
Mixed Norms and Rearrangements: 
Sobelev's Inequality and Littlewood~s Inequality (*)(**). 

J o ~  J. F. F o u ~ r s ~  

Summary. - I n  the 1930's, J . E .  Littlewood a~d S . L .  Sobolev each found useful estimates for 
L~-norms. These results are usually not regarded as similar, because one of them is set in 
a discrete context and the other in a continuous setting. We show, however, that certain basic 
facts about mixed norms can be used to simplify proofs of both of these estimates. The same 
method yields a proof of a form of the isoperimetrie inequality. We consider the effect of 
measure.preserving rearrangement on certain sums of permuted mixed norms of functions 
on 1~ K, and show these sums are minimal when the rearranged function, ]~ say, has the 
property that, for each positive real number ), the set on which If~l > 2 is a cube with edges 
parallel to the coordinate axes. .Finally ,  we use the fact about rearrangements to prove sharper 
forms of the estimates of Littlewood and Sobolev. 

1 .  - I n t r o d u c t i o n .  

Given an integrable funct ion f on R K and an integer k between 1 and K ,  let 
Nk(]) be the extended-real  number  obtained by  first computing the essential supremum 
of If(x1, x2, . . . ,  x~)] with respect to the k-th variable, and then  integrat ing this quant i ty  

K 

with respect to the remaining variables. Let  N(]) = ~ NT~(]). Also, given f, let ]~ 
k = l  

be a me~sure-preserving rearrangement  of I][ with the p roper ty  tha t  for each number  
~ 0 the  set where ]~ ) ~ is ~ K-cube with edges p~rallel to the coordinate axes. 

The central  result  in this p~per is t ha t  N(] ~) <N(] ) .  
The stimulus for this paper  was the recent  proof given by  S. P o o ~ I ~ A  [21] 

that ,  when K > ! and r = K / ( K  - -  1), the  Sobolev space WI,~(R K) imbeds into the  
Lorentz  space L(r ,  1); the la t ter  sp~ee is str ict ly smaller than  L ~, which is the target  
space in the usual s ta tement  [1] of the imbedding theorem for W~,~(R~). The first 
proof of the Sobolev imbedding theorem [24] did not  ~pply to the  case of W ~,~, but  
l~ter, E. GAGLIARDO [13] and L. NI~E~BERG [19] found a method  of proof which 
worked in tha t  exceptional ease. Their  ide~ was to observe tha t  if / E W ~,~, then  the  
quantit ies Nk(]) are finite for all k, and to deduce from this tha t  ] e Z~. I t  is n~tural  
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to ask if these mixed-norm conditions, namely tha t  N~( ] )<  co for all k, together  
imply tha t  ] ~ Z(r, 1). We show here tha t  this implication does indeed hold; we prove 
it in two ways, first by  using our theorem about  the  effect of measure-preserving 

K 

rearrangement  of the  quant i ty  iY(]) : ,~ ~Y~(]), and second by  combining the method  
k = l  

of Gag]iardo and ~ i renberg  with Poornima's  approach. 
There is a striking similarity between the use of mixed norms in the  context  

described above and the use of such norms in the s tudy of bounded multi l inear forms 
on l ~. In  ~16] J .  E.  LITTLEWOOD showed tha t  if a mat r ix  (a~,.) defines ~ bounded 
bilinear form on 1 ~, with norm llall say, then  

2"] 1/2 

Lit t lewood deduced f rom these mixed-norm estimates t h a t  ]]aI]41~<~gllaH. In  Sec- 
t ion 2, we show how the  la t ter  implication and the Gagliardo-~irenberg proof of the  
Sobolev imbedding theorem can both  be based on the same e lementary  propert ies 
of mixed norms. In  Section 3, we use th i s  approach to  prove  a form of the iso- 
perimetr ic  inequal i ty  due to L. H. L o o M s  and H. W ~ T N E u  [17], and we present  
our analysis of the  effect of measure-preserving rear ranement  on s In  Section 4, 
we consider applications of our result  on rearrangements.  The embedding W1.1 c 
L(r, 1) follows easily f rom this result. By  using dual i ty  twice, we show tha t  if a 
mat r ix  (a~,,) satisfies inequalities (1.1) and (1.2), then  the  mat r ix  belongs to the 
Lorentz  space 1(r 1); this improves on Lit t lewood's  conclusion tha t  a e l ~/3 in 
this ease. We apply this improvement  to the known [11]. examples of 4]3-Sidon 
sets. Finally,  we present  a l ternate  proofs of two of our main results in an appendix 
to the paper.  

The idea of using measure-preserving rearrangements  to prove imbedding theorems 
for Sobolev spaces goes back to the  first proof [24], by  S. L. Sobolev, of such imbed- 
dings. More recently,  several authors [4, 10, 18, 29] have used properties of measure- 
preserving rearrangements  tha t  are constant  on spheres to obtain the  best  constants 
in various cases of Sobolev's inequality.  This approach was used by  W. G. FA~S [12] 
to  prove a result t ha t  is equivalent  by  dual i ty to the inclusion W 1,1 c L(r, 1). To get 
the  dual formulat ion of this inclusion, first note  tha t  the  s tandard  imbedding of 
W 1,1 into ~ is equivalent  by  dual i ty  to the s ta tement  tha t  

(i) if ] e W ~,~ then  fl/'gl < ~ for all functions g in the  L ~', s p a c e  

where r '  is the index conjugate to r. Le t  weak-L ~' be the space of all measurable 
functions g on Ra for which there  is a constant  e so that ,  for each number  2 > 0, 
the inequal i ty  [g[ > 2 holds on u set of measure at  most  c/2r'; then  L *' is strictly 
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included in weak-L *'. The inclusion W~,~c L(r, 1) is equivalent  by  dual i ty to the 
s ta tement  tha t  

if ] e  W ~,~ then  f l] 'gl  < oo for all functions g in the space weak-~5 ~'. (i') 

Assertion (i') follows easily f rom the main result  in [12]. 
The papers by  F ~ I s  and by  POOR~r~A and the present  paper  provide a var ie ty  

of methods  for proving the  imbedding W 1,~ r Z(r, 1). We will comment  fur ther  on 
these methods in Section 4. We note  here tha t  our result  tha t  if IY(f )~  oo then  
] ~ Z(r, 1) is equivalent  by  dual i ty  to an inclusion of the space weak-J5 ~' in ~ sum of 
certain mixed-norm spaces. 1~o~ BLm and the au thor  have found a direct proof of 
the dual  inclusion, and will present  tha t  proof in ~ joint  paper. The direct proof of 
the dual inclusion provides an al ternate  ~pproach to the applications in Section 4 
of the  present  paper.  

2. - Rea rra ng e ment  o f  indices .  

The functionMs 2~k described in the introduct ion arc examples of what  we will 
call permuted mixed-norms. Our goal in this section is to discuss some basic properties 
of these norms, and to show how certain impor tan t  estimates follow easily f rom these 
properties.  

Le t  X be a cartesian product  of sigma-finite measure spaces, X1~ say. Denote  
a typical  element of X by  x = (xl, x~, ..., xzr and the product  measure on X by  dx. 
Given a measurable function f on X, and an index vector  p = (Pl,P~, ... ,P~) with 
0 < p~< oo for all k, consider the quant i ty  obtained by  first computing the norm 
in L~(X0  of the funct ion x~-+ ](x~, x~, . . . ,x~) for each value of the tail vector  
(x2, .., xK), and denoting this part ial  norm by Ill( ", x~, ..., x~)ilt~, then  computing the 
norm in L~(X~) of the  function x~-+ ][](., x~, ..., xK)]]~, Denote  the ul t imate  result  
of this computa t ion  by  ][]l]p; for instance, in this notat ion,  the quan t i ty  Nd])  is just  
[]]]I~, where p = (0% 1, 1, ..., 1). Denote  the set of all functions ] for which [I]/Ip < oo 

by  Zp(X). 
The s tandard  reference concerning these mixed-norm spaces Id'(X) is [5]. We 

need two e lementary  facts about  mixed norms; the first fact  is a version of H61der's 
inequali ty,  and the second is an easy consequence of the integral  form of MinkowskPs 
inequali ty.  We will indicate how these facts are proved,  par t ly  because of a lack of 
accessible references for t hem in the forms tha t  we need, and par t ly  to convince 
the re~der tha t  these f~cts really arc elementary.  Given index sequences p ,  q and r, 
we write 1/r = l i p  4- 1/q if 1/rk = 1/p~ 4-l/qTo for all k. 

TttEOI~E~ 2.1. -- Let  ] E / ) ' (X)  and g ~ Lq(X), and let  1/r : l i p  + 1/q. 
].g ~ Lr(X), and 

(2.1)  IT/'g]]r< rl/lF " ilglI  �9 

Then 
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We will discuss the proof of this version of H61der's inequal i ty  after  we state our 
version of the  integral form of 3/[inkowski's inequali ty.  To prepare for t ha t  s ta tement  
we note  tha t  when k > 1 the functional  N~ is, strictly speaking, not  a mixed norm, 
because NT~ must  be cemputed  by  dealing first with the variable x~, whereas the de- 
finition of mixed norm specifies t ha t  x~ must  come first. These functionals are exam- 
ples, however,  of permuted mixed norms. Any permuta t ion ,  a say, of the  set 
{1, 2, ..., K} induces an adjoint  action on variables x and indices p. Thus, we define 
a(x) to be the element (xo(1) , x,m), ..., x,(K) ) of the  Cartesian product  space a ( X ) =  
= X~o)•215 • , and we define a(p) similarly. I t  would be more precise 
to denote these adjoint  actions by  a* or ~he like, bu t  this distinction does not  matr 
here. On the other  hand,  it  is impor tan t  in what  we do to distinguish between product  
spaces like X~ • X~ and X2 • X~, even when the factors X~ and X~ are copies of the 
same space, R for instance. Given a function ] on X, we continue our abuse of 
nota t ion by  lett ing aJ be the funct ion on a(X) given by  (~](a(x)) -~ ](x) for all ele- 
ments  a(x) of the space a(X);  equivalently,  aJ(y) = J((r-~(y)) for all y in a(X). For  
instance, the  quan t i ty  NK(/) is, in this notat ion,  IlaJli,(~,), where io~---- oo and p j -  1 
for all j =~K, and a is any permuta t ion  with the p roper ty  tha t  a(1) ~ K ;  indeed, 
we get lye(]) by  first taking the L~-norm with respect to the  variable xK, and then  
taking t h e / ~ - n o r m s  with the respect to the other  variables in any order. Our ver- 
sion of MinkowsM's inequali ty for integrals concerns the effects, on mixed norms, 
of permutat ions  tha t  act on the variables and the indices in the same way. 

T~IEO~E~ 2.2. -- F ix  a measurable function j and an index vector  p .  Among the  

{P~(7~)}k=l is nondeereasing various quantit ies Ii ~J I] o(p), the one for which the sequence K 
is the smallest, and the one for which the  sequence {P~(e)}~l is noninereasing is the 
largest. 

We now indicate how these two theorems may  be proved. Consider first the one- 
variable case of inequal i ty  (2.1), tha t  is the estimate 

(2.2) iIr ]lg[]~, 

where J and g are measurable functions on the same measure space, and 1It = 

= l ip  ~- 1/q. If  r is infinite, then  so are p and q, and the inequal i ty  above is obvious. 
If  r is finite, then  the indices p/r and q/r are conjugate,  and inequal i ty  (2.2) follows 
from an application of H61der's inequali ty,  for these conjugate indices, to the  integral 
of IJI ~. Finally, the  mult ivar ia te  case of inequali ty (2.1) follows by  interat ing the 
single-variable case. 

We will also apply Theorem 2.1 to products  of K functions, where K > 2 ; if the 
k-th factor belongs to the mixed-norm space with index p(k), then  i terat ing the 
theorem yields tha t  the product  function belongs to the space Lr(X), where 

r ~ k ~ p  ~ ) '  
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and tha t  the  appropriate  product  est imate holds for the L~-norm of the product  func- 
tion. The case where each factor  is a power of the same function is presented in [28]. 
Note tha t  there  is no requirement  in the s ta tement  of the theorem or in its proof 
tha t  the indices p~, qT~, and rk be at  least 1; in fact,  it will be convenient  in the ap- 
plications of the theorem to allow indices in the intervM (0, 1). 

We begin our analysis of Theorem 2.2 by  considering the case where there are only 
two variables. In  this context ,  we drop the use of subscripts on variables and indices, 
denoting the product  measure space by  X •  Y ,  a typical  element in it  by  (x, y), 
and a typical  index pair by  (p, q). We also suppose for definiteness tha t  the indices 
are finite; our conclusions are also valid, with similar proofs, when one or more index 
is infinite. Theorem 2.2 addresses the question: Is 

(2.3) 
1/~ ~ llq lllq/p \1/~ 

Y X X Y 

or is the reverse inequal i ty  t rue? The theorem asserts tha t  the larger of the two 
expressions above is the one for which the larger index is associated with the first 
variable to be integrated;  t ha t  is, inequal i ty  (2.3) holds if q ) p ,  while the reverse 
inequal i ty  holds if p ~> q. To see why this is so, we specialize fur ther  to the case where 
(p, q ) =  (1, r) with r ) l ;  the  assertion tha t  

(2.4) 
Y X X Y 

is known as Minkowski's inequal i ty  for integrals. To get a completely familiar 
inequali ty,  we consider the ease where Y has only two points, y and z say, each with 
mass 1. Le t  g and h be the lunctions in Z~(X) given by  g(x) = ](x, y) and h(x) = ](x, z) 

for all x; then  inequal i ty  (2.4) states tha t  

(2.5) ]ilgl + Ihlllr< []g]l~+ ilh[l,, 

which is Minkowski's inequal i ty  for sums. The corresponding inequal i ty  for inte- 
grMs can be proved in the same way as the familiar inequMity for sums [14, //202]; 
al ternatively,  the general case of inequal i ty  (2.4) can be deduced from the special 
case (2.5) by  reagarding the integrals over I z as limits of sums. The fact  t ha t  
inequal i ty  (2.3) holds when p~< q follows by  applying inequal i ty  (2.4) with r = q/p 
and f replaced by  ]]]~. 

Now we re turn  to the  general setting for Theorem 2.2, and to the nota t ion with 
subscripts on the  names of variables, measure spaces, etc. Let  w be a permuta t ion  
tha t  transposes adjacent  indices, k and k ~ 1 say, and fixes all other  indices. We 
say tha t  the transposit ion w raises the  index sequence p if P~+I>Pt~. In  the compu- 
ta t ion  of the quantit ies II]l]~ and []~]I]~(p)the variables x~ and x1,+: come together,  the  
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only difference being tha t  x~ and the corresponding index p~ come first for [IflI~, 
whereas xk+~ and p~+~ come first for [[~fll~(p ). So, our analysis of inequal t i ty  (2.3) 

yields tha t  

(2.6) ll,fllp< I[~:,fll~(p) if ~ raises p .  

If  second transposit ion v', of adjacent  indices, raises ~(p), then  ]111]~)< ]tv'(~])ll~,(~r)) 
and so on. Now let a be any permuta t ion  of the  set {1, 2, ..., K) ,  and let  a' be a 
permuta t ion  for which po,(~)>p~,(2)> ...>P~,'(K). Then we can pass f rom a(p) to a ' (p)  
by  a sequence of transposit ions of adjacent  ind icesso  tha t  each of these transposi- 
tions raises the  index sequence to which it  is applied. Specifically, we find a maxi- 
mal index p~, and then  successively transpose this index with each of its neighbours 
to  the left  unt i l  i t  sits in the  first posit ion; then  we find an index p~, tha t  is maximal  
among the  indices other  t han  the one now in position 1, and we move  p~, to left  unti l  
i t  sits in position 2, etc. By  i terat ing inequali ty (2.6) we get t h a t  

as asserted in the  theorem. Similarly, the  smallest of the  quantit ies l]a]H,(p) occurs 
when P,(~)<P~(2)<...<P,(K)" This completes our discussion of the  proofs of Theo- 
rems 2.1 and 2.2. 

Our first application of these theorems is to Lit t lewood's  inequali ty.  Suppose 
tha t  a doubly-infinite mat r ix  (a.~,~) has the  p roper ty  tha t  for all elements b and v 

r  Oo  

of l~(Z) the  i tera ted series ~ ~ ~ a~,,~b~c~ converges to  a number,  a(b, c) say~ 
with ~ = - ~ ~ = - oo 

In(b, c) l<cilblI !t li , 

where C is some constant  determined by  a; define the  norm IIal] of this bilinear form 
to be the  infimum of the constants C for which the inequali ty above holds for all b 
and v in l~(Z). As noted in the introduction,  Li t t lewood proved the  mixed-norm 
inequalities (1.1) and (1.2). In  the nota t ion of this section, these inequalities become 

the  estimates 

(2.7) II a Ilp < II a tl, and  ]l II,(a) < II a II, 

where p = (2, 1), while q = (1, 2), and ~ is the  transposit ion of the underlying two- 
element  index set. Since ~(q) ~ (2, 1), the  permuta t ion  ~ arranges the indices in q 
in decreasing order, and Theorem 2.2 yields tha t  ]]al]u<l]~at],(q); a f o r t i o r i ,  ]lal]q 
<ulla]l. Wi th  these estimates for I]allp and IIallq in hand,  we apply Theorem 2.1 

to  deduce that a~-~ l', where 1/r  = l ip  -~ l / q ;  moreover,  

(2,8) Ila'l],< liallpllallq< (~llail) ' 
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Bu t  l f r  = (1/2, 1 1 1 ) +  (1/1, 1 / 2 ) =  (312, 312), so tha t  the mixed-norm space l" is 
isometric with l ~/~. Thus, Na~[]~l~<(~!laN) ~, or equivalently,  [laI141a<~Ila]l , which is 
the desired estimate.  

Lit t lewood's  proof yielded the  est imate il a 114/s ~< 2~ ]l al[. The fact  t ha t  our method  
gives a be t te r  cons tant  is not  impor tan t  in this context ,  bu t  in work of BLEI [8] 
on multiline~r and fractional  versions of Lit t lewood's  inequali ty,  it  was desirable to 
get values for the constants in the inequalities t ha t  grew at  an optimal  ra te  as the 
dimension increased, and this required the  use of a method  like the one used here. 
For  instance, it was shown, in [8, Lemma 5.3] t ha t  if a funct ion a on Z ~ defines a 
bounded K-linear form on l~(Z), then  ]lal]~l(K+~)<~z~-~Hall , where the constant  
is independent  of K. To prove this inequali ty,  one first proves tha t  Ilalip<:~-~]laII , 
where p ---- (2, 2, ..., 2, 1), and tha t  the same estimate holds for Ilaall~ for all cyclic 
permutat ions  a. The desired estimate for ][a![2~/(2~+~ then follows by  our method,  
or the  one used in [8]. 

~ e x t ,  we use Theorems 2.1 and 2.2 to prove an endpoint  case of the Sobolev 
imbedding theorem. We recall t ha t  the Sobolev space W~,~(R ~) consists of all func- 
tions in ZI(R ~) whose first-order distributional part ial  derivatives also belong to 
Z~(R~); this space is complete with respect to the norm [!'H~,~ given by  

I I ] I I D ' +  (]lV 11[  , 

where Vk] denotes the first part ial  derivat ive of ] with respect to the k-th variable. 
See [1] or [25] for more information about  Sobolev spaces. The imbedding theorem 
states t ha t  if K >  1 and if l < p ~  K,  then  W~.I(R ~:)CZ~)*(RK), where p * :  
: K p / ( K  --  p). Sobolev [24] proved this imbedding for the eases where 1 ~ p ~ K ,  
but  his method  did not  work when p ---- 1. Tha t  case was settled affirmatively by  �9 
GAGLIARDO [13] and N~ENBEgG [19]; they  also showed how the other  eases follow 
easily f rom the  one where p : 1. To deal with this fundamenta l  ease, first use the  
fact  the  set C~(R~), of all compact ly-supported Cl-funetions on R g, is dense in 
W~,I(R ~) to reduce mat te rs  to proving the est imate 

(2.1o) 

for all such functions f. Next ,  note  tha t  if g is a compact ly-supported Cl-function 
on /~, then 

t oo 

hence, IlglIr (Ilg'lI,)/2. Let  ] e C~o(R~); then,  by  our est imate for Iigl]~, 

sup .. . ,  x :)l <}flVJ(x , . . . ,  x )Eax  
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for all fixed values of the  tail  vector  (x.,, ... ,inK). In tegrat ing this inequali ty with 
respect to the variables in the tail  vector  yields tha t  3r (IIV1 J I[ 1)/2. When k > 1, 
the same procedure start ing with the k-th variable ra ther  t han  the  first one yields 

tha t  X~(/) < (llV~ ] 11 ~)/2. 
As in the case of Lit t lewood's  inequality,  we now use Theorem 2.2 to get mixed- 

norm estimates f rom the  estimates above for the permuted  mixed norms N~(J). Let  
pa) be the  index sequence whose k-th en t ry  is co and whose other  entries are all l ' s ;  
let ~ be any permuta t ion  of the  set {1, 2, ..., K} with the  proper ty  tha t  ~(1)  = k. 
Then  Nk(j) is equal to the  norm of the functions ~ J  in the  mixed-norm space 
with index ~,(p(~,)) on the measure space ~k(X). Since the  indices in the sequence 
~(pl1~)) are arranged in decreasing order, Theorem 2.2 yields tha t  ll]i]p(~)< Nk(]), and 
hence tha t  I]JJl~<(I1V~JI]I)/2 for all k. Le t  

I t  follows f rom Theorem 2.1 tha t  jK~ Lr(RK) and tha t  

K 

( 2 . i l )  IlI"IL < l-I [ ( l l vJI l l ) / 2 ]  �9 
/ c = l  

Each component  of the index vector  1/r is a sum of K -  1 copies of 1/1 and one 
copy of 1/o% and is therefore equal to K - -  1. So, a more conventional  way to write 
inequali ty (2411) is to replace the  quan t i ty  on the left  by  I]]KII1/(K_I). The resulting 
inequal i ty  is equivalent  to the est imate 

K 

(2.17.) 

This inequali ty implies the desired est imate (2.10), so tha t  the  proof of the funda- 
mental  ease of the imbedding theorem is complete. 

The reader  may  wish to compare the presentat ion here with the arguments  
in [13], [19], [9J, [8] and [22]. These arguments  are inductions on the dimension K,  
with the conventional  form of H61der's inequali ty and the integral form of MinkowsM's 
inequal i ty  used in each step of the induction. In  our method,  Minkowski's inequali ty 
is used repeatedly at  the  beginning, to get f rom estimates for permuted  mixed norms 
to estimates for mixed norms;  then  Theorem 2.1, which is just  an i tera ted  form of 
Hhlder 's  inequali ty,  is used to finish the  proof. One advantage  of this ar rangement  
of the  proof is tha t  it becomes clear t ha t  full use was not  made of the  initial estimates 
on the  quantit ies NI~(]). First,  we replaced these quantit ies by  the quantit ies I[Jltp(~), 
which may  be much smaller when k > 1. Then we factored jK as a product  of K copies 
of the same funct ion and used Theorem 2.2, which also applies to products  of distinct 
functions. This suggests tha t  it  may  be possible to derive stronger conclusions from 
the initial estimates, and tha t  is what  we do in the rest of this paper. 
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3. - Measure-preserving rearrangements. 

Our goal in this section is to prove  the  assertion, made  in the  introduction~ 

abou t  rea r rangements  and the  sum of the pe rmuted  mixed  norms 2(~. We defer the  
discussion of the  applicat ions of this result  to Section 4. In  our proof of the  rear- 
r angement  theorem,  we use a va r i an t  of the  isoperimetric  inequali ty,  which we 

prove  b y  the  me thod  of the  previous section. In  the  appendix  to this puper~ we will 
outline a second proof of the rea r rangement  theorem.  

Let  ] be a measurable  funct ion on a sigma-finite measure  space X ;  denote  the  

measure  of a given set S in X by  IS I . Fo r  each number  ~ > 0~ let ms(~ ) be the  ex- 
tended-rea l  n u m b e r  given b y  

(3.1) ms( ) I](x)l > 

and  call the  funct ion ms the distribution function o /] .  Call the  funct ion ] rearrangeable 
if ms(~) < ~ for all ~ > O. Given a rearrangeable  funct ion ], call a measurab le  func- 

t ion g, on some measure  space t ha t  m a y  differ f rom the space X, a measure-preserving 
rearrangement of ] if the  distr ibution functions ms and  mg coincide. 

See [26] for more  abou t  rea r rangements  of functions.  All of the  rea r rangements  
t h a t  we wilt consider in this section will arise f rom measure-preserving t ransformat ions  

of the  under ly ing measure  space, which will a lways  be R K for some posi t ive integer  K.  

Le t  ? be  a one-to-one, measurable  m a p  of R K onto itself wi th  the  p rope r ty  t h a t  
[?(S)] ~ [S] for all measurable  subsets S if R ~. Then for each rearrangeable  funct ion f 
on R K the  funct ion x -+ ](qJ(x)) is a measure-preserving r ea r rangement  of ]. I n  the  

nex t  section, we will encounter  pairs of functions,  denoted there b y  a and  A, for 
which m a ~ mA,  al though the  functions a and A are not  re la ted b y  composi t ion with  

any  measure-preserving i somorphism between the  under lying measure  spaces~ because 
these measure  spaces do not  have  the  same cardinMity, and  because the  sets where a 

and  A are equal  to 0 do not  have  the  same measure.  
The t e r m  (~ r ea r rangement  ~> will always mean  a measure-preserving rear rangement .  

Replacing a given funct ion by  any  such rea r rangement  of it  does not  change its 

L~-norm; indeed [26, w V.3], there  is a formula  for comput ing  ll]]l~ f rom ms. On the  

other  hand  the  m i x e d  norms of a funct ion can be changed b y  passing to a rearrange-  
m e n t  of the  function.  For  example ,  let ] be the  indicator  funct ion of the  rectangle  
[0, 2) • [0, 1/2) in R 2, and  let g be the  indicator  funct ion of the  squ~re [0, 1) • [0, 1); 

then  ms----rag. Le t  N~ and 2(~ be the  functionMs defined in the  abs t rac t .  Clearly, 
N~(]) ~ 1/2, ~nd 2r ~ 2, while ~V~(g) = N~(g) ~ 1. l~.ecall t h a t  the  funct ional  2( 
is defined to the  sum of the  var ious functionMs 2(~, and note  t h a t  ~V(g) < 2((]) in 

this example.  

THE01CE~I 3.1. -- Le t  K be an integer  t ha t  is greater  t h a n  or equal  to 2. Le t  ] 
be a funct ion on R ~ with the  p rope r ty  t h a t  2((]) < oo. Then ] is rearrangeable .  Le t  g 



60 JOH~ J. F. ~ o t m ~ :  Mixed norms and rearrangements, de. 

be a measure-preserving rearrangement of ] with the property that  for each number 
> 0 the set where Ig[ > ~ is essentially a K-cube with edges parallel to the coordinate 

axes. Then iV(g) < 2V(]). 

P~ooF. - We say that a set is essentially a K-cube if it differs from some K-cube 
by a set of measure 0. The hypothesis that  2r < oo implies, as in the previous sec- 
tion that  ] ~ Zx/Ix-1)(RK); hence ] is rearrangeable. The latter conclusion can also 
be proved directly. Since 

N(]) = sup {N(F): F is simple with bounded support, and 0 < / ~ <  ]]]}, 

we may assume in the rest of the proof that  ] is a nonnegative simple function with 
bounded support. 

Denote the nonzero values of ], in decreasing order, by al, a~, ..., aM, and let A~ 
be the set where/>am. Let 

F~(x~, x~, . . . ,  xK) = ess sup f(x~, x~, ..., x , ) ,  

and let A~ be the subset of R K-1 where l~l>~a~. Similarly define func t ions /~  and 
sets A~ for integers k with 2 < k < K .  Denote the measure in R K of Am by [A,~t, and 
the measure in R K-1 of A~ by IA~I. Then 

M 

(3.3) N~(/) = Z a~(IAK{- [A-~-~I), 
' /~=1 

where [Ao~[ = 0 by convention. Summing this formula by parts for each index k 
and adding, we get that 

M K 

'/n,= 1 1 

where aM+l : 0 by convention. 
If  we replace ] by any rearrangement of it, the measures IA~,[ may change, but 

the numbers am and IA~I will not change. Moreover, by Lemma 3.2 below, 

K 

(3.5) 1-I IA~I > IA~I '~'~ �9 
k = l  

In the m-th term in formula (3.4), the factor (am- a~+l) is positive and fixed, while 

K 

IA~I >/KIA~I 'K-'IK 
k = l  

by the inequality between arithmetic and geometric means, and the constraint 
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(3.5). So, 
M 

(3.6/ IV(I) > ~ (a,~- a,~+,).KIA,~I C~-~)/~ . 
9~=1 

Let g be any rearrangement of ] for which the sets where [gl>fia~ are essentially 
K-cubes with edges parallel to the coordinate axes. Then formula (3.4) yields that  
N(g) is equal to the right hand side of formula (3.6): This completes the proof of 
the theorem, modulo the lemma below. 

Given a measurable set A in R K, denote its indicator function by 1~, and define 
the essential projection of A into the K-th coordinate hyperplane to be the subset A~ 
of R K-x with indicator function given by 

l ~ ( x ~ ,  x ~ , . . . ,  x~_~) = ess sup  l~(x~, x~, . . . ,  x~ ) .  
~K 

Define the essential projection A~ of A into the k-th coordinate hyperplane in a similar 
way. Again denote the measure, in R ~, of A by IAI, and the measure, in R K-~, of A~ 
by IA~I. Observe that  if A is ~ solid box with edges parallel to the coordinate axes, 

K 

then iF[ IA,r = l ap ' .  
The following lemma goes back at least as far as [17] and has been rediscovered 

at least three times, in [3], [8, inequality (2.4)], and [23]. I am grateful to Amram 
Meir and Ron Blei for bringing the reference [17] to my attention. The lemma is 
easy to prove by the methods of the previous section. 

LE~L~): 3.2. -- For any measurable set A in R ~, the measures of A and of its es- 
sential projections must satisfy the condition that  

K 

(3.7) [AIX-l~< ]-[ last. 
k = l  

P~ooF. - Assume without loss of generality that  [A~ I < co for all k. Observe that  
Nk(l~) -~ IA~[ for all k. As in our proof of the Sobolev imbedding theorem, 

K 

k = l  

Taking K-th powers in this inequality yields inequality (3.7), thereby completing 
the proof of the lemma. 

The methods used in the proof of Theorem 3.1 given above and in the alternate 
proof given in the appendix can also be used to prove similar statements about 
functionals where suprema are first taken with respect to more than one variable. 
Given a measurable function ] on R •, and a subset ~ of the underlying index set 
{1, 2, ..., K},  let N ( / )  be the extended-real number obtained by first taking the es- 
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sential supremum of If(x1, x~, ... ,xK)I with respect to the variables xT~ as 1~ runs 
through the  set ~, and then  integrat ing this quant i ty  with respect to the remaining 
variables. Denote  the  number  of elements in the set ~ by  J~l. Given an integer n 
with l < n < K ~  let 

Tn-EOlCEM 3.3. - If  N(~)(]) < ~ ,  then  ] is rearrangeable.  Le t  g be a rearrangement  
of f for which, for each number /~  > 0, the set where Igl > ~ is essentially a K-cube 
with edges parallel to the coordinate axes. Then N(~)(g)<N(~)(]). 

As noted  above, this s ta tement  can be proved by  the  methods used to prove 
Theorem 3.1. We omit the  details. 

4 .  - A p p l i c a t i o n s .  

Before proving tha t  certain functions must  belong to certain Lorentz  spaces, we 
briefly recall some basic facts about  these spaces. We refer to the books [6] and [26] 
for more details; our nota t ion is a compromise between the notat ions used in 
these sources. As in the previous section, let  ] be a rearrangeable function on a 
sigma-finite measure space X carrying the measure dx. Then there  is a unique func- 
t ion ]* on the  interval  (0, c~) with the  following propert ies:  

(i) /*>o.  

(if) ]* is noninereasing. 

(iii) ]* is right-continuous. 

(iv) ]* has the  same distr ibution function as ]. 

Given indices 19 and q with 1 < 19 < c~ and l < q <  ~ ,  say tha t  ] belongs to the  
Lorentz space L(19, q) if the  function t --> t~l~]*(t) belongs to L ~ with respect to the 
me~sure dt/t. I t  is thus appropriate  to consider the quan t i ty  

(~1.1) 
c~ 

T / ' 
0 

when q < ~ ,  and the quant i ty  I!]IIL(~,~): ess sup {t 1/* ]*(t): t > 0}, because ] ~ L(19, q)- 
if and only if ll]iI~(~,~)< c. The factor  q/19 is inserted in the definition of l]'ll~(~.q) 
when q < -~ to guarantee tha t  l[]!l~(~,q): Ii]il, whenever ] is the indicator funct ion 
of a set. :Note also tha t  I]]I]L(~,~)= ll]]l~ for all 1, so tha t  L(19, 19) = L~. For  fixed 19, 
the  spaces L(p, q) become larger as q increases; this can be seen b y  verifying tha t  
]~ L(19, q) if an only if the sequence {2-I~]*(2~)}~=_~ belongs to 1 ~. The inclusions 
L(19, 1 ) c  L~ c L(19, ~ )  are strict, except  in tr ivial  cases. 
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THEOREM 4.1. - Given an integer K with K>~2, let r : K / ( K - -  1). Le t  / be a 
measurable funct ion on R = for which N(/) < c~. Then / e L(r, 1), and II/IIL(~,I)<N(/)/K. 

P~ooF. - Adopt  the /~-norm for vectors in RK; tha t  is, let I x] = maxk {Ixkl} for 
all such vectors x. Define a f u n c t i o n / ~  by  l e t t i n g / - ( x )  =/*( Ix t  K) in the open first 
o r than t  in R K, and e x t e n d i n g / -  to be 0 on the rest of R K. Then 

I{x: l - ( x )  > Z}l = l { t : / * ( t )  > #}1 = I (x:  t(:',;) > ,~}l 

for all numbers  fl > O. I t  follows tha t  (/-)* = /*, and hence tha t  II/~IIL(,,1)= //Jl~o.,~).'r 
Moreover, the sets w h e r e / ~ >  l are open K-cubes;  so Theorem 3.1 applies to yield 
t ha t  .Y(/') <N( / ) .  

We will complete the proof of the  present  theorem with a computa t ion  showing 
t ha t  N(/~) = K]I/IIL(,,~), f rom which it  follows tha t  ]IfIIL(~,I)<N(/)/K. Given a vector  y 
i n / ~ - ~  and a real number  x, denote  the vector  (Yl, ..., YK-1, x) by (y, x). For  each 
vector  y in R ~-~, let g(y) = ess sup/~(y ,  x); clearly, this funct ion vanishes off the 

positive or than t  in R~-L On the other  hand, if y lies in the positive or thant ,  then 

g(y) ess sup/~(y ,  x) *'I'-. = = ess s u p / t , ~ ,  ~)I ~) = / * ( I r i s ) ,  
x > 0  x : > 0  

because /* is r ight-continuous and nonincreasing, In  particular,  in the positive 
or thant ,  g(y) depends only on lyl,  and we also denote g(y) by  G(lyl) in this case. 
Using polar coordinates adapted  to the norm I" I, we have tha t  

fg(y)  dy  ---- (K - -  1)fG(s)s K-2 ds .  
~ K - 1  0 

Now the left  side above is just  N=(/-), and the right side is equal to 

o o  o o  

K - - =  *(t) t -1/= ( K - - 1  *(s ~)s ~-2ds - K 
0 0 

dt , 

by  the change of variable t = s ". Bu t  the la t ter  integral is equal to 

co 

f t  ~, dt K--I <~-,=~-(t)y--il/ilL<,,1). 
K 

0 

B y the  symmet ry  o f / - ,  we have tha t  N ( / - ) =  K.N,r(/~) = K .  II/ltz(,,1), is claimed. 
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COROLLARY 4.2. -- Under  the same hypotheses,  

K 

IIt ilL(q,,1) < l~ -~ic(t)1/K 
/ r  

PRoof .  - Le t  a~:= hT~(]) for each index /~. If  ate= 0 for some k, then  ] ----- 0 
almost everywhere,  and the  inequal i ty  above is tr ivial;  similarly, t h e r e  is nothing 
to prove if a~ = c~ for some k. In  the  remaining cases, define a new function /~ 
by  dilating ] by  the  factor  a~ in the  k-th coordinate direction for each index k, t ha t  

is by  let t ing 

~ ( x ) = l  ,...~ 

K 

Then ~Y~(F) = YI aj for all k. 
j = l  

By  the theorem, 

K 

k = l  

]~ut il.Fll~<,,~)= ~ tll~<,,1). So, 
~ I c = l  " 

[C V ll,f[lme,i) < a~ , 
k= l  

for ~11 x .  

where r '  is the index conjugate to r. Since r ~ K / (K- -1 )  here, r '= K, and the 
inequal i ty  ~bove is just  the  assertion of the  corollary. 

T}tEOnE~ 4.3. -- Le t  K be an integer greater  than  1, and let  r = K / ( K -  1). Then 
W~,~(R ~) c L(r, 1), and 

K 

(~.e) 11 i lk(,,~> < ~ [ I  (1[ v~ t II 1)'~ 
k = l  

for all functions ] in WI,~(R~). 

PROOF. - We saw in Section 2 tha t  Nk(])<(1/2)[]w~]lll for all indices k, and 
all C~-functions ] with compact  support.  The corollary above then  yields inequal i ty  
(4.2) for all such functions ]; since ClJR K) is dense in W~.I(/~K), the inequal i ty  above 
holds for all ] in W~.I(/~), and the  inclusion WI,I(R ~) c L(r  , 1) must  hold. This 
completes the  proof of the theorem. 

We pause to  compare the various methods for proving tha t  W~,I(R K) c Z(r, 1). 
This inclusion was essentially proved b y  FAnIS [12], who considered the inequal i ty  

(4.3) fl/" gl < o.  Ilvi lil ffg/l~(,,.~), 
~K 
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for all C~-functions ! and all measurable functions g. He used rearrangements of ! 
for which all the sets {x: [!(x)] > 4} are balls centre at  0 to prove this inequali ty 
with the best value for the constant  c~. Inequal i ty  (4.3) is equivalent by a dual i ty  
argument  to the inequali ty 

~K 
II!llL(r,1)'~- 7- I!V!II1, 

although this is not s tated explicitly in [12]. Subsequently, POORIqI]KA [21] studied 
the effect of certain composition operators on the space W~,~(R~), and showed tha t  
W~a(R ~) c L~(R~). Her method works on any domain R for which the imbedding 
W~.~(R) c Z~(R) holds. If  the boundary  of R is sufficiently regular, then this imbed- 
ding can be deduced, by  an extension technique, from the one for W~,~(RK), but  [2] 
there are domains R for which W~,~(R) c Z~(R) although there is no bounded extenn- 
sion operator mapping W~,~(R) into W~,~(RK). All such domains known tO the author  
have the property tha t  each function, / say, in W ~,~ can be expressed as a convex 
combination of functions F for each of which IV(F) is bounded by cl]!ll~,~ in a suitable 
coordinate system; the imbedding of W~,~(R) into L(r, 1) then follows from Theo- 
rem 4.1. In  the appendix to the present paper, we combine one of the ideas in [21] 
with Lemma 3.2 to give another proof of Theorem 4.1. 

There is an interesting connection between the method used by Faris and a point 
tha t  arises in the theory of Lorentz spaces. In most eases, the functional II'HL(v,q) 
fails to be subadditive, and is therefore not a norm. This defect can be remedied 
by using the averaged rearrangement !** given by 

t 

I fl*(s) ds /**(t) = y 

0 

for a l l t > 0 .  Let  * ]I!I[L(~,,) be the quant i ty  obtained by replacing the function ]* by 
]** in formula (t.1); then the functional ][. * I]L(~,~) is a norm, because, for each fixed 
positive number  t, the map ! ---> ]**(t) defines a norm. ~oreover,  

l[ll[~(~,o)< []]]l*(~,o)< %,o!1! h(~,o). 

for all indices p and q satisfying the conditions specified at  the beginning of this 
section. Given a smooth, rearrangeable function ] on R ~, let F be the unique non- 
negative function on R ~ with the property tha t  for each number 2 > 0 the set 
{x: F(x)  > 2} is an open ball centred at  0 and having the same measure as the set 
{x: l](x)> 0}; call F the radial rearrangement o] ]. Furls proved inequali ty (4.3) 
by  showing tha t  ]12'I]1< IIV]l]l in general, and then using the special properties of ~v 
to prove inequali ty (4.3) in the ease where ] = 2 ~. Several other authors [4, 10, 29] 
have also proved inequalities of the form ~s(VF)<~(V]) for various functionals ~. 
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These inequalities would all follow immediate ly  if it  were the  case tha t  (V/V)*(t) 
(V/)*(t) for all t > 0, bu t  there  are easy counter  examples to  the la t ter  inequality.  

The argument  in [4, Chapter 2, w 6] does show, however,  t ha t  

(ViV)**(t) < (V])**(t) for all t > 0 ,  

f rom which it  follows tha t  ilVlV[l*(~.~)~< * llV/lIL(~.q) for all indices p and q satisfying the 
conditions specified at  the  beginning of this section. By  a classical theorem [15] 
of Hardy ,  Li t t lewood and Polya,  m an y  inequalities of the form ~(VF)<~(V/)  also 

follow from inequal i ty  (4.4). 
The referee points out tha t  the  imbedding of W ~,1 in L ( K / ( K -  1), 1) follows 

very  easily f rom known facts about  spherical rearrangements .  I f  ] belongs to C~~ K) 
and has compact  support ,  then  / has a spherical rearrangement ,  g say, t ha t  also 
belongs to C:~ moreover,  IlVgll~< IIV]II~. The funct ion/* .wi l l  also be smooth, and 

co  

0 

On the other  hand, integrating by  parts  in the integral  above yields the  quant i ty  
oo 

c~(1--1/K)]s-1/K/*(s)ds,  which, as in our proof of Theorem r is equal to 
0 

The method  used by  FAgIS [12] also yields tha t  WI'~(R K) C L(KpI(K--p) ,  p) 
when 1 < p ~ K.  This inclusion had been proved earlier, b y  other  methods,  by  
STgICHAR~Z [27]. AS the referee points out,  it  also follows easily a theorem of 
O'I%il [20] concerning convolution with the kernel  used by  Sobolev in his original 
proof of the imbedding theorem for the case where 1 < p < K.  I t  is not  clear to 
what  extent  the  methods of the present  paper  can also be applied in this case. 

We now deal with the  other application of Theorem 4.1. The following result  
does not  seem to have appeared in pr int  before, a l though it  follows f rom unpublished 
work of Gilles Pisier. Our method  of proof is new; another  new proof will be pre- 
sented in a joint  paper  with l%n  Blei. 

Tm~o~E~ 4.4. - Le t  S be a discrete set carrying a counting measure, and let a 
be a funct ion on S 2 tha t  defines a bounded biline~r form on l~(S), with norm Ilalt. 
Then the function a belongs to the Lorentz  space l(s, 1), where s = 4/3; moreover~ 
there  is an absolute constant  C so tha t  

(4 .5)  I 1 a L ( . . , <  cliail  �9 

P~OOF. - We use the  symbol l(s, 1) here ra ther  t han  L(s, 1) as a reminder  tha t  
the funct ion a is defined on the discrete measure space S 2. I t  actually suffices for 
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the  conclusion of the  theorem tha t  the  funct ion a define a bounded  bilinear form 

on Co(S). I f  a has the  la t te r  p roper ty ,  then  for each finite subset  ~q' of S, the  restric- 

t ion of a to S '  x 8 '  defines a bounded  bilinear fo rm on l~(S'), with norm at  mos t  ]fail, 
the  no rm of a as a bil inear fo rm on co(S). Moreover,  I]aH,(~,~) is the  sup remum of the  
corresponding norms of restrict ions of a to the  various finite subsets S ' •  S' .  So, 
we m a y  suppose t h a t  the  set S is finite. We ident i fy  it  with the  set {1, 2, ... ,N},  
and represent  a b y  a m a t r i x  ~r (a~,~,}m,~= 1. It can be shown [16] t ha t  

and  t h a t  the  same is t rue  for the  corresponding pe rmu ted  mixed-norm obta ined by  

first t ak i ng / S -no rm  with  respect  to n, and  then  t h e / ~ - n o r m  with  respect  to m. The 
cons tant  ~ comes f rom an appl icat ion of the  version of Khin tchine ' s  inequal i ty  as- 
serting t h a t  ]]/][~<~]]/ll~ if / is a sum of l~ademacher  functions.  

Le t  ~ be the  t ransposi t ion mapp ing  the  ordered pair  {m, n) to {n, m}. I t  follows 
f rom the family  of inequalities (4.6) t h a t  

(4.7) 

where p----  (2, 1). Transfer  the  funct ion a f rom the discrete set S s to the  measure  
space R s b y  defining a funct ion A on R 2 t h a t  vanishes outside the  set [0, ~)2, and  

is equal  to  a~,~ on each set (m, n) + [0, 1]". I t  is easy to check tha t  inequal i ty  (4.7) 
also holds with the  funct ion a replaced in the  left side of the  inequal i ty  b y  A;  more-  

over, l[a]ll(~,l)= ][ai]~(~,l) , because the  functions a and A have  the  same dis tr ibut ion 
function.  Denote  the  spaces of functions,  / say, on R s for which the  quant i t ies  ]I/]!v' 
and  ]1 ~/[]v' are respect ively  finite b y  D, and E ;  then  D (3 E is a Banaeh  space with the  

norm given by  

I1/I]Do~ = II/llv + II~/Itv 

for all /. Transferr ing inequal i ty  (4.7) yields t h a t  IIA]Ivn~<2u[lall. 
We claim t h a t  there  is an absolute  constant  c so t h a t  

(4.s) ][i.p]L(~,~)<Ci]/]IDoZ for all measurable  functions / .  

Once this claim is proved,  we will have  t ha t  ]IA ]lL(~,l)<2ekllall, as required. To prove  
the claim, we pass to a dual version of it. We  will see below t h a t  the  dual spaces 
(D (3 E) '  and  L(s, 1)' can be identified with spaces of measurable  functions on R s. 
I t  follows t h a t  s t a t emen t  (4.8) holds if and only if 

i]/[](D~E),<CI!/![L(~,I), for all measurable  functions / .  

l~ecall [6, w 2.7] t ha t  (D (3 E)', the dual space of D (3 E, is the  algebraic sum of the  
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dua l  spaces D', and E' ,  with the norm given by 

I l g ] l ( ~ ) ' =  inf {max (I]hIID,, Ilk]lE,) : g = h -~ k~. 

I t  is easy to verify tha t  the dual spaces D', and E '  are permuted mixed-norm spaces 
based on the index sequence q = (2, ~) .  Indeed, ]lgllD,= I]gllq and llgll~,= ]Ivgl]q 
for all measurable functions g. Als% L(s, 1 ) ' :  .L(s', ~ ) - ~  weak-L ~', with equiva- 
lence of norms. ~ecull t ha t  s = 4/3, so tha t  g~-- 4 here. Hence, our claim (4.8) 
is equivalent to the following statement.  

(I) Every  function g in the space L(4, ~ )  can be split as a sum of two func- 
tions h, and /~ with 

(~.9) max { II h II~, II ~ iI ~,} < c [I g tl~<~, ~) 

for some absolute constant  C. 

We also claim tha t  a similar s ta tement  holds for the space Z(2, c~). 

(II) Every  function g in the space L(2, ~ )  can be split as a sum of two func- 
tions h and k with 

(4.10) max {lihli~, ll~k~!l} < C' []glI~<~,~), 

where r is the index sequence (1, c~), and C' is a n  absolute constant. 

We arrived at  claim (I) by  a duali ty argument  start ing with the desired inequali ty 
(4.8). Similarly, claim (II) follows by  duali ty from the case of Theorem 4.1 where 
K = 2. Since the lat ter  theorem has already been proved~ it  suffices to derive 
claim (I) from claim (II). Suppose tha t  g e Z( 4 ,  ~ ) ;  then  [gI~eL(2, c~), and 

lI [gl2]1~(2,~)= (l[gll~(~,=)) ~. 

Applying claim (II) yields a pair of functions H and K with Ig12= H ~ K, and 
with IIHH~<C'(IIgII~(~,~)) ~ and 1]vgll~<C'(][g]IL(4,~o)) ~. Suppose tha t  H and K have 
supports. Then the splitting 

g = (sgn (g)).H 1/~ + (sgn (g)).K 1/~ 

has the properties specified in claim (I). 

Matters therefore reduce to showing tha t  claim (II) holds with disjointly-supported 
pieces. This is an easy consequence of the fact tha t  the claim holds with pieces tha t  
are allowed tO have overlapping supports. Given a function g in L(2~ ~)~ split it  
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as specified in the claim. IJet U be the set where [h] > ]g]/2. Then define functions H 

and K by  let t ing H = g on the set U, while H = 0 off U, and let t ing K = g off U, 

while K = 0 on U. These functions have disjoint support,  and their  sum is g. l~ore- 
r l over, IHl<2[h] ,  whence l[HIrr<2C I[g]~(2.~), similarly, HvKJJr<2C']lg[]L(2.oo). This 

completes the prOOf of the theorem. 

Our improvement  on Lit t lewood's  inequal i ty  has an interesting consequence for 
the  known examples of p-Sidon sets in harmonic analysis. ]~or example,  if E is the 
set of integers of the f o r m  3 "~, then  every continuous function,  ] say, on the unit  
circle whose Fourier  coefficients f(n) vanish outside the set E -[- E,  has the  p roper ty  
tha t  J ~ l ~/s; for this reason, the  set E-I- E is ca l l ed  a 4/3-Sidon set. The proof tha t  
E ~ - E  has this p roper ty  [11, 7] uses Lit t lewood's  inequality,  and i t  follows from 
Theorem 4.4 t ha t  in fact f ~ 1(4/3, 1) for all such functions J. This suggests the que- 
stion: I f / ~  is a p-Sidon set for some index p in the interval  (1, 2), does it follow th a t  
f ~ l(p, ! )  for all continuous functions J whose t ransform vanishes off /~?  I t  follows 
from the results in this paper  t h a t  the answer is {~ yes ~> for every  set t ha t  is known 
to be a p-Sidon set with p e (1, 2). 

Li t t lewoo4 showed tha t  the index 4/3 in his theorem is best  possible, by  exhibit ing 
matrices a wi~h all entries equal to i or -- 1, and of arbi t rar i ly  large dimension, for 
which HaIId/3>clIall. By taking direct sums of such matrices~ we can show for each 
sequence b in the  space l(4/3, 1) tha t  there  is a doubly-infinite ma t r ix  a, t h a t  defines 
a bounded bilinear form on l | so tha t  a majorizcs b in the  sense tha t  a*(t)>b*(t) 
for all t > 0. Therefore, 1(4/3, 1) is the smallest rearrangement- invar iant  sequence 
space tha t  contains the sequence of mat r ix  entries for every bounded bilinear form 
on I ~. I$ is also known tha t  the index p* is best possible in the Sobolev imbedding 
theorem;  the s tandard examp!es to this effect can be combined to show tha t  for 
each funct ion g in L ( K / ( K - -  1), 1), and each positive number  B, there  is a func- 
t ion J in W~,~(R K) so tha t  ]*(t)>~g*(t) for all t in the interval  (0, B). 

In  this paper,  we have concentrated on Theorem 3.1 and its applications. We 
end the main par t  of the paper  by  briefly considering the corresponding applications 
of Theorem 3.3. F ix  an integer n with 1 < n <  K ;  let r ( n ) ~  K / ( K - - n ) .  The 
method  used above to prove Theorem 4.1 also yields that if N~(])< co, then  
J ~ L(r(n), 1) and l[]][~(~(,).l) < e2/(~(/); moreover,  there is a mult ipl icat ive estimate 
similar to Corollary ~.2. I t  follows tha t  the Sobolev space W~.~(R ~) imbeds into 
L(r(n), 1) ; as noted in [21] this can also be deduced from Theorem 4.3 and the map- 
ping properties of Riesz potentials.  

We saw in Section 2 tha t  there  are versions of Lit t lewood's  theorem for K-l inear 
forms on l ~ yielding estimates for [[aIl~/(K+~l in terms of ][a][. Using the case of 
Theorem 3.3 where n = K - - 1 ,  the corresponding generalization of Theorem 4.1, 

I and dual i ty  as in the  proof above of Theorem 4.4, we can show tha t  ]ia][~(2K/(~+~).~)< 
<c[[all. The dual s ta tements  can also be proved directly;  the direct proofs and 
various applications in the  setting of fractional cartesian products  will be presented 

in a joint  paper  with Ron Blei. 



70 JOH:N ~. ~.  ~OUR~IER: Mixed norms and rearrangements, etc. 

Appendix. 

Each of our two main theorems has an alternate proof that  is of interest in its 
own right. We first present a second proof of Theorem 4.1. Since 

!!fll~(~,l)= sup (]iF]l~(~,l): F is simple with 0<J~<  Ill}, 

matters reduce to proving the estimate H JilL(r,1)< ON(f) when ] is a nonnegative simple 
function. The last step in Poornima's proof [21] thut WI, ~ c L(r, 1) is a lemma stat- 
ing that  

co 

(A.1) llili~<~,~) = f mgt) ~/' dt .  
0 

As Poornima points out, this equation is easy to verify when ] is a simple function. 
The integral defining the norm and the integral on the right above become sums, 
which can be seen to be equal by a summation by parts. 

To estimate m~(t), introduce the functions /~7~ and the sets A~ as in Section 3. 
I t  is easy to verify that  

0o 

(A.2) ~(1)  =fm~(t) dt .  
0 

K 
In Section 3, we used Lemma 3.2 to show that [Am I K-I< l-[ [A~I f~ all m. Equivalently, 

k = l  

K 

(A.3) m1(t) K-~<~ [I  mr~(t) 
k = l  

for all t. Recall that  r ~ K / ( K -  1). Taking K-th roots in inequality (A.3) yields 
the estimate 

K 

m,(  t)l/r < H m r ,  (t)llK " 
k = l  

Using this in the right-hand side of inequality (A.1) gives that  

c~ 

(A,4) !llll~+,~)< mgt),Kat, 
0 

Then by H6lder's inequality and equation (A.2) 

K 

I[ f1!~<~,1)< I] ~Vk(l) "K. 
k = l  

This completes our alternate proof of Theorem 4.1. 
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To prove Theorem 3.1 in another  way, we imitate  an argument  in Sobolev;s 
classic paper  [24], where it was shown tha t  convolution with the kernel  x -+ Ixl ~-~ 
maps L~(R K) into Lq(R~), where 1 ~ p  ~ K and q : K p / ( K - - P ) .  This kernel  is 
a radial  function, and Sobolev proved the desired norm estimate by  reducing mat-  
ters to the case where the other functions in the estimate are radial  too. He  did 
this in two stages, first dealing with the  case where K : 2, and then  using induc- 
tion and spherical symmetr izat ion in (K--1) -d imens ionM hyperplancs.  We will 
reprove  our theorem first in the case where K : 2, and then  use induction and cu- 
bical symmetr izat ion in ( K -  1)-dimensional hyperplancs.  

We suppose again tha t  ] is a nonnegat ive simple function with bounded support,  
and we denote the nonzero vMues of f, in decreasing order, by  a~, a2, ... ,a,~. We 
define the sets A,~ and A~ as before, and we recall formula (3.4) of Section 3, which 

asserts t ha t  

[< )(il (h.5)  2r : a . ~ -  a~+~ A , 
m = l  k = l  

where again a~+~ = 0 by  convention. Passing to a rearrangement  of ] does not  
change the numbers a~ and JAil, so tha t  mat ters  reduce to showing for each m that ,  
given IA~I, ~he quan t i ty  

K 

(A.6) ~: IA~J 
7c=1 

is minimal when A~ is essentially a cube with edges parallel to the coordinate axes. 
In  Section 3, we used Lemma 3.2 to prove the minimali ty of this sum when A~ 

is such a cube. When K = 2 ,  however, we can prove this in an even more e lementary  
way. Choose a measure-preserving isomorphism a mapping R onto itself so tha t  the 
set a(A~) is an interval  of the form [0, b~). Similarly, choose a measure-isomorphism v 
of R onto itself so tha t  v(A~) has the form [0, c. d. Le t  ~ be the measure-preserving 
t ransformat ion of R ~ tha t  maps each point  (x, y) to (a(x), ~(y)). /~eplace Am by  the 
set ~(A~). This change has no effect on the quantit ies IA~I and IA~I, and it reduces 
mat ters  to the case where the sets A~ and A~ are intervals [0, b+~) and [0, e,~) respect- 
ively. In  particular,  A~ is essentially included in the rectangle [0, b,d • [0, c~), so 
tha t  ]A~]<b~.e~. Also, the quant i ty  (A.6) is equal to b~-~ C. in this case. This 
sum is minimal when b.,-- e+~ = IA,.[ ~/2, t ha t  is when A~ is essentially ~ square 
with edges parallel to the coordinate axes. 

In  dealing with the corresponding question when K ~ 2, it  is convenient  to rever t  
to the nota t ion used in Lemma 3.2. Thus, let  A be a bounded, measurable set in R ~, 
and denote  its essential project ion into the k-th coordinate hyperplane by  A~. Our 
task is to show, given IA[, tha t  the quant i ty  

K 

~(1~) = ~ IA~I 
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is minimal when A is essentially a cube with edges parallel to the  coordinate axes. 
Since t ranslat ion has no effect on 2r we m ay  suppose t h a t  A is a bounded, 
measurable subset of the first o r thant  i n / ~ .  

Suppose wi thout  loss of generali ty tha t  A is measurable with respect to the 
uncompleted product  measure on R ~:, and form a sequence of sets A (') by  the following 
procedure.  Le t  A~~ Given a real number  b, denote the  hyperplane with equation 
x~ ---- b by  R~ -1. Le t  A (~) be the set whose intersection with each such hypcrplane  
is a (K -- 1)-cube of the  form {b} • {0, b'} ~-~ with the  same measure in R ~-~ as the 
slice A (~ R~ -~. Then let  A (~) be the  set obtained f rom A (~) b y  replacing the  inter- 
section of the  la t ter  set with each hyperplane,  H~ say, where x~ : c by  the  ( K -  1)- 
cube of the  form [0, b ' ) •  {c} • [0, b') K-~ with r same measure in R ~-~ as the  slice 
A r (~//~. Given A ~), construct  A (s~ by  rearranging each slice of A (~) perpendicular  
to the  x~-axis into a ( K -  1)-cube of the type  used in forming A (~), and continue in 
this fashion, using al ternate  rearrangements  in hyperplanes perpendicular  to the  x~ 
a n d  x~-axes .  

Let  b -~ IAI ~ ,  and let B be the  K-cube [0, b) ~. Our goal is to show tha t  ~ ( 1 ~ ) <  
~<~(1~). This inequal i ty  follows from two propert ies of the  sequence (At')}, 

namely  t ha t  

(A.7) N(14(~+,))<N(1A(~) ) for all n ,  

and 

( h , S )  lV(1A(.) ) - +  i V ( l ~ )  as  n --> c o .  

To see why the inequalities (A.7) hold, consider the  special bu t  typical  case when 
n ~ 1. For  each positive number  e, denote the  intersection of A (~ with the hyperp lane  
a ~ =  c by  A(~ and define A(~)(v) similarly. Denote  the  RK-~-measures of these 
sets by  IA(~ and IA(!)(c)l respectively. The construction of A (~) from A (~ guarantees 
t ha t  IA(~)(c)[ = IA(~ for all e. Moreover, -/-V(IA(,)) ~-~ eSS SUp IA(X)(e)l, while s 
>e s s  sup ]A(~ Hence r 

(A .9 )  N(1A(,,) 4 Y(1A(0)) . 

Ident i fy  the sets A(~ and A(1)(c) with subsets of R K-1 in the obvious way, and make 
the induct ive  assumption tha t  the  inequalities (A.7) hold for subsets of R ~-1. Thus 
N(lx(,~(~)) <2~(lx(~)(,)) for  all c. In tegrat ing this inequal i ty  with respect t o  c yields tha t  

K K 

/s=2 k=~ 

Adding inequalities (A.9) and (A.10) yields tha t  IY(l~(,))< ZT(1A(,), as claimed above. 
l~inally, we outline the  proof of assertion (A.8). Each  of the sets A("), for n > l ,  

is a union of (K -- 1)-cubes, all perpendicular  to the xl-axis if n is odd, and all per- 
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pendieular to the  x2-axis if n is even. Define the breadth of A (+ to be the number  
b(n) given by  

b(n) = sup (x3 : x e A(~)} , 

and the length of A ~> to be the number  e(n) given by  

and 

e(n) - -  s u p  { x ~ : ,  e At . , }  

c(n)  = sup  {x~: x e At.)}  

if n is o d d ,  

if n is even .  

Then  A (') is included in a box with edges parallel to the coordinate axes, and wi th  
one dimension equal to c(n) and the other  K -  1 dimensions equal to b(n). 

We claim tha t  the sequences {b(n)} and {e(n)} both  converge to the  number  
b = IAI ~/~. Suppose, for  the moment  tha t  this claim is t rue  and let  d ( n ) =  
= max  {b(n), e(n)}. Then 

lira sup IA(I~t < l i m  d(n) ~-~ = b K-~ . 

On the other  hand,  the  set A ~'~, which has volume b K, is included in the cylinder 

[0, d(n)) • A~ ~, so tha t  

bK <l i ra  sup d(n). ]A~+I = b .l im sup tAI(~ ~1 . 

Hence [A~) I -~b  z~-~ as n - > ~ .  The quantit ies IA(~)I, where K >  1, also converge 
to b ~-~ as n -+ ~ ,  and assertion (A.8) holds. 

In  proving our claim about  the  limiting behaviour  of b(n) and c(n), we first use 
a uniform change of scale $o reduce mat ters  to the case where IA[ = 1; then  b = 1 
also. We now est imate b(n ~ 1) and c(n ~- 1) in terms of e(n) and b(n). Suppose 
for definiteness, t ha t  n is odd; if n is even, the only modification needed in our argu- 
ment  is an exchange of the  roles of xl and x~. The set A (~) is a union of ( K -  1)-cubes 
of the form {b} • [0, ~(b)) ~, with q~(b)<b(n). So, if e>~b(n), then  the hyperplane with 
equat ion x = e does  not  intersect  the set A <'). Therefore,  

(A.11) e(n ~- 1 ) < b ( n ) .  

On the  other  hand, the hyperplane with equat ion x2-~ 0 intersects each of the  
nonempty  (K- -1 ) - cubes ,  perpendicular  to the  xl-axis, t h a t  make  up the set A<% 
The intersection of this hyperplane with the ( K - - 1 ) - c u b e  where x l = - b  is a 
( K - - 2 ) - c u b e  with edge-length ~(b); any  other  hyperplane perpendicular  to the 
x~-axis either misses the  ( K - - 1 ) - c u b e  where x l =  b, or also intersects it  in a 
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(K-2)-eube with edge-length ~(b). So, among the hyperplanes perpendicular  to the  
x~-axis, the  one where x~=  0 intersects A C~) in a set of maximal  RK-~-measure. 
I t  follows tha t  

b(n -~- 1) K-1 = f q~(b )K-~ db . 
0 

Apply HSlder~s inequali ty with the conjugate indices ( K -  1 ) / ( K -  2) and K - - 1  
to get tha t  

c(n) 

b(n + l )K-~ < { f q)(b)~-~ db}(~-~)/(~-'.e(n)~/(~-~) . 
0 

The integral  above is equM to ]A(-)], which has been normalized to be 1. Hence,  

(A.12) b(n @ 1) <c(n)  I/(K-~)~ . 

By  i terat ing inequalities (A.11) and (A.12) we get t ha t  

max  {b(n @ 2), c(n -~ 2)}<max{b(n), c(n)}mK-~f for all n .  

So, lira sup b(n) and lira sup e(n) are bo th  at  most 1. On the other  hand, b(n) ~-I. 

�9 e(n)>[A(')l ~ 1. for all n. Therefore,  

lira b(n) == l im e(n) = 1 = b, 

as required. This completes our a l ternate  proof of Theorem 3.1. 

As we said at  the beginning of the  proof, the process used above is the  analogue 
for cubes of a spherical symmetr izat ion process used [24] by  Sobolev. We briefly 
consider the analogue, for balls, of Theorenl 3.1. Let  U be the  group of orthogonal 
t ransformations of RK; denote a generic element  of U by  g, and the  H a s t  measure 
on U bu d~. For  each measurable funct ion ] on R K, let 

:Yr = f =~(r d~ , 
U 

where again aJ(x) = / ( ( l (x ) )  for all vectors x in R K. I t  is plausible tha t  the rear- 
rangements  of / t ha t  minimize the  quant i ty  N~(J) are the ones for which the sets 
where IJI > A are balls centred at  the  origin. I t  also seems plausible t h a t  if N(a]) < 
some t ransformat ion a in the  group U, then  Nu( / )< oo. 
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