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Core  a n d  C o m p e t i t i v e  E q u i l i b r i a  w i t h  Ind iv i s i b i l i t i e s  1 ) 

By M. Quinzii, Paris 2) 

Abstract: The paper presents a model of an exchange economy with indivisible goods and money. 
There are a finite number of agents, each one initially endowed with a certain amount of money 
and at most one indivisible good. Each agent is assumed to have no use for more than one indivi- 
sible good. It is proved that the core of the economy is nonempty. If utility functions are increa- 
sing in money, and if the initial resources in money are in some sense "sufficient" the core allo- 
cations coincide with the competitive equ~brium allocations. 

With restrictions on the set of feasible allocations, the same model is used to prove the exis- 
tence of stable solutions in the generalized "marriage problem". However it is shown that, even ff 
money enters the model, these solutions cannot generally be obtained as competitive equilibria. 

1. Introduction 

At the end of the paper "On Cores and Indivisibility" Shapley/Scarf[1974] review 

a series of models involving indivisible goods which have been studied in the literature 
from the point  of view of the core. They conclude: "It would be interesting if a 

general framework could be found that would unify some or all these scattered 

results". 
The purpose of this paper is both to present a general framework and to generalize 

some of the existing results. 

We consider a model of an exchange economy with n agents and two goods. The 
first good is perfectly divisible and will be called money. The other is a good present 

in the economy in indivisible units subject to quality differentiation. The main restric- 
tion on the model is that each agent does not  initially own more than one indivisible 

item and has no use for more than one of these items. Under these conditions, we prove 

that, whatever the preferences of the agents, the economy is balanced and so has a non- 
empty core. 

1) Part of this work was done in the winter 1982 when I was visiting the Cowles Foundation for 
Research in Economics. 

I am greatly indebted to Mamoru Kaneko who introduced me to the subject and helped me in 
many discussions. I have also a large debt to David Gale who took an active part in the completion 
of the last part of the paper. 

This work is partially sponsored by the Department of The Navy, Contract N00014-77-C-0518 
issued by the Office of Naval Research under Contract Authority NR 047-006. 

2) Dr. Martine Quinzii, Laboratoire d'Econom6trie de l'Ecole Polytechnique (and Universit~ 
d'Aix-Marseille III), 1 Rue Descartes, 75230 Paris, France. 
0020-7276/84/010041-60 $2.50 �9 t984 Physica- Verlag, Vienna. 
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To see how this model allows a unified study of the models reviewed in Shapley/ 
Scarf[1974], it is convenient to classify them in two categories: the "exchange models" 
and the "pairing models". The first category includes the model of exchange of 
houses 3) without money studied by Shapley/Scarf [ 1974] and the model of assign- 
ment between buyers and sellers presented by Shapley/Shubik [ 1972], and generalized 
by Kaneko [ 1982, 1983]. In the second category, we fred the "college admission" 
model of Gale/Shapley [1962], with the particular case of "marriage", interpreted 
after introduction of money as a "job matching model" by Crawford/Knoer [ 1981 ]. 
The "roommate problem", for which Gale/Shapley [ 1962] show that there may exist 
no stable solution, also belongs to this category. 

The exchange models are special cases of the general model presented above. Their 
characteristic features can be captured by making restrictive assumptions on the distri- 
bution of initial resources and on the preferences of the agents. These restrictions do 
not alter the result of existence of the core. What we prove is that a market for one 
kind of indivisible goods has always a nonempty core. No assumption of complete 
symmetry as in Shapley/Scarf [1974], or of complete assymetry as in Shapley/ 
Shubik [1972], or of transferable utility is needed for this result. 

Nevertheless, to adapt our model to the pairing models, we have to impose re- 
strictions on the allocations which are feasible. Roughly speaking, we have to trans- 
late the fact that irA is married to B, then B of course is married to A. Unfortunately, 
the proof of balancedness no longer works with this restriction. However we can prove 
that the core still exists in models involving two types of agents, men and women for 
a marriage model, finns and workers for a job market, colleges and students for a 
college admission. 

The study of the relation between the core, when it exists, and competitive equili- 
bria is the subject of the last section of the paper. The main result of this section is 
that the core coincides with the competitive equilibrium allocations in an exchange 
economy of the type presented above, as soon as money really enters the model. In 
fact we need for this result two assumptions. The first one ensures that money really 
enters in the preferences of the agents. The other implies that the initial resources in 
money are in some sense "sufficient". 

The other conclusion of this section is that the "pairing models", even with two 
types of agents, have completely different behaviour with respect to price decentrali- 
zation. To prove this, we give an example of a pairing model with money which has no 
competitive equilibrium. 

2. The Model of Exchange 

Let us consider an exchange economy with n agents and two goods. The first good 
is a perfectly divisible good which will be called money. The second good exists only 
in indivisible units called "items". These units can be different in quality but have 
all the same function for the consumers. In consequence, we assume that each agent 

3) All the models quoted in the introduction will be described in the main body of the paper. 
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has no use for more than one item. A typical example of such a good is a house. We 
assume that initially an agent does not own more than one item. The number of 
items in the economy is therefore at most equal to the number of  agents. 

Let wi be the initial endowment of  agent i in money. I f  agent i owns one item 
before the exchange, this item is denoted e i. Let us rank the agents in such a way 
that each of the first q initially owns an item, but the others have none. The initial 
resources of  agent i are (co i, e z) if  i belongs to [ 1 , . . . ,  q ], and (r 0) if  i belongs 

to [q + 1 . . . .  , n]. In the following, :it will be convenient to use the notation e i for the 
initial resources of  all the agents. Then, it will be understood that i fq  + 1 ~<i ~<n, 
then e / = 0. 

The preferences of  agent i are represented by a utility function u i defined on 

R+ X {e x . . . . .  e q , 0}. For every e i E (e 1 . . . . .  e q, 0) ,  it is assumed that 

u i ( . ,  e i)  is continuous and non decreasing with respect to the quantity of  money. 

An allocation for this economy, is a vector (m i, el)i= 1 ..... n in 

R~  • (e 1 , . . . , e q , O) n. e] means that agent i has been allocated the item (or possibly 

the absence of item) which was owned initially by agent/. ( I f / E  [q + 1 , . . . ,  n], 

then e( = 0). 
An allocation is feasible if there exists a permutation cr o f N  = (1 . . . . .  n) such that 

the allocation is of  the form (m i, e~(i))i__. I ..... n with i---1 ~ mi <~i~=l ~i"  The existence of 

a permutation a implies that each item has been attributed to one and only one agent�9 

Since we want to study the core of the economy we must describe the allocations 
feasible for a coalition S, S C N. An allocation (m i, el) i  = 1 ..... n is feasible for a coali- 

tion S if ~ m i < ~ 6o. and if there exists a permutation g S of  S such that: 
i ~S  i~S  t 

V i E S e[ = eTS(i). 

Let us denote A (S) the feasible allocations of  the coalition S and ~S the set of  

permutations of  S. 

A (S') = {(mi, e l )  1 <i<n ,[ 3 o S E ZS '  ] = aS (i) V i ~ S and ~, m i <~ ~, o) i ) .  i~S  i~S  

Let us note that this definition of feasible allocations implies that there is no free 
disposition of the indivisible goods. So this model covers the cases of  markets where 
some agents want to get rid of their items (for example a used car or an aging house) 
but cannot do it economically. In order that the results below stay valid with a free 
disposal assumption, we have to add the following assumption of desirability: 

u i ( m ,  e l ) > ~ u i ( m , O  ) V m > ~ O  V I E [ 1  . . . .  ,n]  V / E [ 1  . . . .  ,q].  

The set of  feasible allocations is then larger than A (S) but only the allocations in 
A (S) are relevant for our problem. 
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The core of the economy consists of those allocations which are feasible for N and 
such that no coalition S can fred an allocation in A (S) which is strictly preferred by 
all its members. 

We associate with the economy a game without sidepayments whose characteristic 
function V is defined by 

V (S) = (v = (V i)l <~i<n E R n [ 3 (m i, eli) ~ A  (S), v i <~ u i (mi, el) V i ES}. 

The game is well defined in the sense that it has the following properties 

a) V (S) is closed in R n. 

b) I f v E V ( S ) a n d v ~ < - . v i V i E S ,  t h e n v ' E V ( S ) .  

c) PrOJR S [V (S) - U Int V ((i))] is nonempty and bounded. 
i~s 

Theorem 1: The exchange economy has a nonempty core. 
That the core of the economy is nonempty if and only if the game Vhas anonempty 

core is of course immediate. To establish the existence of the core for V we prove that 
V is balanced and so, by Scarf's theorem [ 1967], has a core. 

A family B of coalitions S c N is balanced if there exist positive weights (8S)S~ B 

such that Z 6 s = 1 for all i EN. A game Vis balanced if for every balanced 
SEB/i~S 

family B of coalitions, v E N V (S) implies v E V (N). 
S~B 

The proof that Vis balanced depends on the following lemma. 

Lemma 1: Let M = (mi]) be an n • n matrix with coefficients in R U (+ o0). Let B 

be a balanced family o f  coalitions o f  N = [ 1 , . . . ,  n], with weights (6 S)S~B" Then 

for any family (Os) S~B of  permutations o f  the sets S, we have the following ine- 
quality 

n 

rain i~ 1 mi, a(i) <~ S~B 6S i~S mi'as(i) " 
a~Z  N 

Before proving lemma 1, we show how it implies Theorem 1. 

Proof o f  Theorem 1: Let B be a balanced family of coalitions of N with weights 
(6s)s~ B and let v be a vector in A V (S). Associate to v the matrix 

S~B 
M (v) = (mij (v)) defined as follows 

mij (v) = inf (m i E R+ ! u i (m i, e f) >I vi} 

with the convention that if the set {m i E R+ I u i (m i, e i) >~ v i) is empty then 
mi/ (v) = + o~. 
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The interpretation of the matrix M (v) is clear: mii (v) is the minimum, amount of  

money that must be given to agent i in conjunction with the item e l, initially owned 
by agent ], to guarantee the utility level v i to agent i. 

Given a coalition S, it follows from the definitions o f M  (v) and V (S) that v belongs 
to V (S) if and only if there exists a permutation a S of S such that 

mi, os(i ) (v) ~ i~S r176 i~S 

Hence, since v E ;1 V (S), we know that there exists a family (as)S~ B of permu- 
S~B 

tations of  the sets S such that 

V S E B  i~S~ mi'as(i) (v)<~i~S r176 

From Lemma 1 this implies that 

n 

rain ~ mi'~ (v)<<'S~B 6S i~s mi'~ (v)<. 
o ~  N i=1 

Z 6Si~s w i S~B 

n n 

= Z co i ( : ~  6 s ) =  ~ co i. 
i=1 Sli~S i=1 

Therefore, there exists at least one permutation a of N such that 

n n 

mi, a(i) (v) <~ ~ 6o i 
i=1 i=1 

and thus v belongs to V(N). [] 

Before proving Lemma 1, we need several definitions. For S C N, a S-permutation 
matrix is an n by n zero-one matrix containing one 1 in each row and each column 
indexed by a member of  S, and zeros in rows and columns indexed by members of  
N \ S. I f  a S is a permutation of the set S, the S-permutation matrix AaS = (aij) 

associated with o s is such that aij = 1 if and only if i E S, j E S, and ] = a S (i). 

An N-permutation matrix will be simply called a permutation matrix. 

A matrix is said to be doubly stochastic if  all its components are nonnegative real 
numbers, and if each of its rows and columns sums to 1. 

Proof o f  Lemma 1: Let M = (mii) be an n • n matrix with coefficients in R t.) (+ ~} 

and B a balanced family of  coalitions o f N  = [1 . . . .  , n] with weights (6s)s~ B. 
ForeachSEB,  letB S b S = ( ii ) be the S-permutation matrix associated with 

a S. Consider the matrixA = (ao) defined by: A = ~ 6 8 B s . 
S~B 
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The matrix A has the following properties. 

n n 

1~ s~B ~s i~S mi'as(i) = i=l ~" ]=1 y" ail mi]" 

Proof: 

n n n n S 
~ ai/mi/= Z ~ ( Z 8 sbi / )mi/  

i=1]=1 i=l ]=1 S~B 

= Z 5S ~ ~ bSmi] 
S~B i=1 ]=1 

= S~BZ 6Si~s rniws(i). 

2 ~ A is a doubly stochastic matrix. 

Proof: 

n S 
n =1 ~B~(SI  ~ S ~ ~ 1~ b . . =  ~sb i j )=S~B ~1=1 tl SEB/i~S ~ S = I .  j=lai]= i 

The same reasoning gives the proof  for the sums of  the columns. 
By the Birkhoff-Von Neumann Theorem, A is a convex combination of  permu- 

tation matrices. There exist al . . . . .  o K, permutations of  N and non-negative 
K 

coefficients Xl . . . .  , )k K with ~ X k = 1, such that 
k=l 

K 
A =  Z XkA 

k=l Ok 

From 1 ~ 

n n K n 

F~ 8 S i~S mi'as (i) = ~ ~ ai" = ~ )t S~B i=l ]=1 I mi] k= 1 k i? 1 mi, ak(i) 

k n 
>1 ( kZ=l Xk) min Z mi, a(i). 

aEZNi=l 

Let us now turn to the exchange models studied in the literature. Shapley/Scarf 
[1974] consider a model with n traders, each with initially one item (for example 
a house). Each trader has a preference ordering on the n items available in the eco- 
nomy and has no use for more than one. The problem is to fred a redistribution o f  
the items in accordance with the preferences of  the traders. It  is proved that the 
problem has a solution since the model has a nonempty core. 

This model is a special case o f  our general model with m = n and 6o i = 0 for all 

i. Theorem 1 proves that money can be introduced in the model without altering 
the result of  existence of  the core. 

[] 
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In constrast to the symmetric model of Shapley-Scarf, we find the completely 
asymmetric model of  Shapley/Shubik [1972]. Here there are two kinds of traders: 
m sellers, each with initially one item, and p buyers which initially have the money. 
Sellers and buyers have asymmetric preferences. A seller values only his own item. 
A buyer has no use for more than one item but his preferences hold on all available 
items. The problem is to find a redistribution of the items with compensations in 
money which cannot be improved by any coalition of buyers and sellers. Shapley 
and Shubik make the assumption of transferable utility and prove the nonemptiness 
of the core using linear programming. Kaneko [ 1982] generalized the model and the 
result to the case of non-transferable utility. 

The model just described corresponds to the following specification of our model: 

- for all i and ], u i (m i, e/)  is increasing in m i 

- f o r l< . . . i< . . . q , l< . f< .qandmi>lO 

u i (mi, e j) < u i (mi, O) < u i (m i, ei). 

The asymmetry in the preferences of buyers and sellers implies that a seller will never 
buy the item of another seller. An allocation in the core of the economy such that 
buyer i (q + 1 ~< i ~< n) gets the item of seller] must be of the form (w] + c, 0) for/,  

and (co i -- c, e/) for i, with c ~> 0. If  not, it would be blocked either by the coalition 

{L ]} or by the coalition N - -  (i, ]}. Thus the only coalitions relevant for the prob- 
lem are singletons or pairs of agents of different types and the problem can be 
solved as a "pairing problem" of assignment between buyers and sellers. 

Theorem 1 proves that the asymmetry in the preferences of buyers and sellers 
is not necessary for the existence of a core. We may allow a seller to sell his item 
and buy another that he prefers and still have a core. The other important conclusion 
of  Shapley/Shubik [1972] in the transferable utility case and of  Kaneko [1982] in 
the non-transferable utility case is that the core allocations coincide with the compe- 
titive equilibrium allocations. We will generalize this result in Section 4. 

3. The Pairing Model 

The "pairing" models referred to in the introduction fit the framework of the 
model presented in the preceding section only if we make restrictions on the feasible 
allocations. Consider, for example, the simple marriage model of Gale/Shapley [1962]. 
"A certain community consists of n women and n men. Each person ranks those of 
the opposite sex in accordance with his or her preferences for a marriage partner. The 
problem is to find a satisfactory way of marrying all members of the community". 

We may try to describe this problem with our model. Take an exchange'economy 
with 2n agents, each agent endowed initially with no money and one, namely himself, 
indivisible item. We can translate the fact that each person has preferences only for 
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persons of  the opposite sex by  the following assumption: 

1 <.i<.n,  1 <~]<~n,i--/= L n + 1 <<.k~2n, n + 1 <~k'<~ 2n, k C k '  

u i (0, e j) < u i (0, e i) < u i (0, e k) 

u k (0, e k') < u k (0, e k) < u k (0, ei). 

If  we study the core of  such an economy, we will find allocations of  the form 

(0, e?(i))1< .< where cr is a permutat ion o f N  = ( 1 , . . . ,  2n}. The assumption 

made on preferences will imply that  if  i E [1 . . . . .  n] then o (i) E [n + 1 . . . .  , 2n ] .  
But nothing in the model can ensure that  the agents are paired. We have to impose the 
additional condit ion: a (i) = ]  =~ a (/) = i4).  

Hence the following definition: 

Definition: A model as describecl in Section 2 is called a "pairing" model i f  the set o f  
feasible allocations for the coalitions S C_ N is restricted by the condition 
a S o o S = ld  s where ld  s is the identity mapping o f  the set S. 

The set of  feasible allocations for a coalition S is then: 

~1 (S) = ((m i, el)i= 1 ..... n [ 3 a S E ~S' ~ o o S = [ds,  ] = a S (i) V i E S 

and Y~ m.<~ Z wi) .  
i~S z i~S 

The associated game wiU be denoted V (S). 
In the literature we find some pairing models which have an empty  core. For  

example, the "roommate problem" presented by  Gale/Shapley [ 1962 ]. "An even 
number of  boys wish to divide up into pairs o f  roommates.  A set o f  pairing is 
called stable if  under it  there are no two boys who are not  roommates and who 

prefer each other to their actual roommates.  An easy example shows that  there 
can be situations in which there exists no stable pairing. Namely consider boys  a ,  

/3, 7 and 6, where a ranks/3 first,/3 ranks 3' first and a,/3 and 3' all rank 8 last. 

Then regardless of  5's preferences there can be no stable pairing, for whoever has to 
room with 5 will want  to  move out, and one of  the other two will be willing to  take 
him in." 

4) In spite of the apparent similarity between the model of marriage and the model of assign- 
ment between buyers and sellers, this difficulty does not appear when we translate the model of 
Shapley and Shubik in our exchange model. In this case, if] is a "seller" q e [1 . . . . .  q]) and if 
i and i' are two "buyers" (i e [q + 1 . . . .  , nl and i' e [q + 1 . . . . .  hi), the allocations 

((n~, ei]'), (m i, el)) and ((mr e~),l (m,,, el))are the same since e t=e  = 0. In other words, a "seller" 

is indifferent between the "no item" of i or the "no item" of i ' .  The assumptions on the preferences 
and initial resources then imply that an aUocation in the core can always be represented by a per- 
mutation o such thatj  = a (i) ~, i = a (/). On the other hand, in the marriage model, the "man" 

] typically will not be indifferent between the "woman" / and the '~voman" i' and the allocation 

((m., e~'), (m i 4)) i s  really different from ((m~, e~), (mt~ eli)). 
] 1 ' ! 1 
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The reason for emptiness of the core is the following. If we try to prove that the 
game V is balanced by constructing the matrix M (v) s) as in the proof of Theorem 1 
we would have to prove: 

n 
min ~ mi, a(i) (v) <~ ~ 6 S i~S mi'~ (i) (v). 

oE~ N i=1 S~B 
aoa=Id N 

But restriction on the admissible permutations o can change the result. In fact to 
prove the above inequality we would have to prove that the matrixA (defined in the 
same way and with the same properties as in Theorem 1) can be decomposed into a con- 
vex combination of symmetric permutation matrices. And this is not always possible. 

However, in the literature, the pairing models involving two different types of 
agents (marriage problem, college admission problem, job matching) have a nonempty 
core. We can prove that this result is general. 

Definition: ICe will say that the pairing model involves two types o f  agents i f  there 
exists an integer number p < n such that the utility functions have the following 
property 

for 

i <<.i<~p, 1 <<.]<~p i r  

p+l<~h<<.n, p + l < . k < . n  kveh  

and form ~>0 

u i (m, e j) < u i (m, e h) 

u h (m, e k) < u h (m, ei). 

This assumption means that agents of one type strictly prefer rather to be paired 
with any agent of the other type than to be paired with an agent of his own type. 

Theorem 2: The pairing model with two types o f  agents has a nonempty core. 

Remark: This theorem is another form of Kaneko "s result [ 1982] that the "Central 
Assignment Game" has a nonempty core. Nevertheless, a proof coherent with the 
logic of this paper seems to be of interest. 

Proof: We have to prove that if a vector v belongs to N V (S) for a balanced family 
S~B 

B of coalitions of N, then v belongs to V (N). It suffices to prove this property for a 
minimal balanced family of coalitions, since every balanced family B contains at least 
one minimal balanced family B' and n V ( S ) c  ~ V(S). 

S~B S~B' 

5) The interpretation of mi] (v) is now: mi] (v) is the minimum amount of money needed by 

agent i to reach the utility level v i when paired with agent ]. 
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Consider the matrix M (v) defined as in the proof of Theorem 1. v belongs to 
V (iV) if and only if there exists a symmetric permutation a of l~ N such that 

n 

E mi, a(i) (v) ~<i_Z1 co i. i=1 = 

As v E f3 V(S), there exists for eachS EB,  a symmetric permutation o S such that 
S~B 

Z mi, aS(i ) (v) <. i~S c~ The assumption made on the preferences implies that 
i~S 
a S can always be chosen such that 

l<<,i<~p OS (0 = i or as (i) E [p + 1 . . . . .  n] 

p +  l <~i<~n a S ( O = i o r c s s ( i ) E [ 1 , . . . , p ] .  

The permutation matrix B S associated to a S is then of the "form" 

I 
Ds I tMs 

1 

Ms D s 
I 

where D s is a p X p diagonal matrix and D)  an (n - p) X (n -- p) diagonal 

matrix. 

On the other hand, B is a minimal balanced family of coalitions. It is easy to deduce 
from the proof of uniqueness of the associated weights (6S)Sa B [Shapley] that they 

are rational numbers. Let d be a common denominator so that 6 S = c s / d with c S a 
positive integer. 

The matrixA = E 6 S B S has the following properties: 
S~B 

n n 
aii rnii (v) (same proof as in/_emma 1). (1) S~BZ ~S i~s mi'~ (v)=]=Z1 i--1 

(2) A is doubly stochastic (same proof as in Lemma 1). 

(3) A is o f the" fo rm" :  

[~ ] itM 
. . . . .  F . . . .  

M I D' 
I 

where D is a p • p diagonal matrix and D' an (n -- p) • (n -- p) diagonal matrix. 
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(4) The coefficients o f  A are rational numbers with common denominator d. 

Hence, the matrix A = dA has integer coefficients, rows and columns which sum to d, 
and is o f  the same "form" as A. 

The proof  of  Theorem 2 depends on the following lemma. 

Lemma 2: Suppose that an n • n matrix A = (~iii) has non negative integer coefficients 

whose rows and columns each sum to an integer d and that: 

I~ 

where D is a p • p diagonal matrix and D ' a n  (n - p) • (n - p) diagonal matrix. Then 

suchtherethat:exist symmetric permutations al . . . . .  a d o f  N with matrices A a 1' . . . .  Ao  d 

A = A  + . . . + A  
Ol o d 

Proof  o f  Lemma 2: The proof  is by induction on d. I f d  = 1,.~ is itself a symmetric 

permutation matrix. Let us suppose that the property holds for d and let .~ be a matrix 
with the properties o f  the Lemma and whose columns and rows sum to d + 1. 

(1/(d + 1)) .4 is a doubly stochastic matrix and can be written as a convex combina- 

tion o f  permutation matrices. The integer coefficients of .4  are each greater than or 
equal to the coefficients o f  any permutation matrix which enters the decomposition 

of  (1 [(d + 1))A. So there must be at least one permutation o o f  the decomposition for 

which A ~> A . I f  o is symmetric our job is essentially done. I f  a is not  symmetric, 
O 

define o'  by 

l<~i<~p o' (i) = o (i) 

p +  l<~i<~n o ' ( i )  = cr -1 (i). 

We first prove that o '  o o'  = Id  N .  

(i) Let i@[1 . . . . .  p ] o ' o o ' ( i ) = o ' ( o ( i ) ) .  
Since A a is inferior to A which has the form indicated in the Lemma, 

i ~ [1 . . . . .  p]  =~ o (i) = i or o (i) @ [p + 1 . . . .  , n]. I f  o (i) = i, 
t t o (o (/)) = o'  (/) = o (/) = i. I f o  (0 E ~p + 1 . . . .  ,n],  o (o (i)) = 0 -1 (o (i)) = i. 

(ii) Let i E [p + 1 . . . .  , n], o '  o o'  (i) = o '  (o -1 (i)). 
For the same reason, i E [p + 1 , . . . ,  n] ~ [a -1 (i) = i or o -a (i) E [1 . . . .  , p]]. 
I f o  -1 (i) = i, o '  (o -1 (0) = o'  (i) = a -1 (0 = i. I r a  -1 (i) E [1 . . . . .  ~v], 
o' (0  - I  ( 0 )  = o (0  -1 ( i ) )  = i. 
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To prove that A a, <~ A ,  notice that, from the construction of a', the non zero coeffi- 
cients ofA , correspond to positive coefficients of A or A -1. But A -i is the trans- 

posed matrix of A ,  so since .4 is symmetric, A a ~< A implies A - 1  ~< A and therefore 

A , ~ A .  a 

A - A #  (which is equal to A -A(r  if a is symmetric) has all the properties of A 

with rows and columns which sum to d, so the result obtains by induction. [] 

Proof  o f  Theorem 2 (completed): We can deduce from Lemma 2 that A = A / d  is a 
convex combination of symmetric permutation matrices. This implies (from property 
(1)) that 

n 

~S ~ mi, as(i) (v)>~min ~ mi, a(i) (v), 
S~B i~S a~ ~ N i= 1 

aoa=ld N 

which in turn implies (since Z mi, as(i ) (v) <~ Z w i for every S inB)that 
i~S i~S 

n n 
rain 2 mi, a(i) (v)~<i_Z 1 co i 
aEz N i=1 

eoa=Id N 

and thus that v E V (iV). [] 
Theorem 2 gives an alternative proof of the result of Gale/Shapley [ 1962] that 

the marriage problem has a stable solution, 
The college admission problem does not directly enter the framework of the 

pairing model since more than one student may go to the same college. The problem 
is the following: "A set of n applicants is to be assigned among m colleges where 
qi is the quota of the i-th college. Each applicant ranks the colleges in order of his 
preferences. Each college similarly ranks the students who have applied to it in order 
of preference. An assignment of applicants to colleges will be called unstable if there 
are two applicants a and/3 who are assigned to colleges A and B, respectively, although 
/3 prefers A to B and A prefers/3 to a." 

The existence of a stable assignment can nevertheless be deduced from Theorem 2, 
by considering a pairing model with no endowments in money, where the m students 
are the agents of one type, and where there are ql + q2 + �9 �9 �9 + qn agents of the 
other type, college i being replicated qi times. Of course, the rank of two replica of 
the same college is the same in the preferences of the students, and two replicated 
colleges have the same ranking of the students. A core allocation of this model gives 
a stable assignment of students to colleges. 

However, the constructive proof given by Gale/Shapley [1962] of the existence of 
stable assignments for the college admission problem and the marriage problem is more 
interesting that the proof by balancedness since it gives a procedure to find them. The 
main interest here is more the comparison of the structures of the exchange models and 
the pairing models than the result of Theorem 2 itself. 
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A version of the college admission model with money is studied by Crawford/ 
Knoer [1981] and Kelso/Crawford [1982] with an interpretation in terms of job mat- 
ching. One type of agents is composed of firms and the other of workers. Money enters 
the model in the form of salaries given by firms to workers. If  it is assumed that each 
finn hires at most one worker, the existence of a stable assignment can be deduced 
from Theorem 2, without any assumption on the utility functions. But when firms can 
hire more than one worker, it becomes difficult to use the pairing model to get results. 
Replicating firms is not possible if the preferences of firms for workers are not separab- 
le and if the firms have budget constraints (a difficulty not taken into account in the 
two papers quoted above). Here again, the constructive proof based on a generalization 
of the Gale-Shapley algorithm is interesting. 

These constructive proofs will be seen to be even more appealing at the end of 
Section 4 where it will be shown that, in contrast to the exchange model, the core 
allocations of a pairing model cannot in general be decentralized by means of compe- 
titive prices. 

4. Competititive Prices 

In the models of exchange with indivisibflities introduced by Shapley/Scarf 
[1974] and Shapley/Shubik [1972] the relation between the core allocations and the 
competitive equilibrium allocations was studied. The results were different from one 
paper to the other. 

For the model without money of Shapley-Scarf, it was proved that at least one 
core allocation can be decentralized as a competitive equilibrium allocation (and this 
implies the existence of a competitive equilibrium for the model). But Shapley and 
Scarf give an example of a core allocation that cannot be decentralized by means 
of prices. As noted by the authors, the main reason for this comes from the definition 
of core allocations. Core allocations are defined as allocations that cannot be improved 
strictly by all members of a coalition. In a model with only indivisible items, this 
implies that some core allocations are weak Pareto optima but not Pareto optima. 
This fact introduces complexities in the question of decentralization by prices of core 
allocations, a problem which has been studied more completely by Roth/Postlewaite 
[1977]. 

On the other hand, in the model of "assignment" between buyers and sellers with 
compensation in money presented by Shapley and Shubik, it was proved that all core 
allocations could be decentralized as competitive equilibrium allocations. This was 
done in the case of linear utility of money in the original paper [Shapley/Shubik], and 
in the case of nontransferable utility by Kaneko [1982] under assumptions which 
ensure that money really enters the model. 

We will prove in Theorem 3 that this result can be generalized with the same assump- 
tions (assumption A.1 and A.2 below) to the general model of exchange. Before stating 
this Theorem, we give a precise definition of competitive equilibria in our model. 
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Definition: Let. E = {(co i, ei)l  <<.i<n' (Ui)l <<.i<<.n' q} be an exchange economy, where q 

is an integer belonging to [1 . . . .  , n] such that: i > q ~ e i = O. A price vector for this 

economy is a vector p = (P 1 , . . . ,  Pn ) ~ Rn such that: i > q =~ Pi = O. 

A competitive equilibrium is a pair consisting o f  a price vector p and a feasible 

e. ~ (i)~ such that allocation (if*i' t Jl <i<<.n 

ffti + Po(i) <" ~176 + Pi V i E  [1 . . . . .  n] 

[u i (m i, e[) > u i (if*i' e~ (i))1 ~ [mi + #j > COi -b pi 1 

V I E [ 1  . . . . .  n] 

A competitive equilibrium allocation is an allocation (Fni, e~.(i))i= 1 ..... n for which one 

can find a price vector p such that (p, (if*i' e~. (0)1 < i<n) is a competitive equilibrium. 

Theorem 3: Let  E = ((co i, ei)l  <i<<.n , (Ui)l <<.i< n, q} be an exchange economy. Given 

the following assumptions: 

A.1 the functions u i are increasing with respect to the money and 

lim u i (m, e ]) = + oo when m -+ + oo for all i and] in [ 1 . . . .  , n] 

A.2 u i (oo i, e i) >/u i (0, e i) for every i and ] in [1 . . . . .  n] 

the set o f  core allocations and the set o f  competitive equilibrium allocations o f  E 
coincide. 

Assumption A.2 can be justified as in Kaneko [ 1982]. It  is argued there that  a model 
with two goods must be considered as a partial analysis model where money is a com- 
posite good of  all other commodities which are not considered explicitly in the model. 
Then it is not  "normal"  for an agent to enjoy an indivisible i tem (a house for example) 
but to consume nothing else. 

Proof o f  Theorem 3 6). The usual reasoning can be applied to prove that a competitive 
equilibrium allocation is in the core. We are interested in the proof  of  the inverse 
implication. 

Let 

e~(O) (ffli' i l<i<n 

be a core allocation. 

6) This proof is due in large part to David Gale who introduced me to the notion of shortest 
path and made several suggestions that led to a considerable simplification of my original proof. 
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Define for all i and/ in  [1 . . . . .  n] the quantity mi] by 

rail = rain (m ER+ l u i (m, eii) ~ u i (ffz i, e~r(i))}. 

In the notation of Section 2, mi] = rni] (g), where g is defined by 

vi = ui (ffti' et(i))" 

I f j  = a (i), mi, o(i) = ffz i. 
Assumption A.1 implies that mi] < + ~o and Assumption A.2 that 

u i (mij, e / )  = 

To prove that p = (Pl . . . . .  Pn) is an equilibrium price associated with the allocation 

(fit i, e/a(i)), it is enough, from Assumption A.1, to prove that 

!) f f t i + P o ( i ) = o o i + P i  V I E [ 1  . . . . .  n] 

2) mi l+p i>~oo i+Pi  V i E [ 1 , . . . , n ]  V / ' E [ 1 , . . . , n ]  

3) P i = O i f i > q .  

To find a price vector which satisfies these conditions, let us consider the directed 
graph with nodes 1 . . . .  , n and such that the "transportation cost" or "length" from 
i t o / i s  m]i -- co 1. (see Figure I). Let/q denote this length. 

ran1 - - w  n 

m l n  - - w  1 

Fig. 1 

A path from i to / is a sequence (i, i l ,  i 2 , . .  �9 i m, j) and its length is 
+ + "  + 

Let Hi/be the set of all paths from i to/ .  

Let Pn be arbitrary and take Pi --Pn to be the length of the shortest path from 
n to/ .  
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It is well known in graph theory that the minimization problem 
min [Lil + L 1/2 + " "  + lim/] has a solution if and only if there is no cycle of  negative 
hi/ 

length. We prove that this is the case here. 
Suppose that there exists a cycle (i, il . . . . .  i m, i) such that 

liil + " �9 " + li mi = m i l i  - coil + " " " + mii  m - col ~ 0, or 

b~i I + " " " + col > mi l i  + " " " + mii  m" This means that the coalitions (i~ , . . . , i m,  i} 

can ensure the utility level ~ to its members by giving to i~ the item o f / a n d  the 
amount of  money mil l ,  to i2 the item o f i l  and the amount of  money mi2i l ,  etc. 

This coalition will, moreover, have a positive surplus of  money,  which can be used to 
strictly increase the utility of  each of  its members. But then, this coalition blocks the 

allocation (fit i, e](i))l  < i<n '  which is impossible since the allocation is in the core. 

Therefore Pi - P n  = rain lni 1 + . . .  + Lmi defines the prices Pi without ambiguity. 
IIni 

We show that the prices Pi so defined satisfy (1) and (2). 

Suppose that there exist i and]  in [ 1 , . . . ,  n] such that 

mi/  + P/ < coi + P i. 

This is equivalent to: Pi > Pj + mij  - c~ or to Pi - P n  > Pj - P n  + ~i '  which con- 

tradicts the defintion o f p  i. Thus (2)holds.  To prove (1) consider the following ine- 
qualities 

mi + Per(i) >/col + Pi 

fifo(i) + Pc~2(i) >1 coa(i) + Po(i) 

m ~ 2 (i) + Pa s (i) ~> coo 2 (i) + Pa 2 (i) 

withff2 = o o a ,  a 3 = a o e  2 , . . .  

Since ~ is a permutation of  the finite set [ 1 , . . . ,  n ] there exists, for each i, a mini- 
mum number )t i ~> 0 such that o xi (i) = i. The coalition 

i hi-1 
S = (i, o (i) . . . .  , cr (i)} is a "trading cycle'  for the core allocation that we consider 

in the sense that the exchange of  indivisible items takes place inside this coalition S i. 
Xi-2 

The item of o xi" 1 (i) goes to o (i) . . . . .  the i tem of  o (i) goes to i, and the item of  i 
k.-1 

to e ~ (i). Then the core allocation must be such that ~ m / =  N co/since 
]~S i ]ES i 
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ff~j < Z ~ ,  S i would block the allocation, and if 
/~S i /~S i IES i 
would block the allocation. 

Therefore, adding the inequalities 

ffzl.> ~ ~ , N \ S  i 
IES i 

ffti + Po(i) >~ coi + Pi 

Fna(i) + Pa2(i) >I c~ + Pa(i) 

m hi.1 + + Pahi.1 a (i) Pi >/coahi-l(i) (i) 

we must obtain an equality, which is possible only if all inequalities are equalities. 
This proves (1). 

I fq  = n, whatever the choice OfPn, the price p defined above is an equilibrium 
price. 

If  q < n, we have to deal with condition (3). This condition imposes the choice 
Pn = 0 and we must prove that P q + l , . . .  'Pn-1 are then equal to 0. 

Let i be an index such that i E [q + 1 , . . . ,  n -- 1]. There exists k E [1 . . . . .  n] 
such that a (k) = i. We must have, from (1) 

Fnk + Pi = cok + Pk (since mk = mki)" 

Since both i and n have no house as initial resources, mkn = mki = tnk and we have, 
from (2) 

Fnk + Pn >/cok + Pk 

which implies, with the above equality, that Pi <Pn" The same reasoning applied to 

the agent k' such that t~ (k') = n implies thatPn <'Pi' and thus pi =Pn = O. [] 

Remark 1: The proof of Theorem 3 shows, and this can be seen directly, that, if  
q = n and p is an equilibrium price associated with an allocation (m i, e 7 (0)1 <i<n' 
then for every a E R, p + a is also an. equilibrium price. (Only the differences 
Pi - P n  are significant.) In this case, the equilibrium prices can be chosen to be positive. 

However, i fq  < n, the condition Pi = 0 if i > q imposes a normalization. Then, so 

ensure that equilibrium prices are non negative, we should have a "desirability" con- 
dition on the indivisible items, for example the assumption that we mentioned earlier: 

(A.3)Vm~>0 V I E [ 1  . . . . .  n] V / E [ 1 , . . . , q ]  

U i (m, e i) >~ u i (m, 0). 
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Remark 2: The reason for which Assumptions A.1 and A.2 allows to overcome the 
problem encountered by Shaley-Scarf in the model of exchange without money is that 
these assumptions ensure that the core and the strong core of E coincide. 

The property of the exchange model that all core allocations can be decentralized 
by means of prices if we introduce money is not true for the pairing model with two 
types, (for which the core is nonempty). To illustrate this, the following example of 
a pairing model with money is one that has no competitive equilibrium at all. 

There are two "men" al and a2 and two "women"A 1 andA2. Each person ini- 
tially owns one unit of money. The first number of each pair in the following matrix 
gives the ranking of women by the men, the second number the ranking of the men 
by the women. 

A~ A2 

al [ 1 , 2  2 , 1 ]  

a2 [2 ,1  1,2 

The utility functions are defined by: 

1 
- - m  UA i (m, a/) = CA i~ " 

where CAia/is the rank of a / in  the ordering ofA i given by the matrix 

m 
UA i (m, A/) = ~ . 

Similarly 

1 
- - m  

uai (m, A]) = C~iA i 

m 
u i(m, o~) = ~ .  

These utility functions are such that: 

- for a given amount of money, the ranking of one person on the possible parmers 
of the other sex is the one given in the matrix; 

- for a given amount of money, a person always prefers to be paired with a person of 
the other sex than either to stay alone or to be paired with a person of the same sex; 

- assumptions A.1 and A.2 are fulffiled. 

It is clear from these properties that core allocations must be associated with one of 
the pairings (al,  A: ) (a2, A 2) or (al ,  A2 ) (~2, A l). 
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Let (PAl' PA2' P~I' Pa2 ) be prices attached to each person. As a competitive 

equilibrium allocation is in the core, these prices, if they are competitive prices, must 
decentralize an allocation of form 

(ml ,A1) (mAl ,a l )  for the pair (al,  A1) 

(rn2,Az)(mA2,~2) for the pair (a2, A2) 

or 

(mal, As) (mA2, al) for the pair (al ,  A2) 

(m2, A 1) (rn A1, a2) for the pair (as, A i )- 

In the first case we must have 

m~l + PAl = 1 + P~l 

rnA1 +Ps i  = 1 +PAl 

m +pA2=l+pa2 

mA2 + P~2 = 1 + PA2" 

IfP~l ~<Pa2' then (mA2, ~1) satisfies the budget constraint of A2 and is preferred by 

A 2 to (mA2, a2). Ifp~2 <~ Pal' (mA l' ~2) satisfies the budget constraint of At and is 

preferred by A 1 to (m A 1' al ). 
Therefore (Pal' Pa2' PAl' PA 2 ) cannot decentralize any allocation associated with 

the pairs (al,  A1) (a2, Az). Changing the role of men and women the same reasoning 
proves that prices cannot decentralize neither an allocation associated with the pairs 
(al ,  A2) (a2, A1 ). Thus there is no competitive equilibrium. 
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