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G e n e r a l i s e d  Bargaining Sets  for Cooperat ive  Games 1 ) 

By N. Schofield, Austin 2) 

Abstract: Although the M 1 -bargaining set for games with side payments is known to exist, it fre- 
quently contains payoffs which are highly inequitable. For this reason the more restricted M~ - 
bargaining set is of interest. Since M 2 is not known to exist in general, this paper introduces an 
M,-bargalning set, contained in M1 and containing M2, and presents an existence theorem. For the 
class of symmetric, simple games with decreasing returns, the M 2 -bargaining set is shown to exist, 
and a fairly severe restriction on payoffs satisfying M 2 -stability is obtained. 

Introduction 
A characteristic function game with transferable value is defined by a pair (iV, v) 

where N is a set of  players and v is a function which assigns to each coalition S in N, a 
real number v (S) called the value of  the coalition. This value may be divided among 
the coalition members. The obvious equilibrium set, the core, is typically empty  for 
such games: for example if the game is constant sum then the core is empty  [Owen; 
Riker/Ordeshook]. However the M1 bargaining set, introduced by Aumann/Maschler 
[1964] and the kernel, due to Davis/Maschler [1963] are known to exist [Peleg, 1967; 
Masehler/Peleg]. 

For simple, constant sum games the M1 bargaining set may contain payoff  vectors 
which are counter intuitive. For example, consider a simple majority voting game with 
twenty five players where each winning coalition (of  size at least thirteen) has value 1. 
A payoff  distribution which gives 1/7 to the first seven members, and 0 to the other 
six members, of  a winning thirteen person coalition, is in the bargaining set. In general, 
for simple games with many players the M1 -bargaining set appears to be too large. The 
kernel excludes such inequitable payoff  distributions. However the kernel has not per- 
formed well as a predictor of  actual payoffs in one experimental gaming study [Miehe- 
ner/Sakurai] and in an empirical analysis of  European government coalitions [Scho- 
field]. For these reasons the more restricted solution concepts, the 3'/2 -bargaining set 
and the K2 -kernel are worth studying. The first part of  the paper gives the definitions 
of  these general solution notions M2 and K2. A new bargaining set M . ,  lying between 
M1 and 3"/2 is introduced, and an existence theorem obtained. However M .  does not 
forbid the inequitable payoff  distribution in the simple game mentioned above. The 
second part of  the paper shows that for a general class of  simple symmetric games, 
which are called D-games, the M2 -bargaining set exists. More precisely it is shown that 
the equitable payoff  vector (all payoffs are equal in the winning coalition) belongs to 
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the M2-bargaining set. Furthermore if the decision rule is at least two thirds then this 
equitable payoff vector satisfies the K2 -kernel symmetry constraints. 

These results suggest that the strong stability properties of the M2-bargaining set 
may be satisfied for a more general class of weighted majority games. 

Generalised Bargaining Sets 

Let N = { 1 , . . . ,  n) be a finite set of n players. A characteristic function game with 
transferable value for N is defined in terms of a real valued function v : 2 N ~ R, where 
2 N is the set of subsets of N. The value v (S) of a coalition S C N is regarded as the 
collective benefits that the coalition can guarantee, irrespective of the behavior of the 
players outside S. A coalition structure B is a disjoint partition of N. An individually 
rational payoff configuration (irpc) is a pair (x, B) where B is a partition (M~ . . . .  , Mr) 
and x E R n is a payoff vector, satisfying 

(i) ~ x i = v (Mi) for each/" = 1 . . . . .  r ieMj 

(ii) x i >1 0 for all i = 1 . . . . .  n. 

Let (x, B) be an irpc and M a coalition in B, with L, K two disjoint subsets of M. Let 
TLK be the class of coalitions which contain L and exclude K. An objection y (C) by 
L against K, wrt (x, B) is a C-vector, where C E TLK , satisfying 

(i) i~c Yi = v (63 

(ii) Yi > X i 

(iii) Yi >/xi 

f o r / E L  

for i E C. 

A rule ~ assigns to any such disjoint pair ,(K, L) of any coalition M in any structure B 
a class T~ (K,L) of coalitions which include some specified subset of K and exclude 
some specified subset ofL.  

A ~-counter objection Z (D) t o y  (63 is aD-vector, where D E T~ (K,L), which 
satisfies 

(i) ~, z i = v (D) 
i~D 

(ii) z i >~ x i 

(iii) z i> /y  i 

f o r i E D N K  

f o r i E D N C .  

An objection y (C) by L against K is said to be ~k-justified if there is no ~b-counter ob- 
jection. 
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Definition 1: An irpc (x, B) is called V-stable iff for each coalition M in B, and any dis- 
joint pair (L, K) in M, there is no #-justified objection by L against K. The M * -bar- 
gaining set is the set of V-stable irpc's. 

The M~ v -bargaining set is said to exist iff, for every coalition structure B there is a 
non empty set of p a y o f  vectors Me (B) such that for each x EM* (B), (x, B) is an 
irpc belonging to Me.  

Example: 
(i) the M-bargaining set: for each L, K let Tr (K,L) = TKL- This definition means 

that the whole set K must be able to join the counter objecting coalition D and 
exclude all ofL.  We may also say that K has a strong counter objection, z (D), 
to the objectiony (C) of L. 

(ii) theM2-bargaining set: for each L, K let Tr (K,L) = TKL be the class of subsets 
of N which include K and exclude some members of L. Thus the counter objec- 
ting coalition D must satisfy K C D but L d~ D. We may call z (D) a weak counter 
objection. 

(iii) the Ma.bargaining set: for each L, K let Tr (K,L) = TIlL be the class of subsets of 
N which include at least one member of K and exclude at least one member ofL.  

Since 

c c it is clear that 

MCM2 CM1. 

To indicate why we have used the notation M2, suppose that L has an objection 
against K, and there is no weak counter by K. Obviously any subset L' of L also has 
an M2-justified objection against K. Since this is true when L' is a single individual, 
M2-stability is equivalent to the requirement that whenever a single individual i, say, 
objects to a group K of members of the same coalition that group has a (strong) 
coun te r .  

Suppose now that a single plaYer has an M1 -justified objection against K. This ob- 
jection is also an objection against each individual member of K, and no member of K 
may counter. Consequently MI -stability is equivalent to the requirement that for no 
pair of individuals i, ] in a coalition M does i have a justified objection against/. 

The classical proof [Peleg, 1967] of the existence of the MI -bargaining set proceeds 
by way of the excess of a coalition. 

Definition 2: Let x be any payoff vector and C any coalition. Define the excess of C 
with respect to x to be 

e x (CO = v ( C )  - ~ x i . 
i~C  

When x is fixed, we shall more briefly write e (C) for the excess. 

Lemma 1 [A generalisation of Davis/Maschler, 1967, lemma 3.1]: LetL,  K oe disjoint 
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subsets of a coalition M in a structure B. If L has an objection y (C), C E TLK against 
K, and there is some coalition D containing K' C K which belongs to $ (K, L) where 
is some rule, such that e (D)/> e (C), then there is a S-counter objection z (D) for K. 

Proof: Since y (C) is an objection, 

e (C) = v (6") - ~C xi 

= v (C)-- ~cy i + ~C (Yi-Xi)>O" 

Define the counter z (D) by 

z i = x  i f o r i E D - C - K '  

=Yi for i E D  N C 

and 

Thus 

j~K' 

(D)-  (C) + xe- Z.c xi 

= e ( D ) - e ( C ) .  

Thus if e (D)/> e (C) then z (D) is a ~-counter objection by K. 

The consequences of this lemma are 
(i) 

(ii) 

Q.E.D. 

if L has an M (resp. M2)justified objection against K then there is some C E TLK 
such that e (C) > e (D) for all D in TKL (resp. 2 rkL). 
the excess can be used to define the generalised kernels. 

Definition 3: 
(i) The surplus SLK of L over K is 

SLK = max {e (C): CE TLK) 

(ii) under a rule ~, the if-surplus of K over L is 

s~ (K,L) = max (e (D) : D E Tr (K,L)} 
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(iii) L V-outweighs K iff 
a) SLK > S~(K,L) and 
b) there is no D E T ,  (K,L) such that x i = 0 for all i in 

K' = D Cq K. 

(iv) An irpc (x, B) is K r -stable iff for no disjoint groups L, K in each coalition M in 
B does L t.k-outweigh K. 

(v) The set o fK  ~~ irpc's is called the K ~~ -kernel. 

Corollary 1: The K ~ -kernel is a subset of the M ~ -bargaining set. 

Proof: Suppose first of all that condition (iiib) of Definition 3 is satisfied. 
If there is a V-justified objection by L against K, then by lemma 1 there is some 

C E TLK such that e (C) > e (D) for all D E T~ (K,L)' Consequently 
StK >~ e (C) > s~ (K,L) >~ e (D) so L V-outweighs K. On the other hand if condition 
(iiib) fails, then L cannot V-outweigh K. But K' = D ~ K has the counter objection 
x (K') to any objection by L. Hence L has no V-justified objection to K. Q.E.D. 

Definition 4: For (L, K) a disjoint pair of the coalition M in the coalition structure B, 
and with respect to the irpc (x, B) write 
a) L p~0 (x) K whenever L has a V-justified objection agains't K 
b) L Q~0 (x) K whenever L V-outweighs K. 

These relations have the interpretation that under the situation (x, B) and in the 
context of the bargaining rule 4, the group L is "stronger", in the obvious sense, then 
group K. Corollary 1 also implies that 

L P* (x) K * L Q~V (x) K. 

To fit in with our previous notation, we may define 
a) the K-kernel through the rule given by Tr (K,L) = TKL 
b) the K2-kernel through the rule T ,  (K,L) = T~L 
c) the K1-kernel through the rule Tr (K,L) = T~L' 

K 2 requires that for each coalition M, then i E M, K C M - (i} implies either 
SiK ~ SKi or x i = 0 for all members of K. 

K1 requires either sil < s/i or xi = 0 for each disjoint pair {L ]} in a coalition M. 
From Corollary 1 and the definitions we obtain. 

Corollary 2: 

K C K2 C Ka 

n n (3 

M C M2 C M1. 
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The classical proof of the existence ofMx [Peleg, 1967; Billera/Peleg, 1969], is to 
proceed as follows. 

Definition 5: A relation P C N • N is 
a) acyiclic iff al Pa2 �9 �9 �9 Pa t ~ not (a t Pal ) for al . . . . .  a t E N  
b) asymmetric iff aPb ~ not (bPa) for any a, b E N. 

Proposition: Suppose P (x) c N • N is an asymmetric, acyclic relation, parametised by 
x E X (B) where X (B) is the set of payoffs st. (x, B) is an irpc. 

For a coalition M, define 

E e = {x E X (B): ]P (x) i for no ] in M -- {i}}. 

If El'  is closed in X (B) and contains any x E X (B) satisfying x i = 0, then the bar- 
gaining set 

M P - -  N. E P 
l 

is non empty. 
Acyclicity of P is used to show that for each x E X (B), and M in B there is an 

i E M st. x E E~' [see for example Peleg, 1967, Corollary 2.3]. Then Billera's theorem 
[1970] gives the proposition. 

By Davis/Maschler, the relation P1 (x) associated with the Mt -bargaining set, is 
acyclic and obviously asymmetric, and existence is thus obtained. However, Billera's 
theorem cannot be used for M2. 

As in the introduction M~ contains somewhat inequitable payoff distributions. 

Example 1: Let 

v(M)= 1 for I M I ~  13, and INI  = 25. 

Consider a payoff vector: 

x i =  1/7 f o r / =  1 , . . .  , 7 E M  

x i = O  f o r i =  8 . . . . .  1 3 E M  

x i = 0 i ~ M .  

Let 8 object to 1 by: 

Y i = O  i =  1 , . . .  , 7 (~C 

yi  =1[13 i = 8 , . . . , 2 0 E C  

Y i = O  i = 2 1  . . . . .  25~C.  
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For 1 to counter "efficiently" he needs seven members of C, and consequently must 
pay them 7/13 leaving 6/13 > 1/7 for himself. Thus 8 has no justified objection against 
1. 

On the other hand 8 has an M2-justified objection against K = (1 . . . . .  7) since 8 
may give each member of N -  K the payoff Yi < 1/17, to which K has no counter. 

While there is no general existence theorem for 3/2, it is possible to define a new non 
empty bargaining set M, including M2 and included in M1. M,  also gives a means of 
comparing 3/2 and M1, and of generating a class of bargaining sets. 

Definition 6: Let B be a coalition structure (c.s.) x E X (B), M in B, and ] in M. For 
K C M - {/') write/P (x) K whenever/ has a justified objection against K. 

For i EM define jP,  (x) i iff the following are satisfied: 
a) x i > O  
b) for some K C M, K E Tip /P  (x) K and there is no L, L E T/. i st. L A K r r with 

~'(x)L. 
Define the M,-bargaining set to the set ofP,-stable irpc's. The idea behind this notion 
is, if an individual [ has a justified objection against some K containing i, then i may 
"block" this only by a justified objection against/and some of the members of K. 

Lemma 2: 

M2 CM,  CM1. 

proof: 
a) LetB be a c.s. SupposeM, (B) (~M1 (B). Then for some i, / in M in B, /P (x) i 

although not (]P, (x) 0 and x i > 0. Since i must block/, there must be an L E Tfi 
satisfying/P(x) L and L ~ (i) :/: 0. But this is a contradiction. Consequently/P (x) i 
implies/P, (x) i s o m ,  (B) c m l  (B). 

b) Obviously i fx EM2 (B) then]/~ (x) K for no K E Ti] so not (/T, (x)/). Consequent- 
ly M2 (B) C M,  (B). 

Theorem 1: M ,  (B) is non empty for any c.s.B. 
The theorem is proved by the following lemma. 

Lemma 3: P ,  (x) is acyclic on M • M for each M in B, x E X (B). 

Proof: Suppose P ,  (x) is cyclic on M • M for some x E X (B), M in B. Write P ,  for 
P ,  (x) and take M to be (1 . . . . .  t . . . )  such that 1P,2P,  . . .  P , t  and tP,  1. 

To each pair (r, r -- 1) let C r be the coalition that maximises the surplus 
(SrK : r + 1 E K) and let C s be the coalition that maximises e (Cr), r = 1 , . . . ,  t. 

Consider ( s -  1 ) P , s P ,  (s + 1)where the objecting coalitions of ( s -  1) and s are 
Cs_ 1 , C s respectively. Suppose that (s -- i) ~ C s. 

Now (s - 1) objects toM--  Cs. 1 . If M -  Cs_ 1 C C s then since 

e (Cs) ~ e (Cs.1) 
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by lemma 1, s has a counter objection (via Cs) against s - 1. Consequently 

M-Cs. 1 nM-c ,O. 

However (s - 1) P (M - C~. 1) and s P (M - Cs) with M - C s O M - Cs. 1 --/= O. This 
contradicts (s - 1)P.s. Consequently (s - 1) E C~. 

By the same procedure as Davis/Maschler [1967, theorem 3.1 ], an induction argu- 
ment shows that (s - 2), (s -- 3 ) . . .  1, t , . . . ,  (s + 1) all belong to C s. But C s is the 
objecting coalition of s against (s + 1). This contradition shows that P ,  must be 
acyclic. 

Example  2: Since it may be the case not (] P 0 although j P K for some K containing 
i, the M.-bargaining set may well be a proper subset of M1. However the M.-solution 
does not exclude the inequitable distribution of Example 1. We know from Example I 
that 8 has no justified objection against 1 alone. In fact 8 has a justified objection 
against (1, 2, 3) say. However 1 has a justified objection against (2, 3, 4, 5, 8} and can 
thus "block" the objection of player 8. This example indicates that in the M,-solution 
notion, a player may fairly easily block another objection. This implies obviously that 
in M~, players may be balanced (there is no justified objection of one against another) 
although one may have what would appear on intuitive grounds to be a reasonable 
complaint against another. It is clear from definition 6 that one may modify the defi- 
nition to make blocking more difficult, thus having the effect reducing the solution 
set. From this perspective it is interesting to note that the M2 solution notion does not 
permit blocking. In the next section of the paper we shall show that M2 exists in a class 
of games which includes the game of Example 1, and moreover forbids the kind of ine- 
quitable payoff distribution that we have been discussing. 

The Kernel and Bargaining Set of D Games 

The K1 -kernel has the virtue that if one player is "more desirable" than another, in 
the sense that the former contributes more to coalition value than the latter, then the 
former's payoff in tile kernel must be at least as great as the latter's payoff. Unfortu- 
nately the MI -bargaining set does not display this property. 

Definit ion 7: Say a player i is more  desirable than a player/" iff, for any S in N which 
excludes both i and L 

v(SUO>~v(suj). 

L e m m a  4: If i, j both belong to a coalition M, and i is more desirable than ], then for 
any irpc x (B), 
(i) xj  ~ x i implies sij > ~i 

(ii) if xj >~ x i then j has no (M1)-justified objection against i. 
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eroo f : 
(i) See alsoPeleg [1968]. 

For any S in N, excluding i, j, let 

u = s u ( i } ,  w = s u ~ i ) .  

Observe that 

e (U) - e (I41) = v (S U (i)) - v (S U ~1)) + (x i - x i )  > O. 

Hence 

sii >i e (U) > sii >>, e (W). 

(ii) In precisely the same way, suppose/" has an objection, via S U (/') against i. Since 

e ( S  U ( i ) )>~e (SU {]) ) 

i has a counter, by lemma 1. 

Lemma 4 (i) immediately gives the Kx -kernel in symmetric games. 

Definition 8: A game is symmetric iff, for any coalition M ofsize m, 

v (11//) = v (m). 

In other words in a symmetric game if two coalitions are of the same size then their 
values are equal. 

Corollary 3: In a symmetric game i fx  (B) is an irpc belonging toK1 (B), and i,] both 
belong to a coalition M in B, then x i = x/. 

In the game of Example 1, the kernel payoff to the members of the 1 3-person coali- 
tions is 1/13. On the other hand in Example 2, lemma 4 (ii) tells us only that player 1 
(with payoff 1/7) has no justified objection against player 8 (with payoff 0). 

Obviously the equitable payoff structure in a symmetric game belongs to K1 and 
would appear to be the expected solution. We shall now show that in a typical class of 
symmetric games the M2 -bargaining set contains these equitable payoffs. 

Definition 9: A D-game v is a characteristic function game with the following proper- 
ties: 
(i) 
(ii) 

it is symmetric 
it is proper simple: 
there is some quota q, satisfying n/2 < q <~ n such that any coalition M of size m 
a) if m i> q then M is winning, v (m) > 0 
b) if m < q then M is losing, v (m) = 0 
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(iii) v has decreasing returns to scale: 
i fS  is minimal winning (i.e. of size s = q), and T is a coalition which contains S, 
of size t > q ,  .hen 

v (s) > v (0 
s t 

For convenience we may assume that the value of a minimal winning coalition is 1, 
and that for any coalition T of size t greater than q, 1 ~< v (T) < t/q. 

Obviously the class of D-games is a slightly generalised form of the usual simple 
majority role game illustrated in Example 1. 

We shall show in Theorem 2 for D-games that the equitable payoff structures belong 
toM2, and then in Theorem 3 obtain a constraint on payoff distribution sufficient for 
membership of M2. 

We make use of the fairly obvious lemma. 

Lemma 5: Let v be a D-game with quota q, n/ 2 < q < n. 
Let M = { 1 , . . . ,  m} be a winning coalition in the coalition structure B. Suppose 

that xl  <x2  < .  �9 <-Xm with some strict inequalities possible. Le tK  C M - -  {1} be of 
size k < q. 

For C E T1K , of size c, let 

and 

(i) 

= - ! - 1  (v 
av(c) c - I  ( C ) - x , )  

a v ( K ) = q  l~k (1--  ZKX ]) 

If there is some C = N - -  K of size c t> q such that av (C) > xx, 

av (63 >1 max {x i) 
CoM 

and 

av (C) > av (I0 

then {1 } has a justified objection against K. 
(ii) If av (K) >1 av (C) for all C E T 1 k then { 1 } has no justified objection against K. 

Proof: 
(i) Construct an objection y (C) for { 1) against K by: 

xx < av (C) = y 1, av (C) >1 Yi > av (K) for i @ 1. 

Since yi >av (K), for all i E N - K  - {1), there is no counter objection z (D), 
for D a minimal winning coalition. But by decreasing returns, if K had a counter 
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(ii) 

objection z'  (D') for I D'  [ > q, then there would also be a counter objection 

z (D), for 1D I = q. Consequently K has no counter objection. 
On the other hand ifav (K) >i av (C), then K has a counter z (D) to any objec- 
tion y (C), where 

D = K U R ,  R C C \ { 1 } ,  

and 

I D I = q. Q.E.D. 

Theorem 2: Let v be a D-game with quota q, n/2 < q < n. Let M be a winning coali- 
tion in the coalition structure B. 
(i) Kl (B)C M2 (B) 
(ii) I f  furthermore n > q  ~> (2n) / 3, then 

K, (B)=  K2 (B). 

We prove this theorem by the following two lemmas. We shall take B to be a fixed coa- 
lition structure, and M a winning coalition in B of size m >/q. By Corollary 3 we know 
that an irpc x (B) belongs to KI (B) i f fx i =x/for all i, j in M. Consequently in these 
two lemmas we take x (B) to be the fixed payoff vector which assigns (v (M)) / m to 
each member of M, and 0 to all members of N - M .  

Lemma 6: I f  

then 

2q + m ~> 2n andq < n  

K, (B)=  K2 (B). 

Proof: We seek to show that for any i EM, K E M  -- {i}, SKi >i SiK for the equitable 
payoff vector x (B). Note first of all that by assumption 

n - q < . m + q - - n < ~ m - - 1 .  

Consider the two possibilities for J K I = k. 

(i) n - q +  l<~k<<.m-1. 

Since n - k ~ q -- 1, there is no winning coalition including i and excluding K. Thus 
SiK < O. But n -- 1 ~> q, so there exists some coalition D of size q, which contains K. 

Hence 

e(D)>~ 1 -q--v(M). 
m 
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By decreasing returns, v (M) ~ m/q. 
Hence 

SKi ~ e (D) >1 0 > SiK. 

(ii) l < , k < ~ n - - q < ~ m + q - - n .  

Consider a coalition C = R ' tO (N \ M) t3 (i) where R '  C M \ K \ (i). Obviously 

SiK = V (C 0 -- v (m)  (c -- n + m) 
m 

for some such C with q ~< I C I < n - k. 
Now let r" = c - k + m - n, and observe that 1 < r" ~< m --  k - 1. Consequently 

there is a coalition D = R" tO K tO (N \ M )  with R" C M \ K \ {i}, such that [R" [ = r", 
a n d l D l =  ICI .  

Now 

e(D) = v ( M )  ( c - - n + m ) ,  
m 

SO 

SKi >>- e (D) >>- SiK = e (C). 

Corollary 4: I f  n > q t> (2n) / 3, then K1 (B) = K2 (B). 

Proof: Under the assumption, for a winning coalition M of size m, 2q + m i> 2n. By 
Lemma 6, the equitable payoffs belong to K2 (B). By Corollary 3, this implies 
KI (B) C K2 (B). The result is obtained by applying Corollary 2. Q.E.D. 

When 2q + m ~> 2n, and q < n, Corollary 4 gives 

K~ (B) = K2 (B) C M2 (B). 

Thus to complete theorem 2 we need the following lemma. 

Lemma 7: I f  2q + rn < 2n, or q = n, then no individual in M has an (M2)-justified ob- 
jection against a subgroup K C M \ {i). 

Proof: Observe first of  all that i fq  = n, then no i has an objection. So assume q < n. 
I f  I K t > n - q then certainly no i E M \ K has an objection against K. So assume 
[ K l < ~ n - q .  

Since rn -- qv (M) i> 0, q < k < 1, then for any c >1 q, 

1 -  ~ m / rn 
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Now 

vq 0 
Xi  = m 

But for any C E TiK , v (C) <~ c/q. 
Hence 

I k ( l _ k V ( M ) )  ~> 1 (c v(M)]>~av(C). a v ( K ) = q _  ~- - l  q -  m , 

By lemma 5 (ii), (i) has no justified objection against K. Q.E.D. 

Lemmas 6 and 7 together give Theorem 2. We have also shown the somewhat sur- 
prising result that with a two-thirds decision rule not only does the equitable payoff 
distribution satisfy )142 -stability, but the far more severe K2-stability. It is easy to show 
furthermore that if m < 2 (n - q) for the winning coalition M in B, then/s (B) = 0. 
To illustrate this consider the thirteen person game with q = 7 and 
M = (1, 2, 3, 4, 5, 6, 7) and payoffs xi = 1/7 for iEM. L e t K  = M \  {1). Obviously 

SlK = 6/7 although SKi = i/7, so this payoff vector does not belong to K2 (B). 
We now obtain a constraint which must be satisfied for an irpc (x, B) to belong to 

M2 (B). 

Theorem 3: Let v be a D-game with quota q, where n/2 < q < n. Let M be a winning 
coalition in the coalition structure B. If  

a) there exist two individuals i, ] in M such that x i < x~ in x (B), and 
b) there is a group K in M of size at most (n -- q) whose total payoffs in x (B) sum to 

at least (n - q)/q then x (B) does not belong to M2 (B). 

Proof: Assume without loss of generality that M is of size m and that the payoffs in 
x (B) satisfy Xa ~< x2 ~<. �9 �9 < Xm with some strict inequalities. 

Let S = { 1 . . . . .  s) where s = q -- (n -- m) > 0 and let C be the minimal winning 
coalition (N \ M) U S. We now construct an objection by 1 against M \ S = K. 

(i) If  x s ~ I/q, then since xl < 1/q by assumption, 

av(C)> 1--~ (1 1 1 
q - 1  - q ) = q "  

On the other hand, 

Z x]>~ n - q  
K q 

and 

f Kl~<(n - q )  
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so that 

av (K) < 1 .  
q 

By lemma 5 (i), { 1 } has a justified objection against K. 

(ii) I fx  s > 1/q, construct the objectiony (C): 

X1 <Yl < l/q, x i<Yi  <~Xs+l fo r i~  l, ZcYi= 1. 

Suppose z (D) is a minimal winning counter objection t o y  (C). 
Now 

C= (CXD) U(CAD) ,D = K U ( D \ K )  

and 

Since 

~ \ ~ = C n D .  

I C l = l D l = q ,  

we find 

I K I = I C \ D I .  

By construction 

~, Yi<~KZi C\D 

and 

Thus 

Yi + CZnDyi = ~K zi + ~, z~ = l. C\D D\K " 

c~DYi > c ~  D zi 

which is contrary to the assumption that z (D) is a counter objection. 
Since K has no counter objection z (D), for D minimal winning, there is no counter 

objection z' (D') against y (C). Consequently (1 } has a justified objection against K. 
Q.E.D. 

Corollary 5: Let v be a D-game with quota q where n/2 < q < n, and let M be a mini- 
mal winning coalition, in the c.s.B. If there exist two individuals i, ] in M such that 
x i < x] in x (B) then x (B) does not belong to M2 (B). 
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Proof: As before suppose x l <~ x~ <~ Xq, and let S = ( 1 , . . . ,  2 q - n}, K = M - S. 
Now 

x i < 2 q - n  ZK n - - q  Z , x i > - -  
S q q 

By theorem 3, { 1 } has a justified objection against K. Q.E.D. 

Theorem 3 is a generalisation of the result by McKelvey/Smith [ 1974] that the ine- 
quitable payoff structure in a minimal winning coalition does not belong to M2. How- 
ever inequitable payoffs may belong to 3//2, as we can illustrate by the following exam- 
pie. 

Example 3: Consider the D-game with n = 13, q = 7. For convenience take v (Q) = 7, 
for Q minimal winning. Let x be the payoff vector which assigns 0.9 each to the first 
six players of a ten person coalition, and 1.0 to the remaining four. Here v (M) = 9.4, 
consistent with decreasing returns. 
(i) Consider an objection by (1) against K = (5, 6, 7, 8, 9, 10). 

Observe that 6 (7 - (0.9)) < (7 - 5.8) 

so by lemma 5 (i), player (1) has no justified objection against K. 
(ii) On the other hand suppose v (R) = 8.95 for any nine person coalition R. Let 

K = (7, 8, 9, 10), and observe that 

(8.95 -- 0.9) > 1 (7 - 4). 

Since av (N \ K) > 0.9, (1) has a justified objection against K. 
Note also that if v (R) < 8.9, for [ R I = 9, then (1) has no justified objection 

against any subgroup of M -  (1). Obviously the inequality permitted in M2 depends 
very much on the actual values assigned to larger than minimal winning coalitions. 

Concluding Remarks 

The results obtained in the previous section shed some light on the debate between 
Butterworth [ 1971 ] and Riker [ 1971 ] on the status of the minimal winning size 
principle ofRiker [ 1962]. Although Butterworth based his argument on a five person 
symmetric zero sum game, the point he made was that players outside a minimal win- 
ning coalition could be expected to bribe their way into the winning coalition. This is 
obviously true for a D-game. Shepsle [ 1974] joined this debate by arguing that the 
resultant payoff associated with a larger than minimal winning coalition was unstable. 

Suppose we let Q be the original minimal winning coalition and x be the payoff 
vector which say, gives 1/q to each member of Q, and zero to the other players. Let R 
be some subset o f N -  Q. Shepsle argued that any payoff vector forR U Q which gave 
Q less than 1 did not belong to the Von Neumann-Morgenstern V-solution set. On the 
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other hand if Q receives 1, then some player outside R U Q appeared to have a justi- 
fied objection against some player in R. Shepsle concluded that only payoffs associa- 
ted with a minimal winning coalition could be stable. His argument is somewhat com- 
plicated since it invokes both the V-solution set and an unusual bargaining set notion. 

In fact McKelvey/Smith [ 1974] justified the minimal size principle for D-games by 
requiring that each subgroup of an extant coalition receive its value. Their result that 
inequitable payoffs for a minimal winning coalition did not belong to M2 was inter- 
preted as an additional argument in support of the minimal size principle. 

However we have shown here that for any coalition there are M2-stable payoffs. 
Theorem 3 does indicate however that the kind of bribery envisaged by Butterworth 
cannot lead to M2-stable payoffs for large coalitions. For this bribery to be effective, 
the original minimal winning group Q must receive its value. But since q > n - q, by 
Theorem 3, the resultant payoff vector cannot be M2-stable. On the other hand, if 
the payoff vector associated with a larger than minimal winning coalition S is M2- 
stable, then there must be some minimal winning subset Q of S which does not attain 
its value. Consequently Q may reject the other members of S. 

The minimal size principle can, of course, be deduced from the assumption that 
each player in a coalition receives a payoff proportional to its weight [see Gamson, for 
example]. This assumption had however little justification [Browne/Franklin; Scho- 
field]. 

We have seen that M2-bargaining theory severely restricts the variation in payoffs 
among members of winning coalitions, and that this restriction lends some credence 
to the minimal size principle. It remains to be seen whether the same argument with 
respect to M2, or perhaps M, ,  is valid for a general class of weighted majority games. 
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