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Abstract. Assessment of precision errors in bone 
mineral densitometry is important for characterization 
of a technique's ability to detect logitudinal skeletal 
changes. Short-term and long-term precision errors 
should be calculated as root-mean-square (RMS) aver- 
ages of standard deviations of repeated measurements 
(SD) and standard errors of the estimate of changes in 
bone density with time (SEE), respectively. Inadequate 
adjustment for degrees of freedom and use of arithmetic 
means instead of RMS averages may cause underesti- 
mation of true imprecision by up to 41% and 25% (for 
duplicate measurements), respectively. Calculation of 
confidence intervals of precision errors based on the 
number of repeated measurements and the number of 
subjects assessed serves to characterize limitations of 
precision error assessments. Provided that precision 
error are comparable across subjects, examinations with 
a total of 27 degrees of freedom result in an upper 90% 
confidence limit of +30% of the mean precision error, a 
level considered sufficient for characterizing technique 
imprecision. We recommend three (or four) repeated 
measurements per individual in a subject group of at 
least 14 individuals to characterize short-term (or long- 
term) precision of a technique. 
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Introduction 

Normal changes of the mineral content of skeletal tissue 
proceed at a relatively slow pace ranging from 0.5-2% 
per annum for most of the adult lifespan of healthy 
individuals to 2-5% in early postmenopausal women [1- 
5]. The upper portion of these ranges reflects changes of 
trabecular bone as assessed by quantitative computed 
tomography (QCT), reflecting a high responsiveness of 
this technique to change in bone mineral density 
(BMD). The lower portion is more typical for changes 
of cortical or integral (i.e. cortical plus trabecular) bone 
as assessed by projection-type techniques such as dual- 
energy X-ray absorptiometry (DXA) or single photon 
absorptiometry (SPA). 

To detect changes of small magnitude, bone densito- 
metry techniques with very high reproducibility had to 
be developed. State-of-the-art approaches for monitor- 
ing the progression of disease or the efficacy of treat- 
ment, such as DXA of the spine or the femoral neck or 
QCT of the spine, have been reported to achieve 
reproducible results in vivo within approximately + 1%, 
1.5% and 2-3%, respectively [6-9]. Recently, newer 
approaches such as lateral DXA, peripheral QCT 
(pQCT) and quantitative ultrasound (QUS) have been 
introduced and, except for pQCT, with precision errors 
of 0.5-1% [10,11], the reported reproducibility errors 
for these techniques generally have been similar to or 
larger than those of the established bone densitometry 
approaches [12,13]. For judging a technique's ability to 
monitor changes in BMD, agreement on how to mea- 
sure and calculate reproducibility is required. Precision 
errors have been used to characterize reproducibility, 
but the applied methodology has been inconsistent or ill 
defined. 
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In this article we propose and discuss a concept on 
how to measure, calculate and report precision errors. 
Some of the concepts presented are fairly basic (albeit 
apparently not common knowledge) but we feel obliged 
to include them to present a coherent framework. We 
will address the following questions: 

What is an appropriate definition of  precision errors' in 
the individual subject? 
The definition should reflect differences of short- versus 
long-term precision and be applicable to both patient 
and phantom studies. The outcome may depend on the 
subject group but it should be unbiased, i.e. reflect the 
true population mean independent of the number of 
repeated measurements. Secondary criteria include 
efficiency (i.e. having narrow confidence intervals even 
when estimated from a relatively small subject group), 
and robustness with respect to the shape of the dis- 
tribution of the precision errors in the subject group. 
How should the precision of a technique be computed? 
Precision errors measured in individual subjects need to 
be pooled to obtain a statistic that appropriately 
describes the precision of a technique. Expressing pre- 
cision errors in absolute units or on a percentage basis 
requires use of different mathematical concepts. 
How many measurements are required for a reliable 
characterization of precision errors? 
Calculation of confidence intervals of precision errors 
allows one to judge the significance of the reported 
precision errors. We present formulae that allow one to 
calculate the numbers of measurements and subjects 
required to obtain precision errors with 'adequately 
narrow' confidence limits. 

Methods 

The Concept of 'Precision' 

Precision errors have been defined to characterize the 
reproducibility of a diagnostic technique. Accuracy 
errors (here used as equivalent to the term bias), on the 
other hand, reflect the degree to which the measured 
results deviate from the 'true' values. The example that 
has frequently been presented to illustrate the differ- 
ence between precision and accuracy is that of the 
performance of archers. If an archer consistently hits 
the target board close to the bull's-eye, but with the 
arrows spread out around it, this would be regarded as 
good accuracy but poor precision. If he consistently hits 
the board far off the bull's-eye, but with all of his arrows 
of approximately the same location, we would speak of 
poor accuracy but good precision. Similarly, the errors 
of repeated BMD assessments for a specific technique 
and a given subject can be characterized by the differ- 
ence of the true versus the mean measured BMD (i.e. 
the accuracy error), and the spread of the individual 
readings around the mean measured BMD (i.e. the 
precision error). 

Even for a given technique the precision error may 

vary from patient to patient (e.g. it is usually higher in 
osteoporotic patients than in normal subjects). There- 
fore, it may be misleading to determine the technique's 
precision by measuring just normal subjects (analogous 
to having just the better archers compete) or by 
measuring only a small number of patients (which would 
probably either over- or underestimate the technique's 
performance). The calculation of a confidence interval 
of the measured precision error will tell how many 
subjects and repeated measurements are needed to 
achieve a preset goal of exactness of this measure. 
Furthermore, even if the sample of the subjects is 
representative of the typical study population great care 
has to be taken to apply the correct statistical concept to 
characterize the overall precision of the technique. As 
we will demonstrate, simple averaging of the indi- 
viduals' precision errors as has been done in many 
publications is inadequate. 

Finally, precision errors also depend on the time 
interval that elapsed between the repeated measure- 
ments. Generally, short-term precision errors 
(measurements performed on the same day) are consi- 
derably smaller than long-term precision errors. In fact, 
since true changes in BMD can be expected to occur 
over longer periods of time short-term precision errors 
and long-term precision errors require different mathe- 
matical definitions which will be given in the following 
section. 

Definition of 'Precision' 

Short-Term Precision of  an individual Subject. Assum- 
ing that the random variations of repeated mea- 
surements in an individual are normally distributed, 
precision is represented by the estimate of the para- 
meter c~ in the Gaussian probability distribution. Short- 
term precision (SD) is then defined as the standard 
deviation of i=1 . . . nj repeated measurements on a 
given subject j: 

SDj = s (1) 
_ n j - 1  

where nj is the number of measurements performed, xii 
is the result of the ith measurement for subject j, and 2j 
is the mean of all xij for this subject]. The patient should 
be repositioned between measurements to include this 
source of reproducibility error unless machine impre- 
cision is investigated. Since the true mean of the 
measurements is unknown and has to be estimated from 
the mean of the n repeated measurements, the deno- 
minator has to be represented as (nj - 1) in order to 
make SD z an unbiased estimate of the parameter o ~ in 
the Gaussian probability distribution. This adjustment 
insures that SD is independent of the number of 
repeated measurements. The denominator (nj - 1), i.e. 
the number of repeat measurements minus one, is the 
number of degrees of freedom, dfj associated with this 
estimate. 
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Precision errors may be expressed in absolute 
numbers, or as coefficient of variation (CV) of repeated 
measurements, typically given on a percentage basis: 

CVsDj = SDj. 100% (2) *j 
where 2j is the mean of all x u. 

Short-Term Precision of a Technique. As noted above, 
measurements of precision on a single subject may not 
be representative of the performance of the technique in 
general. A representative group of subjects needs to be 
assessed (for a comprehensive characterization it may 
even be necessary to calculate separate precision errors 
for different groups of patients, e.g. normals versus 
osteoporotics). Consequently, the question arises as to 
how to pool precision data obtained on several subjects. 
Contrary to intuition and common practice, the correct 
estimate of a technique's precision error is not given by 
the (arithmetic) mean of the individual subject's pre- 
cision errors [14]. Instead, the technique's squared 
precision e r r o r  S D  2 (i.e. the variance) is given by the 
arithmetic mean of the individual subject's j = 1 . . .  m 
variances SDz 2 [14]: 

SD 2 = SD2/m, noting that SD ~ ~ SD/m (3) 
j= l  j = t  

Statistically speaking, the reason is that the measured 
variance SD 2, but not the measured standard deviation, 
can be considered an unbiased estimate of the para- 
meter o 2 of the Gaussian normal distribution. There- 
fore, only the former can be averaged arithmetically. 
Consequently, the technique's precision error is given 
by the root-mean-square (RMS) average of the pre- 
cision errors calculated by Eq. 1 for each of the m 
subjects: 

~£~ SDy/ ( 4 )  S D =  m a 

which for duplicate measurements on each subject 
(demonstrating a difference dj between the first and the 
second result) is equivalent to 

~/!~1 ~ /2  (4b) S D =  m 

When expressing precision on a percentage basis we 
propose to use the following formula: 

CVsD = SD/ m . 100% (5) 
\ j = l  / 

The missing subscript index j on the left-hand side of the 
equations indicates that the data are based on an 
average obtained on a group of patients. Alternatively, 
CVsD could be calculated according to the formula 

CVsD = ~ / 2  CV~j/m 
Vj=t  

i.e. by first calculating the individual CVsDj and then 
taking the RMS average. This estimate will produce 
slightly larger results due to the fact that 1/~is not an 
unbiased estimator of 1/,u 2 (# is the population mean). 
However, as can be shown by simulation the magnitude 
of this difference is negligible for practical densitometry 
purposes. 

Equations 3-5 are strictly valid only if the number of 
repeated measurements per patient is identical for all 
patients. If this is not the case, the following generic 
formula needs to be applied: 

f . ,  .,j , 
SD -- ~ ,~_li~=I (Xiy-~J)2df (6) 

The denominator is the total number of degrees of 
freedom (dr) for the estimate of standard deviation 
formed by combining all the data. For a technique it is 
simply the sum of the degrees of freedom dfj of the 
measurements in the individuals: 

df = ~ dfj = ~ ( n j -  1) (7) 
j=1 j=1 

Equation 5 as an estimate of the pooled variance is valid if 
the subjects have comparable precision errors (compare, 
e.g., chapters 8-3 in [15] or [16]). Equations 3-5 follow if 
nj = n, i.e. if the number of repeat measurements is 
constant across subjects and, hence, df = m- (n - 1). 

Confidence Intervals of Short-Term Precision of a Tech- 
nique. Understanding the need to obtain precision data 
on a group of subjects leads to the questions: How many 
subjects and how many repeat measurements per sub- 
ject would be sufficient to characterize the performance 
of a technique accurately? These questions can be 
answered by calculation of confidence interval of pre- 
cision. Large confidence intervals would indicate insuf- 
ficient numbers of subjects and/or numbers of repeat 
measurements. 

Contrary to intuition, the correct estimate of the 95% 
confidence interval of the technique's precision error is 
not given by +2 times the observed standard deviation of 
all of the individual subjects' precision errors. It is 
apparent that this would be inappropriate since the 
confidence interval needs to be asymmetric, reflecting 
that precision errors while having no upper limit cannot 
become negative. Instead, the confidence interval of 
variances are commonly calculated using the (asym- 
metric) chi-square (22) distribution. This distribution 
depends on the total number of degrees of freedom (dr) 
formed by combining all the data from all of the subjects 
given by Eq. The (1 - o 0 • 100% confidence intervals of 
the true precision error ois given by (chapter 12.2 in [17]): 

2 df  2 df SD ~ < ~  < ~ S D  (8) 
x~_~,,~,~ x~,~s 

where X 2 (dr) is the chi-square distribution with df 
degrees of freedom; it is tabulated in many statistics 
textbooks (e.g. [18]) and dfis calculated by way of Eq. 
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7. Note that alternatively the confidence limit could be 
calculated with identical results using the F-distribution 
(with SD 2. F} (0% dr) < 13-2 < SD2F1 _ } (% d~). 
Equation 8 can be used to calculate the sample size 
required to specify precision errors with an upper 
confidence limit not exceeding a given level - the lower 
confidence limit being of less practical relevance. 

Equataion 8 specifies the confidence interval for the 
precision error a of the technique - not to be confused 
with the quantiles of the distribution of the subjects' 
individual precision errors SDj that typically are much 
wider and given by: 

0" 2 0.2. 2 2X~,a¢) x~_~, d~. (9) 

dfj < S D T <  dh 

where o 2 can be estimated by SD 2. Equation 8 is the Z 2- 
analogon to two times the standard error of the mean of 
a normal distribution; Eq. 9, on the other hand, repre- 
sents the z2-equivalent of two times the standard devi- 
ation of individual data points. 

If true precision errors vary substantially between 
subjects (this situation is termed "heteroscedasticity") 
the confidence interval based on the z2-distribution (Eq. 
8) will be conceptually inappropriate. Moreover, the 
mean precision error as calculated from Eqs 3-5 will 
also be less meaningful since a single summary measure 
may be too simplistic for this situation. How can one 
determine whether the observed distribution of pre- 
cision errors is compatible with the assumption of a 
common true precision error? One suggested procedure 
would be an ANOVA of BMD values versus subject 
IDs. Bartlett's test for equal variance among subjects is 
available in commercial statistics packages (e.g. SAS, 
JMP from SAS Institute, Cary, NC; or SPSS from SPSS 
Inc., Chicago, IL). Bartlett's test assumes a normal 
distribution of the underlying data, which in our case of 
BMD measurements appears reasonable. If this 
assumption is not fulfilled O'Brien's test would be 
applicable instead (available also e.g. in SAS, JMP). 

If unequal variances among individuals are suspected 
it is strongly recommended to examine the sources of 
heteroscedasticity, which could include technique speci- 
fic, operator specific, machine specific, or subject-group 
specific factors° To test this the aformentioned ANOVA 
procedure could be carried out for BMD* versus subject 
group (grouped by error source, with BMD* represent- 
ing a BMD value that has been adjusted for differences 
between individuals). For example, if the subject group 
included both healthy as well as osteoporotic indviduals 
a test for unequal variances between those groups would 
be advisable since for most densitometric techniques 
osteoporotic subjects generally tend to have higher 
precision errors. If heteroscedasticity is observed pre- 
cision error analysis results should be reported separa- 
tely for each subject group. 

Long-Term PrecMon of an Individual Subject. The 
assessment of long-term reproducibility is complex since 
the variability of the data may be due to imprecision of 

the technique as well as to true changes in the mineral 
density. Even for phantom measurements where 
variability of true mineral content does not occur, 
systematic long-term changes (e.g. due to scanner drift, 
recalibrations) may be encountered. Applying Eq. 1 for 
expression of long-term precision in vivo would there- 
fore result in an overestimation of the precision errors of 
the technique. 

A parameter that quantifies variability due to reasons 
other than (true) linear changes is available from re- 
gression analysis. When repeated measurements are 
taken on the same subject over time, the variability 
about the regression curve (i.e. the standard error of the 
estimate (SEE) or root mean square (RMS) error) is 
taken as an estimate of that person's long-term precision 
error. It does, however, still include variability due to 
non-linear loss of bone. 

Suppose we have a set of data from a long-term 
precision study in which yq is the ith measurement on a 
subject j and ~q is the corresponding result predicted 
from the regression model, then the long-term precision 
error of i = 1 . . .  n/repeated measurements is given by: 

(yij - 2 (lO) 
SEE r = V *=1 n j -2  

or when expressed on a percentage basis: 

CVsEEj = SEE/yj x 100 (11) 

where 37j is the mean of all yq of a given subject j and the 
suffix is used to differentiate CVsEEj from the CVsDj 
defined in Eq. 2. 

The denominator (nj - 2) is the number of degrees of 
freedom associated with the standard error of the 
estimate. It is adjusted by subtracting 2 instead of 1 
because two parameters of the fitted model (i.e. slope 
and intercept) are unknown. For estimating short-term 
precision only one parameter (i.e. the mean) needed to 
be estimated (resulting in degrees of freedom of n - 1). 

Long-Term Precision of a Technique. Similar to the 
situation above, the correct estimate of long-term 
precision for a group of j = t . . . m patients is then 
given by: 

SEE = j=t "= (12) 

( n j - 2 )  
j = l  

where the denominator 2 (hi - 2) is the total number 
j= l  

of degrees of freedom :for the standard error of the 
estimate formed by combining all the data. Again, for 
the special case that the number of measurements vz is 
the same for all subjects, the long-term precision error 
of the group of subjects is equal to the root-mean-square 
of the individual subjects' long-term precision errors: 
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SEE = ~ SEE}/m 
j=l (13) 

or when expressed on a percentage basis 

CVsEE = SEE /m 14) 

The confidence intervals can be calculated using for- 
mulae derived analogously to Eq. 8 and 7: 

df SEE2 < 0" 2 < d ~ f  SEE2 (15) 

with 

df= ~ dfj= ~ (n i - 2) (16) 
j=l j=l 

Heteroscedasticity of the SEEs can be handled analo- 
gously to the procedure described above for SDs. As a 
first step the B M D  values have to be transformed 
according to the following equation: 

BMD~j = BMDq - BMDlj  - bj(dateq - date,j) (17) 

Dropping B M D ' q  and using the remaining B M D ' i / i n  
the same way that BMD values were used for the 
assessment of short- term precision heteroscedasticity 
will allow application of the same methods proposed 
above. Equat ion 17 is based on a model of linear 
changes in BMD over t ime with a slope b / f o r  each 
subject j. Eliminating the first data point of each 
indvidual and analyzing the deviations of follow-up 
measurements  from the value expected on the basis of 
the model  allows for appropriate  adjustment of the 
degrees of f reedom. 

Results 

Incorrect incorporation of degrees of f reedom in the 
formulae for calculating precision errors leads to under- 
estimation of precision errors. Dividing by n instead of 

n - 1 in Eq. 1 for short- term precision errors would 
cause an error in the estimation of the precision errors. 
True precision errors, i.e. the population variance or, 
would be higher than measured precision errors by a 
factor of ~/[n/(n - 1)], i.e. an additional 41%, 22% and 
16% for 2-point, 3-point and 4-point measurements ,  
respectively. Division by n - i instead of n - 2 in Eq. 10 
for long-term precision errors would cause correspond- 
ing underest imation of long-term imprecision by again 
41%, 22% and 16% for 3-point, 4-point and 5-point 
measurements ,  respectively. 

If  the mean precision error is mistakenly calculated as 
the arithmetic mean instead of as the root-mean-square  
average the precision is also made to appear  bet ter  than 
it really is. Table 1 contains results of a computer  
simulation where estimates of precision are based on 
paired measurements ,  on 3-point measurements ,  4- 
point measurements  and so on. The underlying ' t rue '  
parameters  of this simulation were based on data typical 
for BMD measurements  by D X A  of the spine in a 
healthy population. The population was characterized 
by a B M D  of 1.000 _+ 0.164 g/cm 2 and the " t rue"  
precision error level was set to 0.01 g/cm 2. The 
expectation value for the CV thus was 1.0%. The data 
of Table 1 demonstrate  that only precision errors as 
defined in Eqs 4a, 4b or 5 yield unbiased estimates of the 
true parameters .  The problem is most severe when 
individual data are simple pairs of measurements .  As 
shown in Table 1 for 2-point measurements  the true 
precision errors are about 25% higher than the 
measured precision errors. What  is demonstra ted  with 
this simulation can also be shown mathematically.  As 
shown in the Appendix the error introduced by using 
the arithmetic means varies with the total degrees of  
f reedom, i.e. the number  of subjects and repeat  mea- 
surements carried out. Results of the simulation and 
those based on this theory show basically identical 
results. 

Both of the noted errors, i.e. incorrect degrees of 
f reedom and erroneous use of the arithmetic mean,  
would lead to biased estimates of precision: the pre- 
cision result would differ depending on the number  of 

Table 1. Simulated "measured" levels of precision errors for n "repeat" measurements on m "subjects" with true o 2 of 1.0 units (i.e. independent 
of the BMD level). All seven different experimental designs have approximately 27 degrees of freedom (dO and each was run 200 times for the 
estimates shown in the last four columns. Calculation based on arithmetic means demonstrates dependence of the estimated mean on the number 
of repeat measurements. For example, the true precision error of 1.0 is 25% higher than the estimated value based on 2-point measurements. 
Root-mean-square (RMS) estimates yield accurate results within +1% independent of the number of repeat measurements 

Precision estimate based on Arithmetic average RMS average 

m subjects with n-point repeat exams. No. of exams, df SD CV SD CV 

27 2-point 54 27 0.797 0.799 0.987 0.990 
14 3-point 51 28 0.889 0.894 0.995 1.000 
9 4-point 36 27 0.925 0.929 1.003 0.997 
6 6-point 36 30 0.962 0.958 1.001 0.997 
3 10-point 30 27 0.972 0.978 0.990 0.996 
2 15-point 30 28 0.982 0.992 0.990 1.001 
1 28-point 28 27 0.995 0.995 0.995 0.995 



Accurate Assessment of Precision Errors 267 

Confidence limits [ % of mean] 

400 

350 

3 0 0  

w t 

I 

, 
I 

Numeric results for upper 90% confidence limit 
n\mf[ 1 2 3 8 9 14,  , ,27 t 0 0  

2 ~94~7  64;5 46.0 29.3 13.3 
3 ~ i  5 t 3 7 - 2  91 i5  : 38~5 28.6 19.0 9.0 
4 ;)~92,~1 91~5 64;5 3 8 5  29.3 22.2 ' i5.0 7.2 

t ~ ~. 6 ~;081~:9 27.4 21.2 18.3 11.:.2 5,5 
t ~, \ 10 3 ~ S  29.3 t9.0 15.0 11.7 8.1 4.0 

2 5 0  t , ~'4 15  28 .6  22 .2  14 .7  11.7  9.1 6 .4  31 
• ~, ~ , \  \ 28 29.3 19.0 15.0 10.1 8.1 6.4 4.5 2.8 

2 0 0 
~ \ \ _ _  _ _  upper  and lower  95% c o n f i d e n c e  l imi ts  

\ \ upper  and  lower  90% c o n f i d e n c e  l imi ts  
. . . . . . . . .  uppe r  and lower  80% c o n f i d e n c e  h m l t s  150 ~l \ \ 

:oo " , ) k  

0 " Z . .  2,-~-,.--~ . . . . . . . .  

I 

-100  i i , I I I i i I , l  s 

: 3 5 7 : to ~0 5o 7 0 : 0 0  ; 0 0  500  

Degrees of  freedom df  

Fig. 1. Upper  and lower 80%, 90% and 95% confidence intervals as a function of the degrees of freedom (df). Results are given as percentage 
difference to the mean precision error. The tabular insert shows numeric results for the upper 90% confidence limit for selected typical 
combinations of number of measurements n = 2 . . .  28 obtained on each of m = 1 . . .  100 subjects. Combinations located in the unshaded area of 
the table (also indicated in the figure by the arrow) yield upper 90% (or one-sided 95%) confidence intervals of less than +30%,  a level considered 
sufficient for characterizing technique imprecision. 

repeat scans carried out for each subject, asymptotically 
approaching the true value with increasing numbers of 
repeat scans. 

Figure 1 plots the upper and lower 80%, 90% and 
95% confidence limits of the estimate of the precision 
error as a function of degrees of freedom. It takes a 
large number of repeated measurements and/or a large 
group of patients to obtain an accurate estimate of 
precision errors within reasonably small error margins. 
For instance, for 10 repeated measurements on one 
subject (dr = 9) the 90% confidence interval (i.e. the 5 
to 95 percentile) is approximately -27% to +65% of 
the precision error (e.g. for a precision error of 1% the 
90% confidence interval would by 0.73-1.65 mg/ml). It 
would take 100 repeated measurements on one subject 
(dr = 99) to narrow down this confidence interval to 
approximately -10% to +13%. To determine an esti- 
mate of precision errors with an upper 90% confidence 
limit of below 30% (e.g. a precision error of 1% with 
confidence intervals from 0.83% to 1.3%) would 
require 28 repeated measurements on the subject (df = 

27). The probability that the true precision error is 
greater than 1.3 x CVsD would then be less than 5%. 
Figure i shows 80%, 90% and 95% confidence levels in 
graphical and, for selected typical combinations of 
numbers of subjects and measurements, in numeric 
form (the latter for the upper 90% confidence limit 
only). In theory, an infinite number of measurements 
would allow one to determine the mean precision error 
perfectly accurately, i.e. with confidence intervals of 
zero width. 

In the model of Table 1 and Fig. 1 the SD was 
assumed to be independent of BMD. In reality the 
precision error typically increases with decreasing BMD 
(e.g. due to the difficulty of defining the bone edges in 
osteoporotic individuals). How large would the con- 
fidence interval of o 2 be if, however, the distribution of 
precision errors across subjects showed significant 
heteroscedasticity? Modeling the SD with a decrease by 
0.002 to 0.004 g/cm 2 per i g/cm 2 (close to data published 
by Ryan et al. [19]) showed only minimal increases in 
the confidence interval of o 2 . 
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Discussion 

Our results demonstrate that precision errors have to be 
calculated using the correct degrees of freedom and 
averaging based on root-mean-square averages. Only 
this approach ensures unbiased estimates of precision 
errors. Otherwise precision errors would be under- 
estimated by as much as 25% (using arithmetic means), 
and by up to an additional 41% (using incorrect degrees 
of freedom), if results are based on duplicate measure- 
ments per individual. In the literature, the selected 
methodology and definition employed in studies is rarely 
spelled out in detail. The magnitudes of the noted errors 
are substantial, thus warranting greater attention. 

Short-term precision studies require repositioning of 
the patient between measurements unless machine 
imprecision is to be assessed individually. For long-term 
precision the SEE represents a worst-case estimate of 
technique-related imprecision because it also incor- 
porates any non-linearity in skeletal changes. Here, 
separating true changes in mineral density from 
technique-related imprecision is difficult in vivo since 
there is no technique more accurate than bone densito- 
metry that could serve as a gold standard. The two 
sources of variability could be differentiated to some 
extent by repeated measurements at each time point 
during a study, thus reducing technique-related impre- 
cision. However, the added radiation exposure makes 
this approach ethically problematic. Fortunately, for 
most purposes, it may not be necesary to differentiate 
between technique-related imprecision and true vari- 
ability of mineral density. Both true variability and 
technique imprecision will commonly be encountered in 
patient studies and they both limit the ability to detect 
changes in similar ways. The SEE of a linear regression 
analysis as a parameter that summarizes these two 
limiting factors thus may often be sufficient, particularly 
for sample size evaluations. While a detailed discussion 
of sample size estimates is beyond the scope of this 
contribution, it is evident that long-term precision 
errors may have a substantial impact on the power of 
research studies. 

For most situations, using linear regression models 
for calculating the RMS error will be sufficient or at 
least represent a good approximation. However, a 
linear pattern of change over time may not be appropri- 
ate for describing response to treatment, particularly 
short-term gains with anti-resorbers, nor for accelerated 
postmenopausal bone loss. Here, one might instead 
observe a rapid change during the initial period of 
treatment followed by a plateau. For that kind of 
situation the RMS error would have to be calculated for 
a more complex model (e.g. non-linear or split into 
several linear time periods). 

Many studies present precision data expressed on a 
percentage basis. This is only appropriate if absolute 
precision errors are proportional to the BMD. Reports 
in the literature [19] as well as our own unpublished data 
demonstrate that this is typically not the case. Absolute 
errors may actually increase in severely osteoporotic 

subjects due to edge detection problems caused by low 
density or degenerative changes. Due to the added 
effect of a decreasing denominator precision errors 
expressed on a percentage basis increase even more 
rapidly with decreasing BMD. It is for this reason that 
the subject group on which precision estimates are 
obtained should be characterized sufficiently (at least 
stating standard deviations of age and BMD). This will 
help the reader to determine whether precision data 
reported will be applicable to their own subject groups. 
In addition, for some measurements such as ultrasound 
velocity mean values are much higher than for, for 
example, DXA. The resulting very small CVs cannot 
directly be compared with the apparently much larger 
CVs of DXA. Consequently, in general, we would 
discourage expressing precision errors solely on a 
percentage basis. Principally, errors should be given in 
absolute units, with percentage values added for com- 
pleteness. Other methods for standardizing precision 
errors are required. 

Very few, if any, precision studies have specified 
confidence intervals of their estimates of precision 
errors. Without them, however, it is difficult to judge 
whether reported results are generalizable. The for- 
mulae presented in this paper allow one to estimate 
confidence intervals if at least the number of repeat 
measurements and subjects are available. As can be 
seen, the confidence interval of the precision error is not 
symmetric, indicating that precision errors have a lower 
limit of 0 but no upper limit. It is the upper confidence 
limit that in a practical evaluation of a technique's 
limitations is of particular concern. How many measure- 
ments (or, more precisely, degrees of freedom) are 
considered sufficient? The results presented show that 
27 degrees of freedom may be considered sufficient to 
establish precision errors with what we consider to be a 
reasonably small confidence limit: an upper confidence 
limit that is 30% higher than the mean precision error 
with a probability of less than 5% that the true precision 
error would be larger (one-sided test). One would still 
have to decide whether to achieve this goal by perform- 
ing a large number of measurements on each of a small 
number of subjects, or a small number of measurements 
on each of a large number of subjects. For examples, if 
one were to aim for the noted limit of at most +30%, 
one could perform 28 measurements on one subject, 3 
measurements on each of 14 subjects, or 2 measure- 
merits on 27 subjects (compare the non-shaded area of 
the table in Fig. 1). The statistical value of these 
different choices would be the same provided all sub- 
jects in a given group can be characterized by the same 
precision. In practice, it might be best to spread one's 
desired degrees of freedom over a large number of 
subjects to average out differences between individuals. 
Taking 2 or 3 and 3 or 4 measurements per individual for 
assessment of short- and long-term precision, respecti- 
vely, may be optimal. 

The proposed approach will allow one to test whether 
precision errors are comparable across subjects; i.e. 
whether Eqs 3-6, 8 and 12-14, 15 provide valid esti- 
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mates of means and confidence limits of short- and long- 
term precision errors, respectively. One caveat should 
be mentioned: the suggested tests for unequal variances 
are notorious for not being very powerul - a substantial 
degree of heteroscadisticity has to be present until it will 
be picked up by these tests. Fortunately, this limitation 
may not be very problematic for the purpose discussed 
here. Moderate degrees of heteroscedasticity lead to 
only minor increases in the confidence intervals of the 
mean precision error and thus can be tolerated. For 
example, increases of precision errors within the range 
of data reported in the literature [19] would only 
minimally affect the width of the confidence interval of 
the mean precision error. Substantial variability among 
subject groups, on the other hand, will more likely be 
picked up by the suggested tests and separate precision 
error analyses are indicated under these circumstances. 
When assessing precision errors it is advisable to plot 
the distribution of precision errors across subjects and 
study the shape of this distribution. Are shape and width 
of the distribution compatible with a chi-squared dis- 
tribution of the given degrees of freedom? Specifying 
the 95% confidence interval of measured individual 
precision errors and comparing these with the expected 
values for the given degrees of freedom will give an 
indication as to what extent results fall within the 
expected range. Running tests for heteroscedasticity of 
precision errors across subjects is helpful with the caveat 
noted above. Does the distribution of measured indi- 
vidual precision errors show any signs of a bimodal 
shape? In that case, particularly if confirmed by a 
statistical test such as Bartlett's, it may be advisable to 
report precision errors separately for each subgroup. 

The proposed method not only proved to be accurate 
but also appeared to be reasonably efficient (requiring 
30-50 measurements) and robust with regard to shape 
and width of the distribution of precision errors. How- 
ever, as noted, the lack of power of the mentioned 
statistical approaches imposes some limitations. Further 
research is warranted on the development of better tests 
as well as on the impact of width and shape of the 
distribution of individual precision errors on the con- 
fidence interval of the estimated mean precision error. 

Conclusion 

We conclude with the following recommendations: 

Precision errors of individuals should be based on 
standard deviations (for short-term precision) or 
standard errors of the estimate (for long-term precision) 
employing formulae with correctly calculated degrees of 
freedom. Using degrees of freedom of n instead of 
( n - l )  causes underestimation of the precision errors 
(by up to 41% for duplicate measurements). 

For short-term precision measurements, the patient 
should be repositioned between measurements. 

Averaging of precision errors of several individuals 
should be based on root-mean-square averages. The 
commonly used arithmetic mean underestimates true 
precision errors (by up to 25% for duplicate measure- 
ments). 

The subject group on which precision estimates are 
obtained should be characterized sufficiently (at least 
stating standard deviation of age and BMD). 

The characterization of precision errors should include 
their estimated confidence interval according to Eqs 8 
and 15. In addition, the observed 5% and 95% quantile 
of the individual precision errors should be compared 
with the expected 90% confidence interval of individual 
precision errors given by Eq. 9. Homogeneity of pre- 
cision errors across subjects should be tested applying 
the proposed tests. 

Three (or four) repeated measurements per individual 
in a subject group of at least 14 individuals (or other 
strategies that provide at least 27 degrees of freedom) 
are considered sufficient to characterize short-term (or 
long-term) precision of a technique. In the case of 
heteroscedasticity more measurements are required. 
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Appendix 
For a random sample from a given population, the 
sample variance s "2 is an unbiased estimate of the 
population variance 02, i.e. the expected value of s 2 is 
equal to 02. It is a simple arithmetical fact that if the 
mean of a set ors  2 values equals the constant 02 then the 
mean of the corresponding set of the s-values does not 
generally equal o. In other words, s is a biased estimate 
of o, because the expected value of s does not equal cr 
[171. 

How large is the bias? In order to answer this question 
it is helpful to restate that 

dr's2 
X2f ~ - 0"2 

The ~-distr ibution can be expressed by means of the 
Gamma function F [20]: 

[" df /A~'\ ] -- 1 f x  2 df  1 t 

X2f=L2T.FI2)] .)o (t)T-e-gdt (A2) 

One can show that the expectation value of the 22- 
distribution and, more generically, a power function of 
the xCdistribution, are given by [15]: 

2 E[(x}fy, ] = 2 p. (A3) 

Given Eq. A1, the expectation value of s 2 would be 
given by 

0-2 
E[s2l = d]'" E [X]fl ( a4)  

Since by definition F (dr + 1) = dr. F (dr), it follows 
from Eq. A3 that 

Hence s 2 and thus any RMS average of sj represent 
unbiased estimators of 02, independent of the degrees of 
freedom of the measurement.  

By contrast s or any arithmetic means of several 
measurements of sj has the expectation value of 

0"2 2 ! 
E[s] = X/~fEf(x~,c-)q (A6) 

which is given by (compare also p. 626 in [14]) 

X/~o " F ( ~ +  ~) (AT) 

The value of E [s] varies with df and only equals o in the 
asymptotic limit as df becomes infinite. 

As an example, take the case of 2 measurements on 
r(1) 

each subject. Here we have E[s] = X/2.0- F--(½~" 

By definition, F (1) = 1 and F (½) = X/s~ and thus 

E[s] = 0" = 0.798. Similarly, for n = 3, 4, 6 

and 12, i.e. dr /=  2, 3, 5 and 11, we obtain E [s] = 0.886, 
0.921, 0.952 and 0.978, respectively - essentially the 
results displayed in Table 1. These figures directly 
represent the degree of underestimation of owhen  using 
arithmetic means for averaging of standard deviations. 
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