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D y n a m i c s  of  Coopera t ive  G a m e s  I ) 

By J.H. Grotte, Arlington'-) 

Abstract: Systems of differential equations are exhibited, the solutions of  which converge to opti- 
mal points,  some of which are shown to coincide with classical solution concepts,  to wit, the core, 
the Shapley ~alue, and, under  certain conditions,  the Nucleolus. 

Introduction 

An important part of the study of cooperative game theory is the development of 
models whereby the dynamics of negotiation among the players can be investigated. 
One approach to this problem concentrates on the use of discrete transfer schemes to 
study how players might arrive at a desirable outcome. A parallel approach employs 
systems of differential equations whose solutions represent a continuous transfer of 
payoff over time. It is the intention of this paper to further research in this latter area. 

The advantages of such an approach are multifold. Not only does it enable us to 
view game~ theory in terms of the actions of individual players or coalitions of players, 
but it also enables us to characterize solution concepts, many of them well known, in 
terms of systems of differential equations which cap be interpreted as representing a 
rational model of action or "behavior." Having done so, it is possible to ask which 
points of a solution concept are attainable from initial points exterior to the solution 
concept; which are stable and in what sense; how a final point is reached over time and 
so forth. 

Stearns [ 1968] exhibited a sequence of discrete transfers of payoff which converged 
to points of the kernel of Davis and Maschler [1965]. Billera [1972] smoothed these 
transfer sequences to obtain a system of differential equations whose solutions repre- 
sented a continuous transfer of payoff and which also converged to the kernel. Kalai, 
Maschler and Owen [ 1973] reproved the above convergence results using different 
approaches and also answered some stability questions. Wang [1974] showed that a 
modification of the relaxation method ofAgmon [ 1954] could provide a discrete 
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transfer sequence which converged to the core [Gillies, 1959] of a game. This "core 
sequence" however could not be smoothed in the manner that Billera smoothed 
S tearns ' "kerne l  sequence." 

In this paper, we exhibit several systems of differential equations which represent 
possible behavior patterns for the players. The solutions of these equations are shown 
to converge to a number of solution concepts, among them the core, the Shapley value 
[Shapley, 1953], and, in certain instances, the nucleolus [Schmeidler, ,1969]. This is 
accomplished by defining for games classes of  optimal "centroids" and "nuclei" which 
fall into the class of "convex nuclei" was defined by Charnes and Kor tanek  [ 1970], 
since they minimize certain convex functions. These centroids and nuclei are the 
(stable) critical points of the various systems of differential equations and it is shown 
under what conditions the centroids and nuclei coincide with classical solution con- 
cepts. 

This work is divided into two chapters. Chapter I establishes most of the mathema- 
tical foundation for the rest of the paper and also provides some geometrical insight 
into the processes discussed. Chapter II applies these results to cooperative games with 
sidepayments and also proves some results peculiar to this formulation. The symbol Ez 
will signify an end of proof. 

I. Systems of Differential Equations with Polyhedral Stable Sets 

w 1. Geometric Considerations 

Let (a i} i =  1 , . . . ,  m be a fixed set of(Euclidean norm) unit vectors i n R  n where 
R n is Euclidean n-space. For b E R  m with components {bl, b2 . . . . .  bm}  andx E R  n 
define the functions 

gi (x, b) = (a i, x ) + b i. 

Here, ( , )  is the standard inner product on R n , and we will also denote by II " II the 
Euclidean norm on the appropriate space. Also define 

p i  (b) = { x l g i ( x , b ) = O }  i =  l . . . . .  m 

core(b) = { x l g i ( x ,  b)<~O, i =  1 . . . . .  m} .  

Each p i  (b) is a hyperplane in R n while core (b), if nonempty, is a possibly un- 
bounded polyhedron in R n since it is the intersection of half-spaces. Here, as in the 
rest of this work, "polyhedron" will be synonymous with "convex polyhedron." The 
following two facts are elementary results from analytic geometry: 

a) The normal (perpendicular) Euclidean distance from any point x E R n to p i  (b) is 
I g i (x, b)l (where I �9 I is absolute value). 

b) The normal vector from any point x E R  n to p i  (b) is _ g i  (x, b) a i. 
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L e t R  m = (k E Rrn l k i > O, i = 1 , . . . ,  m ), i .e. ,R m is the strictly positive orthant 
in R m . For k ~ R  m , consider the foltowmg system of  differential equations: 

m 

= D ( x , b , k ) = - - -  ~ k i [ g j ( x , b ) l  +a i 
i= 1 

where 

dx 
dt  (I.a) 

and 

[ �9 J+ = max ( . ,0} .  

Proposition L1 : For any b ~ R m , k E R m , Xo E R n, there exists a unique solution 
3' (t, xo, b, k) to (I.a), continuous in t for t ~ (-- ~,, ~ )  and such that 
7 (0 ,  Xo, b ,k )  =Xo.  

Proof: This is an immediate consequence of  the fact that D (x, b, k) is continuous and 
locally Lipschitz in x. The reader is referred to Coddington and Levinson [1957], or 
Hate [1969] for results on systems of  differential equations. [] 

Geometrically, one can imagine the half-space 

~xl g~ (x, b) > 0) 

to be the "wrong side" of  hyperplane pi  (b). All other points will constitute the "right 
side." At any point x ~ R  n, consider all those i such that x is on the wrong side of  
pi  (b). Let us call such a p i  (b) an "offended" hyperplane. Take a positive linear com- 
bination of  the normal vectors from x to the offended hyperplanes to obtain 

m 

_ ~ ki [gi (x, b)] + d .  
i=l 

Thus, the solutions o f  system (I.a) tend to move toward the offended hyperplanes 
as t increases, ignoring the others, so it might be expected that, along solutions, the 
distance to offended hyperplanes would tend to decrease. This notion will be made 
rigorous and proven later. 

w Centroids 

With {a*), b, and k as above, we can define C(b, k), the set of  "k-centroids o f b  
(with vectors {ai}) ' '  to be 

{ x E R n l q ~ ( x , b , k ) =  inf c b ( y , b , k ) }  
yER n 

where 
m 

(.v, b, k) = ~ k i ( [ j  (v, b)]+) 2 
i=1 
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Observe that (1) if core (b) is nonempty,  then core (b) is precisely C (b, k), and (2) 
C (b, k) is, in this case, independent of  k. In general, however, C (b, k) is not independ- 
ent of  k. 

Proposition L 2: For any b E R rn , and k E R m , C (b, k) 4= O. 

Proof: Observe that the problem 

inf 
y E R  n 

m 
2 inf Z k i z i 

z E R  rn i = 1  

y E R  n 

subject to 

zi>~O } 

zi>>-g  b) 

(y, b, k) can be written 

i x 1 , . . .  ,m.  

The objective function of  the rewritten problem is a convex quadratic function, 
bounded below, and the constraints define a nonempty polyhedral convex set. The 
proposition then follows from Corollary 27.3.1 of Rockafellar [1970]. (The author is 
grateful to the referee for indicating this proof.) [] 

Since [.]+ is a convex, nonnegative, and nondecreasing function on R, and (.)2 is 
convex while ~ (x, b) is an affine function of  x, it follows that ~ (x, b, k) is also a con- 
vex function in x. Observe also that ([.  ]+)2 is continuously differentiable with 

d 
a s  ([s]+)2 : 2 Is] +. 

Thus, q5 (x, b, k) is continuously differentiable onR n. 
Let 3c = f ( x )  be any system of  differential equations on R n . A "critical point"  of  

the system is any point y such that f ( y )  = 0. 

PropositionL3: Xo is a k-centroid o f b  if and only if V qb (x, b, k)lx0 = 0, whereV is 
the gradient operator with respect to x. 

Proof: This follows from the observation that ~ is convex and continuously differen- 
tiable (see Fleming [ 1965 ], section 2-5) .  

Proposition 1.4: Xo is a k-centroid of  b if and only i fxo is a critical point of  System 
(I.a). 

m . 

Proof: - ~  (r (x, b, k)) = 2 i=)21 ki [ (a~' x ) + bi ]+ a(l 

Hence, V qb (x, b, k) = -- 2/) (x, b, k), so x0 is a critical point if and only if 
D (x, b, k) = 0 if and only if X7 cb (x, b, k)lx, = 0 if and only i fxo is a k-centroid of  b. 
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w Properties of C (b, k) 

We will now establish certain properties of  C (b, k). An easy observation is that if 
core (b) 4: ~, then the set of k-centroids of  b is a polyhedron. This is true even if 
core (b) = (3. 

Proposition 1.5: C (b, k) is a closed polyhedron, 

Proof: Letxo,  xl  be k-centroids of b, Then 

m 
0 = ~ k i [ g i ( x l , b ) ]  +a i 

i=1 

SO 0 = 
m 
Z 

i=1 
k i [ j ( x l ,  b)] + (a i, Xo - x l )  

Similarly 

0 = 

m 
E 

i=1 
k i [gi(x, ,  b)] + (g/(Xo, b ) - g / ( x l ,  b)). 

m 
E 

i=l 
ki [gi (Xo, b)]+ (gi (Xo, b) -gJ  (x1, b)). 

Subtracting we obtain 

0 
t r t  

: ~ k; ([g~(x,, b)] + - [g~(xo,  b)]+) (g" (Xo, b ) - F ( x , ,  b)) 
i= 1 

m 
: ~ k; ~- ( j  (x , ,  b)]+) ~ - ([g~ (Xo, b)]+) ~ 

i= i  

+ [ g  (Xl,  b)] + (gi(xo, b)) + [gJ(xo, b)] + (gi (Xl,  b)) } 

m 

i=1 
k; ~-- ([g' (x , ,  b)]+) 2 - ( [ g  (Xo, b ) l+ f  + ~ [ j ( x , ,  b)] + [y  (Xo, b)] + ) 

m 
E 

i=1 
k i ( I f  (x,, b)] + - [gi (Xo, b)F)  2 < 0. 

Therefore, [~  (Xo, b)] + = [~  (XI,  b)]  + i = 1 . . . . .  m; moreover, i fxz is any point 
i nR  n such that [~ (x2, b)] + = [~ (Xo, b)] +, then x2 must also be a k-centroid o f b  
since ~ (x2, b, k) = qb (Xo, b, k). Therefore, knowing that there exists at least one k- 
centroid of  b, Xo, C (b, k) can be rewritten as 

~x ~R'j{ (x ,  b)< o for all i for which { (Xo, b) ~< 0 ) 

A { x E R n [ g i ( x , b ) = g i ( x o ,  b) forall  i forwhich g/(xo,  b ) > O }  
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which is the finite intersection of  half-space and hyperplanes and is therefore a poly- 
hedron. 

The following fact which appears in the previous proof  bears emphasizing: 

CorollaryL6: [g/(x, b)] + is constant over C(b, k) for i =  1 . . . . .  m. 
Geometrically, this means that all k-centroids of  b not only "offend" the same 

hyperplanes, but lie equidistant from each of  them. 

CorollaryL 7: I f  x0 and xa are distinct k-centroids of  b, then (xl - X o ,  ai) = 0 for all 
i such that ~ (Xo, b) > 0. 

CorollaryLS: Letxo  be a k-centroid o fb .  I f  (ailg i (Xo, b) > 0) spanR n, thenxo is 
the unique k-centroid of  b. 

It would be of  interest to know how the set C (b, k) changes with b and k. Unfortu- 
nately, this is still primarily an open question as of  this writing, although partial an- 
swers can be given. In particular, when core (b) 4: 0, b E ~interior (blcore b 4: 0))  
then small changes in b affect C (b, k) = core (b) only slightly. To show this, we first 
establish some terminology in the manner ofDantzig, et al. [ 1967]. 

Let (An)  be a sequence of  subsets o f  some metric space X (in our case, X will be 
Rn). 

Define 

lim A n 

li__m_m A n 

= {x E X N  = l im Xn. where (ni} is an infinite sequence of  integers 
/ - - + ~  ! 

and X n .E An .). 
l t 

= (x EX[x  = lirn x n where x n E A  n for all but a finite number 
n--*~ 

of  n). 

If  lim A n = lim A n, then we say l imA n exists and we set 

l imA n = l i m a  n = lim A n. 

Lemma L 9 (Dantzig et al.): Let X be a metric space and let (A n) be a sequence of 
connected subsets of  X. Let U be an open subset o f  X with compact boundary. I f  
lim A n is nonempty and lim A n C U, thenA n C U for all sufficiently large n. 

L e m m a L l O  (Dantzig et al.): Let (b n) be a sequence inR m, where b n ~ b and suppose 
core (b) 4: 0, core (b n) 4:0 for all n, then lim (core (bn)) = core (b). 

We would like to be able to quantify this notion by putting a metric on subsets o f  
R n. To do this, first-define for a n y x  E R  n, and any setA C__R n, 

d ( x [ A ) =  inf [ I x - - y [ [ .  
y~A 
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For two setsA andB inR n define 

la(A,B)=max ( sup d(xN) ,  sup d(xlA) ) x.~B 

This is a metric on the space of  compact subsets ofR n and is commonly called the 
Hausdorff metric. The following proposft~on establishes the continuity of  core (b) in 
the Hausdorff metric. This has already' been observed by Sondermann [ 1972] in the 
case of  games. 

Proposition L l l '  Suppose b n ~ b, core (b n) 4:0 for all n, core (b) 4 :0  and core (b) is 
compact. Then for all e > 0, there existsN s.t. tl (core (b), core (bn)) < e whenever 

n ~ N .  

Proof: Suppose not, then there exists an e > 0 and a subsequence n i ~ oo such that 
(core (bni), core (b)) ~> e. This can happen in either (or both) of  two ways. 

i) There exists subsequence n/-+~,Xni E core (bnO and d(Xnjlcore (b)) ~ e for all/. 

ii) There exists subsequence n k ~ ~, Xnk E core (b) and d (Xnklcore (bnk)) >~ e for 
all k. 

Suppose i) occurs, then by Lemma 1,9, {Xn/} must have a convergent subsequence, 

so without loss of  generality we may assume {Xnj} converges to some point x0. By de- 

finition, x0 E lira core (bn), hence Xo ~ core (b) by Lemma I. 10. But 

d (Xnin core (b))/> e implies d (x0 I core (b))/> e, a contradiction. 

Now suppose ii) occurs. By the compactness of  core (b), we can assume 
Xnk--rx o ~ core (b). But x0 ~ core (b) if and only if Xo E lira core (b n) so 

Xo = lim ynk where ynk E core (b nk) for all but finitely many k. Pick k sufficiently 

large so that 

II Xnk--Xo tl < e/2 
and 

[lYnk--Xo I1< e/2 . 

Therefore 

tlXnk--Ynkll < e 
SO that 

6 > J[ X n k - - Y r l k N  ~ d(Xnkl core (bnk)) . 

But we assumed d (xnkl core (bnk)) >~ e so we are left with another contradiction, c 
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w Convergence of  Solutions of  (I.a) 

We have already shown that the k-centroids of  b were precisely the critical points of 
System (l.a). The next Proposition will show the relationship between solutions of  
(I.a) and C (b, k). 

PropositionL14: For any Xo E R  n, b E R  m and k E R  m , the solution 7 (t, Xo, b, k) 
of (I.a) with 3' (0, xo, b, k) = xo is bounded for t >~ 0 and further, as t -+ "% 
"r (t, x0, b, k) converges to a k-centroid of  b. 

Proof: Let s be any k-centroid o fb .  For anyx  E R  n define 

Z ( x )  = 21--II x II 2 . 

Thus, along any solution to (I.a), i.e., where 

x = x (t) = "r (t, Xo, b, k), 

_.a (z  (x)) = 
dt 

, x - ~ )  =- ~ k i [ j ( x ,  b)] + (ai, x - ~ >  
i=1 

m m 

ki[gi(x,b)]+ (a i ,~ - - x>  = Z 
i=1 i=1 

ki [gi (x, b)]+(~'(:~, b ) - - ~ ( x ,  b)) .  

We saw in the proof of Proposition 1.5 that 

m 
y~ 

i=1 
k~ [{  (~, b)] + (g~ (~, b) _g i  (x, b)) = O. 

Therefore, by subtracting 

_d_ Z = ~ k i ([gi (x, b)] + - [gi (~, b)]+) ~ (:~, b) _ g i  (x, b)) (I.b) 
dt i=l 

i.e., 

m 
~<--y,  

i=1 
ki ([gi (x, b)] + - [gi (:t, b)]+) ~ <~ O, 

d ^ / - = t  d t  llT('r, xo, b , k ) - x [ I  2 ~<0 fo ra l l t~>0  so 

[lT(t, Xo, b , k ) - s  II forall  t~>0. 

(l.b') 

Moreover, (l.b) and uniqueness of solutions imply that i fxo is not a k-centroid of b, 
then 

d ,, 
J] 3' (~', Xo, b, k) - - x  tl2r=t < 0 for all t >/0. 

d~- 
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Hence, Z (x) is a Lyapunov function on R n for System (I.a) and it follows from stand- 
ard results (see Hale [1969], p. 296) that the ~-limit set of  3  ̀(t, Xo, b, k) is contained 
in C(b, k), where the ~-limit set of  3  ̀(t, Xo, b, k) is the set o f  timit point i nR  n of 

(t, Xo, b, k) as t -+ ~ .  All that remains to show is that 3  ̀(t, xo, b, k) converges to a 
single k-centroid of  b. Suppose there were two distinct points, .~ and R in the w-limit 
set of 3' (t, Xo, b, k). Let e > 0 be such that II 2 -- :7 [[ > 2e. By the definition of 
co-limit set, there exists T > 0 s.t. l! 3  ̀(T, Xo, b, k) -- 2 [I < e, but II 3  ̀(t, xo, b, k)-Y~ l1 
is a decreasing function of  t, so for all t ~> T, I1 7 (t, Xo, b, k) -- 2 II < e so 
II 3  ̀(t, xo, b, k) - ) T  [I > e, contradicting the assertion that .~was in the ~o.limit set of  
7(t ,  xo, b ,k) .  [] 

Note: In the case that core (b) r (3, it is possible to show the following more general 
result. For i = 1 . . . . .  m, let f i  (s) be a continuous and locally Lipschitz function on 
R such that f i  (s) > 0 if s > 0, f i  (s) = 0 if s ~< 0. Then if 3  ̀(t, Xo, b, f) is a solution 
to the system 

m 
= _ ~ f i  (g~ (x, b)) a i 

i=1 

then as t -~oo, 3  ̀(t, Xo, b, )') converges to a point of  core (b). F o r f  i (-) = h i [.]+, this 
result is contained in Proposition 1.14. 

We will denote the limit point of  3, (t, Xo, b, k) by 3' (0% Xo, b, k). It is evident 
from equation (I.b')  that all k-centroids of  b are stable (in the sense of  Lyapunov) 
points of  System (I.a). It clearly follows that System (I.a) has no unstable critical 
points. 

Convergence, as has been seen, is straightforward. For any initial point x0, the solu- 
tion 3  ̀(t, x0, b, k) approaches each k-centroid of  b simultaneously as t -+ ~ and con- 
verges to a particular one. 

Convergence can be viewed in another way, however. Since the k-centroids of  b 
were characterized as the minimizing points of  d; (x, b, k), it is o f  interest to investigate 

(3` (t, xo, b, k), b, k) 

as t -+ oo Recall that in t h e p r o o f  of  Proposition 1.4 we showed that 

v~,  = - z o  (x, b, k). 

Thus we immediately see that 

d 
d__dt ~ (3` (t, Xo, b, k), b, k) = ( V ~ ,  ~ -  (3` (t, x0, b, k)> = - -  2 lID (x, b, k) 1[ z, 

that is, qb is decreasing along solutions of  (I.a). Moreover, since System (I.a) can be re- 
written 

1 
k - - - -  ~- V ~  (x, b, k), 
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the solutions of  (I.a) follow the negative gradient of  the function qb. In other words, at 
any point x,  the solutions of  (I.a) tend in the direction most optimal to minimize ~. In 
general, however, it is not the case that the solutions follow a shortest path (in the sense 
of  arclength) from x0 to C (b, k), nor is 7 (~, x0, b, k) necessarily the closest k-cen- 
troid of  b to Xo. 

w Cocentroids 

The set CC (b, k) of  "k-cocentroids of  b"  is the set 

( x E R n l ~ ( x , b , k ) =  inf $ ( y , b , k ) }  
y~R  n 

where 

m 

tk (x, b, k) = ~ k i ( [ - - ~  (x, b)]+) 2. 
i=l 

of  b (with vectors {ai)) are the k-centroids o f -  b (with Note that the k-cocentroids 
vectors {--ai}). Hence such observations as CC (b, k) is a polyhedron and [ -gi (x ,  b)] § 
is constant over CC (b, k) and so forth are obvious. Moreover, it immediately follows 
that solutions of  

m 

;: = E k i [_g i  (x, b)] + a i (I.c) 
i=1 

converge to k-cocentroids of  b. We will say more about coeentroids later on. 

w Continuity of Limit Points 

We can consider 7 (0% Xo, b, k) as a function f romR n • R m X R m to C (b, k). 
This section will investigate some of  the continuity properties o f ' r  (0% . , . , . ) .  Note 
that any such result is also dependent on the continuity of  C (b, k). We will need the 
following lemma which is a standard result of  the theory of  ordinary differential 
equations. 

LemmaL15:  Let 3' (t, Xo, bo, ko) be a solution of  System (I.a) for some (Xo, bo, ko) 
i n R  n X R m X R m . For (x, b, k) in an open neighborhood of(xo ,  bo, ko) (in the pro- 
duct space), there is a solution 3' (t, x, b, k) of  System (I.a). Moreover 7 (t, x, b, k) is 
continuous in (t, x, b, k) at (to, x0, bo, ko) for all to. 

Proof: This follows from the continuity o f D  (x, b, k) in (x, b, k) and also from the 
uniqueness of  solutions of  System (I.a). (cf. Hale [ 1969 ], Theorem 1.3.4). [] 

PropositionL16: For any (b, k) E R  m X R m 3' (o~, Xo, b, k) is continuous inxo.  
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Proof: Pick e > 0 ,  any Xo E R  n. Pick Tso  large that 
II 7 (T, Xo, b, k) -- 3" (0% Xo, b, k) [[ -< e/4. Choose 6 s.t. II x - x 0  II < ~ implies 
II 7 (T, Xo, b, k) - 3" (7, x, b, k) II < e/4 which we can do by the previous lemma. 
Therefore I! 7 (T, x, b, k) - 7 (% xo, b, k) t[ < e/2, but by Equation l .b '  

tt 7 (t, x,  b, k)  - 3" (~ ,  Xo, b, k) It < e/2 

for all t 11- T. Since for some T '  ) T 

II 3' (t, x, b, k) - 3' (~, x, b, k) [[ < e/2 

for all t ~> T '  it follows, that 

1 t T ( ~ , x , b , k ) - - 7 ( ~ , x o ,  b , k ) l t < e ,  cz 

The continuity of  3' (0% Xo, b, k) in (xo, b, k), as mentioned before is dependent 
on the continuity of  C (b, k) and can only be established, therefore, in those cases 
where the continuity o f  C (b, k) is known. 

Let W = {b E R  rn Icore (b) ~ 0 and core (b) is compact }. Let D be a compact sub- 
set of  R n, and E a compact subset o f  W. Observe that by Proposition 1.11, core (b) can 
be viewed as a continuous mapping from W to the space of  compact subsets o f R  n. 
Hence, over E,  the continuity is uniform, i.e., for all r / >  0, there exists 6 > 0 such that 

(core (b), core (b '))  < r/ whenever, b, b' E E ,  II b -- b'  II < 6. Let B be a compact 
subset o f D  X E X R+ m. 

LemmaL17:  Let e > 0 .  Then there exis tsN s.t. 
[13"( t ,x ,b ,k ) - -7(oo ,  x , b , k )  l l < e  forall  t>~N andall  ( x , b , k ) E B .  

Proof: Let T n (bo) = fix, b, k ) E R  n X WX R m l d  (T (n ,x ,  b, k) l core(bo) )< e/4 ) 

for n = l , 2 , . . ,  andall  b o E W  

andpick  6 such that for all b, b ' E E ,  il b - - b '  11<6 implies 
/a (core (b), core (b')) < e/4. Let V(b)  = {b E Ifl lib - bll < 6} for all b E If. Now set 
U(b)=R" x V(b)X R+ m. 
T n (b) is an open set i nR  n • W • R m since it is the inverse image of  an open set 
under the continuous map 3' (n, . , - , ' ) .  Also it is clear that U(b) is open in 
R n X I f X R  m. 
Let 

S n (b) = r n (b) n U(b) ,  n = 1,2 . . . .  b ~ If, 

and let 

S n = w S n (b) 
bEE 

Each S n (b) is open in R n • W • Rr~ 

n = I , 2  . . . . .  

and thus so is each S n. Moreover, for all 
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(x, b, k) E B, (x, b, k) ~ S n for some n since for some n, 
d (7 (n, x, b, k) I core (b)) < e/4, and, of  course, (x, b, k) E U(b). Thus {Sn} is an 
open cover of  B, B is compact,  hence there is a finite subcover Sn~, . . . .  Snk of  B. 
Let 

(x, b, k) ESn.  NB, then (x, b, k) ESn  (bo) 
I I 

for some b0 E E, i.e., 

(x, b, k )~  rn. (bo) n U (bo). 
I 

But if so, then 

and 
d (3" (nj,x,  b, k)) ] core (bo)) < e/4 

II b - bo II < 6 which implies /1 (core (b), core (bo)) < e/4. 

Therefore 

d (7 (n/., x, b, k) I core (b)) < e/2. 

From Equation (I.b'),  it follows that 

II ~/ (n], x, b, k) -- 3, (oo, x, b, k ) I I<e .  

But since any (x, b, k) E B  lies in someSn/, set t ingN = max (ni} will satisfy the re- 
quirement of  the hypothesis. [] l<<.i<<.k 

Note that continuity of  3' in k was not explicitly used in the above proof. Indeed, 
the variable k was merely carried along in the notation (except in the assertion that 
T n (b) was open). The reason for this is that if core (b) r r then, as we have seen, 
C (b, k) is idependent of  k. To complete the continuity section we show: 

Proposition L18: 3, (oo, x, b, k) is jointly continuous in (x, b, k) for 
( x , b , k ) E R n X  W X R  m. 

Proof: Let {~}, (bY), (/~) be sequences in R n, W: and R m respectively and suppose 
there exists (x, b. k) E R n X Ir N R m such that x / ~ x, bY --, b, and k] ~ k. Since 

( ~ (xd'bJ'kJ)) U ( x ' b ' k )  

that 1[ 7 (T, x/, bY, ki) - 7 (oo, x/, b/, k/) lF < e/3 i = 1 , 2  . . . .  

II ~ (T, x, b, k) -- ~ (o% x, b, k)II < e / 3 .  

By Lemma 1.15 it is possible to choose an M so large that 

[[ 3, (T, xd, by, kJ) -- 3, (T, x, b, k) ll < e/3 forall  j >~ M. 
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Therefore, for all ] >~ M, 

[l 7 (~', x/, b ], k ] ) -  7 (~, x, b, k ) I t~  < 1[ 7 ( ~ , x  ], b ], k / ) - 7 ( T , x  ], b j, k ]) II 

+ [17(T,~, b ], l f l ) - 7 ( T , x ,  b, k)[l+ltT(T,x,  b, k ) - 7 ( % x , b , k ) l l < e .  [] 

It is conjectured that 7 (~, x, b, k)  is continuous in (x, b, k)  overR n X R m • R~ ~, 
but this has not as yet been proven~ 

w Nuclei 

Recall that for System (I.a), there were no restrictions on the vectors {a i} other 
than they be unit vectors. Hence, in particular, there is no requirement that they be 
linearly independent. Suppose, given {a i [ i = 1 , . . . ,  m} ,  a i E R  n, b E R  m, k E R  m , 

we generate a new set of vectors: {dili = 1 . . . . .  2m}, d i E R  n, b E R  2m, 
k : E R  m • R m = R  2m in the following way: 

d i = - - d  m+i = a  i i =  1 , , . .  , m  

5, - - - -  b/ i - - 1  . . . . .  

Z i = k m + i : k  i i = l  . . . . .  m. 

Using these vectors, we can exhibit the analogue of System (I.a): 

2m 
:~ = -  ~ fi, r<ai, x ) + 5 , ] +  ~, 

$ ~ , t  J l 

i=l 

m 

i=l 
k i {[gi(x, b)]  + a i - ~ - j  (x, b ) l  § a i} 

(I.d) 

o r  rn 

fc = -- ~ k i (gi (x, b)) a i. (I.d') 
i=l 

Similarly, we can define the/~-centroids of b(with vectors (di}) to be the mini- 
mizing points of 

2m m 
0 (x) = 2; /~ ([(a i, x) + bit+) z = Y-, ki (gb (x, b)) 2 . 

i= 1 i= 1 

We will defineN(b, k), the set of "k-nuclei ofb  (with vectors {ai}) '', to be the set 
of/~-centroids of b(with vectors (~i}). This definition, while introducing perhaps re- 
dundant terminology, stresses the differences between C (b, k) and N (b, k) while in- 
dicating that the k-nuclei of b are themselves centroids of a different, albeit related, 
set of vectors. 
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It is therefore to be expected that the set of  k-nuclei of  b would share many of the 
properties of C (b, k) and this is indeed so. These are listed below for completeness. 

Corollary L19: For any Xo E R  n, b ~ R  m, k E R  m , there exists a unique solution to 
System (I.d')which converges to a k-nucleus of  b. The set N (b, k) is precisely the set 
of critical points of (I.d'). 

Corollary L20" The set of  k-nuclei of b is nonempty and polyhedral. Moreover 
((a i, x) + bi) is constant as x ranges overN (b, k) for i = 1 , . . . ,  m. 

CorollaryL21: The se tN(b ,  k) comprises a unique point if (ail i = 1 . . . . .  m} 
spans Rn. 

There is a slightly more general continuity result. 

PropositionL22: Let ~" (t, Xo, b, k) be a solution of(I .d ' )  with limit point 
~- (oo, Xo, b, k). If the (a i} spanR n, then ~" (o% x0, b, k) is continuous in (Xo, b) over 
R n • R m . 

Proof: Since {a i} spanR n, the k-nucleus o f b  is unique for all b. Thus, ~ (o% Xo, b, k) 
is independent o f x o .  Letting A be the matrix with rows v~t' a i, we know that the 
k-nucleus of  b, ~" (oo, x0, b, k), isA+~ where/3 E R  m , Hi = X~i bi an dA+ is the general- 
ized(pseudo-) inverse ofA.  The conclusion follows from the observations the A+I3 is a 
continuous function of  b. 

w Relationships among Centroids, Cocentroids and Nuclei 

We conclude this chapter with a number of  observations on the relationships among 
centroids, cocentroids, and nuclei. 

Proposition L 23: If x is an element of  any two of  C (b, k), CC (b, k), N (b, k), then 
it is an element of  the third. 

Proof: Note that 

m m m 

--  ~ k i ((a i, x)  + b i) a i = --  ~ k i [(a i, x)  + bi ]+ a i + ~ k i [ - - (a  i, x ) - -  bi] + a i 
i=1 i=1 i=1 

(I.e) 

so if any two of  the summations vanishes, so must the third. [] 

Therefore, a k-centroid of  b is a k-nucleus of  b if and only if it is also a k-cocentroid 
of  b, and so on. 

Finally, we note some relations among the solutions of  Systems (I.a), (I.c) and 
(I.d). Let 3' (t, x0, b, k) be the solution of(I .a)  with initial point x0,3 '  (t, Xo, b, k) the 
solution of  System (I.c) with initial point xo and ~ (t, Xo, b, k) be the solution of  Sys- 
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tern (I.d') with initial point x0.  We wflI say that two functions of  t, say a (t), 
/3 (t) E R  n are "negatively tangent" at xo if a (0) =/3 (0) = xo and if 

d d 
d t  ( a ( t ) ) l t :  0 -  dt (/3(t))l:= 0. 

Similarly, a (t) and/3 (t) are "positively tangent" at x0 if a (0) = 13 (0) = x0 and 

d d 
d t  (a (t)) It= 0 = d-t- (/3 (t)) It= O. 

The following are simple consequences of  Equation (I.e). 

Proposition I. 24: 

a) xo E C ( b , k )  i f a n d o n l y i f  7( t ,  xo, b , k )  and 

(t, Xo, b, k) are positively tangent at Xo. 

b) x o E C C ( b , k )  i f a n d o n l y i f  T(t ,  xo, b , k )  and 

(t, Xo, b, k) are positively tangent at Xo. 

c) xo E N ( b , k )  i f a n d o n l y i f  T(t ,  xo, b , k )  and 

7( t ,  Xo, b, k) are negatively tangent at xo. 

41 

1I. Applications to Cooperative Game Theory 

w 1. Cooperative Games with Sidepayments 

The concept of  an "n-person cooperative game with sidepayments" was introduced 
in yon Neumann and Morgenstern [ 1953 ]. It consists of: 

a) N = (1, 2 . . . .  , n),  a set of  players. 

b) 2 N - - 0  = (S~O[SC__N) ,a l l "coa l i t ions"o f thep layers .  

c) v: 2 N -- 0 -~R, a "characteristic function". 

d) Some "set of  payoffs" in R n . 

We will define below precisely those sets of  payoffs in which we are interested. A 
game is denoted (N, v), or simply v, with the set N understood. 

A payof fx  E R  n represents a potential or actual distribution of  some transferable 
commodity among the players where each player i receives x i. Certainly not all x E R  n 
are logical payoffs. If we denote Z x i by x (S), then among the more reasonable 

iEs 
payoff concepts are the following: 
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Feasible payoffs: 

Efficient payoffs: 

S-rational payoffs: 

Imputations: 

~ x E R  n I x (N) ~< v (N)) 

~ x E R  n I x ( N ) = v ( N )  ) = E ( v )  

~ x E R  n I x ( S ) > / v ( S )  } 

(x E R  n I x (N) = v (N) ,x i  >~ v ( {i} ) 

for all i =  1 . . . . .  n}. 

Since v (N) represents the amount of the commodity which the entire set of players 
N can obtain by cooperating, it is not surprising that efficient payoffs are desirable if 
the game is to result in some sort of stable outcome with all players participating. Each 
coalitions S, however, is most interested in an end result which is S-rational, and there- 
in often lies the conflict among coalitions over what the final payoff should be. Infea- 
sible points, i.e., those which are not feasible, may be thought of as unattainable by 
the grand coalition N. 

In order to quantify in some way the satisfaction or dissatisfaction of coalition S 
with a payoff x, denote by e S (x) the quantity 

v (s )  - x  (s) .  

This quantity is sometimes called the "excess of S at x".  
Presumably, the smaller e S (x), the more satisfied is coalition S with payoffx.  Let 

us also define at this time the "efficient excess o fS  a t x "  for S ~ N ,  0 to be 

,, ( [ N I v ( S )  v(N) ) 
e S ( x ) = ( - - A S ' x ) +  IS[ ( t N t - - I S I )  t N i - - ( - S [  

where: 

IS 1 is the cardinality of S, 

IN[ = n ,  and 

A S E R  n such that 

1 
Is--? 

--1 
[ N I - - I S I  ir 

The purpose of this efficient excess will be come clear shortly. 

w Solution Concepts 

A solution concept is a payoff or a set of payoffs which is either (1) equitable with 
respect to certain axioms of fairness or optimality, or (2) is "stable" with respect to 
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some type of  bargaining procedure. Two well-known solution concepts are appropriate 
to the results o f  this chapter. 

The "core" is the set of  efficient points which are S-rational for all S. Explicitly, 

core (v) = {x E E (v) ] e S (x) <~ 0 for all S E 2 N - t~ }. 

The Shapley value is a solutior~ concept which falls into the category of  "fair" 
points. The Shapley value, usually denoted ~b [v], is determined uniquely over the class 
of  all n-person games by the following three axioms. 

I. A cartier for a game v is a coalition T such that for all S, v (S) = v (S r 7). the 
first axiom requires that for any carrier T of  v, r [v] (T) = v (7). 

II. Let 7r be a permutation on (1 . . . . .  n}o Let Try be the game such that 
rrv (S) = v &S). For any vector x E R  n let ~rx be the vector such that (7rx)i=Xrri, 
i = 1 . . . .  , n. Then the second axiom requires that 

( ~ )  = rrq~ (v) for all permutations rr and all games v. 

Ill. I f  u and v are two n-person games, let the game u + v be the game 
(u + v) (S) = u (S) + v (S). The third axiom then requires that 

~i [u + v] = ~i [u] + ~i [v]. 

Axioms I and II have several well-known consequences which substantiate the 
notion that the Shapley value is a fair division point. Let us briefly mention two which 
we will recall later. First, call player i a "dummy"  if, for all coalitions S shich do not 
contain i, v (S U {i)) = v (S) + v ({i}). It follows then that r Iv] = v (.{i}). Second, let 
us say two players, i and/', are "symmetric" if v ({i}) = v ({/')) and for all coalitions S 
containing neither i nor]', v (S U{i}) = v (S U {j}). Then, by Axiom II, q~i [v] = ~j [v]. 

w Efficient Bargaining Systems 

For {A S E R n IS E 2 N - O} and efficient excesses {e~s (x) J x E R n, s E 2N--{O,N}} 
as defined previously, we define an ~ bargaining system" to be a system of  dif- 
ferential equations o f  the following form: 

= z ks ] + A s 
S~RN-{r [ IIAS IV IIA S [I (II.a) 

dx 
where k =d-~- and 

k s E R  + for all s E 2 N - - ( f ~ , N ) .  

Note that we have substituted 2 N - { O , N }  for a set o f  integers as the index set of  

the summation. The set {k s > 0 IS E 2 N - -{0 ,N})  will be called the set o f  "coalitional 
weights". R 2n'2 is clearly the set o f  all such. The variable t may be considered to stand 
for time. 
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It is apparent that System (II.a) is o f  the same form as System (I.a) so that for any 
point xo ,  there exists a continuous (in t) solution 7 (t, xo, v, k) such that 
7 (0, Xo, v, k) = Xo. Note that along solutions of  (II.a) 

d n 
d t  i~l 'Yi (t, Xo, v, k) = 0 

so that we can state: 

L emma lI. l : 

Simple manipulation shows 

LemmalI .2:  For all S:/:N,  r all x E E ( v )  

(x) 
II A S II 2 - eS (x). 

It follows that core (v) = (x E E ( v )  I e S (x) <<. 0 

A 

= ( x E E ( v )  les<~O 

Lemmas II.1 and II.2 yield: 

If  initial point Xo is efficient, then 3' (t, Xo, v, k) is efficient for all t. 

for all S ~ N )  

for all S 4 : N ) .  

Proposition II.3: If initial point Xo E E (v) then 3' (t, Xo, v, k) with 
7 (0, Xo, v, k) = Xo is a solution of  System (II.a) if and only if it is a solution of  the 
following system: 

~c = Z k s [ e  S(x)]  +A S . (II.b) 
S , N  

It is informative to give an intuitive interpretation of  System (II.b) in terms of  pos- 
sible actions of  the players in the game. We will, in general, refer to such an interpreta- 
tion as a "behavior". It should be noted that, i'n this context, "behavior" is not in- 
tended to be a rigorous concept, but only an aid to intuition. 

Suppose, during negotiation among the players to determine the final distribution 
of  the payoff,  some efficient payoff  x is offered. Since the players participate in the 
game through coalitions, it is the task of  the coalitions, through demands or some other 
tactic, to alter x to obtain a more desirable payoff. Let us assume coalition S evalu- 
ates x by observing e S (x), and on that basis decides whether to demand more from 
its complimentary set, i.e., the remaining players. If e S (x) <~ O, coalition S is receiv- 
ing at least as much as it is worth (according to the characteristic function) and there- 
fore cannot enforce a demand on N -  S. If e S (x) > 0, however, we will permit S to 
extract payment from N -  S at a rate proportional to e S (x). It is understood, of  
course, that N - S  will be permitted to extract payment from S if eN. S (x) > O. 
The term k s [e S (x)] + in (II.b) represents the rate of  payment from N - -  S to S. The 
multiple k S is just the constant of  proportionality. Since all members of  a coalition 
participate equally in the activities of  that coalition, each member of  S receives 

1 1 k S[e  S (x)] + This I S I ks  [es (x)]+ while each member of  N - -  S pays IN I-- IS I 
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ensures that the total payo f fx  (N) remains constant. Summing all these payments over 
all coalitions of  2 N - {N, 0 }, the totat rate of  redistribution of  payoff  is clearly 

~s [es (x)]+ As .  
S~N 

The grand coalition N is excluded from the summation since there is no one from 
whom N can extract payment.  In addition, by choosing efficient initial points, the 
coalition N always receives satisfactory payment.  

In light o f  the previous discussion, it would not be unreasonable to view the coali- 
tional weights as some measure of  a coalition's ability to extract payment  from its 
complementary coalition; in other word:;, its "influence." Such heuristic interpretations 
will be given from time to time although no attempt will be made in this work to make 
these more rigorous. The coalitional weights will be studied later as a means by which 
certain notions of  fairness in bargaining czm be enforced. 

w Centroids for Games 

We will define k-centroids of  a game v in a somewhat more restrictive way than in 
Chapter I. The added constraint will be seen to cause no great difficulty. 

Let v be an n-person game, and k E R  2n'2. Define C(v, k), the set of  "k-cen- 
troids o f v "  to be the set 

{ x E E ( v )  l~p ' (x , v , k )=  inf tI,' 0,, v, k) } 
y~E(v) 

where 

SC-N \ [  11A S 1[ J 

Had we defined the k-centroid of  v as in Chapter I, that is by omitting the con- 
straint x (N) -- v (iV), the nature of  ~A S} would make it clear that the set of  uncon- 
strained centroids would be precisely {C (v, k) + Xu ] -- oo < ~ < o~) where u is the 
unit vector normal to E (v); i.e., C (v, k) is the projection o f  the set o f  unconstrained 
centroids onto E (v). This is because (A S, u~ = 0 for all S e N .  We can therefore 
drop the inf and substitute rain from now on. 

PropositionlI.4:2 is a k-centroid of  v if and only if .~ minimizes 

r  Y. 
SeN 

over E (v). 

k s II A s fl ~ ([e s (x)]+) 2 

Proof: Lemma II.2 shows that over E (v), r = cb'. 

For x E E  (v), let us call k s [] A s t] 2 ([e s (x)]+) 2 the "dissatisfaction of  S at x" ,  
and q~ (x, v, k) the "total dissatisfaction at x" .  
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The set {S I e s (x) > 0)  will be the "set of  dissatisfied coalitions". Using this termi- 
nology, C (v, k) is the set o f  efficient payoffs which minimize total dissatisfaction, 
while core (v) consists of  those efficient points at which total dissatisfaction is 0. As in 
Chapter I, if core (v) q: ~, core (v) = C (v, k). 

LemmalI .5:  For all S :~N, the dissatisfaction of  S at x is constant as x ranges 
over C(v,  k). 

Proof: See Corollary 1.6. [] 

Therefore, a dissatisfied coalition S is indifferent to variations of  payoff  over 
C (v, k) since e s (x) will remain constant. It is interesting that the set o f  dissatisfied 
coalitions is the same for all k-centroids of  v for a given k, i.e., it is impossible to 
satisfy any such S without raising the total dissatisfaction. 

Under this interpretation, the coalitional weights could be viewed as measures of  
the coalitions' sensitivities to not receiving their values - the larger k S, the more dis- 
satisfied is S at any given payoff. 

Proposition 11. 6: C (v, k) is a nonempty closed polytope. 

Proof: By Proposition 1.5, C (v, k) is a closed polyhedron. Suppose it is not compact, 
then it contains some half line (Y0 + ru I r~> 0, Y0 E C(v,  k), u 4: 0). Since 

n 

C (v, k) C E (v), it follows that E u i = O. 
i=1 

By Lemma II.5 

[eS(Y o +ru ) ]  + = [es (yo)] + for all r~>O and all s ~ 2 N - ( N ,  O) 

equivalently 

[e S (Yo) - ru (S)] + = [e S (yo)]  + for all r ~> 0 and S E 2 N --(N, gl). 

Therefore 

u (S)/> 0 for all S such that e s (Y0) ~< 0 

u ( S ) = 0  for all S such that e s ( y o ) > O  

or in any case 

u(S)~>O for all s E 2 N - - { N , O ) .  

This combined with u (iV) -- 0 implies u - 0 contradicting the previous assump- 
tion that u ~ 0. 
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We complete this section with a characterization of the collection of dissatisfied 
coalitions at a k-centroid. 

Shapley [1967] defined the notion of a balanced collection of sets. Given a collec- 
tion S of subsetsS o fa  setN, S is said to be balanced if there exists { c s > O I S ~ S  } 

such that s ~ c J  = a  N where(aS)i = ' i e S  i q~S ' Shapley noted that a balanced col- 

lection could be considered a generalized partition. 

Proposition II. 7: Let S be a collection of subsets S of a set N. Then S is balanced if 
and only if there exist (d  S > 0 [ S • s', ) such that s d S A s = O. 

S~s  

Proof: S is balanced if and only if there exists {c S > 0 [ S E S } such that 

S Cs aS = a/r Note that Y~ Cs aS can never be 0 whenever the family S is nonempty. 
s .s 

Thus S g= O is balanced if and only if there exists {c s > 0 1S ~ S } such that 

But 

V'-~ - o 

= z ~s ( a s -  JXl J t  
s , [ ~ - - / =  

 csI,S 
~/~i s 

2s Cs 1 A s 
IlhsII = 

Cs 
So, by putting d S - ib4sll 2, we can see that S is balanced if and only if there exists 

{d s > O I S E S } s u c h t h a t  2;ds A s = O .  [] 
s 

Corollary II.8: The collection of dissatisfied coalitions at a k-centroid is balanced. 

Proof: In the above proposition, put d S = k S [e S (x)]+for all dissatisfied S, where x 
is any k-centroid of v. 

w Convergence 

Let us restate the convergence results of Chapter I in terms of games. 

Proposition lL 9: Let v be a game and (k S} any set ofcoalitional weights. For any 
xo E E  (v), there exists a solution 3' (t, x0, v, k), continuous in t such that 
lim 3' (t, x0, v, k), exists and is a k-centroid of  v. 
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As before, denote this limit point by 2r (0% Xo, v, k). Thus bargaining as described 
above in which dissatisfied coalitions extract payment from complementary coalitions 
results in a redistribution of the total payoff v (N) over time in such a way that, as 
t ~ 0% the distribution converges to one which minimizes total dissatisfaction. Recall 
that this convergence is such that 3' (t, x0, v, k) approaches all k-centroids of v simul- 
taneously as t increases, and also follows the negative gradient of ~ '  (x, v, k). 
x7 ~ (x, v, k), on the other hand, does not, in general, lie in the hyperplane 
{x I x (N) = 0} as does V ~'. However, a simple computation demonstrates that for 
any x EE(v) ,  V~b' (x, v, k) is the projection of V ~ (x, v, k) onto {x Ix (N) = 0}. 
In this sense, 3' (t, Xo, v, k) follows the negative gradient of the-total dissatisfaction 
function. Therefore, while this type of behavior may not result in a "shortest route" in 
Euclidean distance to a k-centroid, which would translate into "minimum total ex- 
change of payoff", it is optimal in the sense that it produces, at any x, a rate of redis- 
tribution which is most effective in reducing total dissatisfaction locally, i.e., in small 
enough neighborhoods ofx .  Hence, players employing an efficient bargaining system 
arrive at a global optimum by acting in a locally optimal manner. 

Also, with respect to efficient bargaining systems, it is clear that, individually, each 
k-centroid of v is a stable point and, if we define a set to be asymptotically stable if 
all points of the set are stable, and if all trajectories converge to a point of the set then 
C (v, k) is asymptotically stable. In particular, the core, if nonempty, is asymptotically 
stable with respect to this system. 

w Cocentroids 

In the manner of Chapter I, we will define k-cocentroids of a game v. While it may 
appear in the model we are using that cocentroids are highly nonoptimal and therefore 
perhaps uninteresting, it will become evident that, in some cases, these "worst" points 
will bear an important relationship to the optimal centroids and certain "fair" points. 

Given a game v, coalitional weights (ks}, and some efficient point x, we will call 

k S IIa S II 2 ( [ - -e  S (x)]+) 2 

the "satisfaction" of S at x, and we will also call 

~ ( x , v , k ) =  E k SHA S [I 2 ([--eS(x)]+) 2 
S~N 

the "total satisfaction" at x. {S I e S (x) <<. O} will be the set of "satisfied coalitions" at 
x. The set of "k-cocentroids of v", CC (v, k) is the set 

( x E E ( v )  l ~ ( x , v , k ) =  min ~ ( y , v , k ) } .  
yEE(v) 

Although eocentroids are those points which minimize total satisfaction, it does not 
necessarily follow that total dissatisfaction is large over CC (v, k), since we wilt see in 
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Section w 12 of  this Chapter that C (v, r and CC (v, k) can, under certain conditions, 
coincide. 

Clearly, it is possible to display a system of  differential equations 

~ = -  s ks [-- eS (x)]+ A s, (II.c) 
S~N 

the solutions of  which, for any efficient initial point, converge to a k-cocentroid of  v. 
A behavior for such a system would be one in which satisfied coalitions are donating 
payoffs to their complements at a rate proportional to k S [ -  e S (x)] + while dissatisfied 
coalitions are silent, achieving, in the limit, a final distribution which minimizes total 
satisfaction. 

An argument entirely similar to that of  Proposition II.6 yields 

Proposition II. 10: CC (v, k) is a nonempty closed polytope. 

It is also clear that e s (x) is constant over CC(v, k) for all satisfied coalitions S. 

w 7. Continuity 

Let x0 ~ E  (v), and let ~, (t, Xo, v, k) be a solution of  System (II.b). We have already 
shown that as t --> ~ ,  this solution converges to a point 7 (~, Xo, v, k) E C (v, k). Pro- 
positions 1.16 and 1.18 establish the following results for games. 

Proposition II. 11: For any game v and any set of  coalitional weights (ks), 
3' (% xo,  v, k) is continuous inxo  over E (v). 

Proposition II.12: Let 

W = (v I core (v) 4: r }, 

then 3' (~, Xo, v, k) is continuous in (Xo, v, k) over 

2(= {(x, v, k) I x E E  (v), yEW,  t ER  2n'2 } 

Proof: Note the added restriction that xo E E (v), and also core (v) C E (v). Thus the 
proof  of  Proposition I. 18 must be modified slightly using the observation that if 
{v n } -~v then core (v n) ~ core v from Dantzig, et al. [1967] and also, despite E (v n) 
not being compact, /a (E (vn), E (v)) ~ 0. Then the proof  essentially goes as that for 
Proposition I. 18. 

w Allocation Systems and Nuclei 

Suppose for a game v and set of  coalitional weights {ks} , we were to combine the 
two systems (II.b) and (II.c), much as we did in Chapter I, to obtain 
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;c = ~ k s (e S (x))A S (II.e) 
SaN 

such a system will be called an "efficient allocation system".. The behavior it represents 
is straightforward: satisfied coalitions are giving to their complements their excess pay- 
off  while dissatisfied coalitions are extracting payment  from their complements. Note 
that in general a coalition S being dissatisfied does not necessarily imply that N - S is 
satisfied or conversely. However, in the case that core (v) :/: 0, it is true that e S (x) > 0 
implies eN. s (x) < 0 (for proof,  see Wang [1974], Lemma 2.1) so that dissatisfied 
coalitions are always demanding payment from coaJitions who "can afford it". 

We define N (v, k) to be the set of  k-nuclei o f  v which is the set 

(x E E (v) [ O (x, v, k) = min 
yEE(v) 

where 

o(y,  v, ~)) 

o (x, v, k)  = ~ k s IJ A s Jl 2 (e s (x))  2. 
SaN 

We will call O (x, v, k) the total "disorder" of  the game at x,  and it is clear that 
total disorder is the sum of  total satisfaction and total dissatisfaction. A k-nucleus of  v 
is therefore a point which minimizes total disorder. As with centroids and cocentroids, 
the k-nuclei fall into the class of  "convex nuclei" proposed by Charnes and Kortanek 
[1970]. 

PropositionlI.13: Let ~" (t, Xo, v, k) be a solution of  System (II.e) with efficient ini- 
tial point x0. Then as t ~ oo ~- (t, x0, v, k) converges to a k-nucleus o f  v. 

Proof: This follows from Corollary 1.19. 

Further it should be apparent that total disorder will decrease along solutions of  
(II.e). 

From Corollary 1.20, e s (x) is constant as x ranges over N (v, k) for all S ~ N. 
Since any given set of  excesses determines a unique payoff  we have 

Proposition 11.14: For any game v, and any of  coalitional weights {ks}, N (v, k) con- 
tains a unique point. 

By Proposition 1.23, we can state the following. 

Proposition 11.15: Let x E E  (v). Then x being in any two of  C (v, k), CC (v, k), and 
N (v, k) implies x is in the third. 

So if x minimizes both total dissatisfaction and total disorder, then x must mini- 
mize total satisfaction also. 

The sets C (v, k), CC (v, k) and N (v, k) can also be characterized by the tangency 
of  solutions of  the Systems (II.b), (II.c), and (II.e) as in Proposition 1.24. Such a result 
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gives information on the various behaviors of  the players at payoffs in these sets. For 
instance, players with a distribution x ,E CC (v, k), i.e., where total satisfaction is mini- 
mized, will act in the same way, instantaneously at x,  as if to arrive ultimately at 
C(v,  k) o r N ( v ,  k), although the trajectories will diverge as soon as they leave 
cc' (v, k). 

w Coalitional Weights 

Some possible interpretations of  the coalitional weights have been already men- 
tioned, and it is not difficult to list more, e.g., k S could be the probability o f  coalition 
S forming, giving the term k s [I A s II ([es  (x)]+) 2 a possible interpretation of  "ex- 
pected dissatisfaction." Similar interpretations have been used by other writers with 
respect to other weighting schemas. See, for example, Owen [1968]. Unfortunately, 
notions such as "influence" of  "sensitivity" or "probability of  a coalition forming" are 
difficult to quantify. Suppose instead, we view the coalitional weights as a mechanism 
whereby we can impose some concept of  "fairness" on the bargaining. In this section, 
this idea of  fairness will be made rigorous by axioms, not unlike those in the definition 
of  the Shapley value. Necessary and sufficient conditions on the coalitional weights 
will be deduced in order for these axioms to hold. In this manner, we will obtain a set 
of  "universal" coalitional weights, i.e., weights which are not functions of  the game v. 
Note that this has tacitly been assumed in the previous sections of  this work although 
it would be of  interest to see what sort of  results one could derive if k S were a func- 
tion of  v, e.g,  if k S ~ v (S). Such an analysis will not be undertaken here. 

Let ~c = D (x, v) be either (II.b) or (II.e). (The result also holds for System (II.c), 
but this fact is not o f  much interest.) We would like to enforce the notion that bar- 
gaining depends only on the characteristic function, rather than on the labelling of  the 
players. We can do that with the following axiom. Recall that for x E R n, we denote 
by zrx the vector in R n such that (zrx)i = x~ri, i = 1 . . . .  , n. 

A. If  ~ is any permutation on (1 . . . . .  n}, then we require 

D (nx, nv) = n D  (x, v) 

for all n-person games v and all efficient points x. 

Proposition II. 16: A necessary and sufficient condition for Axiom A to hold is that 
k s = k T whenever I S [ = I T 1. Such a set of  coalitional weights will be denoted 

Proof." We will prove this result for efficient bargaining systems only. The proof  for 
efficient allocation systems is entirely analogous. 
Necessity: Pick any 7 E R n ,  and So r  Let v be the game given by v (S) = 3' (S) 
for all S ~ So and v (So) = 3' (So) + a,, for some a > 0. Let n be any permutation 
on {1 . . . . .  n}, then 
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D(7 ,  v ) =  E k S [v (S) - 7 (S)] +A S = (kso " oO A S~ 
S ~ N  

D 0r'i, ~v) = Z k r [~v (T ) - -  ~ (Z)] + a r 
T~N 

The only non-zero term in this latter sum is for zrT = So or T = rr-lSo, i.e., 

D (~rT, 7rv) = (k_ ,  So" a) A "-' S~ 

Note that U1A'r-' S~ = A So , so if Axiom A is to hold, k r_~ So = kSo.  Observe that 

for all permutations lr, I 7r-lSo J = [So I. Thus since So was arbitrary, necessity must 
follow. 

Sufficiency" Let v be any game, and x any point in E (v). 
Then 

D ( x , v ) =  Z kis  I [ v ( S ) - x ( S ) ]  + A  S 
S ~ N  

D(rrx,  nv) = N kiT I [ ~ ( T ) - r r x ( T ) I + A  r.  
T--b N 

In the latter sum let T = rr-a.S, so 

D 0rx, rrv) = E kbr-aSi [ l rv( r r - lS) -~x  (1r-1S)]+A ~r-lS 
~r -I S a N  

= ~ k ls  t [v (S) - -x  (G)]+ A 'v-'s 
rt -1S4~N 

= Y_, k l s l [ v ( S ) - - x ( S ) ] + A  ~r-ls sotherefore 
S-~ N 

k l s l [ v ( S ) - x ( S ) ] A ~ - ' S  = D ( x ,  v). [] 7r-1 O 0rx, rrv) = 
S ~ N  

This result has pleasant consequences for symmetric players. For convenience, let 
us adopt the following convention: given two players i and/ ,  let us call player i "as 
powerful as" player ] (denote by i >> j) if v ({i)) ~> v ((j}) and for all S containing 
neither i nor],  v (S t.J {/}) ~> v (S U (j}). 

L emma 11.17: Given coalitional weights (k i s i}, if i >> j and x E R n such that x i ~ x / ,  
then D i (x, v) ~> Dj (x, v). 

Proof: Again, the proof is for efficient bargaining systems only. For allocation systems 
the proof is similar. 

D (x, v) = Y, (x)] + A s 
(Sl(~S ~ISl [es 
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+ klsl+ 1 [esu{i}(x)]+ A su{ i}  

+ klsl+ 1 [esu{i}(x)] +Asu{i} 
+ klsl+ 2 [esu{i}u,[i}(x)] + A su{i}u{]'} 

+ k~ [e{ii}(x)]+ A{ii}+ k~ [e{i}(x)] + A{i}+ k~ [e~}(x)] + A {/}. 

Therefore 

D i (x, v) --/9/(x, v) = klsI+l {[esu{i}(x)]+ ( 1 ) 
{sliq~s 

j~s )  

( ' ) - [esu{/} (x)]+ ~V1 - ISI - 1 -- [esv{/} (x)]+ 

( ' ) }  + [esu{i} ]+ big) - IS )  - l 

+~[-x i+v({ , } ) ]  + (1 --~ ) 

- -k ,  [--xi + v ({/})] + (1 - - - ~ / )  

/ 1 
{sli~s kISl+l 

ies} 

, )  -Isl-1 ([-x(S)-xi+v(SU{i})]+ 

- [ -  x ( s )  - xj  + v ( s  u ~'})1+) 

But we assumed 

and 

( ' )  + k l  1 W i l l  ( [ - x i + v ( { i } ) ] + - [ - x j + v ( { i } ) ] + ) .  

--X i 4" V ({i}) >/--Xj + V ({f}) 

--  x i + v (S  U { i } )  >1 - x / +  v (S  U (j'}) 

for all S such that i ~ S and ] ~ S, 

so D i (x, v) -- D/(x, v) f> 0. 

Proposition II.18: Suppose i >>/' and xo E E  (v) such that (xo) i >1 (Xo)j. If 7 (t, Xo) 
is a solution ofk  = D (x, v) with initial point Xo, then 
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3,i(t, Xo)>13,/.(t, Xo) forall  t~>O, 

and in particular 3, i (0% Xo) >~ 3,1. (0% Xo). 

P r o @  Suppose that for some t' < 0% 3,i (t', Xo) < 3' i (t', Xo). 
Let to = max (0 <~ t <<. t'13,i (t, Xo ) >~ 7 i (t, xo )). Since 3' is continuous in t, i t  fol- 
lows from the Mean Value Theorem that there exists a tl in the open interval (to, t' 
such that 

d 
d-t- [3,/(t, Xo) - 3' i (t, Xo)] [ = D i (3" (tl ,  Xo), v) - - D  i (3' ( t l ,  Xo), v)) < 0. 

t=t 1 

But 3, i (tl ,  Xo) ( 3'j (tl ,  Xo) by choice of to, so by Lemma II.17, 

D i (3' (t l, x o), v) -D/ .  (3' (t l, x o), v) ~> 0. This contradiction invalidates the assump- 

tion on the existence of  t'. [] 

So, i fa  player i is as powerful as a player j, and receives at least as much at the 
outset of  bargaining as j, then at no time in bargaining (or allocation) will player i 
do worse than player j. 

Corollary 11.19: Given coalitional weights {klsI}, if players i and j are symmetric, 

and (Xo)i = (Xo)/, then 3'i (t, Xo) = 3,1. (t, Xo) for ali t ~ 0. In particular 

3,i (~176 ) = 3,j (~176 xo ). 

Thus, Axiom A preserves symmetric payoffs to symmetric players, and, when en- 
forced, results in solutions of  efficient bargaining systems or efficient allocation sys- 
tems which reflect the power of  the players as indicated by their marginal effect on 
coalitional strength. 

Now suppose we have a dummy player i, who, at some payof fxo ,  receives v ({i}). 
There would not seem to be any reason for i to receive any more or less than v ((i)) 
at any future point in the bargaining. This is the essence of  Axiom B. 

B. For any game v, if i is a dummy player and x E E ( v )  where xi = v ({i)), then 
D i (x, v) = O. 

Proposition I1.20: A necessary and sufficient condition for Axiom B to hold for effi- 
cient bargaining or allocation systems is that for all S such that i ~ S :~N - (i}. 

ksu{i}  _ ks  

ISI + 1 ~r  ISI " 

Proof: Again, we give the proof only for bargaining systems. 
Necessity: Pick 3 ,ER n and some So ~ 2 N - - N ,  where i ~ S o  ~ N - - ( i } .  
Let v be the game 

v (So) = 3' (So) + a for some a > 0 
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v (So U {i}) = 3` (So U {i}) + c~ and 

v (S) = 3' (S) for all o ther  S. 

For  B to ho ld  we must  have 

o = D~ (3`, v) = k& M + A,.So + kso u(i}I~] § Aso u{i) 

s o  

= (kSo. e ) -  WI - ISol (ks o u(i)" ISol +~q-T 

ks o _ ks~ u{i} 

[NI - ISo l lSol + 1 " 

But So was arbi t rary ,  and B must  hold  for all games v, so this par t  o f  the p r o o f  is 
comple te .  

Sufficiency: Let v be any game with d u m m y  player  i, x E E (v) such tha t  

x i = v ({i}). 
Then 

O ( x ,  v) = Z 
{S:iqsSCN-(i}} 

+ Xs~(i}Iv (s u( i} )  

+ k{i } Iv ((i}) - -  xi] + 

+ kN.{i ) [v (N  - -  {i}) 

(k s Iv ( s )  - x  ( s ) ]  + A s 

- x  (S o{i})]+ A sU(i} } 

A{i) 

- x  ( N  - (i})] + A N-Q) , 

Note that  since x is efficient  and i is a d u m m y  

v (N - {i}) - x ( N - -  {i}) = v (N) - v ( ( i ) )  - -  x (N) + x ((i}) = 0, 

so that  

D(x ,  v) = 

When x i = v ({i}), this sum is zero.  

{ ( 1 )  
. - k s [v ( S ) -  x (S)] + ~Vl - ISI (S:i~S~N-Q}} 

2 ksu( i}  
{S:i~S~N-{i}} [Sl + 1 {[v (S) +v(O--x(a)--x( i )]+--[v(S)-(S)]+) .  

(II .O 
0 
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The next proposition give us some indication of  how dummies fare along trajecto- 
ries. 

PropositionII.21: Suppose v is a game with dummy i, x E E  (v). Then 

x i ~> v ({i)) implies D i (x, v) ~< 0 

x i ~< v ({i}) implies D i (x, v) >~ 0. 

Proof: This follows directly from Equation (II.f). [] 

So, along trajectories, the amount received by a dummy will tend to decrease mono- 
tonically, if it is more than the dummy's  value, or will increase monotonically if it is 
less. 

CorollaryH.22: Let ~' (t, Xo) be a solution to ~ = D  (x, v) with initial po in tx0 .  I f  i 
is a dummy and (Xo)i = v ({i)), then 7i (t, x0)  = v ({i}) for all t ~> 0. In particular 
"Yi (0% X0) = v ({i}). 

Suppose we wish to have both Axioms A and B hold. Then we can inductively con- 
struct the coalitional weights as follows (where we denote k S by k s when IS[ = a): 

kl = w  for some w > 0  

2 
k 2 = w ' - -  

I N ] -  1 

2 3 
k3 = w "  W I - 1  I N I - 2  

clearly 

klS I = w ISl! ( W I -  ISI)! 
(INI- 1)~ 

w 
If  we set c = ~ -  we have 

Proposition 11.23: A necessary and sufficient condition for Axioms A and B to hold is 

that forall  S ~ N  or0 ,  k s = c  ISI , fo rsome c > 0 .  

The constant c only determines the speed of  convergence of  the solutions, which 
can be taken into account by a change in the time variable. Therefore the constant c 
will be omitted henceforth. 
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w 10. The Shapley Value as a k-Nucleus of v 

Recall that the Shapley value is an efficient payoff which reflects the symmetry of 
the game and which gives dummies their marginal values. In light of the above discus- 
sion, it is apparent that the Shapley value is an excellent choice as an initial point for 
many bargaining systems. This is particularly true in those cases where the Shapley 
value is not a point of C (v, k). Then, by applying the bargaining system with the 
above coalitional weights, the limit distribution of payoff will be one reflecting the 
same desirable symmetries and payoff~ to dummies as the Shapley value, but with tow- 
er total dissatisfaction. Note that tiffs proves the existence of such a point. 

The allocation system converges to a point which minimized total entropy. We will 
now show the relationship between the Shapley value and the k-nucleus of v for the 
"fair" coalitional weights 

[1969] (Section 7): 

We first need the following result of Keane 

Lemma I1.24: The Shapley value is the unique efficient point minimizing 

S~N ]SI (eS(x)) z subject to x (N) = v (N). 

Proposition II.25: The Shapley value ~ Iv] is the unique k-nucleus of v, if for all 
S:/=N or 0 

k s = (  LN').S[ -1 

Proof: This follows immediately from the observation that 

1 1 
fs[ I[As 112--IN1-1 IsI 1 forall S--/:N. cJ 

Hence, for any efficient initial point, the solutions of an allocation system with coa- 

Shapley value is asymptotically stable with respect to this system. 
The difference between the dynamics of the bargaining and allocation systems pro- 

vides insight into the difference between C (v, k) (or core (v)) and the Shapley value. 
C (v, k) is, in essence a "greedy" solution concept, since the information about nega- 
tive excesses is supressed. Coalitions act only to minimize dissatisfaction, ignoring how 
much over their values certain coalitions may be receiving at any point. The Shapley 
value, on the other hand, arises when coalitions seek payoffs as close to their values as 
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possible, with the coalitional weights ( IN[ ) -1 I SI determining which coalitions must be 

the closest. 
Proposition II. 15 yields a condition for the Shapley value to be a centroid. 

PropositionlI.26: ~ [ v ] E C ( v , k )  for k =  (INI) -1 ISI if and only if 

[v] ~ c c  (v, Ir 

Suppose core (v) :/: • and r [v] is in the core. Then it is the unique core point 
which minimizes total satisfaction. Since the core is compact, however, there is a point 
which maximizes total satisfaction over the core. Such a "maximin" point might be of  
interest to players of  an actual game. 

w 11. The Two-Center of Spinetto 

Other choices of  the coalitional weights can be justified on the basis of  which sets 
of points become optimal when those weights are used. Spinetto [1974], defined the 
two-center to be the point minimizing. 

(e s (x)): 
S a N  

over all x E E (v) 

subject to x i >~ 0 for all i. 

Letting k s = II A S II -2 : ISI(tNI - ISI) the k-nucleus of  v is precisely the two- 
INI 

center whenever the k-nucleus is an imputation. Using this fact, a condition for the 
two-center to be in C (v, k) or core (v) can be deduced. Note that these weights satisfy 
the symmetry condition. 

w 12. Constant Sum Games 

Constant sum games are those games for which v (S) + v (N -- S) = v (N) for all 
S :~N. For this class of  games, a particular limitation on the coalitional weights yields 
an interesting relationship among the solutions of  the various systems already encoun- 
tered. 

Proposition11.27: Let v be a constant sum game. If k s = kN. S for all S then there 
exists a unique point x such that {x} = C(v, k) = CC(v, k)  = N ( v ,  k). Furthermore, 
for any initial point Xo, the orbits through x0 for the bargaining and allocation sys- 
tems (and also System (II.c)) coincide. 

Note: If 3' (t, Xo) is a solution to a system of  differential equations, the orbit 
through x0 is {3' (t, x0) I t~> 0}. Also note that the condition on the coalitional 
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weights in Proposition II.27 is satisfied by k s = IS1 

among others. 

and by k S = fPA s I1-2 , 

Proof: For x E E (v), v (S) - x (S) = - (v (N - S) - x (N - S)) 

so [e s (x)] + = [ -  e:~. s (x)]  +. 

Hence by the choice of  coalitional weights 

k s [e s (x)] + = kN. s [--eN. S (x)] +. 

But observe, A S = - - A  N'S 
so 

k s [ e  s (x ) ]  +A s = -  2 
SeN  S e N  

SeN  
This shows also that 

kN_ S [--eN. S (x)]  + A N'S 

k s [-- e s (x)] + A s. 

2 Z k s [ e S ( x ) ] * A S =  E k x ( e S ( x ) ) A S .  
S4:N S e N  

Therefore, if 7 (t, Xo, v, k) is a solution to 

k = 2 k s [e s (x)] + A s, then it is a solution to 
S e N  

;c = - Y~ k s [ -  e s (x)] + A S and if ~" (t, Xo, v, k) is a solution to 
S:sN 

= Y~ k s ( e  s ( x ) ) A  s 
S.~ N 

then 7 (2t, Xo, v, k) = ~ (t, Xo, v, k). So the orbits coincide. The coincidence of 
C (v, k), CC (v, k), and N (v, k) follows, or can be seen from the fact that in all three 
cases, the same function is minimized. 
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w 13. The Nucleolus as k-Centroid of v 

For any x ~ E  (v), let Q (x) be the vector in R 2n-2 whose components are the ex- 
cesses e s (x) arranged in decreasing order. We will define the "nucleolus of  the set of 
efficient points," v*(v), to be any point o f E  (v) for which Q (x) is lexicographically 
teast over the hyperplane E (v). Similarly, "the nucleolus of  the game v," v (v), is gener- 
ally considered to be that imputation for which Q (x) is lexicographically least over 
the set of  imputations for v. It has been shown that both v* (v) and v (v) are unique 
points (for a further discussion of  the nucleolus, see Schmeidler [ 1969] and Kohlberg 
[1970]). Clearly, if v* (v) is an imputation, then u* (v) and v (v) coincide. 
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Proposition 11.28: Let v be any game. 
a) If  core (v) 4= O, then v (v) = v* (v) and v (v) is a k-centroid of  v for any choice of  

coalitional weights. 
b) If  core (v) = 0, then there exist coalitional weights (ks)  such that v* (v) is a 

k-centroid of  v. 

Proof: Part a) follows directly from the observation that if core v 4: 0, then for any 

k 2n-2, core v = C (v, k) and v* (v) E core (v). 

Part b) follows from a minor modification of  an argument of Kohlberg [1970] 
which yields the result that the set 

B = (S I e s (v* (v))) > 0 

is balanced. By Proposition II.7, therefore, there exist positive constants (d S IS ~ •) 
such that 

let 

d s A  S = 0 
B 

as 
e s (v* (v)) 

k S = 
any positive value 

S ~ B  

S ~ B .  

Then 
Z k s [e  S(v*(v))] § s = O  

S-~ N 

proving the result. Ez 

Corollary 11.29: Let v be any game. I f  v* (v) is an imputation, then v (v) is a 

k-centroid of  v for some set o f  coalitional weights. 

Corollary 11.30: Let v be any game. If  v (v) is in the interior of  the set of  imputa- 
tions for v, then v (v) is a k-centroid of  v for some set of  coalitional weights. 

Proof: If  v* (v) is an imputation then v* (v) = v (v) and the result follows. If  not, 
then in a neighborhood of  v (v) lying in the imputation set, there is a point y on the 
open line se~nent (v* (v), v (v)) for which Q (v) is lexicographically less than 
Q (v (v)), contradicting the definition of  v (v). [] 

It is not difficult to show that if v is a 0-monotonic game, then v* (v) is an impu- 
tation (see, for example, the proof  of  Theorem 2.4 in Maschler, et al. [ 1972]. This 
paper also gives a definition of  0-monotonic games.). Therefore, we have 

Corollary 11.31 : I f  v is a O-monotonic game, then v (v) is a k-centroid of  v for some 
set o f  coalitional weights. 
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w 14. Examples 

The first example is a case where the core, the Shapley value, and the k-cocentroid 
do not coincide. 

Examplel: v(123)=1  v (12)=7 /8  v (13)=3 /4  v (23)=3 /8  

v(1) =v(2 )  =v  (3) = 0 

Core (v)= {(5/8, 1/4, t/8)} 

( 2 3 1 4 1 1 )  
Shapley value = 48' 48' 48 

( 1 8 1 1 1 1 )  
k-cocentroid of v = 40' 40" 4-0 

The second example exhibits some solutions to 

fOr S S 
-1 

:;c = ~ ks [es (X)]+ A S 
SaN 
~N \ -~ 

for k S=  IS } " The are drawn in the set . trajectories imputations o f  displayed in 
/ 

barycentric coordinates. 

Example 2: Consider the game 

v (123)=1  v (12)=1 /3  

v (1) = v (2) = v (3) = O. 

v (13 )=1 /5  v (23 )=1 /2  

Figure 1 depicts several of the orbits of System (II.b) for k S = 1 for all S. 
It is not difficult to see what is happening along these trajectories; for instance, 

along the trajectory marked (a), player 2 is making payment to 1 and 3 equally until 
core (v) is reached. Along (b), 2 is again making payment to 1 and 3 until coalition 
{23} finds itself with too little, at which point player 1 must also pay 2 and 3 to Cor- 
rect this imbalance. Over the trajectory, player 2's share decreases, 3's increases and 
1 's initially increases and then decreases. 

w 15. Discussion 

A number of valid objections can be raised concerning the systems of this paper. 
The players must agree to act according to the behavior modelled by these systems in 
order for the results to apply to a game situation and hence no information can be 
gained about what would happen if a player or coalition changed its behavior unilater- 
ally. This type of normative approach is not, however, uncommon in game theory. 
Also, because all the systems are autonomous, they cannot be used to model situations 
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e23( x ) = 0 

x 1 = 0  
x 2 = 0 
x 3 =  1 

12(x)  = 0  

\ 
\ 
\ 
\ 
1, 

=1 x 1 
x 2 = 0 
x 3 = 0 

(x) -0 

.# 

, $ i  de" 

x 1 =0 
x2=1 
x 3 =0 

12-15-75-1 FIGURE 1 
For Example 2 

SOLUTIONS 

Figure 1 
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m which the satisfaction or dissatisfaction of the players is a function of time as well 
as payoff. Such questions are of great interest and await further investigation. 

Nevertheless, this differential approach to cooperative game theory has numerous 
benefits, among them the characterization of several of the better known solution con- 
cepts as stable points (in a well defined sense) of systems of differential equations with 
reasonable behavioral interpretations. In addition, the conditions under which differ- 
ent behavior (as defined by the systems) lead to different solution concepts (as deter- 
mined by the critical points) may enable one to choose a solution concept to fit a parti- 
cular situation by observing which behavior seems to dominate. 
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