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C o a l i t i o n  F o r m a t i o n  in S i m p l e  G a m e s  w i t h  D o m i n a n t  P l a y e r s '  ) 

By B. Peleg, Jerusalem 2) 

Abstract: A player, in a proper and monotonic simple game, is dominant if he holds a "strict ma- 
jority" within a winning coalition�9 A (non-dictatorial) simple game is dominated if it contains ex- 
actly one dominant player. We investigate several possibilities of coalition formation in dominated 
simple games, under the assumption that the dominant player is given a mandate to form a coali- 
tion. The relationship between the various hypotheses on coahtlon formation m dominated games 
is investigated in the first seven sections. In the last section we classify real-life data on European 
parliaments and town councils in Israel. 

1. Introduction 

Let G = (N, W) be a proper and monotonic simple game (see (2.1) and (2.2)). A 
player i E N  is dominant if he holds a "strict majori ty" within a winning coalition (see 
Definition 2.3). We investigate the size of  the set of  dominant players and show, in 
particular, that if G is a weighted majority game then it may contain at most one dom- 
inant player (see Corollary 2.7). G is (non-trivially) dominated if a) G is non-dictatorial 
(see Definition 2.20), and b) G contains exactly one dominant player (see Definition 
2.21). An examination of  De Swaan's [1973] data on 9 democracies reveals that about 
80 percent of  the assemblies in those countries were dominated (see Table 2.1). This 
fact explains the relevancy of the theory of  dominated simple games to the analysis o f  
coalition formation in parliaments (see Remark 2.22). A winning coalition in a domi- 
nated simple game is ordinary if it contains the dominant player (see Definition 3.1). 
A further examination of  De Swaan's data shows that about 80 percent o f  the coali- 
tions that formed in dominated assemblies were ordinary (see Table 3.1). Further 
aspects of  formation of  ordinary coalitions in dominated simple games are discussed in 
Section 3. Starting in Section 4, we investigate 4 possibilities o f  coalition formation in 
dominated games, under the assumption that the dominant player is given a mandate 
to form a coalition (see (A) in Section 4). Our first hypothesis is that the dominant 
player seeks to maintain a "simple major i ty"  within the coalition which he forms. 
(See (H) and the discussion which follows it in Section 4.) In Section 5 we investigate 
the possibility of  the formation of an ordinary and determining coalition (see (D) in 
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Section 5). The relationship between (H) and (D) is completely clarified by means of 
several theorems and examples (see; especially, Theorems 5.7 and 5.10). The possibili- 
ty that the dominant player chooses a coalition in order to maximize his Shapley value 
is discussed in Section 6. (See (SV) in Section 6 and the discussion which follows it.) 
We show by means of an example that (SV) may be incompatible with both (H) and 
(D) (see Example 6.5). Finally, in Section 7, we examine the possibility that the domi- 
nant player chooses a coalition in order to maximize his payoff according to the nuc- 
leolus. (See (NUC) in Section 7 and discussion which follows it.) In the last Section, 
Section 8, we give a complete classification of 67 ordinary coalitions which formed in 
Denmark, Israel, Italy, the Netherlands and Sweden (see Tables 8.1 and 8.2). We reach 
the conclusion that hypotheses (H) and (NUC) are acceptable (for European parlia- 
ments), while (D) and (SV) should be rejected (see Remarks 8.7-8.9). We conclude 
with a (summary of) similar classification of ordinary coalitions in town councils in 
Israel (see Table 8.3). For this last class of committees (NUC), (H) and (D) seem to be 
sustainable, while (SV) still has to be rejected. 

I am grateful to Professor O. Moeschlin for many interesting discussions concerning 
this work. 

2. Dominant Players and Dominated Games 

In this section the notion of a dominant player in a simple game (i.e., a player who 
holds a strict majority within a winning coalition), is defined in a precise way. Then we 
proceed to investigate the size of the set of dominant players of a simple game. In par- 
ticular, it is shown that a proper weighted majority game may contain at most one 
dominant player. Also, the importance of the theory of dominant players to political 
science is discussed,in the light of some real-life data. For the sake of completeness we 
recall the necessary definitions concerning simple games at the appropriate places. For 

'a comprehensive study of simple games the reader is referred to Shapley [1962]. 
A simple game is an ordered pair G = (N, W), where N = (1 . . . .  , n} is the set of 

players, and W is a set of coalitions (i.e., subsets of N), whose members are the win- 
ning coalitions. Let G = (N, I4t) be a simple game. G is monotonic if 

[SE Wand T D S ]  ~ T E  W. (2.1) 

Let G = (N, W) be a monotonic simple game. The following desirability relation for 
coalitions is derived from G. 

Definition 2.1: A coalition S is at least as desirable as a coalition T (with respect to 
G), written S ~ T, if for every B C N such that B (~ (S U 7) = 0 

B U T E W ~ B U S E W .  

If S ~ T, but T ~ S  does not hold, then we write S ~-- T. If S ~ T and T ~  S then we 
denote S ~ T. 

For a recent discussion of Definition 2.1 the reader is referred to Section 6 of Peleg 
[19801. 

Definition 2.2: Let G = (N, W) be a monotonic simple game (see (2.1)), and let S be a 
coalition. A player i E S (weakly) dominates S if (i} ~---S -- (i} ((i) ~ ,S -- (i}) (see 



Coalition Formation in Simple Games with Dominant Players 13 

Definition 2.1). I f  i (weakly) dominates S then we also say that S is (weakly)  domi-  

nated by i. 
Let G = (N, W) be a monotonic simple game. I f S  is a coalition, i E S  and i domi- 

nates S then, intuitively, i holds a "strict majori ty" within S. [See Remark 6.4 in 
Peleg.] 

Let G = (N, W) be a simple game. G is proper if 

S E  W ~ N - - S ( ~  W. (2.2) 

We are now able to state the definition of the central concept of  this work. 

Defini t ion 2.3: Let G = (N, W) be a proper and monotonic simple game (see (2.1) and 
(2.2)). A Player i C N  is dominan t  (with respect to G), if there exists a coalition S E W 
such that i dominates S (see Definition 2.2). The set of  dominant players of  G is de- 
noted by h (G). 

The first question that we should answer is: how big h (G) can be? In particular, we 
are interested in conditions on G which imply that I h (G) I ~< 1, where, here and in 
the sequel, i fB is a finite set then I B I denotes the number of  members of  B. The fol- 
lowing lemma leads to a satisfactory solution of  the above problem. 

Lemrna 2.4: Let G -- (N, W) be a proper and monotonic  simple game and let i E N .  
If  there exists j E N, j :~ i, such that ] ~ i (i.e., ~/) ~ {i); see Definition 2.1), then 
i r h (G) (see Definition 2.3). 

Proof." Assume, on the contrary, that i E h (G). Thus, there exists S E W such that 
i E S  and ( i )~--S  - (i). Since/' ~-~ i, by Corollary 6.7 of  Peleg [ t 9 8 0 ] f  ~ S .  Let 
T = N - -  (S U (/)). As G is proper and S E W, ~/') U T = N -- S ~ W. Hence, since 
j ~ i, (i) U T ~ W. Let now B C N satisfy B ~ S = 0 .  If  {i) U B E W then, since G is 
monotonic and (i) U T ~ W, j E B. Using once more our assumption that/ '  ~ i we ob- 
tain that (S -- ~i)) U (j)  E W. Hence, by monotonici ty,  (S -- {i)) U B E W. Thus, 
S - ( i )~ -~  (i), which is the desired contradiction. 

Lemma 2.4 has several important corollaries. In order to formulate them we first 
need the following remark and definition. 

R e m a r k  2.5: The following notation will be useful in the sequel. L e t N  = (1 . . . .  , n)  
be a set with n members, l f x  = (x 1 , . . . ,  x n) is an n-tuple of  real numbers and i fS  is 
a coalition (i .e. ,S c a t ) ,  then we denote x (S) = ~ x i. Also,x  (~) = 0. 

iES 

Def ini t ion 2. 6: Let G = (N, I40 be a simple game. G is a weighted majori ty  game if 
there exist a quota q > 0 and weights w 1 >~ 0 . . . . .  w n >~ O, such that 

S E W r w (S) ~> q. (See Remark 2.5.) 

The (n + 1)-tuple [q; w x . . . . .  w n ] is called a representation of G, and we write 
G = [q; w x . . . . .  Wt ' I ] .  

Clearly, a weighted majority game is monotonic.  

Corollary 2. 7." If  G = [q; w ~ . . . . .  w n ] is a proper weighted majority game then 
I h ( G ) [ ~ <  1. 
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Proof." I fS  and T are coalitions and w (S)/> w (T) then, obviously, S ~ T. Let i be a 
player with maximum weight, i.e., w i >~ w~ for all ] EN.  By the above observation and 
Lemma 2.4, h (G) c (i). 

Remark 2.8: As most of the simple games that arise in applications of game theory to 
politics are proper weighted majority games, Corollary 2.7 justifies and enhances the 
importance of the notion of a dominant player to political science. 

The next corollary is preceded by the following definition. 

Definition 2.9: Let G = (N, W) be a monotonic simple game. G is weak if 

v=n(s l s~w}~O.  

The members of V are called veto players. 

Corollary 2.10: I fG = (N, W) weak then I h (G) I ~< 1. 

Proof.' If i is a veto player (see Definition 2.9), then i ~ ]  for a l l /E  N. Hence, by 
Lemma 2.4, h (G) C V and, furthermore, if I V I ~> 2 then h (G) = 0. 
Thus, [h (G) I~< 1. 

A single vetoer may or may not be dominant as is shown by the following 
examples. 

Example 2.11: Let G = [3; 2, 1, 1] (see Definition 2.6). 1 is a vetoer. 1 is also a domi- 
nant player since (1, 2) E W and 1 ~-- 2. 

Example 2.12: Let G = [4; 2, 1, 1, 1]. Then V = {1), but 1 is not dominant since 
(1) ~ S i f S  C {2,3 ,4)  and IS 11> 2. 

We now present an example of a proper and monotonic simple game with two 
dominant players. First we need the following remark. 

Remark 2.13: Let G = (N, W) be a monotonic simple game (see (2.1)). We denote by 
W m the set of minimal winning coalitions. Clearly, W is completely determined by 
Ir m . Also, G is proper if and only if for every pair of coalitions S, T E W m, S (~ T 4: O. 

Example 2.14: LetN = (1, 2, 3, 4, 5). We define a proper and monotonic simple 
game G by specifying 

W m = ((1, 2), (1, 3, 4), {2, 4, 5)). 

(One can check that if S, T E 1u m then S N T ~ 0 .) We claim that h (G) = (1, 2). 
Indeed, (1, 3, 4) E W and {1) ~-- (3, 4) (see Definition 2.1). Similarly, (2, 4, 5) E W 
and (2) ~- (4, 5). Thus, h (G) = (1, 2). 

Remark 2.15: Let G = (N, W) be a proper and monotonic simple game. If IN [ ~< 4 
then I h (G) I ~< 1 (see Corollary 5.14). 

Let G = (N, W) be a simple game. G is strong if 
S r W ~ N - - S  E W. (2.3) 

In order to construct an example of a proper, monotonic and strong simple game G 
such that [ h (G) I ~> 2, it is convenient to make use of the following definition. 
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Definition 2.16: Let G = (N, W) be a proper and monotonic simple game. The strong 
extension of G is the simple game G* = (N U {z), IV*), where z ~N ,  ands  E IV* if 
and only if 

a) z ~ S  and S E W ,  or 
b) z E S  a n d N - - S r  

Remark 2.17: G* is proper, monotonic and strong; it is usually called the "zero-sum 
extension" of G [see Aumann/Peleg/Rabinowitz, p. 547]. 

Lemma 2.18: Let G = (N, W) be a proper and monotonic simple game and let 
G* = (N u (z), W*) be the strong extension of G (see Definition 2.16). 
Then h (G*) D h (G) (see Definition 2.3). 

The proof, which is straightforward, is omitted. 

Corollary 2.19: There exists a proper, monotonic and strong six-person game G* such 
that I h (G*) [/> 2. Indeed, the strong extension G* of the game G of Example 2.14 
has all the above properties. 

I do not know whether there exists a proper, monotonic and strong five-person 
game G such that I h (G) [~> 2. 

It is time now to inquire how important is the notion of a dominant player to 
political science. More specifically, we want to know how often do simple games with 
dominant players occur in real-life situations. In order to render the above question 
completely precise we introduce the following definitions. 

Definition 2.20: Let G = (N, W) be a simple game. A player] ~ N  is a dictator if 
[S E I4' r E S]. G is essential if it is non-dictatorial (i.e., there exists no dictator in At). 

Definition 2.21: Let G = (N, W) be a proper and monotonic simple game. G is (non- 
trivially) dominated if a) G is essential (see Definition 2.20), and b) I h (G) I = 1 (see 
Definition 2.3). 

We shall now determine, in several cases, the relative frequency of dominated 
games (see Definition 2.21), among essential political (simple) games. We shall refer to 
two sources of information: De Swaan [ 1973] and Peleg [ 1980]. Using the information 
contained in Chapters 9-11 of De Swaan [1973] we obtain Table 2.1. 

Nation Period considered Essential assemblies Dominated assemblies 

Denmark 
Finland 
France 
Israel 
Italy 
The Netherlands 
Norway 
Sweden 
Weimar 

Total 

1918-1971 
1919-1972 
1946-1957 
1949-1970 
1946-1972 
1918-1972 
1933-1969 
1917-1970 
1919-1930 

Tab. 2.1: Dominated Assembliesin 9 Democracies 

21 
16 
16 
7 
9 

15 
5 

10 
6 

105 

18 
8 

9 
7 
9 

13 
5 
9 
3 

81 
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Remark 2.22: The relevancy of the theory of dominated simple games to the analysis 
of coalition formation in European democracies is clear from Table 2.1. In particular, 
three cases should be distinguished: Sweden was continuously dominated during the 
years 1921-1970 by the Social Democrats. Italy was continuously dominated during 
the period 1946-1972 by the Christian Democrats. Finally, Israel was dominated by 
the Labor Party during the years 1949-1977. (It is now dominated by the Likud, a 
right-wing party.) 

We now turn to our second source of information. 

Remark 2.23:54 out of the 78 town councils in Table 8.1 of Peleg [1980] are essen- 
tial. 43 out of the 54 essential councils are dominated. Thus, again, the dominated 
games consist of a clear majority of the relevant games. 

3. Ordinary and Exceptional Coalitions 

Let G = (N, W) be a dominated simple game (see Definition 2.21). I fh  (G) = {i} 
then we write i = h (G). 

Definition 3.1: Let G = (N, I40 be a dominated simple game and let i = h (G). Let 
further S be a winning coalition, i.e., S ~ W. S is ordinary if i E S; otherwise, i.e., if 
i ~ S, S is exceptional. 

Thus, if G is a dominated game then a winning coalition which includes the domi- 
nant player is ordinary, while a majority which excludes the dominant player is excep- 
tional. Note that a minority coalition is neither ordinary nor exceptional. The numbers 
of ordinary and exceptional coalitions in the nine countries investigated by De Swaan 
[1973], are recorded in Table 3.1. 

Nation Period considered 

Denmark 
Finland 
France 
Israel 
Italy 
The Netherlands 
Norway 
Sweden 
Weimar 

Total 

1918-1971 
1919-1972 
1946-1957 
1949-1970 
1946-1972 
1918-1972 
1933-1969 
1917-1970 
1919-1930 

Ordinary coalitions 

13 
5 
2 

14 
16 
16 
4 
8 
5 

83 

Exceptional coalitions 

19 

Tab. 3.1: Ordinary and Exceptional Coalitions in Dominated Assemblies 

A careful examination of De Swaan's data reveals that exceptional coalitions may 
form (almost) only when the dominant player represents an "extreme" ideology (see 
Remark 3.4). To put it more precisely we need the following definition. 

Definition 3.2: Let G = (N, W) be a simple game. A policy order is a weak ordering 
(i.e., a complete and transitive binary relation)R on the set of playersN. 
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Let G = (N, I4') be a committee, i.e., a simple game. A policy order for G is, intui- 
tively, an ordering of the players according to their "positions" with respect to the 
major issues which confront G. For example, if G is a parliament then, usually, there 
is a well defined "left to right" ordering of the members of G (i.e., the parties which 
are represented in the parliament). The reader is referred to De Swaan [1973] for a 
deeper discussion of the notion of a policy scale. 

We are now able to state: 

Definition 3.3: Let G = [q; w 1 . . . . .  wn] be an essential and proper weighted majori- 
ty game (see Definition 2.20, (2.2) and Definition 2.6). A player e C N  (with a "non- 
negligible" weight we), is extreme with respect to a policy order R, if e R i for all 
i EN,  or i R e  for all i E N  (i.e., i fe  is either the first or the last player in the orderR). 

Remark 3.4: During the period 10/1947 - 3/1951 the Communist Party of France 
was a dominant player in seven assemblies. However, since it was extreme according to 
(De Swaan's) policy order, it was excluded from the cabinet. Similar phenomena oc- 
cured in Norway in 1965 and 1969, and in Finland during the years 1919-1936. How- 
ever, in almost all the dominated assemblies where the dominant party occupied a 
"central position" according to De Swaan's policy order, an ordinary coalition formed. 

Remark 3.5: Among the 43 dominated councils of Table 8.1 in Peleg [1980] only two 
exceptional coalitions formed. We conclude from this observation that, in the absence 
of a well defined policy order, ordinary coalitions are very likely to form in dominated 
games. 

4. Weakly Dominated and Connected Coalitions 

Henceforth we shall devote our investigation to formation of ordinary coalitions 
(see Definition 3.1), in dominated simple games (see Definition 2.21). 

Let G -- (N, W) be a dominated simple game and let i = h (G). We assume that i is 
given a mandate to form a coalition. For example, in the case of a parliament such a 
mandate is usually given, to some party, by an official authority like a king or a presi- 
dent. However, the assumption that the task of erecting a coalition is assigned to the 
dominant party consists of a non-trivial restriction on the process of coalition forma- 
tion (see Section 3, especially Remark 3.4). We now restate the above assumption for 
the sake of easy reference. 

(A) The dominant player is given a mandate to form a coalition. 

Clearly, under Assumption (A) only ordinary coalitions are formed. Throughout 
the rest of this paper we investigate several hypotheses on coalition formation by dom- 
inant players. Also, further analysis of the data of De Swaan [1973] and Table 8.1 of 
Peleg [ 1980] is given. 

Let, again, G = (N, I4') be a dominated simple game and let i = h (G). Denote by 
H = H (G) the set of all winning coalitions which are weakly dominated by i (see Defi- 
nition 2.2). Formally, 

H = H ( G ) =  { S I S E W ,  i E S  and { i } ~ S -  (i}}. (4.1) 

Clearly, every coalition in H is ordinary. The first hypothesis that we investigate is 
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(H) Let G be a dominated simple game. Under Assumption (A) only coalitions 
in H = H (G) (see (4.1)) are formed. 

The reasoning behind (H) is very simple: the dominant player seeks to maintain a 
"simple majority" within the coalition which he forms. Since G is dominated, 
H (G) 4: ~). Hence, it seems as if nothing can prevent i (where i = h (G)), from erecting 
a coalition S EH. However, as soon as the members of G can be "ideologically order- 
ed", i.e., some policy order (see Definition 3.2) is known to exist, combinatorial ob- 
structions may prevent formation of any member of H as we shall see below. First we 
need the following notation and definition. 

Remark 4.1." Let G = (N, W) be a simple game and letR be a policy order onN. 
If i, j E N, i R / but / '  R i does not hold, then we write i P j. If i R j and ] R i, then 
we denote i l l  

Definition 4.2: Let G = (N, W) be a simple game and let R be a policy order on N. A 
coalition S is connected (with respect to R), if it satisfies the following condition: 

[i, kES ,  j E N  and iP jPk]=~jES.  

Remark 4. 3: Definition 4.2 is due to Axelrod [ 1970]. Connected coalitions are called 
"closed" by De Swaan [ 1973, p. 70]. 

In Axelrod [ 1970] it is claimed that, in the presence of a well defined policy order, 
only connected coalitions form. Axelrod's hypothesis is strongly supported by De 
Swaan's empirical research [see De Swaan, p. 159]. The following examples show that 
Axelrod's assumption may be incompatible with (H). 

Example 4.4: Consider the French Assembly of January 1947 [see De Swaan, p. 182]. 
It is (incompletely) described by the weighted majority game [310; 182, 104, 167, 
43, 26, 28, 35 ]. (The description is incomplete since the parties with less than 2.5 per- 
cent of the seats are omitted.) The policy order R (of De Swaan), is given by: 
1P2P3P415P6P7, (see Remark 4.1). Now, (1, 2, 5} E W and {1,3} E W, while 
{2, 3, 5} ~ W. Hence, player 1 (the Communists in this case), is dominant (see Defini- 
tion 2.3). Now, ifS E W is connected (see Definition 4.2), and 1 E S then 
S D {1, 2, 3}, and therefore S ~H.  

In Example 4.4 the dominant player is an extreme player (see Definition 3.3). In 
the following example he is a median player according to the given policy order. 

Example4.5: Let G = [17; 1, 1,7, 1, 1, 1,9, 1, 1, 1,7, 1, 1] andlet 
R = (1, 2, 3 . . . . .  13) be a policy order for G. Then G is a strong weighted majority 
game and 7 = h (G). Also, ifS is a connected and winning coalition and 7 E S, then 
either S D {3, 4, 5, 6} or S D (8, 9, 10, 11}. Hence, there exists no connected coali. 
tion in H (G). 

5. Determining Coalitions 

Definition 5.1: Let G = (AT, W) be a proper and monotonic simple game. A coalition 
S E W is determining (in the game G) if 

[iES and S- -  { i}*--( i}]~S--  (i}EW. (5.1) 

The set of all determining coalitions in G is denoted by D (G). 
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Remark 5.2: Determining coalitions were introduced in Peleg [ 1980]. Indeed, Remark 
7.9 in that paper is identical to our present Definition 5.1. For motivation and a de- 
tailed discussion of Definition 5.1 the reader is referred to Peleg [ 1980]. Here we shall 
be content with the following remark. 

Remark 5.3: Let G = (N, W) be a proper and monotonic simple game and let 
S E D (G). Condition (5.1) says that if i @ S is not a "vetoer with respect S"  (i.e., 
S - (i} ~-- {i}), then he is not a swinger with respect to S (i.e., S - {i) @ W). It implies 
the following stability property of S. If T C S consists of a "simple majority" within S 
(i.e., T~--S -- T), then no player i of the "internal opposition" S - T is a swinger [see 
Corollary 6.7 in Peleg]. Therefore, if S decides on its course of action by "simple 
majority" then no single player i E S - T can deprive T from its control of a majority 
within N. 

We now formulate our second hypothesis about coalition formation in dominated 
games. 

(D) Let  G be a dominated simple game. Under Assumption (A) (see Section 4) 
only determining and ordinary coalitions (see Definitions 5.1 and 3.1), are 

formed in G. 

An immediate question is whether (H) (see Section 4), is compatible with (D). Be- 
fore we consider two counter examples we need the following definition. 

Definition 5.4: Let G = [q; w 1 . . . . .  wn] be a weighted majority game (see Definition 
2.6). [q; w 1 . . . . .  wn ] is a homogeneous representation of G if 

S E W m ~ w (S) = q (see Remarks 2.5 and 2.13). 

A weighted majority game G is homogeneous if it has a homogeneous representation. 

Example 5.5: Let G = [5; 3, 2, 2, 1 ]. Then G is homogeneous. Furthermore, G is 
dominated and, obviously, 1 = h (G). As the reader can easily verify, 
D (G) = {(1, 2, 3, 4}}. Clearly, since (2, 3, 4} is winning, (1, 2, 3, 4} ~ H  (G). Thus, 
H (G) N D (G) = 0. Note, however, that G is not strong (see (2.3)). 

Example 5.6: Consider the strong weighted majority game G = [9; 5,3,3,3,1,1,1]. 
{1, 2, 5} C W and {1,3, 6} E I4,', while {2, 3, 5, 6} ~ W. Hence {1} ~-- (2, 5}. Thus, G 
is dominated and, of course, 1 = h (G). As the reader can easily verify if 1 E S and 
S ED (G) then [ S N (2, 3, 4} I >/2. Hence S ~ H  (G). Thus, again, 
D (G) (~ H (G) = ~). Note, however, that G is not homogeneous [see 1shell, p. 28]. 

The following theorem deals with the remaining possibility. 

Theorem 5. 7: Le t  G = (N, W) be a strong and proper homogeneous weighted majority 
game. I f  G is dominated then H (G) (1 D (G) 4= O. 

Proof." Let [q; w ~ . . . . .  wn] be a homogeneous representation of G. We start with the 
following claim. 

Claim 5.8: Let S = {kl . . . . .  k s} be a winning coalition. I fw ka >~. . .  t> wks then 
there exists t, 2 ~< t ~< s, such that ~k~ . . . . .  k t )  E W m . 

Claim 5.8 follows immediately from the fact that [q; w 1 . . . . .  wn] is a representa- 
tion of G. So we continue with the proof of Theorem 5.7. Without loss of generality 
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we may assume that w ! > ~ . . .  >>- w n .  Thus, 1 = h (G). By Claim 5.8 there exist m and r  
such that 2 ~< m < r, and S = ( 1 . . . . .  m } and T -- ( 1, m + 1 . . . . .  r}are minimal win- 
ning. Let S* = S - ( 1 } and T * = T -  ( 1 }. Since 1 is a dominant player (see Defini- 
tion 2.3) w 1 > q /2 .  Hence w (S*) + w (T*)  < q (see Remark 2.5). 

Thus, Ut = N -- (S* U T*) E W. We now distinguish the following possibilities: 

a) U I - { r + I } E W .  

In this case let U2 C UI - {r + I } be a minimal winning coalition, and let further 
U = U 2  U ( r +  I} .  

b) U, -- ( r +  I)~W. 

In this case let U2 C U, be a minimal winning coalition, and let further U = U 2 u {r}. 
Clearly, in both cases I E U 2 c U. We claim that, in both cases, U E H  (G) ND (G). 

Let i E U, i 4= I. Then, in case a) w i <~ w r+l , and in case b) w i ~ w r. Thus, in both 
cases, U -  {i} E W. Hence, in order to prove that U E H (G) G D (G), it is sufficient to 
show that {1} ~-~ U -  (1} (see (4.1) and Definition 5.1). In order to prove this we first 
observe that since G is homogeneous and w r+l ~ w k for all k E S *  U T*, the inequali- 
ty w (S*)  + w (T* )  + w r+ l <. q is true. We now distinguish the following possibilities: 

c) w ( S * ) + w ( T * ) + w  r+l < q .  

In this case N - (S* U T* u {r + 1 }) E W, i.e., a) is true. Now c) is equivalent to 
2 (q - w I ) + w r+l < q, or q - w 1 + w r+l < w I . But, the last inequality is equivalent 
to w (U2 -- {1)) + w r+l = w ( U - -  {1}) < w  ~ , which implies that (1} ~--~ U - -  {1}. 

d) w (S*)  + w ( r * )  + w  r+l = q .  

In this case b) is true. Assume now, on the contrary, that U -  (1} ~ (1}. Denote 
U* = U -  (1 }. Then there exists B C N such that B n U = 0 ,  B u U* c W and 
(1} U B ~  W. L e t R  = N -  (S* u T* U U2). 

Since U 1 -- {r + 1) �9 W, w (R) < w  r+l .  Hence 

w ( B ) + w ( U * ) = w ( B ) + w r  + q - - w  1 >~q 

implies that 

w ( B - - R )  + w r >~w'  - - w  ( R )  > w '  - - w  r+l .  (5.2) 

d) is equivalent to 

q - -  w 1 + w r+l - -  w 1 . (5.3) 

(5.2) and (5.3) imply that 

w I + w ( B - - R ) + w r > q .  (5.4) 

Let C = (1} U (B - - R )  U (r}. Then, by (5.4), C ~  W. However, C - -  (1"} = 
= {1 } U (B -- R)  C {1 } U B and is therefore losing. Since w r <~ w k for all k E C, 

C does not contain a subset C* such that w (C*) -~ q, contradicting the fact that 
[q; w '  . . . . .  w n ] is a homogeneous representation. Hence, U - -  (1 } ~ {1 } is impos- 
sible. Since ~ is complete (as G is a weighted majority game), (1 } ~ U -  (1 }. 
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We shall now prove that if G is a dominated strong game, and if i = h (G) is "almost  
winning", then H (G) ~ D (G) ~ 0.  We start with a precise definition of an "almost  
winning" player. 

Definition 5. 9: Let G = (N, W) be an essential, proper and monotonic simple game. 
A player i is almost winning if a) i E h (G), and b) there exists ] @ N such that 
( i , j ) c W .  

Theorem 5.10: Let G = (N, W) be a dominated strong game. I f  i = h (G) is almost 
winning (see Definition 5.9), then H (G) • D (G) ~ O . 

First we need the following lemma. 

L emma 5.11: Let G = (N, W) be a proper and monotonic simple game. I f  i E h (G) 
andS  CN,  [ S [ = 2 a n d i @ S ,  thenS  ~ W. 

We postpone the proof  of  Lemma 5.11 and start with a 

Proof  o f  Theorem 5. l O: Since i is almost winning there existsj  E N, j 4: i, such that 
{i, j )  E W. Let S = N - {/}. Since G is strong and essential S E W. Also, since 
{i , /)  C W, ( i ) ~ S  - ~i) (see Definition 2.1). Hence S E H ( G )  (see (4.1)). Let now 
k E S, k 4: i. By Lemma 5.11, (/, k) ~ W. Since G is strong, S -- {k) E W. Hence 
S C D  (G) (see Definition 5.1). 

Proof  o f  Lemma 5.11: Without loss of  generality i = 1 and S = (2, 3}. Since 
1 E h (G) there exists T E W such that 1 E T and (1) ~ T - -  (1 } (see Definition 2.3). 
Assume now, on the contrary, that S E If. Since G is proper T N S 4 :0  ; also, {1) ~ If. 
Hence, since (1}~-  T -  ~1), I TC~S [ = 1. Again, without loss of  generality, 
{2) = S (~ T. Let B C N such that B A T = ~). I f  (1) U B E W then, since G is proper 
and S E W, 3 E B. Since 2 C T -  (1) and 3 C B, ( T -  ~1 )) U B E If. Thus, 
T - -  {~1) ~ ~1) (see Definition 2.1), which is the desired contradiction. 

Since many political games (e.g., parliaments), involve only a small number of  play- 
ers, the following corollary might be useful. 

Corollary 5.12: If  G = [q; w I . . . . .  w n] is a dominated strong weighted majority 
game, and if n ~< 6 (i.e., G has at most six players), then H (G) A D (G) :~ 0.  

Indeed, by direct inspection of Isbell's list of  strong weighted majority games [see 
Isbell, p. 27], one finds that if G satisfies the conditions of  Corollary 5.12 and if 
i = h (G), then i is almost winning. Hence the corollary follows from Theorem 5.10. 

Corollary 5.13: If  G = (N, If) is a proper and monotonic simple game t h e n N  contains 
at most two almost winning players. 

Corollary 5.13 is a direct consequence of Definition 5.9 and Lemma 5.11. (Note 
that the game G of Example 2.14 has two almost winning players.) 

Corollary 5.14: Let G = (N, If) be a proper and monotonic simple game. I f  I N  I ~< 4 
then I h (G) I ~< 1 (see Remark 2.15). 

Proof." We consider the case I N  I = 4. (The case IN  I = 3 is left to the reader.) Sup- 
pose, on the contrary, that I h (G) I ~> 2. Without loss of  generality let t, 2 E h (G). 
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Since I E h (G) there exists a coalition S E W such that ! E S and (1 } ~ S -- (1 }. By 
Corollary 6.7 inPeleg [1980] and Lemma 2.4, 2 ~S.  Hence, by Lemma 5.11, 
S = {1, 3, 4}. Similarly, (2, 3, 4) E I4'. Hence, {3, 4} ~ {1}, which is the desired con- 
tradiction. 

We conclude this section with the following remark concerning weak games. 

Remark 5.15: If G = (N, If) is a dominated weak game (see Definition 2.9), then 
H (G) n D (G) 4 = 0. 

Proof: Indeed, if v = h (G) then, since v is a vetoer, (v} ~ N - {v). Hence,N E H (G). 
Also, by Corollary 7.10 in Peleg [ 1980], N E D (G). Thus, N E H (G) (1 D (G). 

6. The Shapley Value Approach 

Let G = (N, If) be a monotonic simple game (see (2.1)). A linear order o n N  is a 
transitive, complete and antisymmetric binary relation on N (i.e., it is an antisymmetric 
policy order; see Definition 3.2). We denote by L the set of all linear orders onN. Let 
R EL and i EN.  We denote 

B i = ~1" [ jEN,  f : / : i and jR  i}. 

Thus, B i is the set of players that precede i in the order R. We call i a pivot (with 
respect to the order R), i fB i r W while B i U {i} E W. Clearly, since G is monotonic, 
there exists at most one pivot with respect to R (note that G may be null, i.e., If -- 0). 
We denote 

7r i = (R I R @ L and i is a pivot with respect to R }. 

The Shapley value of player i (in the game G) is ~i (G) = r = [ n. i I / n [, where 
n = I N I. Thus, r is the probability of i being pivotal when all the (linear) policy 
orders are equally probable. (See Shapley [1977] for a recent discussion of the Shapley 
value.) Let S be a coalition (i.e., S C N). The subgame of G which is determined by S 
is the simple game G IS = (S, If c~ 2s), where 2 S is the set of all subsets of S. Let now 
i E S. The Shapley value of i with respect to the coalition S is ~o i (S) = ~0 i (G I S) [see 
Aumann/Dreze, p. 220]. 

Let now G = (N, W) be a dominated game (see Definition 2.21), and let i = h (G). 
Under Assumption (A) (see Section 4), it is quite reasonable (or, at least, possible) that 
i chooses S in order to maximize ~0 i (S). Indeed, by choosing S with maximum ~p~ (S), 
i maximizes his "power" within the formed coalition (provided, of course, that after 
the formation of S the members of the opposition, N -  S, have no influence on the 
process of decision making by S). For a discussion of the possibility and plausibility of 
such a behaviour in parliamentary coalitions, the reader is referred to De Swaan [ 1973, 
127-129]. 

The above discussion leads us to the following hypothesis. First we need the follow- 
ing notation. Let G = (N, I41) be a monotonic simple game and let k E N. We denote 

Ok= ( S I S C N a n d k E S } ,  
and 

SV (G, k) = (S IS ~ O k and tp k ( S ) )  tp k (7") for all TC Ok}. (6.1) 
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We now state our hypothesis: 

(SV) Let G = (N, IV) be a dominated simple game and let i = h (G). Under 
Assumption (A)only coalitions in SV (G, i) (see (6.1))are formed. 

Our first duty is to check whether (SV) is compatible with (H) and (D) (see Sec- 
tions 4 and 5 respectively). We start by proving two lemmata which are very helpful in 
computing the sets SV (G, k). (These lemmata are, indeed, essential for the computa- 
tion of the results in Table 8.1 .) First a definition. 

Definition 6.1: Let G = (N, IV) be a monotonic simple game. A player k E N  is a 
dummy (in the game G) if there exists no S E W m (see Remark 2.13), such that k E S. 

The following Remark is obvious. 

Remark 6.2: Let G = (N, W) be a monotonic simple game. A player k E N i s  a dummy 
if and only if ~k (G) = 0. 

We now state and prove: 

Lemma 6.3: Let G = (N, IV) be a monotonic simple game, let S be a coalition and let 
k ES.  I fk  is not a dummy in G and ifS -- {k}EIV, thenS ~SV (G, k). 

Proof." I fk  is a dummy in G I S thenS ~ SV (G, k) by Remark 6.2. Hence we may as- 
sume that k is not a dummy in G I S. Also, since k is not a dummy in G, 0 ~ IV. Hence, 
since S -- {k} E PC, s = [ S I ~> 2. Denote now by L s the set of all linear orders of S. 
For / E S let 

Xi=  (R I R E L s a n d m R ]  f o r a l l m E S ) ,  

i.e., X/is the set of all linear orders of S in which/is the last player. Let further 

n k (S) = {R I R E L S and k is a pivot with respect to R), 

and rrk, i = 7r k (S) N Xj. Then, i f / E  S - {k), 

~k ( s -  (j))  = I ~rk, / I / ( s  - 1) ! 

Since S - {k} E W, rrk, k = lrk (S) n X k = 0. Hence 

~k (s )  = z (~k ( s  - ( / ) )  I / ~ s - (k)) / s. 

Since k is not a dummy in G I S there exists j E S -- {k} such that Ck (S -- (j)) > 0. 
Thus, as s >/2, ck (S) < max (r (S -- (j)) I / E  S -- (k)}, which proves the lemma. 

Lemma 6.4: Let G = (N, IV) be a monotonic simple game, let S be a coalition and let 
k ES. If there e x i s t s / E N - - S  such that (S U (j}) -- {k) ~ IV, then Ck (S) ~< 
~< ~k (S U (1)). If, furthermore, there exists T c S such k �9 T, T U (k) �9 IV, but 
T U (k) U ~j) E W, then ck (S) < ~pk (S U (j}). 

Proof." Once more letL S be the set of all linear orders of S, and 

zr k (S) = {R I R E L  S and k is a pivot with respect toR) .  
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Lsu {1} and n k (S ~0 {/'}) are defined similarly. Let Q ~ Lsu (/}. We denote by t u (Q) 
the u-th player in the order Q, u = 1 , . . . ,  s + 1, where s = [ S I. Thus, t~ (Q) is the 
first player in the order Q, t2 (Q) is the second, and so on. Let now R E L S. We define 
s + 1 linear orders o fS  U {/'}, R(1) . . . . .  R (s+l), in the following way. Let 
1 ~< u ~< s + 1. If a, b E S then [a R(u) b <* a R b ], and t u (R (u)) = ]. If R Err k (S), 
then, since (S tO {/}) - {k} dE W, R(u) Err k (S U {/}) for u = 1 . . . .  , s + 1. Hence 
[ ~k (s u ~j'}) I/> 17rk (S) I (s + 1). 
Thus, 

~k (s  u {j}) = I rr k ( s  u {1}) I / (s + 1) !/> I rr k (S) I / s ! = ~k (S). 

In addition, if T has the above properties, we may choose R E L S such that 
T = {i [ i r k and i R k }. Then, since T u {k} r W, R r  k (S). ttowever, since 
T U {/'} U {k} E W, R(1) Err k (S U {/'}) (see the previous paragraph). Combining the 
last observation with the previous argument, we conclude that ck (S) < ck(S U {]}). 

Example 6.5: Consider the proper and strong homogeneous weighted majority game 
G = [5;3,2,2,1,1 ]. G is dominated and 1 = h (G) is almost winning (see Definitions 
2.21 and 5.9). By Lemmata 6.3 and 6.4 SV (G, 1) C {{1,2,3}, {1,2,4,5}, {1,3,4,5}}. 
Now, by direct computation, r ({1,2,3}) = 2/3 while ~01 ({1,2,4,5}) = 7/12. Thus, 
SV (G, 1) = {{1,2,3}}. However, as the reader can easily verify, {1,2,3} ~ H  (G) (see 
(4.1)), and {1,2,3} ~ D (G) (see Definition 5.1). 

The following Remark shows that in dominated weak games all our hypotheses are 
compatible. 

Remark 6.6: I fG = (N, W) is a dominated weak game and v = h (G), then 
N E H (G) ('1 D (G) (~ SV (G, v). 

Proof." By the proof of Remark 5.15 N E H  (G) ~ D (G). Also, since v is a vetoer it 
follows from Lemma 6.4 that N E SV (G, v). 

For the sake of easy reference we now restate some of the implications of the 
hypothesis (SV). 

Remark 6. 7: Let G = (N, W) be a dominated simple game and let i = h (G). (SV) im- 
plies that i erects S with maximum ~i (S). Thus, i considers only his "power" within 
the coalition which he chooses. In particul~tr, no information on the bargaining process 
which leads to the erection of a coalition is explicit in (SV). Furthermore, only the 
situation after the formation of a coalition S is valued by i, and it is assumed, implicit- 
ly, that the oppos i t ion ,N-  S, has no influence on the process of decision making by 
S. Finally, no direct reference to payoff considerations is made. However, it is quite 
obvious from Lemma 6.4 that for weighted majority games (SV) implies, in most 
cases, the rejection of the Riker-Gamson minimum size principle, which is based on 
payoff considerations [see De Swaan]. 

7. The Nucleolus Approach 

In this section we consider simple games as cooperative games with side payments. 
This enables us to use the theories of the kernel and the nucleolus in order to investi- 
gate coalition formation in dominated games. At the end of this section we shall try to 
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elucidate, under certain assumptions, the relationship between coalition formation in 
committees (i.e., simple games), and bargaining processes over the final distribution of 
payoffs in cooperative simple games with side payments (see Remark 7.11). 

Let G = (N, IV) be a simple game. We assume that G is non-null, i.e.,N E W. The 
characteristic function c of G is the function c : 2 N ~ {0,1 } which satisfies 
[c (S) = 1 *" S E IV]. A payo f f  vector is an n-tuple x = (x I . . . . .  x n )  (recall that 
N = {1 . . . . .  n)) of real numbers which satisfiesx ~ 7> 0, i = 1 . . . . .  n andx (N) = 1 
(see Remark 2.5). We denote by X the set of all payoff vectors. For x E X, let 0 (x) be 
a 2 n-tuple whose components are the numbers c (S) - x (S), S C N, arranged accord- 
ing to their magnitude, i.e., 0 i (x) ~ O] (x) for 1 ~< i < ]  ~< 2 n. The nucleolus of G, 
v = v (G), is the payoff vector which is "closest" to c in the sense that 0 (v) is the 
minimum, in the lexicographic order, of the set {0 (x) I x E X) [see Schmeidler]. Let 
now S E IV. The reduced game (with respect to S) is the game RG (S) = (S, IVS), where 
T E IVs ~" [T C S and there exists B C N - S such that T u B E IV]. 

If G is proper then the nucleolus o r S  is v (S) = v (RG (S)) [see Aumann/Dreze,  

p. 2221. 

Remark ZI :  Let G = (N, IV) be a simple game and letS E IV. In the subgame G I S 
(see Section 6) the effect of the opposition N -  S is completely ignored. Thus, G I S 
describes the situation after the erection of S (see Remark 6.7). In the reduced game 
RG (S) the situation is completely different: the members o f N -  S are ready to co- 
operate with sub-coalitions of S for any positive payoff. Thus, RG (S) is more likely to 
reflect the "power" of the various sub-coalitions of S during the process o f  establishing 
S (i.e., during the negotiations about the details of an agreement on which the erect ion 
of S will be based). 

Let G = (N, IV) be a dominated game (see Definition 2.21) and let i = h (G). If the 
distribution of payoffs among the members of a coalition which forms is determined 
by the nucleolus (of that coalition), then, under Assumption (A) (see Section 4), i 
will choose S to maximize u i (S) (the component of u (S) which corresponds to play- 
er i). This leads us to the following hypothesis. First we need the following notation. 
Let 

O= ( S I S C I V a n d i E S } ,  
and 

NUC (G) = {S IS E 0 and u i (S) > u i (T) for all T E  0}. (7.1) 

We are now able to state our hypothesis: 

(NUC) Let G = (N, IV) be a dominated simple game and let i = h (G). 
Under Assumption (A)only coalitions in NUC (G) (see (7.1)) 
are formed. 

Again, we have to check whether (NUC) is compatible with (H), (D) and (SV) (see 
Sections 4, 5 and 6 respectively). It is convenient first to introduce the kernel, a solu- 
tion concept which is closely related to the nucleolus. Let G = (N, IV) be a non-null 
monotonic simple game, and let c be the characteristic function of G. Let x E X and 
let k, m EN, k # m. We denote: 

sk, m (x) = max {c (S) - x (S) I S C N, k E S and m r S}. 



26 B. Peleg 

The kernel of G, K (G), is defined by 

K ( G ) =  ( x l xEXandsk , rn (X)=Sm,k (x )  forallk, m ~ N , k ~ m } ,  (7.2) 

[see Maschler/Peleg/Shapley, 76-77].  It is well-known that v (G) E K (G) [see 
Schmeidler]. One advantage of the kernel (of a monotonic game) over the nucleolus, is 
that the kernel is determined by an explicit system of equations (see (7.2)), and is 
therefore easier to compute. 

Remark 7.2: The kernel is, of course, defined also for non-monotonic games. How- 
ever, its definition in that case is somewhat more complicated than (7.2). 

Let now G = (N, W) be a monotonic simple game and let S E W. If G is proper then 
the kernel orS is K (S) = K (RG (S)), where RG (S) is the reduced game with respect 
to S [see Maschler/Peleg, Theorem 2.9]. The following remarks are very helpful for 
computing kernels of simple games. (Indeed, they are essential for the computation of 
Table 8.1.) 

Remark 7.3: Let G = (N, W) be a (non-null) proper and monotonic simple game and 
letS E IV. I f / E S  is not a vetoer (see Definition 2.9), andx E K  (S), thenx i ~< 1/2. 

Remark 7.3 is a direct consequence of (7.2). 

Remark 7.4: Let G = (N, 14/) be a proper, monotonic and strong simple game. If 
S E W m (see Remark 2.13) and x E K (S) then x~ = 1 / I S I for all i E S. 

Remark 7.4 follows from the simple observation that in the reduced game RG (S) 
every player i E S is winning. (Indeed, if i E S then, since S E W m, S - (i} ~ W. Hence, 
since G is strong, {i} U (N -- S) E W, which implies that {i} E W S.) 

Remark 7.5: Let G = [q; w I . . . .  , wn] be a weighted majority game (see Definition 
2.6). I fS  = {i1,.. ' .  , ik} E W then the reduced game RG (S) = [q - w ( N - S ) ;  

W i l ,  . . . , w i k ] .  

We now check the compatibility of (NUC) with (H), (D) and (SV). 

Example Z 6: Let G = [5 ; 3,1,1,1,1,1, I ]. G is a strong and homogeneous weighted 
majority game and 1 = h (G). Using Remark 7.5, Table 1 in Aumann/Peleg/Rabino- 
witz [ 1965 ] and Kopelowitz [ 1967] we find that 

NUC (G) = {S I 1 E S  and IS N {2,3,4,5,6,7} I = 4} (see (7.1)). 

Hence NUC (G) n H  (G) = ~ and NUC (G) C~ D (G) = ~) (see (4.1) and Definition 
5.1). Note that 1 is not almost winning (see Definition 5.9). 

Remark 7. 7: If G = (N, IV) is a dominated weak game then N E NUC (G). 

Proof." Let i = h (G). Then i is a vetoer. Let x E K (G). By Theorem 4.1 in Maschler/ 
Peleg [1967]x i = 1. Hence, since the nucleolus o fG v E K  (G), v i = 1. Thus, since 
v (a)  = v (N), N E NUC (G). 

Remark 7.8: It follows from Remarks 6.6 and 7.7 that, in dominated weak games, all 
the four assumptions (H), (D), (SV) and (NUC) are simultaneously compatible. 
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Theorem 7. 9: Let  G = (N, IV) be a dominated weighted majority game and let 
i = h (G). I f i  is almost winning (see Definition 5.9) then NUC (G) N H  (G) 4= 0. 

Proof." By Remark 7.8 we have to prove the theorem only when i is not  a vetoer. 
Since i is almost winning there exists /EN, / 4~ i, such that S = (i,/} E W. Since i is 
not a vetoer, N -- (i) = (/} U (N -- S) E W. Hence {j} E Ill S (where RG (S) = (S, WS) ). 
Clearly, (i} ~ W S. Hence, by symmetry,/2 i (S )  = 1/2. By Remark 7.3 S E NUC (G). 
By Lemma 2.4, i~-- j. Hence, S E H (G). 

Thus, S E H ( G )  (3 NUC (G). 

Example 7.1 O: Let G = [5; 3,2,1,1,1,1 ]. Then G is a dominate d, strong and homoge- 
neous weighted majority game, 1 = h (G) and 1 is almost winning. Denote 
T = (3,4,5,6}. Then, as the reader can easily verify 

D (G) = (S I 1 ES  and IS r T I~> 3) U ((2,3,4,5,6)). (7.3) 

Since {1,2}E Ir it follows from Remarks 7.3 and 7.4 that 

max {v 1 (S) I 1 E S  andSC W} = 1/2. (7.4) 

Using Remark 7.5, Table 1 in A umann/Peleg/Rabinowitz [ 1965 ] and Kopelowitz 
[1967], one shows that D (G) n NUC (G) = 0. (Indeed, i fS = {1,3,4,5} then 
RG (S) = [2; 2,1,1,1] and v 1 (S) = 2/5; i fS = (1,3,4,5,6}then RG (S) = [3; 3,1,1,1,1] 
and v x (S) = 3/7; i fS = (1,2,3,4,5) then RG (S) = [4; 3,2,1,1,1] and v 1 (S) = 3/8; 
finally, ifS = N then v 1 (S) = 1/3. Hence, by (7.3) and (7.4), D (G) n NUC (G) = 0.) 
By Lemmata 6.3 and 6.4 r (S) is maximized either at $1 = (1,2,3,4} or at 
$2 = {1,3,4,5,6). By direct computation ~0 x ($1) = 7/12 and ~o 1 ($2) = 3/5. Thus 
SV (G, 1) = ($2) (see (6.1)). As we have already shown $2 ~ NUC (G) (see (7.1)). 
Hence SV (G, 1) r3 NUC (G) = r 

We conclude this section with the following remarks. 

Remark 7.11: Let G = (N, W) be a non-null simple game. We address ourselves to the 
following problem: under what assumptions can G be considered as a cooperative 
game with side payments. Since we apply the theoretical results of this paper mainly 
to parliaments, we shall assume further that G represents a parliament. Thus, the play- 
ers of G (i.e., the members of N) are parties, and if a (winning) coalition S forms then 
the parties in S have to divide among themselves a certain number k of portfolios. (The 
number k my not be fixed in advance; e.g., it may be part of the outcome of the bar- 
gaining between the members of S. However, this does not affect the following dis- 
cussion.) Let pl . . . . .  Pk be the different portfolios and let the budget allocated to 
portfolio p! bey/,  / = 1 , . . . ,  k. We assume that y~ . . . . .  Yk (and k itself), are deter- 
mined during the "first phase" of negotiations among the parties in S. Now, for each 
portfolio p j , / =  1 . . . . .  k, there is a real number f/, where 0 ~<f,. ~<y:, which equals 

,, ,, 1 / 
that part o f y  i which is not a-priori tied , i.e., which is completely controlled by the 
minister holding the office pj. We assume further that in the second (and final) phase 
of negotiations the parties in S have both the time required and the legal possibility to 

k 
reach, by binding agreements, every distribution of the sum Y. f/(which is independ- 

1=1 
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ent of the coalition S) between themselves. If we add the usual assumption that the 
utilities (for money) of the players of G are linear and increasing in money, then the 
theories of the kernel and the nucleolus can be applied to G. 

Remark 7.12: The question whether the assumptions made in Remark 7.11 in order 
to describe parliaments as games with side payments are realistic, remains open. How- 
ever, our feeling is that during the period of  the formation of  a coalition our assump- 
tions do apply (at least approximately), to parliaments. Indeed, this is reflected in the 
results of Tables 8.2 and 8.3. 

8. Classification of Ordinary Coalitions 

In this section we do in full detail the classification of ordinary coalitions for 5 out 
of the 9 nations investigated in De Swaan [ 1973] (see Table 8.1). We also summarize 
the results of such a classification for the 41 ordinary coalitions in Table 8.1 of Peleg 
[1980] (see Table 8.3). Throughout this section we use the following notation. Let 
G = (N, W) be a dominated simple game (see Definition 2.21) and let i = h (G). We 
denote by W m the set of minimal winning coalitions (see Remark 2.13). H = H (G) 
is defined by (4.1). D = D (G) is the set of determining coalitions in G (see Definition 
5.1). SV = SV (G, i) is determined by (6.1). NUC = NUC (G) is defined by (7.1). 
Finally, ifR is a policy order (see Definition 3.2), then we denote by 
CLMR = CLMR (G, R) the set of minimal elements of the set of all connected (see 
Definition 4.2) and winning coalitions in G. (The reader is referred to De Swaan 
[1973] for a discussion of the set CLMR (G, R).) 

The data of the following table are taken from De Swaan [ 1973]. 

Tab. 8.1: Classification of Ordinary Coalitions in 5 Democracies 

No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

Date 

1920 a) 
1920 b) 
1924 
1929 
1932 
1935 
1939 a) 
1939 b) 
1953 
1957 
1960 
1966 
1971 

Assembly 

[71; 42,17,49,28] 
[71; 42,16,52,26 
[75; 55, 20,45,28 
[75; 61,16,44,24 
[75; 62,14,39,27 
[75 ; 68,14,29,26 
[75 ; 64,14,31,26 

[89; 8,75,14,43,30] 
[88; 70,14,46,30,9] 
[89; 11,78,11,39,32] 
[89; 20,70,13,35,341 
[90; 17,73,27,30,31] 

Denmark 
Coalition 

{3,4 ) 
{3,4 ) 

0,2) 
{1,2) 
{1,2) 
{1,2) 
(1,2) 
{1,2,3,4) 
{2,3) 
{1,2,5) 
(2,3) 
{1,2) 
0,2) 

Type 

W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
NUC, SV 
W m, H, NUC, CLMR 
W m, H 
W m, H, NUC, CLMR 
W m, H, NUC, CLMR 
W TM, H, NUC, CLMR 
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No. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

No. 

5 

6 

7 

8 

9 

10 
11 

12 

Date 

3/49 
11/50 
12/52 
1/54 
1/55 
1/58 
7/59 

11/61 
6/63 

12/64 
1/66 
5/67 
3/69 
8/70 

Date 

6/46 

2/47 
12/47 

5/48 

10/54 

7/55 

2/59 

7/60 

12/63 

7/64 
2/66 

12/66 

Assembly 

[61; 4,19,46,4,16,5,7,14] 

[61; 5,15,45,10,4,5,20,8] 

[61; 6,9,10,40,11,5,6,13,15] 

Israel 

i t  

[61; 9,7,47,12,6,6,8,17] 
[61; 5,9,8,42,12,6,17,17] 

i t  

[61; 8,45,10,11,6,5,26] 
r t  

[61 ; 4,56,4,12,6,4,26] 
n 

Coalition 

{3,4,5,6} 

{3,4,5,7 ) 

{2,3,4,5,6} 

{1,2,3,4,5} 
(3,4,5} 

r 

(t,2,4,6) 
(1,2,3,4,6,7} 
(2,4,6,7} 
{2,4,6} 

Type 

H, NUC 

H, NUC 

H,D 
i i  

H,D 
W m, H, CLMR 

H 
SV, NUC(?) 
H, D, NUC 
H, NUC 

Assembly and Senate 
Ital~ 

[279; 104,115,23,207,41,16,30] 

no Senate 

H 

[288; 183,33,305,19,141 

[ 173; 119,24,148,27,8] 
[295; 143,75,19,263,13,40,29] 

[119; 55,31,4,114,3,15,9] 

[299; 140,84,23,273,16,23,251 

]124; 60,37,5,123,4,7,81 
,, 

[315; 166,87,33,260,39,27] 

1158; 85,44,14,133,19,151 

[315 ; 166,24,95,260,38,261 

I158; 85,12,46,133,19,15] 
[316; 177,23,91,266,31,241 

Coalition 

{1,2,3,4,5 } 

{1,2,4} 
{2,4,5} 

{2,3,4} 

{3,4,5 } 

(4,5,6,7) 

(3,4,5) 

{2,3,4} 

n 

n 

{3,4} 

Type 

D, NUC 

SV, NUC 
H, NUC 

H, NUC 

W m, H, CLMR 

H, D, NUC 

W m, H, NUC, CLMR 

H, NUC, CLMR 

i t  

W m, H, NUC, CLMR 
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N o ,  

13 

14 

15 
16 

N O .  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

No. 

Date 

12/68 

8/69 

4/70 
8/70 

Date 

9/22 
8/25 
3/26 
8/29 
5/33 
7/35 
6/37 
8/39 
7/46 
8/48 
3/51 

10/56 
7/63 
4/65 
4/67 
5/73 

Date 

1924 

1932 

1936 

1939 

1948 

Assembly and Senate 

[158; 87,14,46,135,16,11] 
[316; 177,23,62,29,266,31,24] 

[158; 87,14,34,12,135,16,11] 
II  

Coalition 

(3,4) 

(3,4,5) 

~t 

t t  

The Netherlands 
Assembly 

[51; 20,5,32,16,11,10] 
[51; 24,7,31,13,11,91 

t l  

[51; 24,7,30,12,11,8,31 
[51 ; 4,24,7,28,14,10,7,31 

[51; 3,23,6,31,17,8,4,4] 

[51; 10,29,32,13,8,61 
[51; 8,27,32,13,9,81 

,, 

[76; 7,50,49,15,13,13] 
[76; 4,4,43,50,13,13,161 

t l  

[76"; 5,4,37,7,42,15,12,17,71 
[76; 7,7,43,6,27,14,7,6,22] 

Coalition 

(3,4,5) 
(3,4,5) 

(3,4,5) 
(3,4,5,6,7) 

(4,5,6) 
(2,3,4,6) 
(2,3) 
(2,3,5,6) 

t l  

(2,3,4,5) 
(4,5,6,7) 
(3,4,5) 
(5,6,7,8) 
(2,3,4,5,6) 

Sweden 
Assembly and Senate 

1116; 105,23,33,65] 

[191; 157,41,68,1091 
[116; 8,104,36,24,581 

[191; 9,162, 54,47,1081 
[116; 6,112,36,27,44] 

[191; 7,178,58,43,89] 

[116; 8,112,30,57,231 

[191; 11,196,51,75,47] 
[116; 110,26,58,31] 

Coalition 

(1,3) 

(2,3) 

(2,3) 

(2,3,4,5) 

(2,3) 

Type 

W m, H, NUC, CLMR 

H, NUC, CLMR 

t t  

t t  

Type 

W m, H, CLMR 
W m, H, CLMR 

t l  

W m, H, CLMR 
H,D 

~f 

W m, H, CLMR 

NUC 
W m, H, NUC, CLMR 
NUC 

D 
H,D 
NUC, CLMR 
W m, H, CLMR 
NUC(?) 

Type 

W m, H, NUC, CLMR 

W m, H, NUC, CLMR 

W m, H, NUC, CLMR 

SV, NUC 

W m, H, NUC, CLMR 
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No. Date 

1952 

1956 

1970 

Assembly 

[191; 189,51,80,51] 
1116; 6,106,19,58,421 

[191; 9,185,44,88,55] 
]176; 17,163,71,58,411 

no Senate 

Coalition 

{1,2) 

{2,3) 

(1,2) 

Type 

W m, H, NUC, CLMR 

W m, H, NUC, CLMR 

w m, H, NUC, CLMR 

The following remarks seem to be necessary for a complete understanding of 
Table 8.1. 

Remark 8.1: The intersection symbol is omitted in our notation for the type of a 
coalition. For example, Coalition No. 1 of Denmark, S = {3,4}, is classified as "W m, 
H, NUC, CLMR". This notation means that 

S @ W m f~ H • NUC N CLMR, (see the next remark). 

Remark 8.2: If [q; w l , . . . ,  w n ] is a representation (see Definition 2.6) of an assem- 
bly, or a senate (which appears in the third column of Table 8.1), then the order in 
which the weights are written is De Swaan's policy order for that assembly (or senate). 
This remark explains how to determine whether a coalition belongs to CLMR or not. 
Also, the weight of the dominant player is in italics. 

Remark 8. 3: The representations of assemblies (and senates) in Table 8.1 are not 
complete: Parties with lessthan 2.5 percent of the seats are omitted. This has not 
interrupted with the computations made in order obtain the desired classification, ex- 
cept at one point: we could not determine whether the coalition that formed in the 
Netherlands in 5/73 (Coalition No. 16) belongs to NUC. 

Remark 8.4: Coalition No. 12 in Israel contains six parties. The corresponding 
reduced game (see Section 7) is a six-person nonsuperadditive game; and therefore it 
does not appear on the list of Kopelowitz [1967]. Hence we had to leave open the 
question whether that coalition is in NUC. 

Finally, the following remark is quite obvious. 

Remark 8.5: We have chosen to include Denmark, Israel, Italy, the Netherlands and 
Sweden in Table 8.1, since in these countries the formation of ordinary coalitions 
seems to be the general rule. The situation in the other 4 countries is clearly different 
(see Table 3.1). 

We now turn to a discussion of the results of Table 8.1. It is very convenient to 
introduce Table 8.2 at this point. 
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Type 
Nation 

Denmark 
[srael 
Italy 
Fhe Netherlands 
Sweden 

total 
?ercentage 

12 12 0 
3 13 4 
5 14 2 
7 10 4 
7 7 0 

34 56 10 
51 84 15 

Tab. 8.2: Summary of the Results of Table 8.1 

NUC 

12 
6 

14 
5 
8 

45 
67 

i 
CLMR Total 

11 13 
3 14 

I 11 16 r 
I 
k 8 16  

I 7 40 67 
60 100 

Remark 8. 6: For a discussion of the occurrence of minimal winning and minimal con- 
nected coalitions the reader is referred to De Swaan [ 1973]. We restrict ourselves to an 
examination of the hypotheses (H), (D), (SV) and (NUC) (see Sections 4, 5, 6 and 7 
respectively). 

Remark 8. 7." The (relative) success of (H) is not surprising. (H) is a very simple (and, 
therefore, easily understandable) assumption, and is also very reasonable (see Sec- 
tion 4). 

Remark 8.8: The following explanation is suggested for the failure of (D). Although 
(H) and (D) may be incompatible for a dominated strong weighted majority game (see 
Example 5.6), as far as applications are concerned there is a wide range wherein these 
assumptions are compatible (see Theorems 5.7, 5.10 and Corollary 5.12). (See also 
Table 8.3 and Remark 8.11.) However, it seems to us, that the achievement of the 
combination "D, CLMR" is practically impossible. (Indeed, no coalition in Table 8.1 
belongs to both D and CLMR.) Thus, the results of Table 8.1 seem to imply that, 
when there exists a well defined policy order, the desire to establish a (minimal) con- 
nected coalition results in the rejection of (D). Indeed, the possibility of the incompat- 
ibility of (CLMR) and (D) was conjectured in Remark 8.4 of Peleg [1980]. 

Remark 8. 9: The complete failure of (SV) can be explained very easily. It follows 
from Lemma 6.4 that (H) and (SV) are almost always incompatible (indeed, there 
exists no coalition in Table 8.1 which belongs to both SV and H). Thus, the accept- 
ance of (H) implies, practically, the rejection of (SV). For further criticism of (SV) the 
reader is referred to Remark 6.7. 

Remark 8.10: The (relative) success of (NUC) is very surprising; especially, if we recall 
that the nucleolus is defined only for cooperative games with side payments, while 
parliaments are, formally, games without side payments. The explanation we offer is 
based on our remarks in Section 7. First, it seems that during the process o f  coalition 
formation parliaments, in many cases, can be approximated by games with side pay- 
ments (see Remark 7.11). Secondly, during the same time the reduced game which 
corresponds to the coalition which forms, seems to reflect quite faithfully the bar- 
gaining possibilities of the members of that coalition (see Remark 7.1). The fact that 
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the nucleolus of  a coalition consists of  a good (additive) approximation of  the reduced 

game which corresponds to the coalition, explains its predictive capability. 

We now comment  briefly on coalition formations in town councils in Israel. 

Type W m H D SV 

Total 10 33 26 9 

Percentage 24.4 80.5 63.4 22.0 

Tab. 8.3: Classification of Ordinary Coalitions in Towns in Israel 

NUC 

35 

85.4 

Total 

4 1  

100 

Remark 8.11: We conclude from Table 8.3 that in the absence of  a well defined 

policy order, determining coalitions are quite likely to form in a dominated game. 

Also, (NUC) is the most successful hypothesis in such situations. 
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