Mixed Norms and Rearrangements:
Sohclev’s Inequality and Littlewood’s Inequality (¥) (*+).

JounN J. F. FOURNIER

Summary. — In the 1930’s, J. E. Littlewood and 8. L. Sobolev each found useful estimates for
Lo-norms. These vesulls are usually not regarded as similar, because one of them is set in
a discrete conlext and the other in a continuous setting. We show, however, thal certain basic
facts about mixed norms can be used to simplify proofs of both of these estimates. The same
method yields a proof of a form of the isoperimetric inequality. We consider the effect of
measure-preserving rearrongement on certain sums of permuted mixed norms of funclions
on RE, and show these sums are minimal when the rearranged function, f~ say, has the
property thai, for each positive real number A, the set on which [f~| > A is @ cube with edges
parallel to the coordinate axes. Finally, we use the fact about rearrangements to prove sharper
forms of the estimates of Littlewood and Sobolev.

1. - Introduction.

Given an integrable function f on R* and an integer & between 1 and K, let
N.(f) be the extended-real number obtained by first computing the essential supremum
of [f(wy, @4, ..., x)| With respect to the k-th variable, and then integrating this quantity

K

with respect to the remaining variables. Let N(f) = > N,(f). Also, given f, let f~
k=1

be a measure-preserving rearrangement of |f| with the property that for each number
4> 0 the set where f~ > 1 is a K-cube with edges parallel to the coordinate axes.
The central result in this paper is that N(f~) < N(f). ,

The stimulus for this paper was the recent proof given by 8. PooRNIMA [21]
that, when K > 1 and r = K/(K — 1), the Sobolev space W1'(RE) imbeds into the
Lorentz space L(r, 1); the latter space is strietly smaller than L7, which is the target
space in the usual statement [1] of the imbedding theorem for Wt.Y(RX). The first
proof of the Sobolev imbedding theorem [24] did not apply to the case of Wi, but
later, B. GAGLIARDO [13] and L. NIReNBERG [19] found a method of proof which
worked in that exceptional case. Their idea was to observe that if f e W1, then the
quantities N,(f) are finite for all k, and to deduce from this that fe L7. It is natural
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to ask if these mixed-norm conditions, namely that N,(f) << co for aill k, together
imply that f € L(r, 1). We show here that this implieation does indeed hold; we prove
it in two ways, first by using our theorem about the effect of measure-preserving

K
rearrangement of the quantity N (f) == > N,(f), and second by combining the method
k=1

of Gagliardo and Nirenberg with Poornima’s approach.

There is a striking similarity between the use of mixed norms in the context
described above and the use of such norms in the study of bounded multilinear forms
on I”. InJ[16] J. E. LirTLEW0OD showed that if a matrix (e, ,.) defines a bounded
bilinear form on I, with norm |a| say, then

(1) 2 {3 fan o “<fal, and

(1.2) %{% lam,ni2}1/2<%llali;

Littlewood deduced from these mixed-norm estimates that |a],,<»'|a]. In Sec-
tion 2, we show how the latter implication and the Gagliardo-Nirenberg proof of the
Sobolev imbedding theorem can both be based on the same elementary properties
of mixed norms, In Section 3, we use this approach to prove a form of the iso-
perimetric inequality due to L. H. Looumis and H. WHITNEY [17], and we present
our analysis of the effect of measure-preserving rearranement on N (f). In Section 4,
we consider applications of our result on rearrangements. The embedding Wiic
L(r, 1) follows easily from this result. By using duality twice, we show that if a
matrix (a,,) satisfies inequalities (1.1) and (1.2), then the matrix belongs to the
Lorentz space [(4/3,1); this improves on Littlewood’s conclusion that a el in
this case. We apply this improvement to the known [11] examples of 4/3-Sidon
sets. Finally, we present alternate proofs of two of our main results in an appendix
to the paper.

The idea of using measure-preserving rearrangements to prove imbedding theorems
for Sobolev spaces goes back to the first proof [24], by S. L. Sobolev, of such imbed-
dings. More recently, several authors [4, 10, 18, 29] have used properties of measure-
preserving rearrangements that are constant on spheres to obtain the best constants
in various cases of Sobolev’s inequality. This approach was used by W. G. FARIs [12]
to prove a result that is equivalent by duality to the inclusion Wt ¢ L(r, 1). To get
the dual formulation of this inclusion, first note that the standard imbedding of
Wit into I~ is equivalent by duality to the statement that

(i) if fe Wt then f lf*g] < oo for all functions g in the space L',
where +' is the index conjugate to r. Let weak-L" be the space of all measurable

functions g on R% for which there is a constant ¢ so that, for each number 2> 0,
the inequality [g| > A holds on a set of measure at most ¢/A”; then L™ is strictly
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included in weak-I". The inclusion Woic L(r, 1) is equivalént by duality to the
statement that

(i) if fe Wit then f[f- g| < oo for all functions g in the space weak-L'

Assertion (i’) follows easily from the main result in [12].

The papers by Faris and by POORNIMA and the present paper provide a variety
of methods for proving the imbedding W'tc L(r, 1). We will comment further on
these methods in Section 4. We note here that our result that if N(f) < oo then
fe L(r, 1) is equivalent by dusality to an inclusion of the space weak-L" in a sum of
cerfain mixed-norm spaces. RoN Brri and the author have found a direct proof of
the dual inclusion, and will present that proof in a joint paper. The direct proof of
the dual inclusion provides an alternate approach to the applications in Section 4
of the present paper.

2. — Rearrangement of indices.

The functionals N, described in the infroduction are examples of what we will
call permuted mixzed-norms. Our goal in this section is to discuss some basic properties
of these norms, and to show how certain important estimates follow easily from these
properties.

Let X be a cartesian product of sigma-finite measure spaces, X, say. Denote
a typical element of X by x = (2, 2., ..., #;), and the product measure on X by dx.
Given a measurable funetion f on X, and an index vector p = (p,, pa, ..., Px) With
0 < pp< oo for all %, consider the quantity obtained by first computing the norm
in I*(X,) of the funetion x, — f(x,, €, ..., #x) for each value of the tail vector
(22, .., @x), and denoting this partial norm by [f(-, #., ..., x){,,, then computing the
norm in I”/(X,) of the function @, — [f(+, #;, ..., #x)|, ; Denote the ultimate result
of this computation by |[f|,; for instance, in this notation, the quantity N(f) is just
|f],, where p = (oo, 1,1, ..., 1). Denote the set of all functions f for which [ff, < oo
by L,(X).

The standard reference concerning these miwed-norm spaces LP(X) is [6]. We
need two elementary facts about mixed norms; the first fact is a version of Hdolder’s
inequality, and the second is an easy consequence of the integral form of Minkowski’s
inequality. We will indicate how these facts are proved, partly because of a lack of
accessible references for them in the forms that we need, and partly to convince
the reader that these facts really are elementary. Given index sequences p, g and r,
we write 1/r = 1/p + 1/q if 1/r,= 1/p, + 1/q, for all &.

TaeoREM 2.1. — Let fe IP(X) and ge L%X), and let 1/r = 1/p + 1/q. Then
frge L'(X), and

(2.1) [F-9le-<flp-lgly -
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We will discuss the proof of this version of Holder’s inequality after we state our
version of the integral form of Minkowski’s inequality. To prepare for that statement
we note that when k> 1 the funcfional N, is, strictly speaking, not a mixed norm,
because N, must be computed by dealing first with the variable #,, whereas the de-
finition of mixed norm specifies that o; must come first. These functionals are exam-
ples, however, of permuted mixed norms. Any permutation, o say, of the set
{1, 2, ..., K} induces an adjoint action on variables x and indices p. Thus, we define
o(x) to be the element (mq(l), Boayr -3 To(ry) O the Cartesian produet space o(X) =
= X,y X X g5y X oo X X yry, a0d we define o(p) similarly. It would be more precise
to denote these adjoint actions by o* or the like, but this distinetion does not matter
here. On the other hand, it is important in what we do to distinguish between product
spaces like X, x X, and X, X X,, even when the factors X, and X, are copies of the
same space, R for instance. Given a function f on X, we continue our abuse of
notation by letting of be the function on o(X) given by of(o(x)) = f(x) for all ele-
ments o(x) of the space o(X); equivalently, of(y) = f(c-(y)) for all y in o(X). For
instance, the quantity Ng(f) is, in this notation, [of s,y where px= oo and p,=1
for all j== K, and ¢ is any permutation with the property that o(1) = K; indeed,
we get N.(f) by first taking the L*-norm with respect to the variable zx, and then
taking the L'-norms with the respect to the other variables in any order. Our ver-
sion of Minkowski’s inequality for integrals concerns the effects, on mixed norms,
of permutations that act on the variables and the indices in the same way.

THEOREM 2.2. — Fix a measurable function f and an index vector p. Among the
various quantities [of] ., the one for which the sequence {p,q,}i., is nondecreasing
is the smallest, and the one for which the sequence {p,,}+_; is nonincreasing is the
largest.

We now indicate how these two theorems may be proved. Consider first the one-
variable case of inequality (2.1), that is the estimate

(2.2) 1f-gle<ifls-lgles

where f and g are measurable functions on the same measure space, and 1/r =
= 1/p 4- 1/q. If r is infinite, then so are p and ¢, and the inequality above is obvious.
If r is finite, then the indices p/r and ¢/r are conjugate, and inequality (2.2) follows
from an application of Holder’s inequality, for these conjugate indices, to the integral
of |f|". Finally, the multivariate case of inequality (2.1) follows by interating the
single-variable case.

We will also apply Theorem 2.1 to products of K functions, where K > 2; if the
k-th factor belongs to the mixed-norm space with index p®), then iterating the
theorem yields that the product function belongs to the space L'(X), where
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and that the appropriate product estimate holds for the L™-norm of the product func-
tion. The case where each factor is a power of the same function is presented in [28].
Note that there is no requirement in the statement of the theorem or in its proof
that the indices py, ¢, and 7, be at least 1; in fact, it will be convenient in the ap-
plications of the theorem to allow indices in the interval (0, 1).

We begin our analysis of Theorem 2.2 by considering the case where there are only
two variables. In this context, we drop the use of subscripts on variables and indices,
denoting the product measure space by X X ¥, a typieal element in it by (z, y),
and & typical index pair by (p, 9). We also suppose for definiteness that the indices
are finite; our conclusions are also valid, with similar proofs, when one or more index
is infinite. Theorem 2.2 addresses the question: Is

(2.3) (f{[ f e, y)Jpclw]”p}qdy)”q<(f{ [ j e, yuqdy]w}pdw)m,

Y X X Y

or is the reverse inequality true? The theorem asserts that the larger of the two
expressions above is the one for which the larger index is associated with the first
variable to be integrated; that is, inequality (2.3) holds if ¢>p, while the reverse
inequality helds if p>g¢. To see why this is so, we specialize further to the case where
(p, q) = (1, ) with r>1; the assertion that

(2.4) ( f { f i, 9) dm}rdy)llg f [ f e, y);rdm]mdy

Y X X Y

is known as Minkowski’s inequality for integrals. To get & completely familiar
inequality, we consider the case where Y has only two points, ¥ and ¢ say, each with
mass 1. Let g and & be the functions in L7(X) given by g(z) = f(z, ) and h(z) = f(x, 2)
for all #; then inequality (2.4) states that

(2.5) Igl + B{l-<lgl, = 1Rl

which is Minkowski’s inequality for sums. The corresponding inequality for inte-
grals can be proved in the same way as the familiar inequality for sums [14, #202];
alternatively, the general case of inequality (2.4) can be deduced from the special
case (2.5) by reagarding the integrals over ¥ as limits of sums. The fact that
inequality (2.3) holds when p<q follows by applying inequality (2.4) with r = ¢/p
and f replaced by |f].

Now we return to the general setting for Theorem 2.2, and to the notation with
subscripts on the names of variables, measure spaces, etc. Let 7 be a permutation
that transposes adjacent indices, ¥ and k 4 1 say, and fixes all other indices. We
say that the transposition v raises the index sequence p if P >p,. In the compu-

tation of the quantities [f], and [+f],,, the variables x and @+, come together, the
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only difference being that x, and the corresponding index p; come first for 1[]‘[{},,
whereas @y, and p.+; come first for [zf],, . So, our analysis of inequaltity (2.3)
yields that

(2.6) [ifﬂp<ﬂ1:f[[,(p) if v raises p.

If second transposition 7', of adjacent indices, raises v(p), then |f|. <7 (v/)] ()
and so on. Now let ¢ be any permutation of the set {1, 2, ..., K}, and let o' be a
permutation for which p,y> P> > Py (x)- Then we can pass from o(p) to ¢'(p)
by a sequence of transpositions of adjacent indices so that each of these transposi-
tions raises the index sequence to which it is applied. Specifically, we find a maxi-
mal index p,, and then successively transpose this index with each of its neighbours
to the left until it sits in the first position; then we find an index p, that is maximal
among the indices other than the one now in position 1, and we move p,- to left until
it sits in position 2, ete. By iterating inequality (2.6) we get that

Hgf”a(p)< HG’fHa'(p) ’

as asserted in the theorem. Similarly, the smallest of the quantities |of|,,, occurs
when p ) <Pyo<-<Pgg- This completes our discussion of the proofs of Theo-
rems 2.1 and 2.2.

Our first application of these theorems is to Littlewood’s inequality. Suppose
that a doubly-infinite matrix (e, .) has the property that for all elements b and ¢

of 1°(Z) the iterated series { > am,nbﬂ}cn converges to a number, a(b, ¢) say,
with n oo Tm= e x

latb, o)l < Ofbl o],

where C is some constant determined by a; define the norm ja| of this bilinear form
10 be the infimum of the constants C for which the inequality above holds for all b
and ¢ in I®(Z). As noted in the introduction, Littlewood proved the mixed-norm
inequalities (1.1) and (1.2). In the notation of this seetion, these inequalities become
the estimates

(2.7) lalp<#la], and |ral,yH<x[a],

where p = (2, 1), while g = (1, 2), and 7 is the transposition of the underlying two-
element index set. Since 7(g) = (2, 1), the permutation v arranges the indices in g
in decreasing order, and Theorem 2.2 yields that |a|,<]|7a],q); a fortiori, |af,
<xla]. With these estimates for |a], and |a|, in hand, we apply Theorem 2.1
to deduce that a?= I, where 1/r = 1/p -+ 1/q; moreover,

(2.8) lotl,<falplalg<(xlal)® .
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But 1/r = (1/2,1/1) 4+ (1/1,1/2) = (3/2, 3/2), so that the mixed-norm space I" is
isometric with 2%, Thus, [a*[,s<(x]a])? or equivalently, [a],s<x|a], which is
the desired estimate.

Littlewood’s proof yielded the estimate |a,s<2x|/¢]. The fact that our method
gives a better constant is not important in this context, but in work of BrLEI [§]
on multilinear and fractional versions of Littlewood’s inequality, it was desirable to
get values for the constants in the inequalities that grew at an optimal rate as the
dimension increased, and this required the use of a method like the one used here.
For ingtance, it was shown, in [8, Lemma 5.3] that if a function ¢ on ZX defines a
bounded K-linear form on I°(Z), then |a|w@in<#¥1|a|, where the constant s
is independent of K. To prove this inequality, one first proves that [a],<»*1|a],
where p = (2,2, ..., 2, 1), and that the same estimate holds for [loa|, for all cyclic
permutations ¢. The desired estimate for [|a].zex+n then follows by our method,
or the one used in [8].

Next, we use Theorems 2.1 and 2.2 to prove an endpoint case of the Sobolev
imbedding theorem. We recall that the Sobolev space WL4?(RX) congsists of all func-
tions in L!(RX) whose first-order distributional partial derivatives also belong to-
I»(Rx); this space is complete with respect to the norm |[-|,, given by

= {1100+ 3 (%1},

1

where V,.f denotes the first partial derivative of f with respect to the k-th variable.
See [1] or [25] for more information about Sobolev spaces. The imbedding theorem
states that if K >1 and if 1<p < K, then W Y(RX)c L’ (R¥), where p*=
= Kp/(K — p). Sobolev [24] proved this imbedding for the cases where 1 < p < K,
but his method did not work when p = 1. That case was settled affirmatively by -
GAGLIARDO [13] and NIRENBERG [19]; they also showed how the other cases follow
easily from the one where p = 1. To deal with this fundamental case, first use the
fact the set CL(RX), of all compactly-supported C'-functions on R, is dense in
WL RX) to reduce matters to proving the estimate

Fllia

(2.10) 1l e -n <

for all such functions f. Next, note that if g is & compactly-supported C'-function
on R, then

[g(t)[<min{‘ fg’(u) du], ‘ﬁ]’(u) du‘} for all ¢;

hence, |g].<([g'[.)/2. Let fe C(RE); then, by our estimate for ||g].,

sup lf(mly Loy aeey mK)l<%f|V1f(5017 Loy oeey wK)ldml
N %
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for all fixed values of the tail vector (w,, ..., Zx). Integrating this inequality with
respect to the variables in the tail vector ylelds that N,(f)<(|Vy7[.)/2. When k> 1,
the same procedure starting with the k-th variable ra,ther than the first one yields
that Nu(f)< (| Vsfl:)/2

As in the case of Littlewood’s inequality, we now use Theorem 2.2 to get mixed-
norm estimates from the estimates above for the permuted mixed norms N, (f). Let
p™ be the index sequence whose k-th entry is co and whose other entries are all 1’s;
let o) be any permutation of the set {1, 2, ..., K} with the property that ¢,(1) = k.
Then N,(f) is equal to the norm of the functions o¢,f in the mixed-norm space
with index o,(p™) on the measure space o,(X). Since the indices in the sequence
ox(p™) are arranged in decreasing order, Theorem 2.2 yields that |fi,w<N.(f), and
hence that |f],m<(|Vif].)/2 for all k. Let

~H"“

E 1
=2 o0

It follows from Theorem 2.1 that fXe L"(R*) and that
K
(2.11) I#51e= TTTOVA1/2]

Each component of the index vector 1/r is a sum of K —1 copies of 1/1 and one
copy of 1/o0, and is therefore equal to K — 1. So, a more conventional way to write
inequality (2,11) is to replace the quantity on the left by ||f%|y«_p. The resulting
inequality is equivalent to the estimate

@i s <} T (Va1

This inequality implies the desired estimate (2.10), so that the proof of the funda-
mental case of the imbedding theorem is complete.

The reader may wish to compare the presentation here with the arguments
in [13], [19], (9], [8] and [22]. These arguments are inductions on the dimension K,
with the conventional form of Holder’s inequality and the integral form of Minkowski’s
inequality used in each step of the induction. In our method, Minkowski’s inequality
is used repeatedly at the beginning, to get from estimates for permuted mixed norms
to estimates for mixed norms; then Theorem 2.1, which is just an iterated form of
Holder’s inequality, is used to finish the proof. One advantage of this arrangement
of the proof is that it becomes clear that full use was not made of the inifial estimates
on the quantities N.(f). Tirst, we replaced these quantities by the quantities |f],e,
which may be much smaller when % > 1. Then we factored f¥ as a product of K copies
of the same function and used Theorem 2.2, which also applies to products of distinet
functions. This suggests that it may be possible to derive stronger conclusicens from
the initial estimates, and that is what we do in the rest of this paper.
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3. — Measure-preserving rearrangements,

Our goal in this section is to prove the assertion, made in the introduction,
about rearrangements and the sum of the permuted mixed norms ¥,. We defer the
discussion of the applications of this result to Section 4. In our proof of the rear-
rangement theorem, we use a variant of the isoperimetric ineguality, which we
prove by the method of the previous section. In the appendix to this paper, we will
outline a second proof of the rearrangement theorem.

Let f be a measurable function on a sigma-finite measure space X; denote the
measure of & given set § in X by [8]. For each number 2> 0, let m,(1) be the ex-
tended-real number given by

(3.1) m,(A) = |{w e X: |f(@)] > A}/,

and call the function m;, the distribution function of f. Call the function f rearrangeable
if m, (1) < oo for all 2 > 0. Given a rearrangeable function f, call 2 measurable func-
tion ¢, on some measure space that may differ from the space X, a measure-preserving
rearrangement of f if the distribution functions m, and m, coincide.

See [26] for more about rearrangements of functions. All of the rearrangements
that we will consider in this section will arise from measure-preserving transformations
of the underlying measure space, which will always be R* for soine positive integer K.
Let ¢ be a one-to-one, measurable map of R* onto itself with the property that
lp(8)| = |8] for all measurable subsets § if RE. Then for each rearrangeable function f
on RE the function x — f((p(x)) is a meagsure-preserving rearrangement of f. In the
next section, we will encounter pairs of functions, denoted there by & and A, for
which m,= m,, although the functions a and A are not related by composition with
any measure-preserving isomorphism between the underlying measure spaces, because
these meagure spaces do not have the same cardinality, and because the sets where a
and A are equal to 0 do not have the same measure.

The term «rearrangement » will always mean & measure-preserving rearrangement.
Replacing a given function by any such rearrangement of it does not change its
Lr-norm; indeed [26, § V.3], there is a formula for computing |f|, from m,. On the
other hand the mixed norms of & function can be changed by passing to a rearrange-
ment of the function. For example, let f be the indicator function of the rectangle
[0, 2) x [0, 1/2) in R?, and let g be the indicator funetion of the square [0, 1) X [0, 1);
then m;= m,. Let N, and N, be the functionals defined in the abstract. Clearly,
N.(f) = 1/2, and N,(f) = 2, while Ny{(g) = N,(g) = 1. Recall that the functional N
is defined to the sum of the various functionals N,, and note that N(g) < N(f) in
this example.

TrrorREM 3.1. ~ Let K be an integer that is greater than or equal to 2. Let f
be a function on RX with the property that N(f) << co. Then f is rearrangeable. Let g
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be a measure-preserving rearrangement of f with the property that for each number
A > 0 the set where |g| > 1 is essentially a K-cube with edges parallel to the coordinate

axes. Then N(g)<N(f).

Proor. ~ We say that a set is essentially a K-cube if it differs from some K-cube
by a set of measure 0. The hypothesis that N (f) < oo implies, as in the previous sec-
tion that fe LE/(E-D(RE); hence f is rearrangeable. The latter conclusion can also

be proved directly. Since
N(f) = sup {N(F): F is simple with bounded support, and 0<F<|f[},

we may assume in the rest of the proof that f is a nonnegative simple function with

bounded support.
Denote the nonzero values of f, in decreasing order, by a,, a,, ..., ay, and let 4,

be the set where f>a,,. Let

B2y, 25y ..., Tx) = €88 SUP (&1, #oy ...\ Tg)
2]

and let A}, be the subset of R%-! where F,>a,. Similarly define functions F, and
sets Afn for integers &k with 2< k< K. Denote the measure in RZ of 4, by |4.|, and
the measure in R%1 of AF by |AE|. Then

3:) Nilf) = 3 anl| 45|~ 1451

where |Af| = 0 by convention. Summing this formula by parts for each index %k
and adding, we get that

(¢ — Gmta) {k§1lA;;l} ?

1

HY

(3.4) N(f)=
where a4+, = 0 by convention.

If we replace f by any rearrangement of it, the measures |4*| may change, but
the numbers a,, and |4,,| will not change. Moreover, by Lemma 3.2 below,

[45]> [Anf5.

=

(3.5)

k

i

1

In the m-th term in formula (3.4), the factor (a,, — @+ ) is positive and fixed, while
K
2 AL|> KA, =i,
k=1

by the inequality between arithmetic and geometric means, and the constraint
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(3.5). So,
M
(3.6) N()> 3 (@n— @) K| 4,005,

=1

Let ¢ be any rearrangement of f for which the sets where |g|>a. are essentially
K-cubes with edges parallel to the coordinate axes. Then formula (3.4) yields that
N(g) is equal to the right hand side of formula (3.6). This completes the proof of
the theorem, modulo the lemma below.

Given a measurable set A in RX, denote its indicator function by 1,, and define
the essential projection of A into the K-th eoordinate hyperplane to be the subset A,
of R*-* with indicator function given by

Ly (e, Ty oovy Txy) = @88 SUP 1y(@q, Ty oovy )
rr

Define the essential projection 4, of A into the k-th coordinate hyperplane in a similar

way. Again denote the measure, in R%, of A by |4], and the measure, in R¥-1, of 4,

by |A.|. Observe that if 4 is a solid box with edges parallel to the coordinate axes,
K

then [ |d4,|== [4]F-.
k=1

The following lemma goes back at least as far as [17] and has been rediscovered
at least three times, in [3], [8, inequality (2.4)], and [23]. I am grateful to Amram
Meir and Ron Blei for bringing the reference [17] to my attention. The lemma is
easy to prove by the methods of the previous section.

LeMMA 3.2. — For any measurable set 4 in R, the measures of A and of its es-
sential projections must satisfy the condition that

K
(3.7) wm<gmw

ProOF. — Assume without loss of generality that [4,| << oo for all k. Observe that
Ny(1,) = |4,] for all k. As in our proof of the Sobolev imbedding theorem,

K
[1a HK/<K~1) < kﬂlNk(lA)l/K'

Taking K-th powers in this inequality yields inequality (3.7), thereby completing
the proof of the lemma.

The methods used in the proof of Theorem 3.1 given above and in the alternate
proof given in the appendix can also be used to prove similar statements about
functionals where suprema are first taken with respect to more than one variable.
Given a measurable function f on R%, and a subset « of the underlying index set
{1,2, ..., K}, let N_(f) be the extended-real number obtained by first taking the es-
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sential supremum of |f(#,, #5, ..., ¥x)] with respect to the variables x, as k runs
through the set «, and then integrating this quantity with respect to the remaining
variables. Denote the number of elements in the set o by |«f. Given an integer n
with 1 <n < K, let

No(fy = > N (1) .

af=n "

THEOREM 3.3. — If N™(f)<C oo, then f is rearrangeable. Let g be a rearrangement
of f for which, for each number § > 0, the set where |g| > 1 is essentially a K-cube
with edges parallel to the coordinate axes. Then N"(g)< N™(f).

As noted above, this stafement ean be proved by the methods used to prove
Theorem 3.1. We omit the details.

4. ~ Applications.

Before proving that certain functions must belong to certain Lorentz spaces, we
briefly recall some basic facts about these spaces. We refer to the books [6] and [26]
for more details; our notation is a compromise between the notations used in
these sources. As in the previous section, let § be a rearrangeable function on a
sigma-finite measure space X earrying the measure dz. Then there is a unique func-
tion f* on the interval (0, oo) with the following properties:

(i) f*>0.
(ii) f* is nonincreaging.
(iii) f* is right-continuous.

(iv) f* has the same distribution function as j.

Given indices p and g with 1 < p < co and 1<g< oo, say that f belongs to the
Lorentz space L(p, q) if the function £ — V7 f*(t) belongs to It with respect to the
measure df/t. It is thus appropriate to consider the guantity

] | /g
(4-1) Hf”L(p,q): {% f[tllp]’.*{t)]q —0_?} :

when ¢ < oo, and the quantity ||f|., .., = ess sup {i*f*(): t > 0}, because fe L(p, ¢)-
if and only if |f];, ,<e¢. The factor ¢/p is inserted in the definition of |- |, »
when ¢ < -+ to guarantee that [f|,., ,= [f], whenever f is the indicator function
of a set. Note also that [f[, ,,= |fl, for all f, so that L(p, p) = L*. For fixed p,
the spaces L(p, ¢) become larger as ¢ increases; this can be seen by verifying that
fe L(p,q) if an only if the sequence {27/7f*(27)}* _ _ belongs to I*. The inclusions
L{p, 1) c L#c L(p, oo) are strict, exeept in trivial cases.
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THEOREM 4.1. — Given an integer K with K >2, let r = K/(K — 1). Let § be a
measurable function on R¥ for which N(f) < co. Then f € L(r, 1), and ||fl,, , < N(f)/K.

Proor. — Adopt the I*-norm for vectors in E¥; that is, let |x| = max, {|z,|} for
all such vectors x. Define a function /= by letting f™(x) = f*(|x{%) in the open first
orthant in R¥, and extending f~ to be 0 on the rest of B%. Then

[{: f7(x) > 23 = [{t: F4@0) > B} = [{x: (&) > A}

for all numbers g > 0. It follows that (f7)* = f*, and hence that [f™|., .= [flze.1)-
Mozreover, the sets where f~ > 4 are open K-cubes; so Theorem 3.1 applies to yield
that N (") <N (f).

We will complete the proof of the present theorem with a computation showing
that N(f*) = K|f|,q), from which it follows that ||f] ;. , <N (f)/K. Given a vector y
in B and a real number x, denote the vector (y;, ..., ¥x_,, %) by (v, #). For each
vector y in R¥-1, let ¢g(y) = esieskup 1" (v, x); clearly, this function vanishes off the

positive orthant in RE¥-1. On the other hand, if y lies in the positive orthant, then

gly) = esssup f~(y, z) = ess sup {(y, 2)[F) = f*(ly1F) ,

x>0
because f* is right-continuous and nonincreasin In particular, in the positive
s ) p

orthant, g(y) depends only on |y|, and we also denote g(y) by G(ly|) in this case.
Using polar coordinates adapted to the norm |-|, we have that

RE-1

Joty)dy = (K& — 1) @s)s72ds
0
Now the left side above is just Ni(f™), and the right side is equal to

(K — 1)ff*('51{) §R=2 g — K; 1 ff*(t) t-URq
0 0

by the change of variable ¢ = sX. But the latter integral is equal to

E—1( @
g | T = 1z -

0

By the symmetry of /7, we have that N(f") = K-Ng(f~) = K- [[f]y, 1), is elaimed.
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CoROLLARY 4.2. — Under the same hypotheses,

K
llfl!L@,l)ﬁ[:{lNk(f)vx )

PrOOF. ~ Let a,= Ni(f) for each index k. If a,== 0 for some k, then f=10
almost everywhere, and the inequality above is trivial; similarly, there is nothing
to prove if a,=: oo for some k. In the remaining cases, define a new function F
by dilating f by the factor a, in the k-th coordinate direction for each index k, that
is by letting

Ay — f(%r %E .
F(x) = f(al’ ey Oh;) for all x.
K
Then N,(F)= []a, for all k. By the theorem,
§=1
N(F K
[Pl <) = [T s
k=1

But [Flygn= [ T o] Il S0

k=1

flz00< [f[a]’ :

where # is the index conjugate to r. Since r = K/(K —1) here, »'= K, and the
inequality above is just the assertion of the corollary.

THEOREM 4.3. — Liet K be an integer greater than 1, and let » = K/(K — 1). Then
WLy RF) c L(r, 1), and

(.2} e <3 1T (Ve )7

k=

=

for all functions f in WLi(RX).

Proor. — We saw in Section 2 that N.(f)<(1/2)|w,f], for all indices k, and
all Ci-functions f with compact support. The corollary above then yields inequality
(4.2) for all such functions f; since CI(RX) is dense in W1(R¥), the inequality above
holds for all f in W®i(RE), and the inelusion WYY(RE)c L(r, 1) must hold. This
completes the proof of the theorem.

We pause to compare the various methods for proving that WLL(R¥)c L(r, 1).
This inclusion was essentially proved by Faris [12], who considered the inequality

(4.3) [17-91< Cel V111910 o0
.RK



Joun J. F. FourNinr: Mizved norms and rearrangements, ete. 65

for all Cl-functions f and all measurable functions g. He used rearrangements of f
for which all the sets {x: |[f(x)| > A} are balls centre at 0 to prove this inequality
with the best value for the constant c,. Inequality (4.3) is equivalent by a duality
argument to the inequality

If

¢
L(r,1><ff Vil

although this is not stated explicitly in [12]. Subsequently, PoorNimaA [21] studied
the effect of certain composition operators on the space WL1(RX), and showed that
WLA(R¥X) c L'(E%). Her method works on any domain R for which the imbedding
WHYR) ¢ L'(R) holds. If the boundary of R is sufficiently regular, then this imbed-
ding can be deduced, by an extension technique, from the one for WLi(RX), but [2]
there are domains R for which W4(R) c L'(R) although there is no bounded extenn-
sion operator mapping Wi1{(R) into Wt1(R¥%). All such domains known to the author
have the property that each funetion, f say, in W' can be expressed as a convex
combination of funetions F for each of which N(F) is beunded by ¢{f[,,; in & suitable
coordinate system; the imbedding of W:-3(R) into L(», 1) then follows from Theo-
rem 4.1. In the appendix to the present paper, we combine one of the ideas in [21]
with Lemma 3.2 to give another proof of Theorem 4.1.

There is an interesting connection between the method used by Faris and a point
that arises in the theory of Lorentz spaces. In most cases, the functional |||,
fails to be subadditive, and is therefore not a norm. This defect can be remedied
by unsing the averaged rearrangement f** given by

i
ety =5 [,
0

for all ¢> 0. Let |f]}, . be the quantity obtained by replacing the function f* by
f** in formula (4.1); then the functional |-|7, ., is & norm, because, for each fixed

positive number ¢, the map f — f**(t) defines & norm. Moreover,

”;f”L(zo,a)< ”f”zg(za,q)< Oﬂ,q”f”L(p,'z) .

for all indices p and ¢ satisfying the conditions specified at the beginning of this
section. Given a smooth, rearrangeable function f on RE, let F be the unique non-
negative function on R* with the property that for each number 1> 0 the set
{x: F(x) > A} is an open ball centred at 0 and having the same measure as the set
{x: |f(x) > 0}; call F' the radial rearrangement of f. Faris proved inequality (4.3)
by showing that |F|,<[|Vf], in general, and then using the special properties of F
to prove inequality (4.3) in the case where f = F. Several other authors [4, 10, 29]
have also proved inequalities of the form ¢(VF)<¢(Vf) for various functionals ¢.
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These inequalities would all follow immediately if it were the case that (VF)*(t)
< (VH)*(¢) for all t > 0, but there are easy counter examples to the latter inequality.
The argument in [4, Chapter 2, § 6] does show, however, that

(4.4) (VPY**(t) < (Vf)**(t) for all £> 0,

from which it follows that |VF|}, ,,< [VflZy,qfor all indices p and ¢ satisfying the
conditions specified at the beginning of this section. By a classical theorem [15]
of Hardy, Littlewood and Polya, many inequalities of the form @(VF)<g(Vf) also
follow from inequality (4.4).

The referee points out that the imbedding of Wt in L(K/(K — 1),1) follows
very easily from known facts about spherical rearrangements. If f belongs to 0% (RE)
and has compact support, then f has a spherical rearrangement, g say, that also
belongs to C°(RX; moreover, |Vg|,<[Vf[|,. The function f* will also be smooth, and

o

Vg = ex - (— 5 ) as.

0

On the other hand, integrating by parts in the integral above yields the quantity
cx(1— 1/K) f §"YEf¥(g)ds, which, as in our proof of Theorem 4.1, is equal to
0

x| f H LIEKE—D,D *

The method used by FAmis [12] also yields that Wi2(RX)c L(Kp/(K — p), p)
when 1< p<C K. This inclusion had been proved earlier, by other methods, by
STRICHARTZ [27]. As the referee points out, it also follows easily a theorem of
O'Neil [20] coneerning convolution with the kernel used by Sobolev in his original
proof of the imbedding theorem for the case where 1 < p < K. It is not clear to
what extent the methods of the present paper can also be applied in this case.

We now deal with the other application of Theorem 4.1. The following result
does not seem to have appeared in print before, although it follows from unpublished
work of Gilles Pisier. Our method of proof is new; another new proof will be pre-
sented in a joint paper with Ron Blei.

THEOREM 4.4. — Let § be a discrete set carrying a counting measure, and let a
be a function on 82 that defines a bounded bilinear form on I*(8), with norm |a|.
Then the function a belongs to the Lorentz space I(s, 1), where s = 4/3; moreover,
there is an absolute constant C so that

(4.5) lalisy< Cla] -

Proor. - We use the symbol I(s, 1) here rather than L(s, 1) as a reminder that
the function ¢ is defined on the discrete measure space S2. It actually suffices for
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the conclusion of the theorem that the function a define a bounded bilinear form
on ¢,(8). If a has the latter property, then for each finite subset 8’ of S, the restric-
tion of a to 8’ X 8" defines a bounded bilinear form on *(8'), with norm at most |a],
the norm of @ as a bilinear form on ¢,(8). Moreover, |al, . is the supremum of the
corresponding norms of restrictions of a to the various finite subsets &' x8'. So,
we may suppose that the set S is finite. We identify it with the set {1, 2, ..., N},
and represent ¢ by a matrix {am,n},ﬁ,‘:’n:l. It can be shown [16] that

(46) 33 lanaltf < lal

and that the same is true for the corresponding permuted mixed-norm obtained by
first taking 2-norm with respect to n, and then the I*-norm with respect to m. The
constant » comes from an application of the version of Khintchine’s inequality as-
serting that |f[.<#|fl. if f is a sum of Rademacher functions.

Let v be the transposition mapping the ordered pair {m, n} to {n, m}. It follows
from the family of inequalities (4.6) that

(4.7) lal, + lralp<2x|a] ,

where p = (2,1). Transfer the function a from the discrete set §% o the measure
space R? by defining a function A on R? that vanishes outside the set [0, ¥)2, and
is equal to a,, , on each set (m, n) 4- [0, 1]>. It is easy to check that inequality (4.7)
also holds with the function a replaced in the left side of the inequality by A4; more-
over, [al,,.y= |@[gq,1), because the functions ¢ and A have the same distribution
function. Denote the spaces of functions, f say, on R? for which the quantities [f],
and | 7f[|,- are respectively finite by D, and E; then DN F is a Banach space with the
norm given by

[flpas=1flp+ =7,

for all f. Transferring inequality (4.7) yields that |A4],,z<2x]a].
We claim that there is an absclute constant ¢ so that :

(4.8) [flzsy<elflpnz for all measurable functions f.

Once this claim is proved, we will have that |4 [, ,<2¢k[a], as required. To prove
the claim, we pass to a dual version of it. We will see below that the dual spaces
(DN EB) and L(s, 1) can be identified with spaces of measurable functions on E2
It follows that statement (4.8) holds if and only if

Ifllpamy<elflysy for all measurable functions f.

Recall [6, § 2.7] that (D N EY, the dual space of D N F, is the algebraic sum of the
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dual spaces D', and E', with the norm given by

191D gy = inf {max (],

[Elg): g=h+ K} .

It is easy to verify that the dual spaces D', and E' are permuted mixed-norm spaces
based on the index sequence g = (2, o). Indeed, [g|, = |gl, and |gl, = |79,
for all measurable functions g. Also, L(s, 1)’ = L(s', co) = weak-L*, with equiva-
~ lence of norms. Recall that s = 4/3, so that s'= 4 here. Hence, our claim (4.8)
is equivalent to the following statement.

(I) Every function ¢ in the space L(4, oo) can be split as a sum of two func-
tions h, and k with

(4.9) max { [k | vk]q} < Clg]5ee,00
for some absolute constant O.

We also claim that a similar staternent helds for the space L(2, oo).

(IT) Every function g in the space L(2, oo) can be split as a sum of two fune-
tions k and k with

(4.10) max {[],, [tk [} < 0" [glrz,000»

where r is the index sequence (1, oo), and €’ is an absolute constant.

We arrived at claim (I) by a duality argument starting with the desired inequality
(4.8). Similarly, claim (II) follows by duality from the case of Theorem 4.1 where
K = 2. Since the latter theorem has already been proved, it suffices to derive
claim (I) from claim (II). Suppose that g L(4, oo); then |g|2 € L(2, oo}, and

I iglan(z,w): (”9“1‘4(4,00))2 .
Applying claim (II) yields a pair of funetions H and K with |g|*= H -+ K, and

with [H[,<O([9]54,0)? 20d [7E[, <O (9]14,0))> Suppose that H and K have
supports. Then the splitting

g = (sgn () -HV*+ (sgn (9) K2
has the properties specified in claim (I).
Matters therefore reduce to showing that claim (II) holds with disjointly-supported

pleces. This is an easy consequence of the fact that the claim holds with pieces that
are allowed 0 have overlapping supports. Given a funection g in L(2, co), split it
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a8 specified in the claim. Let U be the set where [h| > |¢[/2. Then define functions H
and K by letting H = ¢ on the set U, while H = 0 off U, and letting K = ¢ off U,
while K = 0 on U. These functions have disjoint support, and their sum is g. More-
over, |H|<2[bl, whence |H|,<2C'|glypm; similarly, [2K],<20'|g]yem. This
completes the proof of the theorem.

Our improvement on Littlewood’s inequality has an interesting consequence for
the known examples of p-Sidon sets in harmonic analysis. For example, if ¥ ig the
set of integers of the form. 3™, then every continuous funection, f say, on the unif
circle whose Fourier coefficients f(n) vanish outside the set F -~ E, has the property
that f e 143; for this reason, the set £+ F is called a 4/3-Sidon sef. The proof that
E |- E has this property [11, 7] uses Littlewood’s inequality, and it follows from
Theorem 4.4 that in fact f e 1(4/3, 1) for all such functions f. This suggests the que-
stion: If # is a p-Sidon set for some index p in the interval (1, 2), does it follow that
fel(p, 1) for all continuous functions f whose transform vanishes off F? It follows
from the results in this paper that the answer is « yes » for every set that is known
to be a p-Sidon set with p € (1, 2).

Littlewood showed that the index 4/3 in his theorem is best possible, by exhibiting
matrices a with all entries equal to 1 or — 1, and of arbitrarily large dimension, for
which [afz>¢|a]. By taking direct sums of such matrices, we can show for each
sequence b in the space [(4/3, 1) that there is a doubly-infinite matrix a, that defines
a bounded bilinear form on !*, so that & majorizes b in the sense that a*(t)>b*({)
for all > 0. Therefore, {(4/3, 1) is the smallest rearrangement-invariant sequence
space that contains the sequence of matrix entries for every bounded bilinear form
on I®. It is also known that the index p* is best possible in the Sobolev imbedding
theorem; the standard examples to this effect can be combined to show that for
each function ¢ in L(K/(K— 1),1), and each positive number B, there is a fune-
tion f in WHY(RX) so that f*({)>g*() for all ¢ in the interval (0, B).

In this paper, we have concentrated on Theorem 3.1 and its applications. We
end the main part of the paper by briefly considering the corresponding applications
of Theorem 3.3. Fix an integer n with 1< n < K; let #(n) = K/(K — n). The
method used above to prove Theorem 4.1 also yields that if N»(f) < co, then
fe L(r(n), 1) and [f]5,em 1) <eN™(f); moreover, there is a multiplicative estimate
similar to Corollary 4.2. It follows that the Sobolev space Ww!(R¥) imbeds into
L(r(n), 1); as noted in [21] this can also be deduced from Theorem 4.3 and the map-
ping properties of Riesz potentials.

We saw in Section 2 that there are versions of Littlewood’s theorem for K-linear
forms on 17, yielding estimates for |a|szuep In terms of Ja|. Using the case of
Theorem 3.3 where # = K — 1, the corresponding generalization of Theorem 4.1,
and duality as in the proof above of Theorem 4.4, we can show that |a];or/(x+1),1)<
<c|a]. The dual statements can also be proved directly; the direct proofs and
various applications in the setting of fractional carfesian products will be presented
in & joint paper with Ron Blei,



70 Joun J. F. FoURNIER: Mixed norms and rearrangements, etc.

Appendix.

Each of our two main theorems has an alternate proof that is of inferest in its
own right. We first present a second proof of Theorem 4.1. Since

flze,y= sup {[ Flgq,: F is simple with 0<F<ff},

matters reduce to proving the estimate |f|, ,,<cN(f) when f is a nonnegative simple
function. The last step in Poornima’s proof [21] that Wbl c L(r, 1) is a lemma stat-
ing that

(A1) 5007 = [ ottt at
0

As Poornima points out, this equation is easy to verify when f is a simple function.
The integral defining the norm and the integral on the right above become sums,
which ean be seen to be equal by a summation by parts.

To estimate m,(f), introduce the functions F, and the sets A* as in Section 3.
It is easy to verify that

(A.2) | Fulf) =[mp 0.
0
K
In Section 3, we used Lemma 3.2 to show that |4, [5-1< [] |AL| for all m. Equivalently,
k=1
K
(A.3) m(H)E 1L H myp (1)
k=1

for all £. Recall that » = K/(K — 1). Taking K-th roots in inequality (A.3) yields
the estimate

K
m (0 < [ g (0)%
k=1

Using this in the right-hand side of inequality (A.1) gives that
v K
A = [T imat.
0

Then by Holder’s inequality and equation (A.2)

K
| f\!w,l)ﬂll N(HE.

This completes our alternate proof of Theorem 4.1.
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To prove Theorem 3.1 in another way, we imitate an argument in Sobolev’s
classic paper {24], where it was shown that convolution with the kernel & — |x|**
maps L?(R%) into LY(R¥), where 1< p < K and q == Kp/(K — P). This kernel is
a radial function, and Sobolev proved the desired norm estimate by reducing mat-
ters to the case where the other funections in the estimate are radial too. He did
this in two stages, first dealing with the case where K = 2, and then using induec-
tion and spherical symmetrization in (K — 1)-dimensional hyperplanes. We will
reprove our theorem first in the case where K = 2, and then use induction and cu-
bical symmetrization in (K — 1)-dimensional hyperplanes.

We suppose again that f is a nonnegative simple funection with bounded support,
and we denote the nonzero values of f, in decreasing order, by a;, as, ..., ay. We
define the sets 4,, and A as before, and we recall formula (3.4) of Section 3, which
asserts that

(A.5) T [ amﬂ)(kgmi‘nt)] :

m=1

where again i, = 0 by convention. Passing to a rearrangement of f does not
change the numbers a,, and |4,], so that matters reduce to showing for each m that,
given {4,,|, the quantity

Mk

(A.6) [4%]

k

I

1

is minimal when A, is essentially a eube with edges parallel fo the coordinate axes.

In Section 3, we used Lemma 3.2 to prove the minimality of this sum when 4,
is such a cube. When K=2, however, we ¢an prove this in an even more elementary
way. Choose a measure-preserving isomorphism ¢ mapping R onto itself so that the
seb o(4L) is an interval of the form [0, b,,). Similarly, choose a measure-isomorphism ¢
of R onto itself so that 7(A2) has the form [0, ¢,). Let ¢ be the measure-preserving
transformation of R? that maps each point (, y) to (o(x), 7(y)). Replace 4,, by the
set ¢(A,). This change has no effect on the quantities |4 | and 42|, and it reduces
matters to the case where the sets A} and AZ are intervals [0, b,) and [0, ¢,,) respect-
ively. In particular, A, is essentially included in the rectangle [0, b,) x[0, ¢,,), 50
that |A,]<b,-¢,. Also, the quantity (A.6) is equal to b, ¢, in this case. This
sum is minimal when b, = ¢, = |4,[?, that is when A, is essenfially a square
with edges parallel to the coordinate axes.

In dealing with the corresponding question when K > 2, it is convenient to revert
to the notation used in Lemma 3.2. Thus, let A be a bounded, measurable set in RF,
and denote its essential projection into the k-th coordinate hyperplane by 4,. Our
tasgk is to show, given |4[, that the quantity
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is minimal when A is essentially a cube with edges parallel to the coordinate axes.
Since translation has no effect on N(1,), we may suppose that 4 is a bounded,
measurable subset of the first orthant in R%.

Suppose without loss of generality that A is measurable with respect to the
uncompleted product measure on R¥, and form a sequence of sets A by the following
procedure. Let A®9=A. Given a real number b, denote the hyperplane with equation
#,==b by RE™'. Let A® be the set whose intersection with each such hyperplane
is a (K — 1)-cube of the form {b} x {0, b'}*~1 with the same measure in RZ-! as the
slice AN R~ Then let A® be the set obtained from A by replacing the inter-
section of the latter set with each hyperplane, /1, say, where z,= ¢ by the (K — 1)-
cube of the form [0, b') X {¢} X [0, b')5~% with the same measure in R%* ay the slice
AN, Given A", construct A® by rearranging each slice of A® perpendicular
to the x;,-axis into a (K — 1)-cube of the type used in forming A®, and continue in
this faghion, using alternate rearrangements in hyperplanes perpendicular to the x,
and x,-axes. :

Let b = |A[¥%, and let B be the K-cube [0, b)X. Our goal is to show that N(1,)<
<N(@,). This inequality follows from two properties of the sequence {4},
namely that

(A7) N(Lyoun)<N(Lw) for all m,
and
(A.S) ‘N(]‘A(")) —> N(lB) as n - co.

To see why the inequalities (A.7) hold, consider the special but typical ease when
. # = 1. For each positive number ¢, denote the intersection of A® with the hyperplane
x,= ¢ by A9(¢), and define 4®(¢) similarly. Denote the RE-i-measures of these
sets by |A®(c)| and |A@(e)| respectively. The construction of A® from A® guarantees
that [AD(c)| = |A®(c)| for all e. Moreover, N(1,.,) == ess sup [A™(c)|, while N(1,w)>
>ess sup [A49(¢)|]. Hence ¢

4

(A.9) N o) <N (Lw) -

Identify the sets 49(e) and A™(¢) with subsets of R in the obvious way, and make
the inductive assumption that the inequalities (A.7) hold for subsets of R®-1. Thus
N (L) < N(Lyay,) for all c. Integrating this inequality with respeet to ¢ yields that

K iid
(A.10) Z Nle)< Z Ni(i,0) -
k=2 k=2

Adding inequalities (A.9) and (A.10) yields that N{1,s)< N(L,u), as claimed above.
Finally, we outline the proof of assertion (A.8). Each of the sets A™, for n>1,
is @ union of (K — 1)-cubes, all perpendicular to the z;-axis if » is odd, and all per-
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pendicular to the x,-axis if » is even. Define the breadth of A to be the number
b(n) given by

b(n) = sup {#;: x € AW},
and the length of A™ to be the number ¢(n) given by

o(n) = sup {w;: x€ A»} if » is odd,
and

o(n) = sup {wmy: x € A™} i n is even.

Then A™ ig included in a box with edges parailel to the coordinate axes, and with
one dimension equal to ¢(n) and the other K — 1 dimensions equal fo b(n).

We claim that the sequences {b(n)} and {e(rn)} both converge to the number
b= |A[VE, Suppose, for the moment that this claim is true and let d(n) =
= max {b(n), ¢(n)}. Then

lim sup |AP| <lim d(n)E-? = b5,

N> 00 n—r 00

On the other hand, the set A'®, which has volume b%, is included in the eylinder
[0, d(n)) x A\, so that

bE<lim sup d(n)- [AP| =b-lim sup |4]P.

f—>co fi—> 00

Hence |4{Y| — b5t as n —> co. The quantities |A{|, where K > 1, also converge
to bE-' ag n — oo, and assertion (A.8) holds.

In proving our claim about the limiting behaviour of b(n) and ¢(n), we first use
a uniform change of scale to reduce matters to the case where |A| = 1; then b =1
also. We now estimate b(n -~ 1) and ¢(n + 1) in terms of ¢(n) and b(r). Suppose
for definiteness, that » is odd; if » is even, the only modification needed in our argu-
ment is an exchange of the roles of #, and x,. The set A is a union of (K — 1)-cubes
of the form {b} x [0, (b))%, with @(b)<b(n). So, if ¢>b(n), then the hyperplane with
equation # = ¢ does not intersect the set A™. Therefore,

(A11) e(n +1)<b(n).

On the other hand, the hyperplane with equation »,= 0 intersects each of the
nonempty (K — 1)-cubes, perpendicular to the x,-axis, that make up the set A™.
The intersection of fthis hyperplane with the (K — 1)-cube where ;=25 is &
(K — 2)-cube with edge-length @(b); any other hyperplane perpendicular fo the
@y-axis either misses the (K — 1)-cube where a;==b, or also interseets it in a
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(K-2)-cube with edge-length g{b). So, among the hyperplanes perpendicular to the
x,-axis, the one where x, = 0 intersects 4" in a set of maximal R¥-l-measure.
It follows that

c(n)
bin -+ 1)51 =f<p(b)r<—2db :
0

Apply Holder,s inequality with the conjugate indices (K — 1)/(K — 2) and K—1
to get that
c(n)
b(n + 1)1{—1 <{ f(p(b)K—l db}(K—Z)/(le) . 0(%)1/(1{—1) .

0

The integral above is equal to [A®™|; which has been normalized to be 1. Hence,
(A.12) b(n -+ 1) < o(n)E—1"
By iterating inequalities (A.11) and (A.12) we get that
max {b(n 4 2), ¢(n + 2)}<max {b(n), c(n)}lf(Kﬂ)z for all n.

So, lim sup &(n) and lim sup e(n) are both at most 1. On the other hand, b(n)=-1-
N—>co B>00

~¢(n)>|4A"™] = 1. for all n». Therefore,

limb(n) =lime(n) =1=2b,

n—>o0 A~> 00

as required. This completes our alternate proof of Theorem 3.1.

As we said at the beginning of the proof, the process used above is the analogue
for cubes of a spherical symmetrization process used [24] by Sobolev. We briefly
consider the analogue, for balls, of Theorem 3.1. Let U be the group of orthogonal
transformations of R¥; denote a generic element of U by g, and the Haar measure
on U bu do. For each measurable function f on R, let

Ny(f) =[¥(of) do
U

where again of(x) = f(o(x)) for all vectors x in RE. It is plausible that the rear-
rangements of f that minimize the quantily N;(f) are the ones for which the sets
where {f| > A are balls centred at the origin. It also seems plausible that if N{of) < oo
some transformation o in the group U, then N (f) < oo.
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