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Formula t i on  of  Bayesian Analysis 
for Games with Incomple te  Informat iOn 

By Jean-Francois Mertens, Louvain-la-Neuve 1 ), and Shmuel Zamir, Jerusalem 2) 

Abstract: A formal model is given of Harsanyi's infinite hierarchies of beliefs. It is shown that the 
model doses with some Bayesian game with incomplete information, and that any such game can 
be approximated by one with a finite number of states of world. 

1. Introduction 

In analyzing a game with incomplete information, i.e. games in which players are 
uncertain about all the parameters defining the strategy spaces and the payoff func- 
tions, one is led naturally to handle "an infinite hierarchy of beliefs" for each player: 
His beliefs (i.e. subjective probabilities) on the parameters of the games, his beliefs 
on the beliefs of the other players on the parameters of the games, his beliefs on the 
other players' beliefs on his own beliefs on the parameters of the games, his beliefs 
on the other players' beliefs on his own beliefs on their beliefs on the parameters of 
the games, e tc . . .  

In an attempt to overcome the difficulty of having to work with infuaite sequences 
of mutual beliefs. Harsanyi [ 1967 - 1968] introduced the concept of type which 
proved to be very useful in making games with incomplete information much more 
manageable. Harsanyi's idea was to summarize all parameters and beliefs concerning 
a certain player, by one vector which he calls the attribute vector. In his words [see 
Harsanyi, 1967, p. 171 ]: " . . . w e  can regard the vector c i as representing certain physical, 

social, and psychological attributes of player i himself in that it summarizes some cru- 
cial parameters of player i's own payoff function U i as well as the main parameters of 

his beliefs about his social and physical environment. . ,  the rules of the game as such 
allow any given player i to belong to any one of a number of possible types, correspond- 
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ing to the alternative values of his attribute vector c i could t a k e . . .  Each player is 
assumed to know his own actual type but to be in general ignorant about the other 
players' actual types." 

Can this idea be formalized mathematically? In other words: Starting from a set S 
of all possible values of the parameters of the game can one identify a mathematically 
weU defined set Y of the "states of the world" in which every point contains all 
characteristics, beliefs and mutual beliefs of all players? 

If yes, would any infinite hierarchy of beliefs lead to some point in V? This is 
exactly the construction we do in Section 2 of this paper. The space Y defined there is 
what we call "the universal beliefs space generated by S" and it includes, roughly 
speaking, all possible states of the world arising from S. Furthermore, there is a well 
defined space T, called the space of all possible types of a player in such a game, such 
that ~/and T satisfy (up to some appropriate homeomorphism) the following two 
relations: 

(i) Y = S • IT]n; (ii) T = the set of all probability distributions on (S • [T]n l ) .  
The first equality says that a state of the worldy E V consists of a state of nature 
s E S and an n-tuple of types, one for each player. The second relation says that a 
type of a player is just a joint probability distribution on S and types of the other 
(n - 1) players. This is exactly the formalization of the notion of 'type' as used by 
Harsanyi. 

Typically in an actual situation many of the points in Y will be considered im- 
possible by all of the players. In other words what is then relevant is only some 
subset of Y. (This is for instance the case if all players know one parameter in S but 
are uncertain about the others). This leads to the notion of what we call beliefs 
subspaces of Y. 

It turns out, as it can be easily seen, that even if we start with a set S which is 
finite, both ~/and most of its beliefs subspaces will be sets of high cardinality. On the 
other hand, most of the work on games with incomplete information assume finitely 
many possible states of the world. In Section 3 we provide some justification for this 
by proving that any beliefs subspace of ~/can be "approximated" by afinite beliefs 
subspace which is arbitrarily close to it in the Hausdorff distance between dosed 
sets. 

In Section 4 we consider the concept of consistency, also discussed by Harsanyi 
and later by Aumann/Maschler. Generally speaking, a state of the world represents a 
consistent situation if there is a probability distribution on all the states of the world 
such that the beliefs of each player equal the conditional probability distribution 
given his private information. We define this concept formally and prove that it in 
fact captures the intuitive meaning of consistency. We then show that the consistency 
of an actual situation is common knowledge, in the sense that each player, based on 
his own information only, can test the hypothesis that the state of the world is 
consistent, if yes to compute the consistent set of states to which it belongs and 
compute the global probability distribution on ~/corresponding to the consistent 
situation he is in. In such a test each player has (subjective) probability 0 of comitting 
any error in his conclusion. 
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Finally, in Section 5, we define a game in strategic form determined by the beliefs 
space (or subspace). This will be typically a game "with vector payoffs", but the Nash 
equilibria are well defined. For a consistent beliefs subset, the Nash equilibria will be 
the same as those of a certain extensive form game in which the state of the world 
is chosen according to the (uniquely determined) probability distribution, and each 
player is informed on what is his own type. This is Harsanyi's theorem [Harsanyi, 

1967, part II, p. 321] which is in the background of most models of games with in- 
complete information. 

It should be pointed out that works in the same direction were done by Bffge et al. 
who, being interested mainly in the equilibrium points of games with incomplete in- 
formation, incorporated the strategy choices of the players as part of the space of 
parameters on which the infinite hierarchy of beliefs is built. 

2. The Universal Beliefs Space ~/ 

The main objective of this section is to prove Theorem 2.9 which establishes the 
existence of a space of infinite hierarchy of beliefs. We consider a situation of incomple- 
te information involving a set of players I = ~1, . . . .  n ), the members of which are un- 
certain about the parameters of the game they are playing which may be any element 
of some set S (we may think of a point of S as a full listing of the strategy spaces and 
the payoff functions). We shall refer to S as the parameter-space. 

Assumption: S is a compact space. 

Remark: To see that this assumption is not too restrictive, let us see how, in a typical 
and rather general model if incomplete information, the space S will in fact be com- 
pact: Observe that S has most generally to include all the parameters of the game 
including the parameters of the utility functions of the player. So let So be the set of 
possible values of all the parameters of the game. Clearly So may be assumed (by 
enlarging it if necessary) to be compact. For each player i let A i be his action 
set (enlarged so as to become independent ofS  E So). The set of outcomes can 

then be identified with the set C = So • ~( A i and is compact i rA  i are compact. The 
i=1 

Von-Neumann Morgenstern utility function of player i is a (continuous) real map 
u i: C ~ R ,  which we may want to assume to be bounded (for instance by applying 

the Von Neumann-Morgenstem theory to all countable lotteries,in order to avoid the St. 
Petersburg paradox). Hence we may take u i: C ~ [0, 1 ] and the set of all possible 

games is then S = So • [[0, 1]c] n which is compact. A special case is of course that 

in which So andA i are finite then S will be in addition metrisable. 
For any compact space X, II (X) will denote the compact space of probability 

measures on X, endowed with the weak* topology. [It is dearly dosed in the set of 
all measures of norm ~< 1 since the function 1 is continuous-, and the set is by Riesz 
theorem the unit ball of the dual o fC  (X), hence weak*-compact by Alaoglu's 
theorem.] 
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Definition 2.1: A coherent beliefs hierarchy of level K (K = 1, 2 , . . .  ) is a sequence 
(Co, C1 . . . . .  CK) where: 

1) Co is a compact subset of S and for k = 1 , . . .  ,K, C k is a compact subset of 

Ck. 1 X [11 (Ck.1)] n (as topological spaces). (We denote by Pk-1 and t i the 

projections of C k on Ck. 1 and the i-th copy of II (Ck.1) respectively.) 

Pk-1 ( C k ) = C k - 1 ; k  = 1 . . . .  ,K.  

V c k E C k let ck. 1 = Pk-1 (ck)' then V i: 

H1) the marginal distribution o f t  i (Ck ) on Ck_ 2 is t i (ck.1); 

H2) the marginal distribution of t i (ck) on the i-th copy of II (Ck.2) is the unit 

mass at t i (ck.X) = t i (Pk-1 (Ck ))" 

Vi ,  V t E t i  (Ck);k  = 1 , . . .  ,K,  t (Pk-1 [(ti)-I (t)]} --- 1. 

We interpret C k as a set of beliefs up to level k and thus a point in C k consists o f  

hierarchy of beliefs up to level (k - 1) (i.e. a point in Ck.1) and for each player i a 

probability distribution t i k on hierarchies of beliefs up to level (k - 1) (i.e. 

tik E 11 (C k_l)). Condition H1 says that player i's k-level beliefs coincide with his 

(k - 1) level beliefs in whatever concerns hierarchies up to level (k -- 2). Con- 
dition H2 says that player i knows his own previous order beliefs. 

In the next definition we formalize the properties of the space of states of the 
world C we would like to obtain: Any point c E C determh3.es uniquely a set of 
parameters s E S and the type t i of each player. The type t ~ is a probability distri- 
but_ion on C which is coherent in the sense that each player knows his own type. 
In other words if t i ~ II (C) is a certain type of player i, then in all points in the 

support of t i (Supp (ti)) player i is of type t i. This motivates the following. 

Definition 2.2: An  S-based abstract beliefs space (BL-space) is an (n + 3) tuple 

(C, S, f,  (ti)n=l) where C is a compact set, S is some compact space,f is a continuous 

mapping f :  C ~ S and t i, i = 1 . . . .  , n, are continuous mappings tt: C ~ II (C) (with 
respect to the weak* topology) satisfying: 

(*) ~ E C a n d ' c E S u p ( t i  ( c ) ) ~ t i  ( ~ = t i  (c). 

(2) 

(3) 

(4) 

When no confusion may result we shall denote the BL-space simply by C. 
The space C is a space in which each point c E C contains a full description not 

only of the state of nature s ~ S but also of all beliefs, beliefs on beliefs etc. on S. 
In fact if we interpret t i as player i's (subjective) probability distribution on C, then 
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combined with f i t  defines a probability distribution on S, which is the fLrst level 
beliefs of player/. But t i also defines a probability distribution on (t])]~i, and hence 

on the first level beliefs of the other players. This may be called the second level 
beliefs of player i. Proceeding inductively we find that with each c E C is associated one 
infinite hierarchy of beliefs for each player. The condition (*) is a consistency con- 
dition which says basically that a player i assigns positive probabili.ty ( in the discrete 
case) only to points of C in which he has the same beliefs. In other words he is certain 
of his bwn beliefs. 

Let us write now formally the above mentioned observation: 
Given S we define the spaces X k, Tic, by 

Xo = S  

rk = n 

X k = x k .  1 X [ T k ] n = s x  ~ [Tl]n; k = l , 2 , . . .  
I=1 

Define also X = S X X [Tl]n, which is a well defined compact space when so is S. 
l =1 

Note that X is generated by S and whenever we want to specify the generating 
space we shall write X (S). We shall denote a typical point in X (S) as 

1 . t ~  . . . .  ), where for each i and each k t i E T !  = x = (s, t~ , . . . , t n . . . .  ' tk " " ' k K 

---- II (Xk.x).  

If ~: C -+ Cis a continuous mapping between two compact spaces C and C, we 

denote by ~ the mapping II (C) ~ II (C) canonically induced by r namely the 

mapping ~: rl (c) ~ II (c) which maps/a E II (C) to t1 E II (C) such that for any 

continuous functionf on ~ f f (c-") d~ = f (.f o ~) (c) dl~. 
? c 

To any S-based abstract BL-space (C, S, f, (ti)n= 1 ) we define now a certain natural 

continuous mapping h : C ~ X (S). This will be done by defining for each 

k = 0 , . ,  2 . . . .  a mapping h k : C ~ X k such that 

k < ~ l ~ p k ( h t ( c ) ) = h k ( c  ) V c ~ C ,  

in other words, h k (c) is the projection ofh  (c) on X k. 

The mappings h k are defined inductively as follows: ho (c) = f ( c ) .  Assume 

h k : C ~ X k is defmed then we want to define hk+ 1 : C-~ Xk+ 1" Take any c E C and 

let h k (c) = (s, t l  . . . . .  t n . . . . .  t~ . . . . .  t~ )  e X  k then hk+ 1 (c) = 

= (s ,  t l  . . . . .  t n . . . . .  t~ . . . . .  t~, t ~ .  1 . . . . .  t Z + I ) E X k +  1 where V i ,  
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tk+l = hk oti: C-+ II (Xk ) = Tk+ l' and hk is the mapping/~k: 11 (C)+ II (Xk ) 

canonically induced by h/r 

It follows that the so defined h : C-+ X (S) is continuous. Let H = h (C) _c X (S). 
When we want to emphasize the underlying S we shall write H (S). By construction, 
the image h (c) contains all possible information concerning S and beliefs on S. There- 
fore it is intuitively pretty clear that h (c) =/= h (c') for c r c '  unless c and c' are identi- 
cal ha whatever concerns S and differ only by something which is redundant to S and 
to the beliefs structure on S. 

To define this notion of nonredundancy more formally, given an BL-space 

(C, S, f, (ti)n= 1)let F be the smallest a-field (of subsets of C) for which f is measur- 

able and Vi, (t l" (c)) (B) is measurable VB E F. 

Definition2.4: ABL-space (C, S,f, i n (t)i = 1 ) is said to satisfy the non-redundancy 

condition (NR-condition) if the a-field/: separates each two distinct points in C. 
By our previous discussion we thus have: 

Proposition 2.5: If an S-based abstract BL-space (C, S, f, (ti)n= 1) satisfies the NR- 

condition then the mapping h : C -~ H is also one to one hence it is an isomorphism. 
In dealing with BL-spaces we would like to consider homeomorphisms between 

BL-spaces which (in addition to their topological properties) will also preserve the 
beliefs structure. These mappings will be calledBL-morphisms and we proceed now to 
define them formally. 

Definition 2.6: A beliefs morphism (BL-morphism) from a BL-space (C, S, f, i n (t)i:1 ) 
to a BL-space (~  S, ~ (7i)n= 1) is a pair (~o, ~') where ~0' is a continuous mapping 

of C onto Cand ~0 is a continuous mapping of S onto ff such that for each i, 
i = 1 . . . .  , n, the following diagram comutes: 

q9 
s 

c , 

a(c) > 

where ~' is the mapping ~': II (C) -+ II (C) canonically induced by r 
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i n ( ~ , ~  ~i n Definition2.7: ABL-morphism(~,~') from(C,S, f ,  (t )i=1) to ( t ) i=1)  is 

called a BL-isomorphism if the inverse mappings r and (~')-1 exist and 

(r 1, (r is a BL-morphism from (C, S, ~ ('ii)n= 1 ) to (C, S, f, (t i)i=n 1 )" The two 

BL-spaces are said to be BL-isomorphic. 
Some thought on the diagramm of Definition 2.6 leads us to the observation that 

if (r r is a BL-morphism from C to Cthen there is actually one essential mapping 
and not two since ~' seems to be determined by ~ via the above diagram. This is in 
fact true provided Csatisfies the NR-condition: 

i n t.~i~n Lemma 2.8: If (r ~') is a BL-morphism from (C, S, f, (t)i= 1) to (~  S, ~ ~ ~i= 1" 

and if the latter satisfies the NR-condition, then r is uniquely determined by ~. 

Proof: Using our notation h : C--> X (S) and h: C-+ X (S) we denote by 

h c~: C ~ X ( ~ ( S ) ) C _ X ( S ) t h e m a p p i n g w h i c h m a p s c E C t o h  (c) in which the 
underlying S is rephced by r (S). The fact that the diagram of Definition 2.6 
computes implies that V c E Cwe have h (~' (c)) = (h o r (c) E X  (S). Since C 
satisfies the NR-condition h is one to one (by Proposition 2.5) and hence invertible. 
Therefore: 

(c) = - *  (h o (c).  

In words, the idea of the proof is that ~ combined with the diagram determines for 
each c E C uniquely the infinite hierarchy h (c') associated with c' = ~' (c), and hence 
it determines uniquely c' itself'since C satisfies the NR-condition. 

Remark: In view of I_emma 2.8 we shall shorten our notation and terminology and 
speak ofBL-morphism q from B L-space C to BL-space C. This is the BL-morphism 
induced by the mapping r S --" S. 

We are now ready to state the main theorem of this section. 

Theorem 2.9: For any compact S and positive integer n there are spaces g and T 
such that: 

1) V = S X [7-] n / 
2) T = H (S X [T]n_l ) f up to BL-morphisms. 

y | 3) There are compact spaces { k }k=O s.t. V k (Yo, Y 1 , . . . ,  Irk)isa coherent beliefs 

hierarchy and V is the projective limit {Yk };=0 (with respect to the natural pro]ec- 

ti~ pk-l : Yk ~ Yk-l" We denote by Pk also the pro]ection o f  V on Yk)" 

4) Y is an S-based BL-space (with the projections f :  Y -~ S and t i : Y -~ "~). 

5) Any S-based abstract BL-space, which satisfies the NR-condition, is canonically 
BL-homeomorphic to a compact subset o f  Y (which will be called a BL-subspace 
of V). 
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6) For any coherent beliefs hierarchy (Co, C a , . . . ,  C K) there is a BL-subscpace C 
o f  Y s.t. Pk (C) = Ck, k = O . . . . .  K. 

7) Any "Y and T which satisfy 1) and 2) or 4) and 5) can be mapped continuously onto 
V and 7- respecn~ely. This map induces a BL-homeomorphism between V and a 

BL-subspace o f  Y. Any ~/ which satisfies 3) and 6) can be BL-morphically mapped 
onto V. 

/ will be called the Universal BL-space generated ,by S (and n) and Y will be called 
the Universal type space generated by S (and n). 

y ** Proof: We shall prove the theorem by constructing the sequence ( k)k=O in (3) and 

define V as its projective limit and f l  as the projection of V on player i's coordinates. 
Then we shall prove that these ~/and Y satisfy the required properties. 

Construction o f  V 
y ** 

Define the sequence of spaces ( k)k=O as follows: 

Yo = S a n d  fork = 1 , 2 , . . .  

(2.1) Yk = (Yk E Yk-1 • [17 (Yk.1)] n I(a) Vi the marginal distribution of 

ti (Yk ) on Yk-2 is t i (Yk-1) and (b) the marginal distribution o f t  i (yk) 

on the i-th copy of II (Yk-2) is the unit mass at t ~ (Yk-1)}" 

As we have already noted i fX is compact, then II (X) is also compact. Note also that 
the conditions (a) and (b) in the definition of Irk are closed conditions. It follows that 

if Yk-1 is compact, then Yk is also compact. Since Y0 = S is compact, it follows 

inductively that Yk is compact V k. Let V be the projective limit of (Yk}k'*=O with 

respect to the natural projections Pk-1 : Yk -~ Yk-l" V is a well defined compact 
set. 

Now by definition of Yk we have that V k, (Yo . . . . .  Irk) satisfy automatically 

all properties of a coherent beliefs hierarchy (Definition 2.1) except for condition 
(2), namely that Pk (Yk+l) = Yk' k = 0, 1 , . . .  This we prove now: 

Proposition 2.10: Pk (Yk+l) = Yk' k = O, 1, 2 , . . .  

This proposition has the following immediate corollaries. 

Corollary 2.11: 

i) V k, (Yo, Y1, . � 9  Irk ) is a coherent beliefs hierarchy; 

(ii) V k, pk ( V)= Yk, inparticular g r 0. 

The proof of Proposition 2.10 will follow from the following. 
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Lemma 2.12: Let A and B be compact sets, D a compact subset o f  A • B and 
q EII  (A). A necessary and sufficient condition for the existence o fp  E 11 (D) 
whose marginal distn'bution on A is q, is that q (D A) = 1, where D A is the projec- 
tion o lD on A. 

Proof: Since D C D A X B, the necessity is obvious. To prove the sufficiency assume 

q (D A ) = 1. Defme Lq (f) = f fdq. Lq is a linear functional defined on C (D A), (the 

linear space of continuous real functions on D A). If we consider a function on D A as 

a function on D, by the natural definition F (a, b) = f (a) V (a, b) E D, and write 
Lq (F) = f Fdq, Lq is then a linear functional defined on a linear subspace of 

C (D). This is clearly a positive functional with II Lq [I = 1. By Hahn-Banach extension 

theorem Lq can be extended to a positive linear functional L of norm 1 on C (D). 

Finally by Riesz representation theorem there is a probability measure p E II (D), 
s.t. L (f) = f fdp V f E C (D). This p is the required extension ofq. 

D 

Proof o f  Proposition 2.10: We prove the proposition inductively on k. It holds for 
k = 0 since Yo = S and Y1 = S • [II (S)] n , thus Po (Y1) = Yo. Assume that 
Pk.1 (Yk) = Yk-1 and let us prove that Pk (Yk+l) = Yk" In other words we have to 

show that any pointy ~ Yk can be extended to a point (y, t ~ §  t~+l) E Yk+l" 

So we have to establish the existence of an n-tuple t~+ 1 . . . .  , t~+ 1 of probability 

distributions t~+ 1 E II (Irk) satisfying conditions (a) and (b) in the def'mition of 

Irk' namely that the marginal disitribution on Yk.1 • [1I (Yk-1)]i is t~ • ~ti(y ), 

where ~ti(y ) is the element 1I (Yk-1) which assigns mass 1 to t i (y). We have thus 

to show that each of these marginals can be extended to a probability distribution 
i tk+ 1 on Yk-1 X[II (Yk.1)]l X . . .  X [II (Yk-1)]n supported by its subset Irk i.e. 

t~+l (Y/c) = 1. Using/_emma 2.12 it remains to prove that 

Sup (t i (y)) X ~t i (y)) = Supp It i (y) X ~tify]] C_ 

projection of Yk on Yk-i X [11 (Yk-1)]i" 

So let 07k.1, t i (y)) ~ Supp t i (y) X (t i (y)) i.e.~k.1 E Supp t i (y) C_ Yk-l" Since 

t i (y) assigns probability 1 to t i(pk. 1 (y)) it follows that t i 07k.1 ) = t i (Pk-1 (Y))" 

Since by induction hypothesis Pk-1 (Yk) = Yk-l'  there is an extension 

(Yk-l' ~k . . . . .  ~ff) E Irk" We claim that if in this point we replace t'~ by t i (y) we 

obtain a point which is also in Irk' proving that 07k_l, t i (y)) is in the projection of 

Yk on Yk-1 X [II (Yk-1)]i and thus completing the proof. 
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To see that 0Vk.1, t'~ . . . .  , t i (y) . . . .  , ~ )  e Irk' note that all conditions con- 

cerning t'~ ] r  are satisfied since ~k - l '  t'k . . . . .  t'~) E Yk" The conditions concern- 

ing t i (y) are satisfied since these are the conditions required fory E Yk (recalling 

that t i 07k.1 ) = t i (Pk-1 0'))). This completes the proof of Proposition 2.10. 

Remark: Note that when y E Irk is such that all distributions t]' are of Finite support, 

the extension o fy  to a point in Yk+l is straightforward and an extension, also with 

finite support, can be pointed at explicitely. 
For an),y = 0'0, Yl . . . .  ) E Y and for each i ~N,  consider the sequence of prob- 

abilities t t (Yl ), t i (Y2) . . . .  on Yo, Y1, Y~, . . . respectively. By the definition of 

(Yk}~=0 , this sequence satisfies that V k, the marginal o f t  i (Yk+l) on Yk-1 is t t (Yk)" 

Since also 0 k (g)  = Yk V k, it follows that for any continuous real functionf K on 

g which depends only on K coordinates, the sequence of integrals ( f f K  d t i (k));= 1 

is well defined and constant for k ~>K + 1. Therefore the sequence (t i (Yk))g=l 

defines a linear positive functional of norm 1 on the space of all such functions fK 

and hence on the closure of this space which is the space of all continuous functions 
on Y. By Riesz representation theorem there is a uniquely determined probability 
measure in 11 (Y) which represents this linear functional. 

Definition 2.13: 

(i) For eachy E g and V:i EN, define by t i (y) the probability distribution on 
g determined by y in the above described way 

(ii) Let -r" = t; (v )  _c 1i (v).  

Remark: Note that the mappings t i are continuous. 

Clearly all T i are copies of the same space which we denote by Y. 
The spaces g and Y are respectively the universal beliefs space and the universal 

type space generated by S (and n), and the rest of this section is devoted to prove 
that these g and Y in fact satisfy the properties claimed in Theorem 2.9. So far we 
have that 3) is satisfied by construction. 

n 

Property 1 : ~/= S • [iX i 4] (homeomorphically). 

Proof: First let us establish a one to one mapping between the two sets. Each 
y E V determines uniquely some s ~ S (namely s = P0 (y)), also by definition of T, 

n 
y determines uniquely t i (y) E T i V i. This establishes a mapping/': V ~ S  • [i=X 1 Ti]. 

On the other hand by its definition V can be represented as: 
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Y = (Yo, (t 10'/c))/c: 1 . . . .  , ( t  n ( Y k ) ~ : l  [Yo E S V I c V i  

ti (Yk) E 11 (Yk-1) and conditions a) and b) of formula (2.1) 

are satisfied). 

But for certain i the conditions t / (yk) E II (Yk-1)' a) and b) V k are conditions only on the 
i ** i** y ** sequence (t (Yk))k=l' which are satisfied by the sequence (t~)k= 1 on ~ k)k=O 

m 

derived from any t i E T i. Thus any point in S X [i__X 1 T i] determines uniquely a 

sequence (Yo, Yl , -  �9 �9 ) corresponding to some y E Y. So we have a mapping 

S X [i ~<'=1 "l'i] ~ ~/which is easily verified to be the inverse off .  g: 

Now note that by Stone-Weierstrass theorem, any continuous function on }/ 
can be approximated by continuous functions on Yk" This implies that the mappings 

ti: ~/-+ 11 (Y) are continuous and hence T i is compact V i (~uce V is compact). Also 

clearly the projection Po : ~/~ S is continuous. So the mapping Po ~ ti: Y -+ S X 
n i=1  

X (iX 1 T i) is one to one and continuous, and therefore it is a homeomorphism since 

�9 V is compact andS X ( ~ T i) is a Hausdorff space. 
i=1 

The following lemma establishes an important property of the mappings t / which 
will be needed for the rest of the proof. 

Lemma 2.14: V i V y E V i f ~ E  Supp (t i (y)), then t i (y-) = t i 0'). 

Proof: Let (t{, t / . . . .  ) and (7/, 7 / , . . .  ) be the sequences of marginal distributions 

of t i (y) and t i (y") respectively on Yo, Y1 . . . .  ~ E  Supp (t i 0')) implies that Vk the 
k-1 

support of the marginal distribution of t~ E 1I (Yk-1) on IX0 [II (Yl)]i contains 

( t ' ~ , . . . ,  7~.1). But sincey ~ g it follows by using repeatedly properties a) and b) 
k-1 

of (2.1) that the marginal distribution of t~ on l=X0 [11 (Yl)]i assigns probability 1 to 

Therefore = . . . .  , t _l) V k and thus 

t i (y~) = t i (y). 

AS an immediate consequence of Lernma 2.14, the continuity of t i and of the 
projection V -~ S, we have: 

Property 4: ~/ is an S-based abstract BL-Space. 

Property 2: T = II'(S X [T] n ' l )  (homeomorphically). 
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Proof: We shall prove that V i, T i is homeomorphic to II (S • ( X T/)). Each 
n ]e-i 

t i ~ T i is an element in II (y), hence in II (S • ( X T])) (by Property 1). But by 
j=l 

Lemma 2.14, (s, ~ 1 , . . . ,  ~'n) ~ Supp (t i) ~ 7 i = t i. Therefore there is natural mapping 

f i  of T i to II (S • ( X T])) which maps each t i E T i to its marginal on S • ( X T]). 
jr  j--/,i 

We want to show now that this f i  is homeomorphism: ~ being compact and 
S • ( X T/) being Hausdorff, it is sufficient to prove t h a t f  z is one to one and onto. 

]r 
For this we shall exhibit the inverse mapping off i :  Given 12 e II (S • ( X  i Ti)) we 

want to show the existence o fy  E y s.t. the marginal of t i (y) on T i is a unit mass at 

t i (y) and on S • ( X T ]) is 12. By Property 1) it is enough to define a sequence 

(t~, t~ . . . .  ) of marginal distributions on Yo, Y1, �9 �9 �9 respectively which will satisfy 
conditions a) and b) of (2.1) V k and which define an element of II (Y) having the 
correct marginal distributions, k-1 

For each k ~> 1, let 12k be the marginal distribution of 12 on (S • X X [11 (YI)]]) 
l=O ]--/,i 

(that is the factor space of Irk which does not involve coordinate i). Let t~ = Po (/2) = 

the marginal distribution of 12 on S and define inductively 

t i EI I  (Yk_l)bY: t i k k = P k  X~ (t~ . . . . .  t~.l), k >I 2. It follows readily from the 

construction that (t~)k= 1 has the required properties. This completes the proof of 

Property 2. 

Definition 2.15: A dosed subset C of Y which satisfies 

V y E C, V i E I, t i (y) is supported by C (2.2) 

will be called beliefs closed (BL-closed) or a beliefs subspace (BL-subspace) of Y. 

Property 5: The S-based abstract BL-spaces are the BL-closed subspaces o f  Y (by 
BL-morphism), under the non-redundancy condition (Definition 2.4). 

Proof: Let C be an S-based abstract BL-subspace. We shall define a mappingy: 

C ~ Y by defmed for each c ~ C an y (c ) = (s, ( t~ )k= 1 . . . .  ,r  k Jk=l J~ where s ~ S  

and each of the sequences (t~)k= 1 is a sequence of distributions on (Yk)k=0 respectiv- 

ely, satisfying conditions a), b) (of 2.1) for all k >~ 1 : Remark that any point 

s (t I~K (t nag ~ which satisfy a) and b) Vi and Vk determines uniquely a , ~ kJk=l . . . .  , ~ kJk=l ] 
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point in Yk' therefore by defining yK (c) = (s, (t~)kK= 1 . . . . .  (t~)ffk= 1) V c E C we are 

defining a mappingyK : C ~ YK and hence an induced mapping)K : II (C) -~ II (IRK). 

We construct these mappings inductively onK: V c E Clet yo (c) = f ( c )  ~ S  and for 

K = 1, 2 . . . . .  define V i, t~ =YK-I o ti: C ~  II (YK-1), where ilk-1 is the mapping 

)~k-1 : II (C) -* II (Yk-1) canonically induced byyk_ 1 . 

Using condition (*) of Definition (2.2), it follows that V c E C the above defined 

y (c) in fact satisfies the required condition and hence corresponds to a point in Y. 

Furthermore, since f and t i are continuous, it follows inductively that YK V K are 

continuous mappings and hence the defined y: C ~ Y is continuous. If we denote 

y (C) = C C_ ]/then it is clear from the cobstmction that C satisfies (2.2) i.e. it is a 
BL-subspace of Y. At this point we have to notice the following proposition whose 
proof follows readily from the definitions: 

Proposition 2.16: Any  BL-closed subset o f  ~/ is an S-based abstract BL-space (with 
n 

respect to the pro/eet~ons o f  ~/ = S • ( X T i) on its factor spaces). 
i=1 

Using the terminology of Lemma 2.8 and the remark that follows it, the mapping 

y :  C ~ C we constructed is the BL-morphism from C to V induced by the identity on 

S (since Y clearly satisfies the NR-condition). Using the same notation the above 
constructed y is clearly invertible, and hence BL.isomorphism between H = h (C) 
(the space of infinite hierarchies generated by C) and C. Therefore if C satisfies the 

NR-condition we use Proposition 2.5 to deduce that y: C ~ C is a BL-isomorphism. 
This concludes the proof of property 5. 

Property 6: For any coherent beliefs hierarchy (Co, C1 . . . . .  CK) there is a BL- 

subspace C o f  Y s.t. Plc (C) = Clc, k = 0 . . . . .  K. 

Proof: By condition (4) of Definition 2.1, V tiK E t i (C_K): 

Supp ( 4  • 6t~) _C Projection o fC  K on CK. 1 • [II (CK.1)]i. 

It follows (for instance by Lemma 2.12) that there is an extension of t~ to a probability 

distribution ~i on C K C_ CK. 1 • [II (CKq)] 1 •  X [11 (CK.1)]n. Take all possible 

such extensions for each tiK E t i (CK) , Vi, to defme CK+ 1 . Prove that 

Co . . . .  , CK' CK+ t is a coherent beliefs hierarchy of level K + 1, and proceed 

inductively as in the construction of V to construct a limiting C _C V which be the 
required BL-subspace. 
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Property 7: The minimality properties o f  Y and T. 

�9 If Y and T satisfy 1) and 2), then Y is an S-based abstract BL-space therefore 

by the proof of 5), it can be mapped BL-morphicaUy onto some BL-subspace C of 

V. By I), Po (C) = S and inductively (using i)  and 2)) Pk (C) = Yk V k hence 

= Y. The mapping from Tonto Tis induced accordingly. 

�9 Assume that Y and Tsatisfies 4) and 5). By 5) since the V we constructed 

satisfy the NR-conditions, there is a compact C _C y and a BL-morphism ~: Y ~ 

which induces the identity on S. On the other hand, by 4) Y is an S-based BL-subspace, 

it follows from the proof of 5) that there is a BL-morphism ~ from Y to a BL-subspace 

of V which also induces the identity on S, therefore the composed BL-morphisms 

o r [/--> V must be the identity and hence ~ = r  and Y is BL-isomorphic to the 

BL-subspace C of Y. The mapping of T onto T is induced in the natural way. 

�9 If Y an S-based BL-space which satisfy 6), then since the (Y0, YI . . . .  ) we 

defined is a coherent beliefs'hierarchy, there is a BL-subspace C of Y, s.t. 

Pk (C) = Irk' V k, thus C is BL-homeomorphic to the projective limit of (Yo, Y1, �9 �9 ) 

namely Y. By the same argument, Y satisfy 3) and Y satisfy 6) imply that Y is BL- 

homeomorphic to a BL-subspace of Y. Since the two BL-morphism induce the identity 
on S we obtain the required result. 

This concludes the proof of Theorem 2.9. 

Remark 2.17: A very common situation of incomplete information is that in which in 
addition to incomplete information about S each player has some private information 
which may depend on the state o f  nature. For instance if each player know his own 
utility function. Can such a situation be incorporated in our model? In other words 
can we construct a BL-subspace in which each player knows his private information 
and it is a common knowledge that such is the situation? This in fact can be done as 
follows: Let h i : S --> H/be  the private information function of player i which assigns 
to each state s E S the element h i (s) of some space H i. We would like to construct a 

BL-subspace C _C V, with the property: V i Vy  E C, the distribution ofh  i o Po under 

t i (y) is a unit mass at h i o Po (Y). To do this let Co = S and 

Cl = {(s ,h  . . . . .  tn) l s e S ,  t i e I I ( h [ 1  (hi(s))); i=  l . . . . .  n} 

(Co, C1 ) is trivially a beliefs hierarchy which can therefore be closed to a BL-subspace 
by property 6. This BL.subspace will have the required property. 

Remark 2.18: IfS is f'mite or countable or a standard Borel space, all our results are 
purely measure theoretic: indeed the set of probabilities II on a standard Borel space 
S is again a standard Borel space (with o-field generated by (It I ~r (B) >/t~};B is a 
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Bore1 set in S and a ER)  and this o-field is the same as the one.we derive from the 
weak* topology. 

To carry also the results on BL-subspaces and on abstract BL-spaces to the measure 
theoretic setup, one has first to rewrite the above proofs for the case where those 
concepts would be defmed as analytic spaces instead of compact spaces. We are 
quite convinced that except for technical complication, this extension of the theory 
causes no serious difficulty. 

3. Approximation of a BL-Subspace by a Finite BL-Subspace 

In this section we prove the following approximation theorem. 

Theorem 3.1: For any closed BL-subspace C of  Y and any finite open cover 0 o f  Y, 
there is a finite BL-subspace C* of  Y s.t. 

(i) C c_u{O~OlOnC*:#r 
(ii) C,'Cu{O~OlOnC 4:r 

In other words, Theorem 3.1 states that: 

The fufiteBL-subspaces of Y are dense in the set of allBL-subspaces of Y, in the 
Hausdorff topology on closed subsets on Y. 

To prove this theorem we use the following known result (see e.g. Kelley, General 
Topology 6.33, p. 199). 

Lemma 3.2: Let X be a compact space. For any finite open cover 0 o f  X there is a 
neighborhood V of  the diagonal in X • X s.t. V x EX,  3 0 x E 0 which satisfies: 

V 

Remark3.3: Clearly V in/_emma 3.2 can be taken to be a basic neighborhood of the 
diagonal (for instance one which is generated by a Finite open cover of YO. 

Lemma 3.4: For any finite open cover 0 era compact space X there is a finite open 
cover W s.t. V x, y, z E X, i f  (x,y ) are W-close and (y, z) are W close, then (x, zJ are 
O-close. 

Proof: By Remark 3.3 let V be a neighorhood of the diagonal X • X satisfying the 
conclusion of Lemma 3.2 and which is generated by some Finite open cover W of X. 
This W satisfies the required property. 

Notation: We shall denote by Ref (0) all such Finite open covers W given by I_emma 3.4. 

Lemma 3.5: Let  K be a compact space. Given a finite open cover 0 o f  11 (KJ, then there 
is a finite set o f  continuous functions f l  . . . . .  fn on K s.t. V v ~ 1I (K), 3 0 v E 0 such 
that [# (f/) - v (f/) [ <~ 1, V ] = 1 . . . . .  n implies Iz E O . 
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Proof: Using Lemma 3.2 for X = II (K) let V be a neighborhood of the diagonal in 
11 (K) • II (K) satisfying the conclusions of the lemma. In view of Remark 3.3, V can 
be taken to be a basic open neighborhood of the diagonal, i.e. of the form: 

V = {(v,p) l l v ~ ) - / ~ )  I~  < 1 ; / =  1 , . . . , n } ,  

where fx . . . . .  fn are continuous functions on K. This finite set of functions satisfy 

the required properties. 

Lemma 3. 6: Given a finite open cover 0 o f  II (K), then there is a finite open cover 
U o f  K with the property that V Is E I I  (K) 3 0 E 0 s. r i f  S :  K -+ K is a measurable 
mapping for  which V x EK,  (x, S (x)) E U X U for  some U E U, then 
(fu, S O))eo x o. 

Proof: Let f l  . . . . .  fn be the continuous functions determined by Lemma 3.5 for the 
finite cover 0. Let U be a finite open cover o fK s.t.: 

(x, y)  E U•  Ufor some UE U implies If] (x) - f / ( y )  I ~< 1, ] = 1 , . . . ,  n. 

We claim that this finite open cover U is the required one. In fact, let/1 E II (K), let 
0 E 0 be the open set containing g and satisfying the conclusion of Lemma 3.5 and 
take such a measurable mapping % then V ] = 1 . . . . .  n: 

I/~ ( f ] ) - ~  (p)(f])L = [ g ( f ] ) - u  ff] o @)I ~<t~ (Max If] ( x ) - f  @ (x))l) 
x e K  ] 

But Vx EK, (x, r (x)) e U•  U for some UE U and hence If] (x) - fS  (~0 (x)) I ~  < 1, V]. 

It follows that I/~ ~ )  - r (~) (f/) I <~ 1 for] = 1 , . . . ,  n which imply by the definition 

o f f  i that (#, ~o 0~)) E 0 X 0. 

n 
Lemma 3. 7: Le t  X = X X.  where V i, X i is a compact space. For any finite open 

i = i  1 

cover 0 o f  X there are finite open covers V 1 . . . . .  V n o f  X t  . . . . .  X n respectively s. r 
n 

V = X V i is an open cover o f  X which is f iner than O. 
i=1 

Proof: Let 0 = {01 . . . . .  On} and let U = {UI . . . .  , U k } be a rectangular open 

cover which is freer than O. As usual denote by Pi the projection X--> X/and 

V x i E X i let Vxi = n {Pi ( ~ )  I x i E Pi (U/)}. Then take the finite covers 

Vi = {~i  Ix~ exi}. 

Notation: We shall denote by R P (0, X~ . . . . .  X n) the set of aU such product covers 
refining 0, provided by Lemma 3.7. 
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Having done these preparations we proceed now to prove the main result of this 
section, Theorem 3.1. n 

By Theorem 1.3 we write ~/= X -I -i, where T O = S and for i = 1 . . . . .  n 
i=0 

T i = t i (Y) is the type set of player i. 

Consider A = (0,a), the increasing net of all finite open covers of ~/with the partial 
order: 0 ~ ~< 0 ~ iff 0 a refines 0 ~. When no confusion may result we will denote the 
elements of A by a, ~ . . . . .  instead 0 a, 0 ~ . . . .  Accordingly we will write ~ ~< 
instead of 0 '~ ~< 0 a. 

Let Cbe a closed BL-subspace of Y. V a E A let (0o . . . . .  On) E RP (0 ~, 

T O , . , T  n ) a n d v i l e t P i  (p[ . . . .  p i  �9 = , n ) be a measurable partition of 1 -i s.t. 

P E pi =~ ~ 0 E Oi, P C O. Such (n + 1)tuple of partitions P=  (po . . . . .  pn) will be 

finer than the open cover a. 

V i, i = O, 1 . . . .  , n, V ], j = 1 . . . .  , ni, let t] be any fLxed point inP! N pi (C) if 

this intersection is non empty and any point in P]! otherwise. V i let X i = (t]/) and let 

n x i  I X = X  
i=0 

Define the mapping r " ~/-~ V by 

~o ( t  o . . . . .  t n)  = ( p  . . . . .  ?n)  

where V i ] j :  Y' ~ P}' and P' = t!.] 

Clearly Oo (Y) = X _C Y. Remark also that 7 i depends only on t i, therefore ~o 

defines also uniquely mappings T i -* T i which will all be denoted by ~Oo to avoid 
additional notation. 

For i/> 1 and for each t i E X i, define the following probability distribution 

pi.  on X by piti (x) = ti (~o 1 (x)). Remark that Pii (~~ . . . . .  t]nn) > 0 =~ t! = t i. 
t t ]i 

If we denote V i b y P  i the mapping t i -~Pii from X i to 11 (X), then by our defini- 

tion (X, p 1 , . . . ,  pn)  is some S-based abstract BL-space and so is also 

(~(, p1 . . . .  ,pn)  where ~" = ~Oo (C). By Proposition 3.5, it is homeomorphic to some 

(finite) BL- subspace of Y which we will denote by ~ .  Since (X, p1 . . . . .  pn)  is 

determined solely by %,  we have a mapping ff~o : X ~  V such that: 

= %0 (2) -- (%0 o (c). 

Proposition 3.8: Ca converges to C (in the Hausdorff topology on closed subsets o f  
7). 

Proof: Considering the mapping ~ -- ~ o  o ~o : C -~ ~ ,  note that ~ is not determined 
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uniquely by or but also by the special choice of the finite measurable partitions 

po . . . . .  pn and by the special choice of the points {tf}. So let Ca be the set of all 
such mappings Ca i.e., 

~ = (~ I There is a partition P = (po . . . . .  pn) fmer than a and 

a choice of {4} that yield ~}. 

It is sufficient to prove that ~a converges uniformly to the identity mapping on 
C, i.e. 

V e E A 3 ~ E A such that V ~ E r v x E C, ~ (x) is 0a-close to x. 

For the next argument we recall the definition of Y as the (projective) limit of YIC and 

write a genetic point in Y as y = (s, h . . . . .  t k . . . .  ) where s E S and ~' k, 

tic t D  ' i = . . . ,  tlc EI I  (Irk- 1) V i. We shall refer to t k as the k-th coordinate of 

y (s being the O-coordinate) and ~r k 1> 0 define: 

A k = {o~ E A I V 0 E 0 ~, 0 is defined in terms of the first k coordinates). 

Since any cover 0 ~ is refined by some cover 0 ~ involving only a finite number of 
coordinates, it is sufficient to prove that: 

(*) v e E A k , 3 f ~ A : v 3 , > ~ # , V ~ E @ , , V x E C ; r  

We shall prove (*) by induction on k: 
For k = 0 the statement is obvious from our definitions, taking/3 = ~. Assume that 

(*) is true for k and let us prove it for k + 1: Let a E Ak+ 1 and W i/> 1 let V i be a 

finite open cover of T~+ 1 and let Vo be a finite open cover of Irk such that 
n 

Vo X X Viisfmer than 0 a. 
i=1 

V i, let Vi E Re f (V i )  and V i >1 1, let W i be a finite open cover of Y~ such that for 

any measurable Wi-shfft ~ of Y (i.e., v y E Irk' (Y' ~ (Y)) E W • W for some W E Wi) 

and V t i E T i, ~ (t i) is Vt-ciose to t i (see Lermna 4.2). Let Vo be any common ref- 

inement of(Vo, W1 . . . .  Wn) andlet V = Vo • X V i.  
' / = 1  

Finally, if we denote by flVo the/3 E A satisfying (*) for Vo E AIC (by induction 

hypothesis), the required fl which corresponds to the given a ~ AIC+I is 

fl = max (flVo' ~)" Let us prove that this fl in fact satisfies the property stated in (*). 

Forx E YIC+I' it will be convenient to use the notation t i (x) for pi (x). 

Let 7/> fl and let ~ ~ r x E C, we have to show that ~ (x) is O%close to x. 
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By definition of tO we have that r (x) is go-close tox ,  therefore there remains 
�9 r / 0  

to show that V i, t z (~ (x)) is I/i-close to t i (x). 

Since 7 >t/~ ) U we know that if r = qJ*'o o r then ~0 (x) is U-close to x. Thus 

V t i E T i, ~oo (t i) is Ui-close to t i. Extend tp (defined on C) to r V ~ V by defining 

(x) = x for x 6 C. We have then that ~ (x) is P o-close to x Vx E V and hence 

V i >t 1, V t i E T i, t i o r  is Ui-close to t i (see definition of Wi). Thus V t i E pi (C), 

t i and t i o r  are two probability distributions on C and on C a respectively which 

are Ui-close. In particular for ti = t: E p  i (C), t ] o  r -1 =Pi i i s  U-close to t : .  Therefore 

1 
v x E C, t i (~o (x)) o r = pi .  is a probability distribution ,on ~ which is 

/(r (x)) 

Vi-close to t i (r (x)) which is on the other hand Vi-close to t i (x) (on C; since 

r (x) is I/-close tox  V x E C ) .  
Since by def'mition of C P i = ti (r (x)) and since U i E Ref (i/i) we con- 

t (r (x)) 
dude that t i (r (x)) is I/i-close to t i (x), completing the proof of Theorem 3.1. 

4. Consistency 

Summing up the structure developed so far: We started from a compact set S of 
possible games and we constructed from it the universal BL-space V generated by S. This 
may be thought of as the space of "states of the world" in the sense that each point 
y E V defines completely all levels of beliefs and mutual beliefs for all the players. At 
each state y E V, player i certainly knows his own (subjective) probability (distri- 
bution t i (y)) on V. We shall also denote this distribution by Py. 

Nothing was said so far as to what is the actual state of the world? According to 
what procedure is it determined? What are the relations, ff any, between the beliefs 
of the different players? Following Harsanyi we ask: Are there situations in which the 
subjective beliefs of the players, namelyP~, are equal to the conditional probabilities, 

given each player's private information, derived from some "prior" probability dis- 
tribution P on g ? Can one characterize those points in y for which this is in fact the 
case? In this section, we answer these questions and in the next section we discuss 
their game theoretical relevance. 

Let Y be a dosed BL-subspace of V. 

Definition 4.1: A probability distribution P EII  (Y) is said to be consistent if: 

- ( 4 . 1 )  P - f y P ' y d P  Vi ,  i = X  . . . .  ,n.  
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The following proposition proves that this definition in fact captures the intuitive 
meaning of consistency we have in .mind, namely: I fP  is consistent then for each 
player i, his subjective probability P ;  equals the conditional P-probability given his 

type. In other words,P may be regarded as a prior distribution on V having the Py 

as posteriors. Formally, with the appropriate measurability structure on Y and on 

11 (Y), let T (t i) be the sub o-field of measurable sets in 17 (Y) generated by the projec- 

tion t i, then 

Proposition 4.2: l f  P E II (Y) is consistent, then: 

pi (A) = P ( A  [ T (ti)) V y, V i, V A-borelsubset o fY.  y (4.2) 

Proof." To see the idea more clearly we shall first prove the proposition for the simple 
case in which Y is finite and then provide a proof for the general case which asks for 
more careful measurability considerations. 

Proof for finite Y: 
The projections ti: V -+ II (V) define for each i a partition T i of any subsety c V 

into subsets of various types of player i, namely 

T i (r) = 07~ r lPCy = e y )  = (ti) - '  (t; (y)). 

With this notation, the statement of Lemma 2.14 can be rewritten as 

V i, V y ~ V, Supp (Py) C T i (y). 

When Y is finite, (4.2) becomes 

pi (A)=P(A I r i  (y)) V y ~ Y ,  VA c Y. y 

Actually we want to prove this whenever it has any meaning, namely whenever 

P (T i (y)) > 0. (This will be satisfied i fy  E Supp (P).) Now we write (4.1) as 

So 

e ( A ) =  Z ey (A)e ( r ' 3  V A C Y .  

P (a N T i (y)) = ~, pL (.4 0 T i (y)) e (y'~). y 
7~r 

(4.3) 

(4.4) 
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But by (4.3), Supp (Py) C T i (y~) hence 

pyL(AnTi(y) )={~iy  y ~ T i ( y )  
(An Z i (y)) y E /-~ (y). 

Also, again by (4.3),P~ ( A n  T i (y)) = pi (A), so y 

e ( A  n T g (v)) = e  ~ ( A ) e ( T  e (v)), y 

which is 

i (A)=P(A l -l-i (y)), 

what has to be proved. 

Proof in the general case: 
Notice first that by the regularity of the measures P and P~, and the continuity of 

ti: y ~ pi equation (4.1) extends from the continuous functions on Y to all upper- y,  
semicontinuous functions on Y, and therefore, first by a monotone class argument to 
all bounded functions, and finally from those to all bounded universally measurable 
functions f on Y, by bracketing f between two borel functions f _ < f  ~<ffwith the same 
integral w.r.t.P. 

Remark also that this argument implies that P~ applied to a Baire (resp. Borel. resp. 

universally measurable) function yields a similar function. 

Thus, letting F (t i) stand for any of those o-fields on T i = t i (Y) we know t h a t ~  

is a transition probability from T i to Y, and there remains to show that, for any 

measurable setA in Y, P] (A) is the conditional expectation ofI  A (the indicator func- 

tion of A) given F (ti), i.e. that for anyB E F (t i) 

f e  e (A)dPO,) =~ Z A dP 0,). 
B y 

The right-hand side is equal t o P  (,4 fqB) so that this equation will follow from 4.1 - 
applied to the measurable setA n B -  if we show that1 B pi (A) =P! (A riB). This y ~, 
follows readily from the fact that t i is constant on the support ofPy,  so that this full 

support is either in B or disjoint from B. This concludes the proof of Proposition 4.2. 

Clearly the ftrst question to be asked is: Does a consistent distribution exist for 
every BL-subspace? The following example answers this question negatively. 

Example 4.3: Consider a situation of two players each of which has two types. The 
BL-subspace Y has thus four points corresponding to the four possible couples of 
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types: 

y[11 121 
21 22 

At each point of Y (an entry of the matrix), the first coordinate denotes the type of 
player 1 and the second is that of player 2. Similarly we denote the subjective 
probabilities of the players by: 

pl] iql for player 1 and for player 2, i.e. 
p~ 1 - P 2  l - -q1  l - -q2  

player l 's probability distribution on the types of player 2 is (Pl, 1 - P l  ) is he is of 
first type and (P2, 1 --P2) if he is of second type. Similarly for player 2. 

We write a general element of rl (Y) asP = ai] >1 O, Nail = 1). 
a21 a22 

For P to be consistent it has to satisfy: 

an  Pl andal__L= q_____t__~ ,hencea1__k2= 1 -P_.___i. q-----L--1 = f (P l ,  ql)  
a12 1--Pl  a21 1- -q t  a21 Pl 1- -q l  Def 

also: 

a22 1 - q 2  anda22 1 - p 2 , h e n c e  ax.__L= q'-2--2" 1--P--"-~2 = f ( 1 - q 2 ,  1 - P 2 ) .  
a12 q2 a21 P2 a21 1 - -q2  P2 

So unless 1 --Pl . q! = q2 . 1 --P2 , which is generally not the case, there is 
Pl 1 --ql  1 --q2 P~ 

no consistent distribution on Y. 
We proceed to show that given a BL-subspace Y (or equivalently an abstract BL- 

space, see (5) of Theorem 2.9), there is a natural way to identify what we shall call 
finite consistent subset o f  Y. 

Assume that, in view of our approximation results, we consider a finite BL-subspace 
Y. For each state of the world y E Y and for each player i define 

Cy,1 = Supp ( y), 

and inductively 

ciy, = C  i U[ 0 USupp(Py)],  k = l , 2 ,  k+l y ,k  " " " ~ i / 
y~Cy, k 
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We have Cy,1 C Cy, 2 c . . . .  and since Y is finite, a limiting set will be reached which 

we shall denote by Cy. This is according to player i's beliefs, the minimal BL-subspace 

contaix~g the real state of the world and it satisfies: z E Cy =~ q C Cy. Of course, 

Cymay not be really a BL-subspace; it may even fail to contain y. However we have: 

Proposition 4. 4: I f  y E Supp (P), for some consistent P with finite support, then: 

C y = Cly for all i and ]. Denoting this set by Cy then y E Cy (and hence Cy is in fact 

the minimal BL-Subspace containing y ). 

Proof: First observe that 

y E Supp (/7) =*y E Supp (P~) C Supp (P) V i. (4.5) 

In fact, by Proposition 4.2, Py (y) = P (y i T i 0')) > 0 since P (y) > 0, proving that 

y E Supp (Py). The second inclusion in (4.5) is also obtained by the same equality: 

Py ( z ) > O ~ P ( z  l Ti ( y ) ) > O ~ P ( z ) > O ~ z E S u p p ( P ) .  

By (4.5), if we let Cy,0 = ~v),thenCy,k+l = U ySupp(P~) .Obvious ly i t  
~ i 1 

" Y~Cy'k'" q ,  proving the follows by induction that Cy,k is the same mr au z, ann hence so is 

proposition. 
Note that in the situation described in the Proposition, Cy is a common knowledge, 

i.e. it can be computed by each player and by an outside observer only from 
knowing the set Y. 

The following proposition shows that not only that for eachy in the support of 
some consistent distribution, Cy is uniquely determined and is a common knowledge, 

but that there is a uniquely determined probability distribution on Cy which is also a 

common knowledge. 

Proposition 4.5: For any consistent P of  finite support and for any y and i, either 

P (Cy) = O, or P (. I Cy) is uniquely determined by Y. 

Proof: By the consistency of P it follows from Proposition 4.2 that 

pi (y) 
P ( z ) > 0  and y ESupp (P/) =~ P (y )  z > 0 .  

e(z) ei(z ) 
Proceed now by induction on k: Assume that either P 07) = 0 y ~ E  Ciy,k or 
e v-) 
P (z) > 0 is uniquely defined by Y y.~, z ~ Cy,k. By (4.6) we then have that the 

(4.6) 
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i same statement is true also for C'y,k+l. Since the statement is trivially true for Co it 

is true for C~I. 
J 

Note that i fP  (C/) = 0 for some consistent P then also P '  (C/) = 0 for any other 

consistent distnbution P.  

Definition 4. 6: A BL-subspace C on which there exists a consistent distribution P 
with Supp P = C, will be called a consistent BL-subspace or shortly a C-subspace. Any 
y E C will be called a consistent state o f  the world (otherwise it is said to be in- 
consistent). 

A combination of Proposition 4.4 and 4.5 yields: 

Corollary 4. 7: A state y is consistent i f  it is in the support o f  some consistent distri- 
bution P. I f  y is a consistent state o f  the world, then the C-subspace containing it is 

_ i C - Cy V i, and the consistent distribution on C is uniquely determined (by C) and is 
a common knowledge. 

In view of Corollary 4.7, it makes sense to think of a consistent distribution as a 
prior distribution, not only because it is so, mathematically speaking, but also because 
it may be assumed to be known by the players as it is usually assumed in the Bayesian 
approach. 

The question of consistency of the state of the world can now be presented as the 
problem of testing the following hypothesis: 

H :  "The actual state o f  the world y is consistent." 

By corollary 4.7, i fH  c is true, then each player i will reach the same set C i ~efC and 
the same consistent distribution on it, P (" I C), hence: Y 

If player i finds no consistent P on the Cy he computed, he may reject H c with no 
possible error being committed. 

What if player i finds a consistent P defined on his Cy ? Should he accept Hc? Clearly 

such a Cy with the consistent P on it is a C-subspace (by definition). The only question 

is whether it contains the real state of the worldy. I fy  E Supp (/~y) then by definition 

of C i in fact y E C i and hence H is true. y y 
In other words a player i that fmds a consistent Cy and acceptsH c commits all error 

]oi only i fy  ~ Supp ( y ) ,  i.e. only if he assigns probability 0 (in the f'mite case) to the real 

state of the world. So, in particular his subjective probability of commiting an error is 

0. So we have: 
The hypothesis H c is testable by each player with O-sub/ective probability o f  error. 

I f H  c is accepted, then the corresponding C-subspace and the consistent probability 

distribution is computable by each player. 
Especially if we make the rather weak assumption that each player assigns positive 

subjective probability to any neighborhood of the real state of the world (i.e. 
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E Supp (Py V i), then we have: Y 

Theorem 4.8: Whether the real state o f  the worm is in a C-subspace or not is a common 
knowledge. I f  it is, then the C-subspace containing it and the consistent distribution on 
it (the priors) are also common knowledge. 

Remark: It should be emphasized that the consistent prior distribution if there is any, 
is a common knowledge derived only from the beliefs of each player on others beliefs 
and not from a "new" type of beliefs on the mechanism selecting the state of the 
world. 

The case y ~ Supp Py describes a highly "inconsistent" belief in any reasonable 

meaning of this word. If players are so much mistaken in their beliefs so as to 
consider "impossible" (i.e. has'probability 0) the real state of the world, then 
(objectively) wrong conclusions are quite expected as the following examples show. 

11 12] 
Example 4.9: There are two players each of which has two types, thus Y = 

21 22 
The subjective probabilities of each player on the types of the others are given by: 

Player 1, type 1 (1, 0) 

Player 2, type 2 (2/3, 1/3) 

Player 2 
type 1 

21 

Player 2 
type 2 

12 1 
22 

If the actual state of the world isy = 12, then Supp (Py) = (11), 

Supp (Py) = (22}. Both players will fred the C-set (11, 21, 22} with the (only) 

consistent probability distribution (1/2, 1/3, 1/6). So by accepting H c the players 
will be commiting (type II) error. 

Note that for the state y = 12, in fact y ~ Supp Py for i = 1,2, as it should be since 

both players committed an error (although each player believes with probability 1 
that he is right in accepting it). Note however that inspite of its being inconsistent, 
the state y = 12 led both players to the same consistent subset C = {11, 21, 22}. The 
next example shows that even this is not guaranteed in an inconsistent state. 
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Example 4.10: Consider the previous example with different subjective probabilities, 
namely: 

11 [1,o] 

[o, 11 

0 

1 

21 22 

I fy  = 12, player 1 will fred the consistent set C = {11} withP (11 I 12) = 1, while 
player 2 will find C = {22} withff(22 1 12) = 1. 

Example 4.11: Y consists of 20 states with 4 types of player 1 and 5 types of player 
2. Using the same notation as in the previous example Y is given by 

0 3 
5 o 

p2 1 2 0 
Y 5 

0 0 

P~ 0 0 
Y 

(1, 0 , 0 , 0 , 0 ) 

1 2 
( 5 , 5 , 0  o o)  

1 3 (o ,  o , o , ~ , ~-) 

1 3 
(0,0,0,4, 4 ) 

II 

12, 
31 32 

41 42 

i 

i 

' 13 I' 

23 

43, 

o o 

o o 

1 I 

1 2 real state of 
7 _: ~ J _  wodd 

1 
14 15 / Cy 

34 35 

44 45 

If the actual state of nature isy = 13, player 1 will fred Cy = {21,22, 12} with 
the consistent probability distribution P = (1/6, 1/3, 1/2) hence he will reach the 
'~r conclusion of accepting H c. Player 2 will fred Cy = (33, 34, 43, 44, 45} 

with no consistent P on it. He will therefore correctly reject H c. Note that 

y ~Py;y ~Py. Unlike in previous examples player 2 reached a correct negative 

conclusion although y ~ Py, but this is just a matter of accident. 
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Example 4.12: Consider the following BL-subspace with 16 states and 4 types for 
each player. 

p1 
y 

( i ,  0 ,  0 , 0 )  

1 2 
(5'3' o, o) 

3 o 0 o 

p2 2 
y ~ 0 0 0 

1 ! 
o 

I 

3 2 (o ~0 
% 

�9 ~, ~J 

3 4 ( o , o  , ~  , ~ .  

1 0 

12 

21 22 

31 32 

42 

l 
33 

43 

! 

5 
2 

,Z3 ~ 14 1 
~ - -  real estate of world 

23 24 
1 Cy 

2 Cy 
4 

If the state is y = 13, then y is inconsistent and we expect player 1 to come to this 
conclusion. In fact, player 1 will compute Cy = {11, 21, 22, 32, 33, 34, 42, 43, 44} 

but no consistent distribution on it. (The verification of this is rather simple via 
Proposition 4.2: For any consistent P we must have P (11) = 0 since P~3 (11) = 0 
but alsoP (11) > 0 since P~s (11) > 0.) So player 1 will in fact conclude that he is in 
an inconsistent state. On the other hand player 2 will compute ~y = {33, 34, 43, 44} 
with the consistent distributionP = (1/4, 1/6, 1/4, 1/3) on it. 

5. Nash Equilibria 

Up to now we constructed and discussed the universalBL-space and itsBL-supspaces 
in a game situation with incomplete information. We proceed now to define a game 
based on Y (or on any abstract BL-space Y). For this we have obviously to add few 
ingredients: 

- V i, player i has an action set A i (without loss of generality this may. be assumed 
to be independent of player i's type. One can achieve this by taking asA ~ the product 
of the type dependent action sets over all his types). 

- V i, V y E V, there is a utility function u!,: 

: ~ A/~R. 
/=1 
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We define first a vector-payoff game in which: 

�9 The players set i s / =  (1, 2 . . . . .  n} 

�9 The strategy set S i of  player.i is the set of  mappings 

oi : Y ~ A i which is ~'-measurable. 

�9 The payoff  to player i resulting from an n-tuple of  strategies 
o = (o 1 . . . .  , o n) is the vector payoff:  

U i = (Uti)tiE~ 4 

(i.e. a payoff  for each type t i) where: 

uti (o) = f (U y (o (y~))) dt  i (y"). 

Note that . is Ti-measurable as it should be. Although this is not a game in the 
utt 

usual sense, the concept ofNash-Equilibrium (N.E.) can be defined in the usual way, 

namely: o = (o I , . . . ,  on) is N.E. if V i, v t i E T i ,  uti(o)>/ utl'(ol~di) v ' ~ i ~ s  i, 

where (o [ ~i) = (al . . . . .  oi-1, ~ i  oi+1, . . . , on). 

Remark 5.1: When Y is a finite BL-subspace, the above defined game is an n-person 
game in which the payoff  for player i is a vector with number of  coordinates equal 
to the number of  types of  player i (namely I T i I). It  is easily seen that as far as N.E. 
are concerned this game is equivalent to what is called by Harsanyi "Selten game 
G**" [see Harsanyi, 1967, 1968, Section 15, p. 496]. This is an ordinary 
I T 1 L • 1 7 ~ I X . . .  • I T n I person game in which each "player" t / E T i selects a 
strategy and then selects his (n - 1) partners, one from each T/, ] ~ i according to his 
subjective probability distribution. 

Remark 5.2: When Y is finite we can define an ordinary game in strategic form which 
is the same as the one we defined above but instead of  vector.payoffs we define the 

payoffs for player i to be tii = t i ~  ~/ti uti where V t z E T t, 7t i is a strictly positive 

constant. Clearly, independently of  the constants "Yti we choose, this game has the same 

N.E. points as our vector payoff  game (and hence as the corresponding Selten game). 
In particular if we take V i, 7t i to satisfy ~ 7ti = 1 we get a game equivalent 

ti ~ T i 
to that suggested by Aumann and Maschler for the inconsistent case [Aumann/Maschler, 
p. 341]. As far as N.E. points are concerned their game is independent of  the parameters 
7/. Also all these games have the same N.E. points as that  suggested by Selten. 
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For a consistent subset C one has the following theorem, due to Harsanyi, that 
allows us, in looking for N.E. to replace the strategic form game by a certain extensive 
form game: 

Theorem 5.3 (Harsanyi): Let C be a consistent subset o f  Y. Let  P be the consistent 
distribution on C. Then the strategic form vector payoff  game defined by C has the 
same N.E. points as the following game in extensive form: 

- A chance move chooses y E C according to P then each player is informed ofpiv. 

- V i, player i then chooses s i E A  i and receives a payoffUy (s . . . . .  snJ. 

Proof: It follows readily from the definition of the games, the definition of N.E. and 
the fact that Supp (P) = C. 

Remark: Harsanyi calls this extensive form game "a game in standard form". 

Remark 5.4: By analyzing the situation defined by C via the extensive form game, 
unlike Harsanyi, we do not claim that the players should in any way believe in P as 
a prior probability distribution on C. The introduction of P is just a matter of  mathe- 
matical convenience. It  serves to fred the original N~E. points naturally defined by C 
via subjective probabilities. 

Furthermore, by Corollary 4.7, since the "priors" are common knowledge, the 
above described game in extensive form is also a common knowledge which gives 
even more justification for using it in analyzing the situation of incomplete information. 
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