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N i m - T y p e  Games  1 ) 

By D. Gale, Berkeley ~) and A. Neyman, Berkeley a ) 

For every partially ordered set (A, <)  we de/me a 2-person game F (A, ~<) or F (.4) 
for short as follows: the first player P I selects an element al of A and then removes all 
elementsa 0fA such that a I> a l .  Player two, PII, now picks a2 from among the 
remaining elements of A and removes all a in A such that a ) a2. The play then reverts 
to PI and continues in the same way until all elements have been removed. The player 
making the last move loses. 

This general class of games include as special eases both Nim and Gale's [1974] 
rectangular games (Gnirn). Nim corresponds to the special case where A is the sum 
(disjoint union) of a Finite number of totally ordered sets; Gale's rectangular games 
are products of two totally ordered sets. 

We introduce now another subclass of such games which we, call the (n; k) games; 
LetAn k = (B C {1 . . . . .  n) I I B  I ~<k). The setAn k is partially ordered by inclusion, 
i.e., BI < B2 if and only if B1 C B2. Then the (n; k) game is the game F (Ank). Gale's 
argument showing that Gnim is a win for PI applies to any set A which has a largest 
element, thus, the (n; n) game is a win for PI. 

Question: Is the winning fwst move in the (n; n) game to select the maximal element? 

The cases where k equals 0 or 1 are trivial; (n; 0) is a win forPii ,  and (n; 1) is a win 
for PII if and only if n = 0 (mod 2). For k > 1 we could characterize the winner only 
when k = 2; we have, 

Theorem. The (n; 2) game is a win for player two if and only if n is divisible by 3. 

To summarize our results up to now we have: For k ~< 2, the game (n; k) is a win 
for PII ffand only i fn  = 0 (mod k + 1). This leads us to, 

Question: Is (n; k) a win for PII f f fn  = 0 (rood k + 1). 

We are able to solve for the winner only in the following cases: k = 2, k = n, and 
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the special games (4;3), (5;3), (6;3), (5;4), (6;4), and (7;4). We do not know who is 
the winner even in the games (6;5) and 7;3). 

The following table shows for which n ~< 7 and k the conjecture holds: 

k•l 2 3 4 5 6 7 

1 ! II I II I II I 

2 I I II I I II I 

3 I I I II I I ? 

4 I I I I II" I I 

5 I I I I I ? ? 
. . . .  i 

6 I I I I I I ? 

We would like to mention that whether (n, n -- 1) is a win for PII is equivalent to our 
first question as to whether selecting the largest element in (n; n) is the winning move 
in the (n; n) game. 

Before starting with the proof  of  our theorem we introduce some notations. We 
denote by Ir I (Ir the set of  all games which are a win for PI (PII). I f A  is a partially 
ordered set we denote by A | a the partially ordered subset o f  A obtained by remov- 
ing all elements greater or equal to a. 

Lemma 1. (n; k) E Wiiff  r(Ank+2 O {n + 1, n + 2}) E W I. 

Proof. Assume that (n; k)  E I4/i, and let o be a winning strategy of  P I, in which his 
first move is to select an element a in An k. We will describe a corresponding winning 
strategy ~ f o r P  I in the game F(Ank+2 @ {n + 1, n + 2)). His first move is to select 
the element a ~ A  k C Ank+2 | {n + 1, n + 2). All other moves will be defined by 
induction. Let D denote the set ( 1 , . . . ,  n}. Observe that no element in 

k An+ 2 O {n + 1, n + 2} contains both  n + 1 and n + 2. Now, if at some move PII  
selects a EAk+2  such that a ~: D, then PI selects the element d EAkn+2 which is 
obtained by exchanging in a, n + 1 and n + 2. The symmetry of  n + 1 and n + 2 at 
all positions following PI moves, implies that this is always possible. Otherwise, if at 
some move PII selects an element a C D, then PI will move by selecting an element 
a C D which is determined by his winning strategy a in F(Ank), as follows: PI considers 
the sequence of  elements al . . . . .  a t with ai C D that have already been selected. By 
induction, there is art element a = o(al . . . . .  al) inAkn | al | �9 �9 | al such that 
1~(Ak n C a 1  @ . . .  @ a ) E  WII. 

Therefore PI will never select the last element and thus we described a winning 
strategy O(o) of  PI in F (Ank+2 @ {n + 1, n + 2}). 
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The same arguments shows also that if(n; k) ~ WII then (Ank+2 @ {n + 1, n + 2))E 

Ir 

Corollary 2: If(n; k) ~ WII then (n + 2; k) E WI, where k/> 2. 

Proof. If(n; k) E WII then by lemma 1, (Ank+2 | 4n + 1, n + 2)) E WII , which proves 
that (n + 2 ; k ) E  Wi. 

Lemma 3: If (n; k) E WII then (n + 1; k) E WI, for every k ~> 1. 

Proof. Follows from the assumption (n; k) E 1r and "die identification of 
@ 4, + l} withal. 

Proof of  the theorem. By induction on n. As both A 12 ~ A ~ and A ~ have largest ele- 
ments, (1 ;2) E W I and (2;2) E W I. Thus by corollary 2 and lemma 3 it is enough to 
prove that if(n; 2) E WI and (n + 1; 2) E W I then (n + 2;2) E Ir Assume that 
(n;2) E lY I and that (n + 1 ;2) E I4II. In order to prove that (n + 2;2) ~ 14111 we have 

2 2 to show that for every a EAn+ 2, P(An+ 2 | a) E Ir I. As I a I = 1 or l a [ = 2 we may 
assume without loss of generality, that either a = 4n + 2) ora  = 4n + 1, n + 2). But 

2 _ 2 An+ 2 @ (n + 2) -An+ 1 and thus as (n + 1;2) E WI, P (An2+2 @ (n + 2)) E Ir I. In 
the other case, as (n; 2) E N! We deduce from lemma 1 that 
P(A]+ 2 @ (n + 1, n + 2)) E W I. This completes the proof of the theorem. 

Observe that the proof also characterize the winning first move. If, n = l (mod 3), 
l = 1,2, the only winning first move is to select an/-set. This suggests the following. 

Quesn'on: if indeed, (n; k) E Iu iffn = 0 (mod k + 1), is the only winning first 
move in (n; k), n = I (mod k + 1) l = 1 . . . . .  k, to select an/-set. 

We turn now to the determination of the winner in the special games (4;3), (5;3), 
(6;3), (5;4), (6;4) and (7;4). To prove that (4;3) E Ir , we have to show that 0) 
P(A~ | (4)) E WI, (ii) P(A~ @ 43,4)) E W I and that (iii) P(A~ O 41,2,3)) E W I. 
(i) and 0i0 follows from the identity A~ @ (1,2,3) O 44) =A~ and the theorem 
which asserts in particular that P (A~) E WII. To prove (ii), we observe that 
P (A] | (1,2} @ {~3,4}) E WII by appealing to the same symmetry argument used in 
the proof oflemma 1. As (4;3) E WII 1emma 3 shows that (5;3) E WI, and by lemma 1, 
(6;3) E WI. To prove that (5:4) E WII, we have to show that 0) P (A~ | 45}) E I4/I, 
(ii) P (As 4 | 41,2,3,4)) E WI , (iii) P (A4s {3 (4,5)) E Vi I and that 
(iv) r (As 4 | 41,2,3}) E W I. To prove (i) and 00  it is enough to show that 
P (As a ~ 45} O 41,2,3,4)) ~ WII. This follows from the identity 
A~ @ (5) | 41,2,3,4) = A].  By appealing to the same symmetry argument used in the 
proof oflemma 1, P (A3s | (4,5) | (1,2,3)) E WII and thus the identity 
A~ | 44,5) | 41,2,3) = As  3 | 44,5) @ 41,2,3) implies (iii) and (iv). Again by lemma 3 
it follows that (6;4) E WI and by lemma 1 that (7;4) E W I. 
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