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On a Repeated Game 
with Sta te  D e p e n d e n t  Signalling Matrices.  

By S. Sorin, Strasbourg I 

Abstract: We prove the existence of the minmax and the maxmin for a repeated game with lack 
of information on both sides and signalling matrices which depend on the state. 

1 Introduction 

1. A. When considering two person zero-sum infinitely repeated games with incom- 
plete information, a major distinction has to be made between games with and without 
a recursive structure. 

In the first case the analysis can be pursued by conditionning with respect to some 
a-algebra generated by a common knowledge information gathered along the play, and 
then by using some "state variables". 

For the second case where such tools do not work (the state space should increase 
strictly at each stage of the play) new methods relying on the construction of a one 
shot auxiliary game have been introduced [see Mertens/Zamir, 1976; Waternaux]. 

Coming back to games with recursive structure, three main classes are solved up to 
now: 

a) 
b) 

games with lack of information on one side. [Aumann/Maschler]. 

games with lack of information on both sides in which the signalling matrices 
may depend on the player but not on the state of  nature [Mertens/Zamir, 
1971/72;Mertens;Mertens/Zamir, 1980, see condition (ii)* p. 203]. 

c) games where the players have the same initial information and the same sig- 
nalling matrices which moreover completely reveal the moves (see (d) below), 
[ Kohlberg/Zamir, 1974; Forges]. 

1. B Here an example is treated of a game not fulfilling these hypotheses. It can be 
described as case (b) without condition (ii)* and keeping the recursive structure: there 
are four possible states of  nature, corresponding to the independent case [see Mertens/ 
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Zamir, 1980, p. 202] with two types for each player: given each state (/2, v) with p and 
v in (0, 1 ), Player I knows/2, Player II knows v and the distribution of(p, v) is the pro- 
duct of the marginals with p = Prob (p = 1), q = Prob (v = 1). Accordingly there are 
four 2 X 2 pay off matrices A (/2, v) and in addition four signalling matrices (common 
to the players): 

C D 

H(1,  O)= ( T R )  

C D 

( o L) H ( 0 ' 0 ) = (  BC R)D 

After each stage, i f ~ ,  v) is the state and players I and II play their moves i andj, the 
letter hij (p, v) is told to both players. This ends the description of the game G (p, q). 

Note that no pay off is announced but that: 

(d) any letter reveals the pair of moves used, namely i ~ i' or] q=]' imply hi] (12, v) 

hi, ], (p', v') for all p, p', v, v', as in the "symmetric case" (c). 

Hence if none of the player has initial information the game belongs to the class (c). 
Remark now that the extreme games (ie where p (1 - -p )q  (1 - -q)  = 0) fall in (a) 

since in this case only one player is informed. It follows then fromAumann/Maschler 
that the game G (p, q) has a value at these points, denoted by v (p, q). 

Notice finally that as soon as Player I plays top, some type is revealed: if Player II 
plays left,/1 = 1 if T is announced, p = 0 if B, similary if Player II plays right, v = 1 
ifL and v = 0 i fR .  

On the contrary if Player I plays bottom the letter announced is independent of the 
state. 

We shall thus call the previous letters, exceptional letters and (C, D )  regular letters. 
1. C. In order to state the results let us introduce some notations, o = (o 1 , o ~ 

(resp. ~.1, To)) is the strategy of Player I (type 1, type 0), (resp. of Player II). (i n, in) 

and h n denote the moves and the signal at stage n. 

Given the state (p, v) the payoff at stage n is thusg n = ai~ n (p, v). We shall use the 

expectation (induced by p, q, a, r) of the Cesaro mean of the payoffs namely: 

= gm 

to define a maxmin and a minmax in G (p, q) [see Mertens/Zamir, 1980]: 
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v is  the max-min of  G if, for every (p, q) in [0, 1] 2 we have: 

i) V e > O, 3 o and 3 N such that V r,  V n ~> N: 

~,q  (a,~)~>v (p, q ) -  e 

ii) V o, V e > 0, 3 r and 3 N such that for n ~> N: 

q~,q (o, ~-)<v (p, q)+ 

The first condition says that Player I can obtain v (up to some e) in any sufficiently 
long game, uniformly upon the strategies of  his opponent.  

We shall refer to it by saying that  Player I can guarantee v. 
Condition ii) corresponds to the existence of a best reply of  Player II to each a, 

with a payoff  (thought as lim) less than v. We shall write that Player II can defened v_. 
The minmax ~ is obviously defined in a dual way. 

The main result of  this paper is now: v and V exist. 

1. D. Since the tools and results of  this paper are quite different from the previous 
ones in this field, let us recall briefly the main idea of  the proof  in case b). 

Let us consider the maxmin (the minmax is similar since the two players are sym- 
metric). L e t N R  be the set of  non-revealing strategies i.e. strategies that induce on the 
signals a distribution independent of  the type. 

By playing NR,  Player I reduces the situation to a game with lack of  information 
on one side (where Player II is informed) belonging to class a). On the other hand, 
knowing the strategy of  Player I, Player II can first exhaust a maximal amount  of  in- 
formation, without revealing anything and then play optimal as if  he was the only in- 
formed player. 

Here both players may have to use revealing strategies and we shall need another 
subset of  strategies. We define NS to be the set of  non-separating strategies, i.e. such 

: a ~ (resp. z 1 that a = = r ~ the strategy is independent of  the type. Note that for 
the game under consideration in this paper N S  is not included in NR (this is the case 
when (ii)* holds). 

Typically the strategies used will be defined in two parts: 

1) up to the stage when Player I plays Top for the first time 

2) and after conditionally to the letter announced. 

In order to prove that one player can garantee a payoff  we shall proceed as follows: 
for step 2) we can introduce conditional absorbing payoffs that this player can 
guarantee after this stage (since the revealed game belong to class a)). By letting then 
this player use N S  strategies in part  1), the game reduces to a stochastic game with 
lack of  information on one side of  a special type studied in previous papers [Sorin, 
1984, 1985]. 

To show that  one player can defend a p a y o f f w e  let him first p l a y N S  and exhaust 
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the maximal amount of information from his opponent, and then in part 2) let him 
use an optimal strategy in the reduced game at the given posterior. Note that the pre- 
vious behaviour may be revealing and thus may induce new aspects in the opponent's 
strategy. In order to control this phenomena a fixed point argument is used. 

1. E. Let us finally introduce some notations which will be used along the proofs. 
Recall that given f real function on [0, 1], the concavification o f f (Car  f) is the 

smallest concave function greater thanf  on [0, 1] and Vexf i s  defined in a dual way. 
I f f  is a function of several variables Cav f denotes the concavification of the function 

X 

restricted to the variable x. 

As usual fin (and similarly ~n ) will denote the posterior at stage n ie the conditional 

expectation ofp  (given cr and r), with respect to the algebra H n generated by the his- 

tories (h I . . . . .  hn) up to stage n. 

We shall also use: 

u ' =  1 - - u , a i j ( p , q ) = E p ,  q (aij(l~,u)),llA II =m ax  I aij (/~, v) I 
i,j 

m A n = min (m, n), m V n = max (m, n). 

2 Minmax 

We prove in this section the existence of minmax and we shall give an explicit for- 
mula for it. 

We first define an auxiliary game as follows: 
Given a = (oq ,ao) and ~ = (~1 ,/30) in R 2 , F(p, q, a, t3) is the infinitely repeated 

stochastic game with lack of information on one side described by: 

v (1, q)* 

n P , ~ \  a21 (1, q) 

( v (0, q)* 

\ a21 (0, q) 

(q al + q' ~i)* 
l a22 (1,q) 

(q a0 +q'13o)*)  

a22 (0, q) 

standard signalling (ie hij = 

= q, J)).  

More precisely Player I (denoted later by P I) is informed upon the chance's move, 
which chooses the top state with probability p, and P II knows only p. Now as soon 
as a star is reached, the corresponding entry gives the payoff for the remaining stages 
(absorbing payoff). 

This class of games was studied in a previous paper [Sorin, 1984] where it is proved 
that the minmax exists and equals the value of the one-shot game Pl (p, q, a, 1~), that 
we denote by W1 (P, q, or, ~). 
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Let us now define two closed convex sets of vector payoffs: 

H1 = (a=(a~,ao) inR2;al  X+ao X'>~v(X, 1) for allXE[0, 1]} 

Ho = {/3 = (/31,/3o)in R2;/3a X+/3o X'Nv(X, 0) for all XE [0, 11) 

and note that H1 corresponds to the affine majorants of the concave function v (., 1). 
We can now state our first result: 

Theorem 1 

V (/9, q) exists on [0, 1] 2 and is given by: 

V (/9, q) = Vex min 
q a~Hl  

O~Ho 

(maxrnin F (/9, q, a, ~)} 

= Vex rain Wl (p, q, ~,/3). 
q a~H1 

~ H o  

Proof 

The proof of the theorem will be divided in two parts, corresponding to conditions 
i) and ii) of definition 1 .C. 

2.A. We first show that P II can guarantee this payoff. Recall that if P II can guaran- 
tee some function f (q) he can also guarantee Vex f (q). (This basic property for games 
with incomplete information was proved by Aumann/Maschler [see e.g. Sorin, 1979, 
2.17]). 

Thus it is enough to prove that given any (~,/3) in Ha • H0, P II can guarantee 
maxmin I" (p, q, ~,/3). 

Consider then the following class C of strategies of P II: 

(2.1) i) playNS as long as h n is a regular letter. 

ii) if T (resp. B) is announced, play from this stage on optimally in G (1, q) 
(resp. G (0, q)). 

iii) ifL (resp. R) is announced, approach from this stage on the vector payoff 
a (resp./3). 

Before explaining the meaning of iii) note that ii) is consistent. In fact i fm is the 
stopping time of first appearance of an exceptional letter, then up to stag~ m, P II 
was playingNS; hence given the regular letters the posterior on his type at stage 
m + 1 is still q. 

(2.2) By Aumann/Maschler, P II has then a strategy which gives at each stage an ex- 
pected payoff not more than the value of the revealed game. Now iii) refers to the ex- 
istence of an "approachability strategy" (due to Blackwell) as soon as a EH1 (resp. 
/3 E H0) [see e.g. SoHn, 1979, 2.18]. This property, first proved by Aumann/Maschler 
then extended to the general case by Kohlberg can be written as follows: 
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(2.3) For every a in H1, and e > 0, there exists ~" strategy of P II and N~ such that: 

•1,1(0,7.)<•al + e  
n 

-0,17n ( o , r ) ~ < a o + e  

for all n greater than NI and all strategy a of  P I. (Obviously a similar result holds for 
G (p, 0) and ~ in H0). 

Iris now easy to see that i fP  II plays in C, the original game G (p, q) is equivalent 
to F (p, q); so that by playing in G an optimal strategy in F, P II can get as a payoff  
in G minmax F. 

The precise computations are as follows: 
Let t in [0, 1] denote an optimal strategy of P II in FI (p, q, a,/3), where t = Prob 

(play left). 
Given e > 0 we define a strategy r in C where (2.1) i) is now specified as play t i.i.d. 

up to stage m, where the stopping time m is defined by: 

m = m i n  {n l>l . ; i  n=Top} 

Given a strategy cr o fP  I the average expected payoff  is ~P'q (O', 7") but we have: 

(2.4) fin p'q ( o , r ) = p  ~n l'q ( o a , r ) + p  ' ~O,q (aO,r) 

so that it is enough to majorize 7 (1 'q) (O 1 , T) (for example). 

Note now that: 

Prob 1 [l"n =left lm~n]=tby(2"l)hence 

( 2 . 5 )  E a [gn Im>~n]=ta21 (1,q)+t'a22(1,q). 
q,o ,z 

Similary (2.1) i) implies 

(2.6) Prob 1 [h n = T [ m = n ] = t  
O ~T 

Prob 1 [h n = L I r n = n ] = t ' q  
a ~T 

Prob i [h n =R [ rn=  n]=t 'q '  
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and from (2.1) ii) and (2.2) we have: 

(2.7) E 1 [ g n l m < n ' h m = T ] < ' v ( l ' q )  
q , o  ~'r 

By using (2.1) iii) and (2.3) we now obtain on {m < n -- max ~No, Na ) ) 

[ 1 n ] 
(2.8) E (n--m) Y" gk I hm =L 

q ,  a 1 , r  ~ m ~ 
~0~ 1 -~C 

From (2.4) - (2.8) we deduce: 

(2.9) n ~l ,q (O1 r ) < E  1 [m An (ta21 ( 1 , q ) +  t'a2~ ( 1 , q ) ) +  ( n - m  An)  

(tv (1 ,q)  + t' (q ~1 + q' ~1))] + n e 

+ 2 II A }1 

max (No, N1 ) 

Let F (s 1, s o, t) denote the payoff  in 1"x (P, q, a,/~) when P I is using s 1 = Prob 
(play Top [ p = 1) (resp. S ~ i f #  = 0) and P II plays t. 

Dual considerations now give from (2.9): 

(2.10) ~Pn 'q (~, ~) <F(SXn , s ~ t) + e + 2 IIa II 
n 

max (N1, No) 

where (Sin)' - l E g  (m An) 
- n  1,r ~ 

and similary (sOn)' are the normalized mean of the stopping m, up to stage n, under 

a 1 (resp. 00). 

Since t is optimal in 1"1 (p, q, ~, ~) we obtain finally for n ~>N = 2 II A II �9 max 
C 

(No,N1): ~Tn p'q (o, r) < W1 (P, q, ~/3) + 2 e: 

2. B. Let us now prove that P I can defend the same payoff. 
In order to find a "best reply" o fP  I (ie mainly a distribution of  the stopping time 

m), good for all the possible posterior choices for (a, ~) we need first the following 

construction. 
Assume (p, q) fixed. Let ~ (a, ~) the set of optimal strategies for P I in F1 (p, q, 

a, ~), defined by (s 1, s o) in [0, 1] 2 . 
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We denote by ~ (s 1 , s ~ the set of(a,/3) inH1 X Ho minimizing the absorbing pay- 

off in Pl induced by (s 1, s o) namely: 

ps  1 ( q a l  + q ' / 3 1 ) +  p ' s  ~ (qao  + q '  /30). 

(2.11) Remark that (a,/3) belongs to ff (s 1, s ~ i f fa  minimizes: 

p s I a l + p ' s o a o onH1, and similary for/3 onHo. 

Hence such an a is a supporting hyperplane to v (., 1) at the posterior p (s 1, s o) = 

= P s l  

p s  I + p ' s  0 

It is straightforwards to check that the correspondances ~b and ~ are.s.c.s and com- 
pact convex valued. It follows that the correspondance $ o ~ has a fixed point that we 

shall denote by (~-1, ~-o). 
The idea of the proof can now be explained as follows: Given r, strategy of P II, 

P I plays Bottom until1 some stage N after which the posteriors ~ n' n 1> N are essen- 

tially constant�9 For each of these stages n, P I computes z n which is the non absorbing 

payoff induced by r and (~-1, ~0) (p, ~N ) in F (p, qN) (note that this quantity is in- 

dependent of (a,/3)). P I plays now Bottom until some stage N1 where z n is minimum 

and plays then once ( s l ,  ~o) (P, qN) at that stage: namely i f  iN1 = Bottom, P I keeps 

playing Bottom, otherwise he plays optimally from this stage on in the revealed game. 
Assuming this strategy for P I a best reply for P II after m would be to choose (a,/3) E 

~/ (S-1, ~0)" It follows then that P I obtains Ir (p, qN' a,/3) for some a,/3 hence the 
result. 

Let us do now the formal construction. 

We are given a strategy r of P II. Assuming that P I uses the N S  strategy b : play 

always Bottom, the posteriors q n are a well defined bounded martingale hence conver- 

ges in expectation. So let us define N such that 

(2.12) Eq,;, r IN qn - qN I I ~ e v n ~>g. 

Note that this inequality (for a given n) holds true for any o that coincides with b up 

-1 ~o for the random variables (gl ~O)(p, ~N ) to stage n -- 1. We shall write S N and S N 

(fixed point of ~ o r at (p, qN))' and ON' XN for the posteriors, given i N = Top or 

Bottom, namely: 

e (s 

p saN + P S ~  N p (S1N)' + p '  (S~ 
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We now introduce two functions on [0, 1] 4 by: 

f ( ~ , s l ,  s ~  1 v ( 1 , ~ ) + p ' s  ~ v ( 0 , ~ ) ] + t ' [ p s  1 + p ' s  ~ 

[qv (o (s ~, s~ 1) + q ' v  (o (s ~, s~ 0)] 

and 

g (~, s 1, s o, t) = t [iv (s 1 )' a21 (1, q) + p'  (s ~  a21 (0, q)] 

+ t '  [p (s~) ' 

az~ (1, q) +p' (s~ (1, ~)] 

(2.13) Note that f and g correspond respectively to the absorbing and non absorbing 

part of  the payof f in  F1 (p, q, a) given (s 1, s ~ and t, with moreover (a,/3) in 

(s 1, s ~ (see 2.11) 
We shall also need the following parameters induced by r: 

tin = P r o b  ~,~i ( (Jn = Left} [ /-/N) for n >~ N and i = 1, 0 

t n = PrObq,b,r ^ ((in = Lef t )  r /-/N ) hence t n = qN tin + qN-' t~ 
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(As for qn above, these random variables are the same for all strategies o that coincide 

with b up to stage n -- 1). 

Given e > 0 we defme/V~ ~>N such that: 

(2.14)g ~ x o 1 S~r, + Vn  ~>N. (q~r s jr, Sly, t~ ) <<. g @v, SN, t n) e, 
N1 

Remark that At1 is/-/N mesurable and bounded by some N1. 

The strategy tr of  P I is now defined as follows: 

- play Bottom up to stage -N1 -- 1. 

~ 1 ~ o stage.~l.  
- play (SN, SN)  at 

Then: I) if { i  = Bottom) p layBot tom from stage/V1 + 1 on (note that on this 
N1 

event a coincides with b). 

II) if { i  = Top } use an (e) optimal strategy in the revealed game starting at stage 
N1 

N1 + 1 namely: 
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II a) i f h  = T, play o T such that for n larger than some K: 
N1 

) Eo E gm[H >~v ( 1 , q _ ) - - e  
(2"15)~'q'~ ~1+1 N1 N1 

(and similary for B) 

II b) ifh = L, use o L such that for m ~>/V~ + 1: 
Nt 

(2"16)Ep,q,aL,r (gin I H_ ) / > v ( p  N, 1). 
Na 

(and similary forR). 

To see why such strategies exist notice that: 

- for II a) v (p, .) is Lipschitz, hence K can be chosen independent of q~ . Now (2.15) 
N1 

follows from (2.3) (or rather its dual) and the fact that after stage iV1, the state variab- 
les are 1 (forp) andq~ (forq). 

N1 

- as for II b) the inequality (2.16) follows from (2.2) and the fact that since P I was 

playing always bottom up to stage JVI -- 1, P = p hence P = PN" 
NI-1 N1 

In order to compute the expected payoff at somme stage N~ + m, conditionnally 
on H N, we first study the events generated by h~ . 

N1 

The conditionnal probabilities on H N induced byp,  q, o, r are given by: 

( 2 . 1 7 )  Prob ( i ~  = B o t t o m  I H N )  =p (S)v)' +P' (SN)-O, 
N1 

(2.18) Prob(h~ = T I H N) = P S N . t~ 
N1 N1 

~1 p, (2.19)Prob(h~ =L ]t-[N)=(PSN+ S~V)'~IN'(tL ) 
N1 N1 

and analogous formulas for B and R. 

The last term in (2.19) involves t~ but since the posteriors qN is essentially con- 
N1 

stant after stage N, P II is playing almost NS. In fact we have: 
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(2.20)E ^ (I t  in --tn ll HN)= qN l tl --tn I qN [ t~ 1<~6 (n + 
q,b,r 

6 (n + 1 , N ) = E ( [  qn§ - -qN [I HN). 

Now we can use (2.15) and (2.16) to minorize the payoffs after some exceptional 
letter. 

It remains thus to see that after {i~ = Bottom} the payoff at stage n is given by: 
N. ! 

(2.21)A n = q ~  (tn a a21 (XN' 1) + (t~)'a22 (~N' 1)) 

+ q~ (t ~ a2, (XN' 0) + (to) ' a22 (~U' 0)) 
N 

where recall that is the induced 1 0 we posterior by S N, S N on { i  = Bottom). 
N1 

Taking the expectation with respect to ~N in (2.15), (2.16) we obtain, for all 

n >>- K, using (2.20). 

N l+ l+n  N l + l + n  

F, gm [ H N) >1 Prob ( i  = Bottom[ HN) F, A m 
(2.21) ,q,a,r ( E N1 +1 N1 N1 +1 

+ n [Prob (h~ = T I H N) (v (i,  qN) -- e) 
N1 

+ Prob (h~ = B I H N) (v (0, qN) -- e) 
N1 

-- Jl A JJ ~i (Na, N)] 

+ n [ P r o b ( h ~  = L I H N )  v('PN, 1) 
N1 

+ Prob (h~a= R I HN). v (PN' 0)1 

Using (2.17) (2.20) and (2.21) it follows that: 

(2.22) Prob(i~ = B o t t o m l H  N) A m>~g ~ a (qN, SN, S~ , t_ ) - - ] lA  tl ~ (m, N) 
�9 N ii~ N1 
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Denoting by L the left member of (2.21) we get now from (2.22), (2.18) and 
(2.19) that: 

(2.23) L i> 
N t + l + n  

Y~ 
N1+1 

[(g(gN,SN, SN, tm)_I IAI I6(m,N)]+n[ f ( '~N,  ~ o S N , S N, tN1) -- 

- e - l l a  II ~ (N~,N)] 

We use now the definition of 3~1 (see (2.14)) to minorize the right part by introducing 
H1 ~ 0  

g(qN,SN, SN,t_ ). 
N1 

Recall also by (2.13) that f +  g is the (one shot) payoffin some r'l 09, q~N' a,/~) 

1 0 where S N, S N is an optimal strategy for P I. (2.23) leads now to: 

N l + l + n  

(2.24) L ~> n min I*'1 (p, qN' a,/~) -- 2 n e -- II h II ( Z 
c~,~ N1 + 1 

8 (m, N) + n ~ (N1, N)). 

We minorize min WI by Vex min Wt and then take the expectation on both sides to 
obtain, using (2.12) and Jensen's inequality: 

N l+ l+n  

Ep,q,a,r( 
NI+I  

gm)>~n Vex min WI (P, q, a,/~)--2 n e--IIA II (n e + n  e) 

Thus for n >/(K + 1) V (NI + 1) 

(a,r)~>Vex min (p,q, ~ , ~ ) - 5  e(llA II V 1) ~n+ 1 +N 1 a,.e 

hence the result. 

3 Maxmin 

Before stating the proposition we have to introduce some notations and to recall 
some previous results. 

As in Part 2 we can determine a first amount that P I can guarantee by using some 
NS strategy until an exceptional letter is reached and then by playing optimally in 
the revealed game (ifL or R) or by approaching some vector payoff if T or B. 
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More precisely let: 

L1 = {~/= (71,~'o)171 X+7o X ' ~ v ( 1 ,  X)for all 3, in [0, 1]} 

Lo = {6 = (61,6o)161 X+ 6o X ' ~ v ( 0 ,  X) for all Xin [0, 1]} 

Then if P I plays as above, G (/9, q) is similar to the infinitely repeated game A (p, q, 
a, p) which is described by: 

) 
a21 (p, i)  a~2 (p, 1) a21 (p, o) a2~ (p, o ) ,  . 

For this class of games, studied in Sorin [ 1985] the maxmin exists. Moreover we ob- 
viously have since v ( . ,  X) is concave: 

(3.1) p 3'1 + p ' 6 1  ~<v(P, 1) 

PTo+P '6o~<V(P ,  0) for all (7, 6) in L1 •  

It follows then from Sorin [1985] (Part I V, first case) that, if we define: 13 = (0; 
Borel positive measure on [0, 1] with total mass less than 1 ) the maxmin of A is 
given by u with: 

u ( p , q , a , [ 3 ) =  sup inf  q r  ( x , O ; p , ~ , [ 3 ) + q ' r 1 7 6  (y, 'O;p,a,  t3) 
o~| x,y~ [0,11 z 

where 0 (x) stands for 0 ([0,x]) and ~i is given by: 

X 
~i (x, O; p, a,13) = f [t v (p, i) + t ' (p Ti + p '  6 i)] dO (t) 

0 

+ (1 -- 0 (x)) rain ((xa22 (p, i) + x '  a21 (P, i)), u (p, i, ~, 13)}, 

i =  1,0. 

As in Part 2 we can thus state that P I can guarantee: 

Gay max u ( p , q , ~ )  
p 3 'EL1  

6 ~ L  o 

261 
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Note nevertheless that P I, even without knowing the strategy of P II, obtains some 
knowledge through the sequence of regular letters: C, D (as long as he plays bottom, 
of course). This fact (already used in the so called Blackwell strategy) will allow him 
to get more by changing the approachable vector along the play. 

The strategy o fP  I can then be roughly described as follows: use 01 (resp 0o) if 
g = 1 (resp 0) to choose a point x in [0, 1] and play the "Big Match" strategy corres- 
ponding to it (ie play top if the frequency of right exceeds x [see Blackwell/Ferguson; 
Sorin, 1984, 1985; more generally Mertens/Neyman ]. As soon asL orR appears, 
play optimally in the revealed game at Px (posteriors induced by 01 and 0o). If T 

or B is announced, approach some 7 x (resp ~ x) in L 1 (resp L o). 

Let us first define: 
6) f = {0 in O with finite support } and given (01,0 o) in O f (that we can assume 

with support included in some set to = 0 < tl < .  �9 �9 < trn = 1) we introduce on 

[0, 1]: 0 (t),p (t) andp (t) by: 

(3.2) 0 (O)-~-p 01 (O)-["p'O 0 (0) 

o~ (o) 
p (o) = p ~ and p (t) = p (0) on [0, t l ) .  

0; (0) 
p (0) = p ~ and p (t) = p (0) on [0, t , ) .  

and inductively 

0 ( t ) = p  01 (t) + p '  Oo (t) 

O~ ( t i ) - O ~  (ti. i) 
P (ti) = P o (ti) - o (ti. 1) and p (t) = p (ti) on [t i, ti+l) 

o; (t~) 
p (ti) = p ~ and p (t) = p (ti) on It i, ti+l) 

Note that if 01. (t) is interpreted as the probability of top at t given p =,/, then p (ti) 

is the posterior given the first top at t i and p (ti) given Bottom up to t i. Obviously 

the expectation ofp  (ti), p (ti) given Bottom up to ti. 1 is p (ti.1). 

Let F denote the set of distribution functions corresponding to probabilities on 
[0, 11. 

/- 1 (resp. Lo) is the set of measurable mappings from [0, 1] intoL1 (resp Lo). 

We define now some payoff for (01,0o) in |  (7, 6) in I. 1 X Lo, (F, G) in F 2 by: 
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X(p, q;O~, 0o; ~, $;F, G) =q X ~ (p; 0~, 0o; ~, ~; F) 

+q' X ~ (p;O~,Oo; ~ , '  G) 

with 

1 
Xi (p;01,0o; :/, $; F)= f 

0 
(1 - - F ( t ) )  [tv (p (t), i) 

+ t' [p (t) v ~ (t) + p '  (t) 8 i (t)]] d o (t) 

1 
+ f  

0 
(1 -- 0 (t)) B (t, i) d F (t). 

Where B (t, i) stands for: 

B (t, i) = min { mill 
O<~x<~t 

(x az2 (p (t), 0 + x'a=a (p (t), i)), v (19 (t), i) ) i = 1, O. 

In order to state the result it remains to introduce: 

Y (p, q," 0 a, 0 o) = sup inf 
~'~L1 F~F 
g~Zo GEF 

X (p, q; 01,0o; ~, ~;F, G) 

Z ( p , q ; 0 1 , 0 o ) =  inf sup 
F~ F "~C L1 
GEF g~Lo 

X fp, q; o~, 0o; ~, ~;F, G) 

Then we have: 

Proposition 2 

Y(p ,  q," 01 ,0o)  = Z  (p, q; 01,0o) for all (p, q) in [0, 1] 2 , (01,0o) in |  

Theorem 3 

Maxmin exists on [0, 1] 2 and is given by: 

v (p,q) = sup Y (p, q; 01, 0o). 
0 1 , 0 2 E |  2 

3. A. We first prove the proposition. 

Remark that X depends upon ~, 6 only through their values at the (finitely many) 
points (ti}i= 0 . . . . .  m in the support S of 01 and 0o. Hence we can replace L 1 by 
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the convex compact (L 1 ~ [ -  tt A II, I1A II ])m+l and similary for L o. Note now that 

F is convex and X is affine with respect to (~, 3)  and (F, G). Finally X is obviously 
continuous with respect to (~, g), hence by Sion's minmax theorem Y = Z. 

We shall use later the fact that a best reply to (F, G) minimizes: ~1 (t) (1 - F ( t ) )  

q + ~o (t) (1 -- G (t)) q '  for t E S, with ~ (t) C L a, and similary for 3. 

It follows that ~, (t) is a supporting hyperplane for v (1, .) at the point: 

(3.3) q (t) = q 
(1 - -F( t ) )  

q (1 - F ( t ) )  + q ' ( 1 - - G  (t)) 

The interpretation is the following: 
P I is using a "Big match strategy" a t blocking at level t, with probability d 0 i (t) 

if/1 = i. Assume that P II plays Right with a frequency increasing form 0 to x, with 
probability d F (x) if v = I. I f  P I plays Top when using a t he will deduce that x ~> t. 

Thus i fL is annonced he will approach 3" (t) corresponding to q (t) = Prob (v = 1 I 
x ~>t). 

Let us start now the proof  of  theorem 3. 
3. B. We begin by proving that P II can defend sup Y (0 i, 0o). The proof  relies mainly 

on two ideas: 
�9 The first one is similar to that used in Sorin [1984, lemma 21] or [1985, Lemma 5]. 

Knowing a, strategy of  P I, P II starts by playing always Left, until reaching the max- 
min of the probability that P I will play top at this level. From this time on (con- 
ditionnally on m/>  n of course) P II will slowly increase his frequency and proceed 

in the same way. P II will stop at some level x if v = 1, y if v = 0. Obviously such a 
strategy induces with a a probability d ~i (t) of  playing Top at level t if/~ = i. 

Now comes the second step: 

P II uses ~" to compute F, G which realizes Z (p, q; ~'1, ~'o) and plays up to level 
x (resp. y )  according to F (resp. G). If  Top is played at level t and L is annonced P II 
can obtain v (p (t), 1) where p ( . )  is induced by p, ~1, S'o (see (3.2)). I f  T appears, 
P II knows "his" posterior and can get v (1, q (t)). This last amount being induced by 
some (% 6) this implies that P II can defend Z, hence the result. 

The formal proof  is as follows: 
m still denotes the stopping time min (n; i n = Top)  a n d s  = (tr}r= 1 . . . . .  M is a 

finite set of  points in [0, 1] to be specified later. Given e ~> 0 and cr strategy of P I we 
first introduce: 

r (0) : play always left, 

P ~ ( 0 ) = P r o b  ( m < + = )  i = 1 , 0  
a i , r  (0) ~ 



On a Repeated Game with State Dependent 

then no and Pi  (0) such that: 

Pi (0) = Probai,r(O ) (m <~no)>P~(O) -- e i= i, 0 

265 

We now define inductively for r ~<M, given r (r -- 1) and nr. 1 �9 

T(r) :  set of  strategies that coincide with r ( r -  1) up to stage hr. 1 and such that at 

each following stage Prob (Right) ~< t r . 

P ~ ( r ) =  sup Prob . ( m < + ~ )  i = l , 0 ,  
r E T ( r )  a~, r ~ 

then r (r), n r >i nr.  1 and Pi  (r)  such that: 

P / ( r ) = P r o b  . ( m < ~ n r ) > ~ P i * ( r ) - - e  i =  l , O .  
o t , r ( r )  ~ 

Let then ~'i be the measure in |  with mass P / ( r )  - - P i  (r - -  1) at point tr, and let F 

and G in F b e e  II A II optimal strategies for P II i nZ  (p, q; ~'1, ~'o) (see Prop. 2) i.e. 
such that: 

X(p, q;~,,~o; r/, ~;F, G ) <  Y(p, q; f~, ~'o) + e IIA II 

for all ~, ~. 

We finally introduce ff  atomic prob ability measure with mass F (tr)  - -  F (tr_ 1) at 

point t r and similary for G. The strategy of P II can now be described as: P II chooses 

t r according to f f  if v = 1 (G if v = 0). Then he plays r (r) up to stage m ,  and plays op- 

timally in the revealed game after stage m. 

In order to compute the expected payoff  at some stage n large enough ('~ n M )  we 

first study the different events induced by hrn. 

Recall first that the event {m ~< n r and P II plays Right with probability t > t r at 

stage m } has zero probability. 

Moreover by construction we have that Prob (n/> m > n r [ r '  (r)) < e for all n > n r 

and all r '  (r) in T (r) that coincides with r (r) up to stage n r. We shall thus neglect the 

events: ( {n/> m > n r } and r (r) is played )). 

(3.4) Thus if (m > n } and r (r) is played we use the fact that Prob (m > n r I r (r) 

and/a = 1) is 1 -- S'I ( t  r) to compute the posteriors Prob (/~ = 1 I m > n r and r (r)) = 

= p ( tr)  see (3.2). 
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(3.5) Now Prob (m E (nr.1, nr]l r (s) and/~ = 1) = f l  (t r) -- ~1 (tr. 1) for all s ~> r and 

0 otherwise. It follows that Prob {/l = 1 I m E (hr.1, nr] , z (s)} = p  (tr) V s >Jr. 

On the other hand, even i fP  I knows the strategy o fP  II he can only compute 
Prob (v = 1 I m E (nr.1, nr] ) = Prob (u = 1 [ r (s) is played, with s/> r) = q (tr) (see 

(3.3)) induced by F, G. 
Finally if s (t) is defined by s (tr) = Prob (P II plays Right at stage m [ m E (nr.1, 

nr] ) then s (tr) <~ t r a.s.. 

Hence we have the following complete description: 

- i fm > n and r (r), the posterior (on p) is 0 (tr); then P II can either keep playing 

with Prob (Right) ~< t r or obtain v (p (tr),j) i fv = j  (this gives B (t r, j)). 

- if m E (nr.1, nr], then Jm = Right with probability s (tr). Given T the posteriors 

are (1, q (tr)) and given L ~hey are (p (tr), 1). 

We now obtain, using (3.2) and (3.3) that for N large enough: 

nM+N i 

U E 7 n ( % r  ) <~f s ( t ) [ q ( 1 - - F ( t ) ) v ( p ( t ) , l ) + q ' ( 1 - - G ( t ) )  
n M 0 

v (p (t), 0)1 d ~ (t) 

1 

+ f s' (t) [q (1 - - i f ( t ) )  + q '  (1 -- G (t))] [p v (1, q (t)) 
0 

d ~'1 (t) + p ' v  (O,q ( t ) )d  ~o (t)] 

1 

+ f  (1- -~ ' ( t ) ) [B( t ,  1 ) q d F ( t )  + B (t, O)q' dG (t)] + 
0 

+ 2 l l A l l e .  

By using (3.1), (3.3) and s (t) ~< t it follows that there exists ~', 6 in /_ i • L o such 
that: 

N 
nM+N 

n M 
3, n (a, r) <~ X (p, q ; ~ , ~ o ;  7, 6;F, G ) +  2 [[A I[ e. 

It remains to use the fact that (F, G) can be choosen near (F, G) the last being optimal 
inZ. 
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In fact we have: 

[ F ( t ) - F ( t )  l~<eon [0, 1] 

by defining t r = rain { t; F (t)  >~ r e}  1 

On the other hand g ivenfbounded  (by 1 say) and right continuous [ f f ( t )  ( d F ( t )  - 
0 

- - d  i f ( t ) )  I ~< e as soon as I t r -- tr_ 1 I is smaller than some ~ (f). It follows then fi- 

nally that for the corresponding ~-: 

N 

nM+N 
Y~ 

n M 
7 n ( a , d ) < < , X ( p , q ; ~ l , ~ o ;  ~,-~;F, G ) + 4  IIA II e 

hence by using Proposition 2 there exists/V such that n ~>~r implies: 

~n (e,r)<~ Y(p, q;~l,~o)+ 5 4IA II e. 

this achieves the proof  that P II can defend v. 

3. C. This last part, namely that P I can guarantee sup Y (01 ,0o)  is now quite 
standard [see e.g. Sorin, 1984, Prop 26, or Sorin, 1985, Lemma 7] but still requires 
some new notations. 

J (t) is the infinitely repeated stochastic game with payoff  matrix: 

it - ( 1  - t )  / 

The value of  J ( t )  is 0 and we denote by a (t) an e optimal strategy o f P  I i n J  (t), i.e. 

such that n >~N t implies: l-n (a, r ) /> -- e where 7 n (a, r) is the average expected pay- 

off  in J (t). (Recall that J (1/(2)) is the "Big Match" of  Blackwell/Ferguson): 
A sketch of  the proof  already appears in 3. A. So let (0 a, 0o) in O f  realize sup Y 

up to some e. -- 
We denote by S = {t  r [ to = O, t M = 1, r = 0 , . . .  M} a finite set including the sup- 

port of  0 i (i = 1, 0), with I t r -- tr_ 1 ] ~< ~ (to be specified later). Finally ~ (tr) = 

= 7 r, 6 (tr) = 6 r are defined as optimal for Y (01 ,0o)  (see proposition 2) 

To make the notations simpler we shall write e (r) for cr (tr) and d 0 i (tr) for 

0 i ( { t r } ) .  We also define./V = max Ntr.  
t ES 

r 
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The strategy tr of P I is now as follows: 
Choose r*  i nM td ( a )  according to the distribution defined by, if/a = i, Prob (r* = 

= r) = d 0 i ( tr)  and Prob (r* = ~)  = 1 - 0 i (1). 

Then: 

- if r*  = 0 play Top at stage 0. 

- if r*  = r E (0,/14] play Bottom up to stage m r and Top at this stage. 

- if r*  = ct play always Bottom 

where the stopping times m r are defined on each history by: 

ml = rain (m ~> 1; i m = Top)  induced by a (1) 

m r = min ( m  >>- mr.  1 ; i m = Top:} induced by a (r) from stage mr .  1 on. 

Finally after m, P I plays optimally in the revealed game if L or R and approaches 

7 r ,  if T (resp. 8 r ,  if B). 

We shall prove that given u = 1, P I can guarantee 

inf X x ( p ; O l , 0 o ; 7 ,  g, F x )  
X 

where F x stands for the Dirac mass at x E [0, 1]. 

The result will then follow by using the definition of  X and the properties of  
(01,0o) and (7, g). 

Now given n and r strategy of  P II we define: 

U r = m r A n - mr .  1 An,  s r = I { / .  m = Right} 
r 

and 

1 
s t =  ~rr  #('/'m = R i g h t ; m r - l A n < m < ~ m r A n )  

Hence P I is using o r during U r stages, ]-r is the average frequency of Right on this sta- 

ges and s r describes the strategy of P II at stage m r. 

Note finally that i f h  m = L ,  the posteriors arep ( tr)  (as defined by (01,00)  in 
r 

3.2) and p ( tr)  i f h  m is a regular letter. Thus we obtain: 
u 
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O~ r-1 

(3.6) n T f f ' l ( ~  ~ lUr  ~" 
r k=O 

((p d 01 (t k) + P'  d 0 o (t k))  s k v (p (t k), 1) 

+ s '  k [pdO,  ( t k ) 7 '  ( k ) + p ' d O o  ( t k ) 6 '  (k)])  

+ [p (1 --01 (tr.1)) + p '  (1 -- 0o (tr.1))] [a22 (P (tr.1), 1) ~ + 

+a21 (P (tr.1), 1) s-~] ) 

Now after stage mr. 1 , m <~ m r implies that the average of Right is less that some t r + 

+ 77 (otherwise P I plays Top). By the choice o f o  (r) we thus have: 

E [U r . ~] < ~ N + E ( U  r ) ( t  r + rl+ e) 

< N +  E(U, )  + 2 n + 

It follows that the last term in (3.6) is minorized by 

(1 -- 0 ( tr .1))B (tr_ 1, 1)-- [(M+ 1 ) N +  2 77 + e] [[ A II. 

Hence we have, using (3.1) 

(3.7) 1 (a) t> E ( z 
r = l  

f r X 1 ( t ) )  - II A II ((M + 1) N + (2 77 + e) n -- A) 

where we write, for short X 1 (tr) = X 1 (t7; 0 1, Oo ; 7, -6, F t ) and A stands for: 
r 

(3.8) A = E ~r Ur Zk d 0 (tk ) (s k -- tk ) ) 

It remains to remark that s k -- t k = s k (1 -- tk ) + (1 -- Sk ) (-- tk ) is the absorbing pay- 

off  in Y (tk) , and that this payoff  occurs at stage m r for Z U k stages. 
r + l  

Using the optimality of  o (r) we thus have 

E (  Z U k (s k - t k ) ) > ~ - e n  
r+ l  

hence A ~> -- e n (M + 1). 



270 S. Sorin 

We get now from (3.7) 

n ~P' 1 (a) >/rain X 1 (t r) -- II A l[ ((M + 1) N + (2 r /+  e) n + e n ( 3 / +  1)]. 
r 

A similar result for 7P' 0 now implies; V z, V eo > 0, there exists iV and a such that for 

n~>.~ 

~P'q (a, T) ~ inf 
F , G ~ F  

hence the required result, 

X (p, q;O~,02; ~/, -g,'F, G ) - e o  

4 Concluding Remarks. 

4. A. We do not have any statement about the asymptotic behavior of v n (p, q): 

value of the n-time repeated game. Nevertheless it is worthwile to remark that the 
following recursive formula holds: 

( n +  1) Vn+l (p, q) = max min { p q s l A ( 1 , 1 ) t  1 + p ' q s  ~ 
0~<s~<l 0~<t1~1 
O~<s~ O<t~ 

s~ (0, 1) t 1 + p q '  s 1 A (1, O)t ~ + p ' q '  s o A (O,O)t  ~ 

+ n [q t 1 + 'q '  t ~ [p s 1 V n (1,ql)  + p '  s o v n (0, q/)] 

+ n [ p s  1 + p ' s  ~ [q ( t l ) ' v  n (Pt' 1 ) + q '  ( to)  ' v n (Pt, O)] 

4- n [ p  ( s l )  ' ~ - p '  (so) '] ([q t 1 q - q '  t o ] v n (pb ,q l )  

+ [q ( t l )  ' -[-q' ( to) '] v n (Pb,qr) ) )  

where 

x A y = x a11 y + x a12 y '  + x 'a21 y + x 'a2~  y '  

p s  1 p ( s l )  ' 
P t =  S 1 S o 'Pb = 1) p '  ' q l =  p +p '  p (s  '+  (sO) ' 

q t  ~ 

q t  ~ + q ' t  ~ ' 

q ( t l )  ' 
qr = q (t~) ' + q '  ( to)  ' 
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A sketch of  the p roof  is as follows: (s i , s ~ and (t  i , t ~  define the strategies of  both  

players at the first stage in Gn+ 1 (t 9, q). They induce a payof f  at stage 1 and a distri- 

but ion on the letters. By the minmax theorem, the corresponding posteriors ~ (h), 

(h) on the state space, given some letter h, can be assumed to be common know- 

ledge. Now the players, by  playing optimally obtain n v n (~ (h), ~ (h)) for the re- 

maining n stages. The above formula is just:  

(n + 1) ~n+l (o, r )  = 3'i (a, r) + n Ea, r v n (p, q~ 

4. B. The analysis in Part II and III shows also that a continuous parameter  space 

is natural in this framework (even with discrete time). This was already the case in 

Sorin [1984] for lim v n and in Sorin [ 1984, 1985] for v and ~. 

In fact we "discretise" the strategies in order to get in an easy way uniform bounds 

for the convergence but  it  is clear that there are no "l imit  problems".  
In Part II rain W1 (a,/3) is the value of  the game where the strategy space of  P II is 

( lef t  U (no X H t ) } .  
In part III given 01 ,0o  in O, p (t) is the Radon-Nidokym derivative o f p  01 with 

respect t o p  01 + p  0o. 

4. C. The use of  "stochastic games" for solving games with incomplete information 
is introduced first in the "symmetric  case" see 1.1 d). The previous analysis seems to 

prove that  this phenomena is more general [another example can be found in Sorin, 
19.84]. 

It appears then that  stochastic games [completely solved now by Mertens/Neyman ] 
and games with incomplete information are more and more included in a single topic 
that could be called: "stochastic games with incomplete information".  
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