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On Milnor's Classes "L" and "D" 

By K. Kikuta 1 and L. S. Shapley 2 

Abstract: A twenty-one player counterexample is presented which disposes of two questions raised 
by J. W. Milnor in 1952 concerning the existence of certain pre-solutions, based on plausible lower 
and upper bounds to what a coalition should expect to receive in a cooperative game in character- 
istic function form. In the counterexample, the lower-bound set, known as "L", is empty, and the 
upper-bound set, known as "D',  contains no efficient outcomes. 

1 B a c k g r o u n d  

In 1952, John Milnor [4] 3 introduced three criteria for "reasonable" outcomes to co- 
operative games in characteristic function form. They amount to what have since been 
termed "pre-solutions" - that is, classes o f  outcomes, o f  which it is asserted (with 
respect to some particular view of  the cooperative process) not that those within the 
class are necessarily plausible, but  only that those outside the class are implausible 4. 
The best-known and most successful o f  Milnor's classes is the so-called reasonable set 

" R " ,  consisting o f  those payoff  vectors which give no player more than his maximum 
marginal worth. This concept has been widely applied. The set " R "  is always non- 
empty, and it has been shown to contain most o f  the standard solutions o f  cooperative 
game theory [1, 2, 3, 4, 6]. 

Less is known about the other two pre-solutions, known as "L"  and "D",  which 
put lower and upper bounds on the payoff  to any coalition. Milnor gave examples in 
[4] to show that they do not necessarily contain the von Neumann-Morgenstern solu- 
tions or the Shapley value, and proved that "L"  and the efficient part o f  "D"  are non- 
empty for certain classes of  games. Nineteen years later however, one of  the present 
authors found a 21-person game for which "L"  is empty (see [5]), and subsequently 
the other author, using the same game, disposed of  "D"  as well. The purpose of  this 
note is to document these results. 

1 Kensaku Kikuta, Toyama University, Dept. of Economics, Gofuku, Toyama City 930, Japan. 
2 Lloyd S. Shapley, University of California, Dept. of Mathematics, Los Angeles, CA 90024, USA. 
3 An extended discussion of [41 will be found in Luce and Raiffa [21, pp. 237-245. 
4 The Pareto set and the individually rational set (and their intersection, the imputation space) 
are familiar examples of pre-solutions. Another example is the set of payoff vectors that exhibit all 
the symmetries of the game. 

0020-7276/86/04231-235 $2.50 �9 1986 Physica-Verlag, Heidelberg, Wien 



232 K. Kikuta and L. S. Shapley 

2 The  Sets L and D 

A game (N, 7)) consists of  a finite player set N and a superadditive characteristic func- 
tion v, mapping the subsets of N to the real numbers IR with v(r = 0. The space of 
payoff vectors (or simply, payoffs), with components x i indexed by i E N, is denoted 
~N. The subset F N of feasible payoffs is defined by x(N) ~< v(N), and the subset E N 
of efficient payoffs is defined by x(N) = v(N). (Here, x(-) is a short notation for 

xi.) 
iE"  

Following [3], we define 

l(S) = rain [v(R) + v(SXR)] 
RC__s 

for each S c__ N, and 

L =L(x) = (xEFN:x(S)>~I(S) ,  allSC__N). 

We see that l(S) <<. v(S) for all S, with equality if IS I = 1. Intuitively, the difference 
v(S) - I(S) measures the degree of vulnerability of a "shaky" coalition S to factional- 
ism or internal dissension. We may therefore think of I(S) as a lower bound to what 
the members of S could reasonably expect to salvage if their coalition should break in 
t w o  ,5 

Continuing, we define 

d(S)= rnin max [ v ( S U R ) - z ( R ) ]  
z E IF N \ S  R C_C_ N \ S  

for each S C_C_ N, and 

D = D(v) = {x E F u : x(S) <~ d(S), all S C_ N}. 

By taking R =N\S ,  we see that d(S) >1 v ( N ) -  v(N\S)  >~v(S) for all S. 6 Intuitively, 
d(S) is an upper bound to what an aggressively-expanding coalition S could expect to 
get by persuading the players R to defect from the opposing coalition A/kS, by of- 
fering them more than they would get under the optimum "campaign promise" that 

u \ s  7 Arks can make, namely the minimizing vector z ~ F . 
Milnor [4] proved that L r ~ for all games that can be expressed as positive linear 

combinations of games fully symmetric in their non-dummy players, and also that 
/5 4: r for at least the fully symmetric games, where/5 = D n E N is the efficient part 

S The defining inequalities for L thus represent an orderly retreat from the bet ter-known 
"core"  inequalities: x(S)  >>- v(S), which of ten do not  admit a feasible solution. In fact (since l can 
be shown to be superadditive), (N, l) is a game in its own right, and L is its core. 
6 Note also that  d(r  = 0 if and only if  the core of  (iV, v) is nonempty.  
7 Somewhat different rationales for L and D are given in [4] and [2]. 



On Milnor's Classes "L" and "D" 233 

of D. (Note that D itself is trivially nonempty.) Interestingly, our counterexample is 
also symmetric in the players, but only in the weaker sense of being invariant under a 
transitive subgroup of the group of all permutations of the players. 

3 The  2 1 - H a y e r  E x a m p l e  

Let N =  (Pt ,P2 , - . . ,Pz l ) ,  and let C 1, C2, ..., C 7 be seven special subsets of players, 

with the property that the columns of their incidence matrix include all (75) = 21 
possible arrangements of five l's and two O's: 

el P2 . . . . . .  /020 /021 

C l  
C2 
C3 
C4 
C5 
C6 
C7 

1 1 0 0 
1 1 1 0 
1 1 0 1 
1 1 . . . . . .  1 1 
1 0 1 1 
0 1 1 1 
0 0 1 1 

Thus, each Ctc has fifteen members. Using these special sets, we can now define the 
characteristic function: 

v(O = 0 

-1  if S C Ck for some k, and S --# ~ 

v(S) = -2  if S (Z C k for all k, and S :#N 

v(N) = -3 .  

To see that v is in fact superadditive, observe that any possible superadditivity viola- 
tion 

v(S) + v(T)  > v(S U T) 

must have numerical form 

( -  1) + ( -1)  > (-3).  

Hence S __c C i and T c__ Ci, for some i and/" not necessarily distinct, and S U T = N. It 
follows that C i u C/= N. But this is impossible, since for each i and ] there is some 
player not belonging to Ci tO C/, by definition. Hence v is superadditive. 
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4 P r o o f  t h a t  L is E m p t y  

The set L is convex and has the symmetry of  the game, so if it is not  empty  it must 
contain a point o f  the form y = (r/, r/ . . . . .  ~7). Feasibility of  L requires that r /~< -  1/7. 
Hence 

Y(C1) ~ -15/7 .  

To calculate l(C1), we note that 

+ v ( C I \ R ) = I - 2  i f r  and 
73(R) 

t -1  i f R = ( ~ o r R = C  1. 

From this we see that 

l(Cl) = -2 ,  

and hence thaty(Cx)  < l(C1), showing that L is empty.  

5 P r o o f  t h a t / )  is E m p t y  

The se t / ) ,  like L, is convex and has the symmetry of  the game, so if it is not  empty  
it contains a point of  the f o r m y  = (7, r/ . . . . .  7?). In this case, however, efficiency of /9  
requires that 7? be e x a c t l y -  1/7. Hence 

y(N\CI )  = - 6 / 7 .  

By definition, 

d(N\C1) = rain max [v((N\Cl) u R) - z(R)]. 
zEIFC1 R C c  1 

d(N\CO = min max { max [ - 2 - z ( R ) ] , - 3 -  z(C1)} 
zEIFC1 RCC1 

= - 2 + min max ( max w(R), 0} 
w:w(C1)=l RCC 1 

(replacing - z  by  w for convenience). Write M(w) for max ( max w(R), 0} and let 
R C C  1 

r = rain {wi : i E C1}. Then r ~ 1/15 and, taking IRI = 14, we see that M(w) ~ 1 - 
w >/14/15.  So the value of  the min max is at least 14/15. On the other hand, taking 

Note that ( N ~ C 1 ) U R  C_ C k implies C 1 U C k =N, which is impossible, as we have al- 
ready pointed out. So v((N~C 1) U R) = - 2  for all R C C1 and - 3  for R = C 1 , giving us 
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w = w* = ( 1 / 1 5  . . . . .  1/15)  yields M(w*) = 14/15,  so 

exact ly  14/15,  and we ob ta in  

d(N\C1) --- - 2 + 14/15 = - 16/15. 

Hence y(N\C1) > d(N\C1), showing t h a t / )  is empty .  

235 

the value o f  the min  max  is 
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