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Some global aspects of compact space-times 

By 

GREGORY J, GALLOWAY 

1. Introduction. As models of the universe, compact space-times are rather problematic 
since they necessarily contain closed timelike curves. The existence of a closed timelike 
curve signifies within the context of general relativity the most flagrant type of causality 
violation since it implies the ability of some observer to communicate with his past. In 
general relativity the positivity of energy density is expressed naturally, via the Einstein 
equations, in terms of conditions on the Ricci curvature of space-time. In his well known 
essay on global Lorentzian geometry [1], Avez considered the following questions (along 
with many others) which we paraphrase here: Do space-times obeying reasonable energy 
(i.e. Ricci curvature) conditions exist which are compact? If so, do they necessarily admit 
global compact spatial sections? (Avez's interest in the latter question is related to a result 
of Aufenkamp; see the discussion on p. 120 in [1]). Avez settled these questions by 
constructing a compact, stationary space-time whose energy momentum tensor is that 
associated with a perfect fluid and an electromagnetic field (see Section 8 of Chapter 1 in 
[1]). The Ricci curvature of the model obeys, 

(1) Ric(X,X) > 0, for all nonspacelike vectors X # 0. 

It follows from Aufenkamp's result (see Theorem (16, I), p. 127 in [1]) that this model 
admits no compact spatial sections. (This conclusion also follows from Avez's Theorem 
(17, I)). Thus if Avez's model admits a global spatial section it cannot be embedded as a 
closed subset. Avez also shows that through every point of his model there passes a closed 
timelike curve. Thus, in his model, the causality violation is total. 

In this note we prove that the two global features: the nonexistence of compact spatial 
sections and the totality of causality violation, are in fact features of any compact 
space-time which obeys the curvature condition (1). Precise statements and proofs are 
given in the next section. The proofs make use of results in global Lorentzian geometry 
for which Beem and Ehrlich [2], Hawking and Ellis [6], and Penrose [7] are standard 
references. 

2. Statements and Proofs. Let (M, g) denote an arbitrary space-time by which we mean 
a smooth connected manifold M of dimension n _-__ 3 equipped with a Lorentzian metric 
g having signature ( -  + + -.- +), with respect to which M is time oriented. It will be 
necessary in our work to extend the usual usage of the term "spacelike". Following Seifert 
[9], a subset S of M is said to be spacelike if there exists an open neighborhood U of S 
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such that S is acausal in U, i.e. such that  any nonspacelike curve in U intersects S at most  
once. More generally, a subset S is said to be nontimelike if there exists an open neighbor- 
hood U such that  S is achronal  in U, i.e. such that any timelike curve in U intersects S 
at most  one. A nontimelike set is said to be edgeless if it is edgeless relative to some (and 
hence any) open neighborhood in which it is achronal. Then, by a global spacelike section 
(respectively, global nontimelike section) we mean an edgeless spacelike (respectively, 
edgeless nontimelike) subset of M. A global nontimelike section S is necessarily a codi- 
mension one, C 1 - ,  embedded submanifold of M (see [7], Lemma 3.17 and Proposi t ion 5.8, 
and [6], Proposi t ion 6.31). We are now prepared to state our main results. 

Theorem 1. Let M be a compact space-time in which the curvature condition (1) is 
satisfied. Then M does not admit any compact global spacelike (or global nontimelike) 
sections. 

Theorem 2. Let  M be a compact space-time in which the curvature condition (1) is 
satisfied. Then, through any two points of  M there passes a closed timelike curve. 

Tipler has previously explored in detail the relationship between curvature and causal- 
ity. In fact, in [10] Tipler presents a version of Theorem 2 under somewhat  weaker 
curvature conditions (see Theorem 7). However, there appears to be an error in his proof. 
(Contrary to what Tipler claims, the arguments of his Proposi t ion 3 are not applicable). 

We remark that  Theorem 1 is, of course, false if the curvature condition is dropped or 
weakened to: Ric (X, X) >__ 0 for nonspacelike X; consider the flat space-time torus. One 
can use the Reeb foliation of S 3 (see [8]) to construct a space-time having the leaves of this 
foliation as spacelike hypersurfaces. This model violates the conclusion of Theorem 2 (as 
well as that  of Theorem 1), since it contains a compact,  acausal spatial section. (The 
author  is grateful to Ted Frankel for bringing this example of a space-time to his 
attention). 

Although the conclusion of Theorem 2 seems stronger than the assertion that there 
exists a closed timelike curve through each point, it is easy to show (using properties of 
achronal boundaries [7]) that  these statements are equivalent. Theorem 2 will follow 
easily from Theorem 1. Our  proof  of Theorem 1 relies crucially on the results derived on 
pages 295-298 in Hawking and Ellis [6], which we summarize in the statement of the 
following lemma. Recall, a partial Cauchy surface is a globally acausal edgeless subset 
of M. 

Lemma  1. Let M be a space-time satisfying Ric(K, K) > O for all non-zero null vectors 
K. I f  S is a partial Cauchy surface then H + (S) (similarly, H (S)) is either empty or 
noncompact. 

Briefly, the idea of the proof  of Lemma 1 is to show that if the future (respectively, past) 
Cauchy horizon is compact  and nonempty  then the expansion 0 of the null geodesic 
generators of H + (S) (respectively, H -  (S)) must vanish. The Raychaudhuri  equation for 
a null geodesic congruence then shows that  the vanishing of 0 contradicts the curvature 
assumption. 

Tipler has indicated how to extend Lemma 1 as follows (see [10], p. 19). Let B + be an 
n dimensional submanifold of M with boundary  having the following property: If 
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p e H + (S) n B + then the past inextendible nuli geodesic generator/7 of H + (S) with future 
end point p is contained in H + (S) n B +. Define B -  time-dually. Then the conclusion of 
Lemma 1 becomes: H + (S) n B + (similarly, H -  (S) n B-)  is either empty or noncompact.  
This extension shall be needed in the course of the proof of Theorem 1. 

P r o o f o f T h e o r e m 1. We shall carry out the proof in two stages, first proving 
the theorem in the case that S is spacelike, then extending the theorem to the case that 
S is nontimelike. 

Case 1 (S spacelike). The proof in this case is similar to the proof of Theorem 2 in [3]. 
If S is globally acausal the proof is immediate. Indeed, since H + (S) and H -  (S) are closed 
and M is compact, Lemma 1 implies that H ( S ) =  H + (S)u  H - ( S ) =  0. Thus, S is a 
Cauchy surface. But this implies that M does not contain any closed timelike curves, 
which contradicts the assumption that M is compact. 

Suppose, then, that S is not acausal. In this case we can introduce the Geroch covering 
manifold, Ms, of M (see [5]). The description of this covering manifold most suitable for 
the present purposes is given in [4]. (The compactness of S permits its construction). We 
briefly list some of the pertinent features of this covering manifold. ~r can be expressed 
as a union, A s = U Mi, where for each i, (1) Mi is an n dimensional manifold with 

i e Z  

boundary (and is obtained by modifying a copy of M in a simple way), (2) M i is compact 
(since M is) and 7z (Mi) = M, where n is the covering map, (3) Mi and M~+ 1 meet in a 
hypersurface Si, with M, lying to the past of Si and M i + 1 lying to the future, (4) n: Si ~ S 
is a homeomorphism, and (5) S, is acausal in the metric obtained in the usual way by 
lifting the metric of M to Ms via the covering map. 

We claim that S o is a Cauchy surface in ~r s. It suffices to show that H(So) 
= H + (So) u H -  (So) = 0. Suppose H + (So) # 13. Then, for a sufficiently large integer J, 

J 

H + (So) n B + r 0, where B + = U Mi. Since ~ is a local isometry the curvature condition 
i=1 

(1) holds in A s. Thus, by the extension of Lemma 1, H + (So) n B + is noncompact.  But this 
contradicts the fact that H + (So) is closed and B + is compact. Hence, H + (So) = 13, and 
similarly one argues that H -  (So) = 0. Therefore, So is Cauchy and ~r s is globally hyper- 
bolic. 

We now invoke a little lemma which is proved in [3]. 

Lemma 2. Let M be a space-time satisfying (1) and let N be a compact subset of  M. Then 
there exists a positive number ~ such that Ric (X, X) >= ~ for all unit timelike vectors X 
applied at points of  N. 

The proof of Lemma 2 is simple and uses the compactness of the nonspacelike direction 
bundle over N. (Note, however, that the unit timelike bundle is not compact). 

By Lemma 2, there exists a positive number ~ such that 

(2) Ric (X, X) > 

for all unit timelike vectors applied at points of M o. Since M i is isometric to M 0 for all 
i, the inequality (2) holds for all unit timelike vectors on ]~s. Then by the Lorentzian 
analogue of the Myers diameter theorem (see Beem and Ehrlich [2]; the global hyper- 
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bolicity of ]~r s is needed here) Ms admits no timelike curve having length greater than 

~/n - 1/6. We arrive at a contradiction, since M s must contain arbitrarily long time- 
like curves. To see this, consider a closed timelike curve ? in M. By lifting n 7 (7 traversed 
n times) to M s we obtain arbitrarily long timelike curves in )~r s. 

Case 2 (S nontimelike): The idea now is to perturb the Lorentzian metric g of M so that 
in the resulting space-time condition (1) still holds and S is spacelike. Case 2 then reduces 
to Case 1. 

Let 0 be another Lorentzian metric on M. Then, recall, g is said to be wider than 0 if 
and only if for all nonzero vectors X, X is g-timelike (g (X, X) < 0) whenever X is 
0-nonspacelike (g (X, X) < 0). 

Lemma 3. Let (M, g) be a space-time satisfying: Ricg (X, X) > 0 for all g-nonspacelike 
vectors X r O. Then for any compact subset N of M, there exists a Lorentzian metric 0 
defined on M such that 

1) g is wider than O, and 
2) Ric0(X,X ) > O for all O-nonspacelike vectors X ~ 0 applied at points of N. 

P r o o f o f L e m m a 3. Let Jff denote the subset of the tangent bundle T M  con- 
sisting of those vectors applied at points of Jff. Let u be an arbitrary but fixed unit future 
timelike vector field on M. Define 

K = {X ~ N: X is g-nonspacelike and g (X, u) = - 1}. 

K is a compact subset of TM, and since Ricg > 0 on K, there is a number 6 > 0 such that 

(3) Ri% (X, X) >_- fi for all X ~ K .  

Let v be the covector: v (X) = g (X, u), and let X • denote the projection of the vector 
X onto the subspace orthogonal to u. Consider the following one-parameter family of 
bilinear forms defined on M, 

g~ = -  v |  + 2h, 

where for all vectors X, Y, h(X,  Y) = g (X • Y• For  2 > 0, g~ is a Lorentzian metric and 
gl = g- Furthermore, one easily checks that g is wider than gx if and only if 2 > 1. 

Let Ricz = R i % .  Since the mapping, 

(X, 2) --* Ricz (X, X) 

is continuous and K is compact, it follows easily from (3) that Ricz (X, X) > 0 for all X 
in K and all 2 sufficiently close to one. Setting 0 = g2 for any such 2 greater than one, 
yields the desired Lorentzian metric. 

Having proved Lemma 3, we see that Case 2 of Theorem 1 follows immediately from 
Case 1 of Theorem 1 by observing that if S is nontimelike in (M, g) then S is spacelike in 

(M, 0). 

P r o o f o f T h e o r e m 2.  It suffices to prove that for any point p ~ M, I + (p) = M 
and I -  (p) = M (where I + (p) is the chronological future and I -  (p) is the chronological 
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past  of p). Suppose I + (p) ~ M. Then ~I + (p) v a 0. But ~I + (p) is globally achronal  and 
edgeless (see Definition 3.13 and Corol lary  5.9 in [7]). Hence, it is a compact,  global  
nontimelike section. But this conclusion violates Theorem 1. Thus, I + ( p ) =  M, and 
similarly I - ( p ) =  M. 
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