorf  [lo@b @) ayole as

[z|>2R l¢|<RB

for d(I) < a. To estimate 7' let # = yw. Then, since [2| = |¢|— |y| = B, changing
variables we have

T < Ro | f |H(2)[? [y 2}or> dy de < O, B-9-2 Re f [H(2)]? [e]or>r dz .

lz|>R |v]<R lz|>R
because ly~'z| = |y| + |¢| = R + |#| < 2[¢|. Hence by Lemma 3.1
(3.10) T<OpR7ME,.,.

Next we estimate the terms 7(I). Since the funetion #’ are homogeneous of degree
d(I), we have '

(3.11) f lnz(y)lz dy < 0, R max |171(y)|2 < Clz—RQ+2a .
jvi=1
lvj<B
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On the other hand, if § > 0 is such that s >r 4 (@/2) + 1 -+ (/2), then, since a,
i3 & linear combination of Y’H, d(J) < a, by Lemma 3.1 we have

312)  [la@l ol do < B[l (@) folorrto do < 0| M, o B0
(2]

{z]>2R

Thus by (3.11), (3.12)
(3.13) TI) < C | ME, LR °< 0| M2, B™°

provided K =1, d(I) < a. Hence (3.9) follows from (3.10) and (3.13) and the lemma
is proved.

Now we are ready to finish the proof of Theorem 1.1. We shall prove that if M
satisfies condition C(s; 7, oo, A) and s> + (§/2) + 1, r > 0, then M(.¥) is bounded
on H» for Q/(Q + r) <p = 1. The result for 1 < p < oo and the weak type (1 — 1)
estimate will follow by interpolation and duality [FS, Th. 3.34, 3.37]. Clearly we
may assume that  is not an integer.

Let K be the kernel of the operator M (). By Theorem 2.1 we only need to
show that K e L (G\{0}) and there exist ae N, a <+ and a £, -valued function
z — P, almost everywhere defined on & such that

(3.14) sup B—92 | dy | K (yz) — P{y)? |2 de < C1 A%
>0 WZE [ Y2r

Let ¢ € C°(R) be a function such that supp (@) c [}, 2] and > ¢(2-71) =1 for 1~ 0.
jeZ

Since M satisfies condition O(s; 7, oo, A) it is easy to see that the functions M (1) =

= M(21)p(4) are in A(s; 1, oo) uniformly with respect to j and there exists a con-

stant C; > 0 such that
(3.15) [Mylg1,00=0,4 jeZ.

Let @;, H;, K; be the kernels of the operators ¢(2-'%F), ML), M,2-%), j€Z,

respectively. Then H;, K, are in (®, while @, is in & by [M, Prop. 2.7]. Moreover

K(z) = K % ®;(x) = 2192 H,(272p) and K = > K; in &'. Let a be the integer part
jeZ

of . Then, since r is not an integer, r — 1 << a <r. We shall prove that for every

multiindex I, such that d(I) < a, YK e L (G\{0}). Indeed, by the homogeneity

of the differential operator Y7, we have:

f | YLK, () ? dis = 2/(@)+aD) f |Y2H, ()2 dy .

|#]>R lwi>2i*R
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Now, applying Lemma 3.1, first for « = 0, then for &« = @ - 2», and using (3.15)
we obtain

(3.16) f | Y H(y)|* dy gfl Y/ H,(y)dy < 0,42,
|u|>29/2R Pt
EIT) [ [V @P s @Rl VE ) dy S 0RO,
G

ly|>24/2R

Thus by Minkowski’s inequality:

( f {Y’K(w)zdm)égz( f IY’K,-(cc)lzdm)%g CsA(L + R)y-erante
jeZ

|e[>R |2|>R

where we used (3.16) to estimate the terms with j < 0 and (3.17) to estimate those
with j = 0. Thus Y'K e L} (G\{0}) for d(I)< ¢ and the right Taylor polynomial
P, x of K at x of homogeneous degree a is well defined for almost every z. Let P, ;
be the right Taylor polynomial of K; = @, K at x of homogeneous degree a. By
Lemma 1.1 P, (y) = [®,;% P _,(y)l(x). Thus, to prove (3.14) with P, = P, we

only need to show that the series

3

(3.18) 2 sup Bt | dy | [K(yn) — Pe(y)] 210 ‘”]
jeZ R>0
lv]<B |z]>2R

converges and its sum is bounded by v/ UIA. Let @, ; be the right Taylor poly-
nomial at # of homogeneous degree o of H,. In view of Lemma 3.2 and (3.15) we
have

619) R [ e) — Qu )] dylalor do <

l¢|>2R [¥|<R

C,A2R° for 0<R=<1,
CsA*R™® for 1<R,

where o, 6 > 0. Since P, (y) = 2920, .(2"%y), (3.19) yields
&, y 23 %, § ?/ 9 y

Bl (I ) — Py dylefersr do —

{z{>2R |y|<B
— (212 R)-9-2 f f |H (v2) — Q. ,(v)|? dw]e|or dz < O, A min ((272R)°, (2/2R)™) .

|2|>2(29/2R) |v]<29*R

This shows that the series (3.18) converges and its sum is bounded by v/ _O’—IA where
0, is a constant independent of K. So the proof is complete.
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