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Cooperative Games with Coalition Structures 

By R. J. AUMANN, Jerusalem 1), and J. H. DREZE, Louvain 2) 

Abstract: Many game-theoretic solution notions have been defined or can be defined not only with 
reference to the all-player coalition, but also with reference to an arbitrary coalition structure. In this 
paper, theorems are established that connect a given solution notion, defined for a coalition structure 

with the same solution notion applied to appropriately defined games on each of the coalitions 
in ~'. This is done for the kernel, nucleolus, bargaining set, value, core, and the YON NEUMAYN-MORGEN- 
STERN solution. It turns out that there is a single function that plays the central role in five out of 
the six solution notions in question, though each of these five notions is entirely different. This is an 
unusual instance of a game theoretic phenomenon that does not depend on a particular solution 
notion but holds across a wide class of such notions. 

1. Introduction 
A coalition structure in an n-person game is a partition of the set of players. 

Coalition structures have been used in defining the various solution notions that 
constitute the bargaining set family, i.e. the various bargaining sets [.AUMANN and 
MASCHLER, 1964; DAVIS and MASCHLER, 1967], the kernel [-DAVIS and MASCHLER, 

1965] and the nucleolus [ScnMEIDLER, 1969]; in effect, these notions are defined 
separately for each coalition structure. By contrast, the value ESHAPLEY~ 1953], 
core [GILLIES, 1959] and VON NEUMANN-MORGENSTERN solutions [1944] are not 
a priori defined with reference to a coalition structure3). Moreover, much of the 
theory that has been developed for the bargaining set family refers to the coalition 
structure containing the all-player set only. 

This contrast between the bargaining set family and the other solution notions 
is, however, merely a historical accident; it is easy to define the value, core and 
VON NEUMANN-MORGENSTERN solutions with respect to a given coalition structure. 
In this paper, we will establish theorems that connect a given solution notion 
defined for a coalition structure ~ with the same solution notion - applied to 
appropriately defined games on each of the coalitions in the coalition structure. 
In the case of the kernel, such a theorem has already been proved by MASCHLER 
and PELEG [1967]. 

Perhaps the most remarkable aspect of our results is that there is a single 
function - the function v* defined in (2.4) - that plays the central role in the 
theorems dealing with 5 out of the 6 solution notions in question (all except the 
value), though each of these 5 notions is entirely different. Moreover, this function 

1) Prof. ROBERT J. AUMANN, Institute of Mathematics, The Hebrew University of Jerusalem, Israel. 
2) Prof. JACQUES H. DREZE, Center for Operations Research and Econometrics, Catholic University 

of Louvain (Leuven), De Croylaan 54, 3030 Heverlee, Belgium. 
3) The games in "partition function form" of THRALL and LtrcAs [1963] are not analogous to games 

with coalition structures as used in the bargaining set family. 
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enters into the theorems in a completely natural way, which is essentially the 
same in all 5 cases. This is an extraordinary - and unusual - instance of a game 
theoretic phenomenon that does not depend on a particular solution notion, but 
holds "across" a wide class of such notions. 

Section 2 collects some basic definitions. In Section 3, we define the value for 
a game with an arbitrary, given coalition structure N and relate it to the values 

defined separately on each element of ~ .  In sections 4 to 8, we present a similar 
analysis for the nucleolus, the core, the VON NEUMANN-MORGENSTERN solutions, 
the bargaining set and the kernel. The order in which these solution concepts are 
reviewed is motivated by convenience of exposition. In section 9, we present a 
condition under which a payoff vector in the core entails equal treatment for 
players who are substitutes but belong to different elements of the partition ~ .  
In section 10, we show that the core of a game with a coalition structure, when 
not empty, is equal to the core of the superadditive cover of the game. Section 11 
is devoted to two examples, of economic (and academic) interest, in which some 
of the results of the previous sections are applied. Section 12 is devoted to general 
discussion. The rationale for studying games with a coalition structure is reviewed 
there in some detail. 

It should be made clear that we have not attempted to be absolutely comprehen- 
sive; there are important solution concepts not covered by our analysis (see for 
example SELTEN [1972-]). 

The numbering system in this paper is keyed to the numbering of the sections. 
Thtis the theorem in Section 4 is called Theorem 4, and the corollary in Section 5 
is called Corollary 5; and there is no Theorem 1 or Theorem 2. 

The authors are grateful to MOSHE JUSTMAN, MICHAEL MASCHLER, BEZALEL 

PELEG, and DIETER SONDERMANN for critical and constructive comments on the 
material of this paper, including several substantial contributions. 

2. Definitions 

A game in characteristic function form, or simply a game, is a pair (N, v), where 
N is a finite set (the set of players), and v is a real-valued function on the family 
of subsets of N with v(0) = 0. The function v itself will also be called a game, 
or a game on N. The set of all games on N is denoted GS; G s is a EUCLIDean 
space of dimension 2 Itq - 1, where IN] is the cardinality of N. 

A payoff vector for N is a real-valued function x on N; it may be thought of as 
a vector whose coordinates are indexed by the players. If S C N, write x(S) = 

x (i). The set of all payoff vectors for N is denoted E N. It is sometimes useful 
i~S 

to constrain the set of payoff vectors under consideration to a subset X of EN; 
we therefore define a constrained game 4) to be a triple (N,v,X), where (N,v) is 

4) This is by no means a new idea. The core and N-M solutions were first defined in terms of 
an arbitrary X by GILLIES [1959]; the nueleolus was first defined in this way by qCHMEIDLER [1969]. 
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a game and X s E s. When there is no constraint, then X = EN; thus (N,v) may 

be identified with (N, v, EN). We will use the term "game" for a constrained game 
as well; no confusion should result. 

A coalition structure ~ on N is a partition of N, the generic element of which 

will be denoted Bk. A game with coalition structure ~ is a triple (N,v,r162 The 
analysis of (N,v,~)  differs from that of (N, v) in two respects: 
(a) Payoff vectors associated with (N, v, ~)  usually satisfy the conditions X(Bk) = 

V(Bk) for all k (no side-payments between coalitions); in particular, these con- 
ditions are imposed by all the solution concepts considered below. 

(b) In addition, the partition N enters directly into the definition of certain of the 
solution concepts (namely, the value, the bargaining set and the kernel). 

The conditions stated in (a) may easily be replaced by constraints on the set 
of payoff vectors. Given a game (N, v), define: 

X~ = {x ~ EX: x(Bk) = v(B~) for all k and x, > v({i}) for all i}. (2.1) 

As will be seen below, the games (N, v, ~)  and (N, v, X~) are equivalent from the 
point of view of some, but not all, solution concepts. 

We also find it convenient to define 

Xk = {X ~ E nk : X(Bk) = v(Bk) and xl > 0 for all i in Bk} . (2.2) 

A O-normalized game is a game for which v({i}) = 0 for all i. If (N,v) is a 0- 
normalized game, then 5) X~ = X k  Xk" In general, however, there is a distinction 
between the definition of X~, which includes the conditions x~ > v({i}), and the 
definition Of Xk, which includes the conditions xi > 0. (See the remark in section 8.) 

In section 3, we use the following definitions. 
A permutation ~z of N is a one-one function from N onto itself. For  S C N, 

write ~S = (rti: i eS} .  I fv  is a game on N, define a game ~z,v on N by 

(~.  v)(S) = v(~S).  

Call a coalition structure ~ = (B1 .... ,Bp) invariant under ~ if zEBj = Bj for all j. 
Player i is null if v(S u {i}) = v(S) for all S C N. 
In sections 4 through 8, we use the following definitions. Given a vector x in E N, 

the excess e(x,S) of the coalition S is defined by 

e(x,S) = v(S) - x(S).  (2.3) 

Three solution concepts are defined in terms of excesses, namely the core, the 
kernel, and the nucteolus. 

Given a game (N,v,N), a payoff vector x, and a coalition Bk in ~ ,  define a 
game (Bk, v~) by 

5) Thus, XN ~ 0 implies Xk ~ 0 for all k, a property that does not hold in general. 
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f max ( v ( S • T ) - x ( T ) ) ,  for S C B k ,  S 4 : O , S # B k  
v*(S) = ~ rcs\,~ (2.4) 

(v(S) ,  for S = 0 o r S = B k .  

Obviously, v*x(S) >->= v(S) for every x. Note that v~* need not be 0-normalized, even 
when v is. 

Let N = (B1 .. . . .  Bp) be a partition of N. The game (N,v) is called decomposable 
with partition ~ if for all S, 

P 

v(S) = ~ v(S c~ Bk). 
k = I  

Finally, let Z be a subset of E N and B a subset of N. For every y in the pro- 
jection of Z on E ~\B, we define the section of Z at y as {w ~ EB: (w,y)6 Z}. (See 
Figure 1.) 

3. The Shapley Value 

Fix N and ~.  A N-value is a function q~ from G ~ to E ~ - i.e. a function that 
associates with each game a payoff vector - obeying the following conditions: 

Relative efficiency: For all k, (q~v)(Bk) = V(Bk). (3.1) 

Symmetry: For all permutations n of N under which N is invariant, (3.2) 
(~p~,(~, v)). (s) = (cp~,v) (~ s). 

Additivity: q)~(v + w) = q)~v + q)~w. (3.3) 

Null-Player condition: If i is a null-player, then (~o~v)(i) = 0. (3.4) 

When 2 = {N}, it is known that there is a unique function ~0~ satisfying (3.1) 
through (3.4), namely the usual SIaAPLEY value of the game [SHAPLEY, 1953]; it 
will be denoted by q~. This notation will be maintained even for games whose 
player set differs from N; thus if v is a game with player set M, q~ v is defined to 
be q~v, where ~ = {M}. 

For  each S C N, denote by v[S the game on S defined for all T C S by 
(vIS)(T) = v(T). 

Theorem 3: 
Fix N and ~ = (B1 .... ,Bp). Then there is a unique r and it is given for 

all k = 1,...,p, and all i ~ Bk, by 

(q)~ v)(i) = (~o (VlBk))(i). (3.5) 

Remark: 
(3.5) asserts that the restriction to Bk of the value ~0~ for the game (N, v) is the 

value q) for the game (Bk, v]Bk). In other words, the value of a game with coalition 
structure ~ has the "restriction property":  The restriction of the value is the value 



Cooperative Games with Coalition Structures 221 

of the restriction of the game. An important implication of this property is that 
~p~ can be computed by computing separately (p (v[B,) for each k. 

Proof." 
The operator defined by (3.5) satisfies (3.1) through (3.4), so there is at least one 

~-value. We must prove that there is only one. For  each non-empty T C N, 
define the T-unanimity-game vr by 

v r ( S ) = { ;  if S 3 T  
otherwise. 

We first show that the games vr are linearly independent. Indeed, suppose 
there is a linear relation among them; let To be a set of minimal cardinality such 
that VTo appears with non-vanishing coefficient in this linear relation. We then 
have t)To = 20;TI)T" where all the T appearing on the right side are different 
from To and have cardinality at least that of To. Therefore T0 does not contain 

any of these T, and hence 1 = Vro(To) = ~ C~rvr(To) = O. 
This shows that the vr are linearly independent; since there are 2 tsl - 1 different 

VT, and 2 IN[ - 1 is the cardinality of G N, it follows that they form a basis for GS; 

therefore every game on N is a linear combination of the games yr. By the additivity 
axiom, it then follows that if the ~-value is unique on all games of the form arT, 
where e is a constant, then it is unique. 

Consider therefore a game of the form O~l) T.  By (3.4), (q~(aVr))(i) = 0 whenever 
i r T. From (3.2) it follows that if i and j are in T and in the same member Bk 
of ~ ,  then 

(~p~ (~ vT))(i) --. (q~(~ vT)) (/). 

Hence from (3.2) it follows that if i ~ Bk, then 

((p~(~Vr))(i)={~,T, ifotherwise.TCBk 

This determines (p~(eVr), and so completes the proof. 

4. The Nucleolus 

Let (N,v,X) be a constrained game. For each x ~ X, let O(x) be a vector in E 21,q, 
the elements of which are the excesses e(x,S) for S C N, arranged in order of non- 
increasing magnitude; i.e. O~(x) ~ Oe(x) whenever t > s. Write 0(y) _>. O(x) (or 
0(y) >- O(x)) if and only if O(x) is not greater (or is smaller) than 0(y) in the lexico- 
graphic order on E 2 ~"J. The nucleolus, w.r.t, the set X, is then defined by 

Nu(N,v,X) = {x ~ X: 0(y) _>' O(x) for all y~  X}.  

For a coalition structure ~,  we define Nu(N,v,~)  = Nu(N,v,X~). In particular, 
when ~ = {N}, we write Nu(N,v) = Nu(N,v,{N}). 
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When X ~ 0, the nucleolus consists of a single element [SCHMEIDLER, 1969; 
KOHLBERG, 1971]; this element, as well as the set of which it is the only member, 
will also be called the nucleolus. Thus, like the value and unlike other solution 
concepts, the nucleolus assigns to each game precisely one payoff vector. 

We saw in Section 3 that the restriction to B k of the value for (N,v,N) is the 
value for (Bk,V[Bk). Does a similar property hold for the nucleolus? The answer 
is no, as the following example showa. 

Example 4: 
Consider 

w4 = 2 and 

the weighted majority game with [NI = 4, Wa = w 2  : w 3 ~ - 1 ,  

1, Zwi>__3 
ieS 

v ( s )  = 
0, otherwise. 

Let ~ = {(1),(2,3,4)}. Then N u ( N , v , ~ ) =  ~0 11 1~ t ,z,z,TJ, whereas NU(BE,vlB2)= 
(0, 0,1). 

The reason for this negative answer is easily understood: excesses of coalitions 
S not included in Bk (e.g. S = {1,2,3} in example 4) may play a crucial role in 
determining the payoff vector x I Bk ~ Xk, when x is the nucleolus 6). The charac- 
teristic function v* was defined in (2.4) in a way which captures the influence on 
X IBk of coalitions not included in Bk, when x is the nucleolus. (Reminder: knowl- 
edge of x is required to compute v*). 

Theorem 4: 
Let (N,v) be a O-normalized game, and let x = Nu(N,v ,N) .  Then 

Nu (N, v, N)[ Bk = Nu (Bk, v*, Xk). 

Proof7): 
For S C Bk and y ~ Bk, let 

e*(y,S) = v*(S) - y(S) 

and let 0* (y) be the vector of these 2 IBkl excesses arranged in non-increasing order. 
Let x* = x [ Bk, and let y* in X be different from x*. We show that 0* (y*) >- 0* (x*), 
from which it follows that x* = NU(Bk,v*,Xk). 

Define y ~ X~ by 
(y* tor i ~ B k 

Yi = 4(xi for i~N~Bk. 
Set 

a = max {e(x,R): R C N, e(x,R) ,b e(y,R)}. (4.1) 

6) In this example, v(1,2,3) = 1, (riB2)(2,3) = 0 
v(1,4) = 1 (riB2)(4) = 0. 

The nucleolus of (N, v, ~ )  is determined by the excesses of the coalitions (1,2, 3) and (1,4); the nucleolus 
of (B2, vl Bz) is determined by the excesses of the coalitions (2), (3), (2, 4) and (3, 4). 

7) This proof is due to M. JUSTMAN. We are thankful for his permission to use it here. 
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Let there be q coordinates  in O(x) larger than ~, and r coordinates  equal  to a. 

Fo r  e > 0 sufficiently small, the first q coordinates  of 0((1 - e)x + ey) equal 

the cor responding  coordinates  of O(x). Suppose  that  for all R with e ( x , R )  = 

we have 
e(y ,R)  < e ( x , R ) .  (4.2) 

By the definition of a there is then at least one such R with e(y ,R)  < e(x ,R) .  

Hence for e > 0 sufficiently small, the (q + 1)-st through (q + r)-th coordinates  
of 0 ( ( 1 - e ) x + e y )  are all <c~, and at least one of them is < a .  Hence  

O(x) > .  8((1 - e)x  + ey), contradict ing x = N u  (N ,v ,N) .  Hence (4.2) is false, i.e. 

there is at least one coali t ion - call it U - with 

e(x,  U) = ~ and e(y, U) > e(x,  U) . (4.3) 

F r o m  (4.3) and x [ N \ B k  = y tN\Bg it follows that  

(x* - y * ) ( U  ~ Bg) = (x - y ) (U)  = e(y, U) - e(x, U) > 0 .  (4.4) 

N o w  let (St . . . . .  Sz) be an ordering of the subsets of  Bk So that  

0* (x*) = (e* (x*, S 1) . . . . .  e* (x*, St)) 

and if U c~ Bk = Sp, then 

i < p ~ e*(x*,Si)  > e*(x*,Sp). (4.5) 

It is easy to see that  if a vector  z' is obta ined f rom a vector  z by arranging the 

coordinates  of  z in non-increasing order, then z' >" z. Hence  

8" (y*) -- 8" (x*) ~ '  (e* (y*, $1) . . . .  , e* (y*, St)) - 8" (x*) 
(4.6) 

-= ( ( x *  - -  y * ) ( S l ) ,  . . . , ( x *  - -  y * ) ( S p )  . . . . .  ( x *  - y * ) ( S , ) ) .  

N o w  if i < p and 0 ~ St :~ Bk, then f rom (4.5) and Sp = U n Bk it follows that  

for some T/C N~Bk, we have 

e(x ,S ,  w Ti) = (v(S~ • Ti) - x(Ti)) - x(S,)  

> max {v(Sp • T)  - x ( T ) :  T C N~Bk} - x(Sp) 

> v (U) - x (U\Bk) - x (U c~ Bk) = e (x, U) .  

Hence  by (4.3) and (4.1), e(x,  Si ~ Ti) = e(y, Si u Ti). F r o m  this and x J N \ B k  = 

y[N~Bk it follows that  x (Si) = y(S~), i.e. 

x* (Si) = y* (Si) (4.7) 

in this case. If Si = 0 or Si = Bk, then (4.7) holds trivially. Hence  (4.7) holds for 
all i < p. But by (4.4) and Sp = U ~ B~, we have 

x * ( S p )  - y*(S,) > 0. 
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Hence by (4.6), 

0* (y*) - 0* (x*) > .  o ,  

so that 0*(y*) >.  0* (x*), as was to be proved. 

Corollary 4: 

Let (N,v) be a O-normalized game, decomposable with partition ~ = (B1, ...,Bp). 
P 

Then Nu (N, v, :~) = )~ Nu (B k, v I Bk, Xk). 
k = l  

Proof: p 
By theorem 4, Nu(N,v ,~)  = X Nu(Bk, v*,Xk). Because (N,v) is decomposable, 

we have k = t 

vex(S) = max {v(S) + v(T) - x(T)} = v(S) + max {v(T) - x(T)}.  
T C NkBk T C N\Bk 

It follows that Nu (BR, vex, Xk) ---- Nu (Bk, v I Bk, Xk). 

Remark: 

A similar result holds for the SHAPLEY value; but in that case, it holds for all 
games, not only decomposable games (see Theorem 3). 

5. The Core 

The core of the game (N, v, X) is defined by 

Co(N ,v ,X )  = {x e X : e(x,S) < 0 for all S C N}. 

For a coalition structure N, we define Co(N,v,N) = Co(N,v, Xe). In particular, 
when ~ = {N}, we write Co(N,v) = Co(N,v ,{N}) .  

The core does not have the uniqueness property of the nucleolus. Accordingly, 
it could not have the "restriction property" of the value. But one cold raise ques- 
tions such as the following: 

(i) Does x s Co (N, v, ~)  imply x [ Bk e Co (Bk, l)] Bk) ? 
(ii) Does y ~ CO(Bk, V]Bk) imply y = X[Bk for some x ~ Co(N, v,N)? 
The answer to question (i) is positive, but the answer to question (ii) is negative. 
Indeed, in example 4, Co (N, v, N) = 0, whereas Co (B2, v ] B2) = (0,0,1). 

The definition of the characteristic function v* in (2.4) is again relevant, in 
relating Co(N,v,N) to the cores of appropriately defined games on the Bk'S. 

Theorem 5: 
Let (N,v) be a O-normalized 9ame, and let x e Co(N,v,N). Then the section of 

Co (N, v, ~ )  at x I N\Bg is Co (Bk, Vex, Xk). 

Remarks: 
1. The conclusion is perhaps most easily understood with the help of Figure 1. 

Thus, for all x e Co (N, v, 8), the section of the core at x L N\Bk defines the core 
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E s 

Z tion of Za ty  

ENXB 

Fig. 1 

of a game o n  Bk; however, the relevant characteristic function is n o t  V]Bk, but 
v*, which depends upon x. 

2. When X consists of a single element, then the section of X at x l N\Bk is x [Bk. 
Our result for the nucleolus is thus of the same form as our result for the core, 
i.e., the conclusion in Theorem 4 could be stated in the following form: if 
x s Nu(N,v,N), then the section of Nu(N,v,N) at x[N~B k is Nu(Bk, V~x,Xk). 

vx, Xk) implies 3. The conclusion does not include the property: X[BkeCO(Bk,  * 

x e C o ( N , v , N ) .  Indeed CO(Bk,v*,Xk) may well be non-empty, when x IN \Bk  
does not belong to the projection of Co (N, v,:~) on E s\ak. 

Proof: 
An alternative statement of the conclusion, in terms of which the proof will be 

presented, is: 

x e Co (N, v, ~ )  implies: (5.1) 

(a) x [ Bk E Co (Bk, v*, Xk) ; 

(b) z e Co (N, v, ~ )  for all z ~ E s for which 

z J N\Bk = x [ N~Bk and z] Bk ~ Co (Bk, v*~, Xk).  

(a) From x e C o ( N , v , : ~ ) ,  it follows that v(S u T) - x(S) - x (T )  < 0 for all 

S C Bk, T C N~Bk. Hence v*~(S) - x(S) < 0 for all S C Bk, and so X[Bk 
Co(Bk,v*~,Xk). 

(b) From Z]BkeCO(Bk,  vx,Xk), it follows that v*~(S)- z ( S ) <  0 for all S C Bk. 
Hence 

v ( S w  T ) - z ( S ) - x ( T ) < = O  for all S C B k  with S r 
(5.2) 

and for all T C N\Bk .  
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For the case S = 0, we have 

v(T) - x(T)  < 0 for all T C N~Bk, (5.3) 

since x e Co(N,v,N). From (5.2), (5.3), and z l N~Bk = x [N~Bk, it then follows that 
v(S w T) - z(S w T) < 0 for all S C Bk and T C N\Bk, and so z e C o ( N , v , ~ ) .  

Corollary 5: 
Let (N, v) be a O-normalized game, decomposable with partition ~ = (B1 . . . . .  Bp). 

P 

Then Co (N, v,N) = X Co (Bk, Xk). 
k = l  

This result was proved by MASCHL~R, l~L~6, and S~IAPLEY [1972], as Lemma 

2.9. It also follows from Theorem 5 and decomposability upon noting that, when 

x e Co(N,v ,~) ,  

v*(S) = v(S) + max {v(T) - x(T)} = v(S). 
TCN\Bk 

6. VON NEUMANN-MORGENSTERN So|lltions 

The YON NEUMANN-MORGENSTERN solutions rely on the notion of "domina- 

tion". As before, let X be a compact  convex subset of E N, and let (N, v) be a game. 
Let x and y be in X. Then x dominates y with respect to the coalition T if and only 

ifxi > yi for all i ~ T, and v(T) ~ x(T). One then writes x >'T Y. Next, x dominates 
y if there exists a T fi N for which x ;~rY; one then writes x >- y. A yon  NEU- 
MANN-MORGENSTERN solution of(N,v .X)  is a set Q c X such that 

(i) there do not exist x , x ' e  Q with x ;~ x' (internal consistency); 
(ii) for every x' s X~Q, there exists an x e Q such that x >- x' (external domination). 

If ~ is a coalition structure, then a VON NEUMANN-MORGENSTERN solution of 
(N,v,N) is a VON NEUMANN-MORGENSTERN solution of (N,v,X~). 

Theorem 6. 
Let (N,v) be a O-normalized game, let Q be a VON NEUMANN-MORGENSTERN 

solution of (N,v,N), and let x e Q. Then the section of Q at xlN\Bk is a VON NEU- 
MANN-MORGENSTERN solution of ( Bk, V*, X k). 

Proof: 
Internal consistency and external domination in (Bk, V'x, Xk) follow immediately 

from the properties of Q and the definition of sections upon remembering that 
X(Bk) = V(Bk) for all x e X. 

Thus the relationship of YON NEUMANN-MoRG~NSTERN solutions for (N,v,N) 
to yon  NELrMANN-MoRGENSTERN solutions for (Bk, v*, Xk) is identical to that for 
the core; the only difference is that a game may have many YON NEUMANN- 
MORGENSTERN solutions, whereas it has one core. 
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7. The Bargaining Set 

We turn next to the bargaining set, which is defined in terms of the notion of 
"objection". Let (N, v, X) be a game, ~ a coalition structure. I f / a n d  j are elements 
of Bk, and x ~ X, an objection of i against j at x consists of a payoff vector x' in 
E N and a coalition S C N such that i ~ S, j ~ S, x~ > xi, x'~ > x~ for all 1 ~ S and 
x'(S) < v(S). A counterobjection of j to such an objection consists of a payoff 
vector x" in E n and a coalition T C N such that i 6 T, j e T, x'{ > x~ for all l ~ T~S, 
xi' > x'l for all l~ Tea S and x"(T)  < v(T). The bargaining set M ( N , v , X , ~ )  is 
the set of payoff vectors x ~ X such that for all k and all i ,j  ~ Bk, j has a counter- 
objection to every objection of i against j at x. Define 8) 

M ( N , v , ~ )  = M ( N , v , X ~ , ~ )  and M ( N , v , X )  = M ( N , v , X , { N } ) .  

The following theorem is due to B. PELEG; we gratefully acknowledge his 
permission for publishing it here. 

Theorem 7: 

Let  (N,v) be a O-normalized game, and let x E M ( N , v , ~ ) .  Then the section of  
M ( N , v , & )  at xlN\Bk is included in M(Bk, v*,Xk). 

Proof: 
For x e M ( N , v , ~ )  let (y,S) (with y ~ E ~ and S C B,) be an objection of i against 

j at x lB ,  in the game (Bk, V*x,Xk). Remember that v~(S) = v(S ~ T) - x (T)  for an 
appropriate T C N~Bk, so tha t j  r T Then (y,S) may be extended into an objection 
(z, S w T) of i  againstj  at x in the game (N,v,~), where z e E s is given by zlBk = y, 

z lN\Bk = xlN~Bk. Because x e M ( N , v , ~ ) ,  there exists a counterobjection (z', T') 
of j to i's objection (z, S w 7") in the game (N,v,~). It is readily verified that 
(z'lBk, T' n Bk) defines a counterobjection o f j  to i's objection (y,S) in the game 
(Bk, V*, Xk). 

Indeed, i r T' n Bk, j ~ T' n Bk, zl > xt for all I e T'\(S u T) ~ (T' c~ Bk)\S, 
z} > y~ for all l ~ (T' n Bk) n S and z'(T'  n Bk) < v~(T' c~ Bk). The last inequality 
follows from 

v*~(T' ~ Bk) >= v(T') - x(T' \Bk) >= z'(T') - x (T ' \B , )  

>= z'(T') - z'(T'\Bk) = z ' ( r '  c~ Bk). 
Remark: 

The conclusion in Theorem 7 corresponds to the conclusion in Theorem 5, 
except for the fact that the equality in theorem 5 becomes an inclusion here. The 
reverse inclusion is false, as can be verified by means of Example 4. Indeed, in 
that example, the bargaining set for (N ,v ,~ )  is defined by the condition 
1/4 > x2 = xa > 1/5; whereas the bargaining set for (Bz, v*,X2) is defined by 
the condition 1/4 > x2 = x3 > 0. 

8) M(N, v, .~) is denoted M~O(N, v, .~) by AUMANN and MASCI-ILER [1964], and by DAVIS and MASCH- 
LER [1967]. 
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8. The Kernel 

Finally, for the sake of completeness, we quote  an earlier result of MASCHLER 

and I~LE6 1-19673 regarding the kernel. It is of the same form as our  result for the 
core. 

Let  i,j ~ Bk, x ~ E N. Define ~ij(x) to be the maximal excess, with respect to x, 
of a coalit ion containing i but not  j;  i.e., 

~j(x) = max {e(x,S): S C N, i ~ S, j ~ S} . 

Define 

K(N,v ,X ,N)  = {x ~ X: (V K)(V i, j ~ Bk)(6~j(X) > ~j~(x) or x~ = v({i}))}, 

K(N,v,M) = K(N,v ,X~ ,~) ,  and K(N,v ,X)  = K(N,v ,X , {N}) .  

K(N,v ,~ )  is called the kernel of (N,v,N). 

Theorem 8 (MASClaLER and I~LE~ [1967, Theorem 2.9]): 
Let (N,v) be a O-normalized game, and let x ~ K(N,v,N).  Then the section of 

K(N ,v ,~ )  at xlN\Bk is K(Bk, v*,Xk). 

Remark: 
The definition of v~* is due to MASCHLER and P~LEG [1967, p. 599], who call 

K(Bk, v*,Xk) the pseudo-kernel of (Bk, V*). The kernel of (Bk, V*~) would require, 
in addition, that  x~ > v*({i}). One could define similarly the "pseudo-core"  and 
"pseudo-nucleolus" of (Bk, V*), to be, respectively, the core and the nucleolus of 

(Bk, V*, Xk). 

Corollary 8 : 
Let (N,v) be a O-normalized game, decomposable with partition 9~ = (B1 .... Bp). 

P 

Then K ( N , v , ~ )  = X K(Bk, VlBk, Xk). 
k = l  

Proof: 
By decomposabil i ty,  v*(S) = v(S) + max {v(T) - x(T)}. Hence 

T C N\B~. 

max {v~*(S) - x(S)} - max {v*(S') - x(S')} 
SC Bk S'C Bu 

ieS i~S' 
j~S j~S' 

= max {v(S) - x(S)} - max {v(S') - x(S')} 
SCBk  S'CBk 

i~S iceS' 
jr jeS" 

and so K(Bk, v*, Xk) = K(Bk, v[Bk, Xk). The corollary then follows from Theorem 8. 

9. Equal Treatment 

Two players i and j are called subst i tutes if v(S ~ i) = v(S u j) for all S C N 
such that i ~ S, j $ S. Whenever a solution concept imposes that substitutes receive 
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the same payoff, that solution concept is said to have the equal treatment property. 

The Shapley value, kernel and nucleolus of (N,v) have that property. Theorems 

4 and 8 imply that the kernel and nucleolus of (N,v,N) impose equal treatment 
for substitutes belonging to the same element Bk of the partition ~ .  Example 4 
shows that the kernel and the nucleolus do not impose equal treatment for sub- 
stitutes who belong to different elements of ~ .  On the other hand, it is well known 

that the core does not impose equal treatment for substitutes belonging to the 
same element 9) of N. 

The following theorem shows that the core of (N, v,~)) imposes equal treatment 

for substitutes who belong to different elements of the partition ~.  Because 
Nu ~ Co and K n Co # 0 whenever Co # O, the condition has obvious impli- 
cations for the nucleolus and the kernel as well. 

Theorem 9 : 

Let  x 6 C o ( N , v ,  J3). I f  i and j are substitutes in (N,v), i~Bk,  and j ~ B k ,  then 

X i : X j .  

Proof." 
We have 

0 __> v({i} w N\Bk\{j})  - x({i} w N~Bk\{j}) = 

= v(N\Bk) - {x(N~Bk) - x j  + xi} = xj  - xz > O. 

Similarly x~ - xj =< O, and hence x~ - xj = O. 

10. The Superadditive Cover 

A game v on N is called superadditive ifS n T = 0 implies v(S u T) > v(S) + v(T). 

The superadditive cover of a game v is the game b defined by 

max ~ ~ v(Si):(S1 . . . . .  Sp) is a partition of S l . b(S) 
l i= t } 

Note that the superadditive cover is itself superadditive. In fact, if one defines a 

relation __> between games on N by v > w if: v(S) >= w(S) for all S, then 0 is the 
minimal superadditive game that is >__ v. 

Theorem 10: 

I f  C o ( N , v , ~ )  # O, then Co(N,v ,~)  = Co(N,~). 

Proof: 

1. First we prove Co(N,v ,~ )  = Co(N,~ ,~ ) .  Indeed, let x ~ Co(N,~,~);  then 
x(S) >= b(S) >: v(S) and x ~X~,  so x ~ Co(N,v,~) .  Conversely let x ~ Co(N,v ,~) ;  
so that x 6 X~. For  any S, let ($1 ... .  , Sl) be a partition of S such that ~(S) = ~ = 1 v(Si). 
Because x(Si) > v(Si), i = 1 . . . . .  l, it follows that x(S) = ~i= l x(Sz) > ~(S), and so 
x = > Co(N,~,~) .  

9) Example: N = {1,2}, v(N) = i, v({1}) = v({2}) = 0, ~ = {N}. 
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2. Next, we show that if Co(N,v, sS) 4 0, then ~kV(Bk)  > v (N)  and ~k~(Bk)  = 
b(N). Indeed, 6(N) > ~k~(Bk)  by superadditivity. If ~(N) > ~k6(Bk),  then there 
exists a partition ($1,..., Sz) such that for all x in Co(N, v, N), ~I = l v(S~) > ~k6(Bk)  > 

~kV(Bk)  = ~kX(Bk) .  Hence, for some i, v(Si) > x(Si), contradicting x e Co(N,v,N). 
3. Finally, we show that if Co (N, ~, ~ )  4; 0, then Co (N, 6,,~) = Co(N, 6). Indeed, 

let x eCo(N,~,N)  4 0. Then x ( N )  = 6(N) by 2, and x(S)  > b(S) for all S, so that 
x e Co(N,6). Conversely, let x e Co(N,6), and suppose that x r X~. Then, there 
exists a Bk such that X(Bk) < 6(Bk), contradicting x e Co(N,6). 

11. Examples 

In this section we consider two games that illustrate some of the methods and 
results of this paper. 

1. Consider a system of p universities with a total of n professors, including m 
game theorists. Model this by a game with n players and a coalition structure N, 
in which Bk corresponds to a university. Assume that m < p; that no university 
employs more than one game theorist; that ~ is efficient, i.e. ~kV(Bk)  = v(N); 
and that the game theorists are substitutes for each other. Number the professors 
and the universities so that the game theorists are numbered 1 .... ,m, and i E B~ 
f o r / =  1 .. . . .  m. 

There is no reason to expect that 

v(Bi) - v(B~\{i}) = v(B~) - v(B~\{j}), i,j = 1 . . . . .  m ; 

but from efficiency it follows that 

v(B~) - v(B~\{i}) >= V(Bk w {i}) -- V(Bk), i = 1 .. . . .  n, k = n + 1 ..... p. 

Theorem 9 implies that for all x in Co (N, v, ~) ,  

min {v(Bi) - v(B~\{i})} > x 1 = x 2 . . . . .  x n >_ max {v(Bk t,.) { i } )  - -  v(Bk) }. 
i =  l , . . . , n  k = n +  l , . . . , p  

In economic terms, one would say that, in the core, salaries of game theorists are 
equal in all universities, with an upper limit given by the productivity of the 
marginal game theorist employed as such and a lower limit given by the "alter- 
native productivity" of a game theorist in a university that does not currently 
employ one. 

2. In this example the players are again professors, but the coalitions in the 
coalition structure ~ are countries. We assume that v is superadditive, so that 

v (N)  - v (N\B , )  > v(B,) (10.1) 

for all l; and that ~ is inefficient, so that strict inequality holds for at least one l, 
say l = k. For simplicity of exposition, give k a name, say "Israel" (see the discussion 
in Subsection 5 of Section 12). Intuitively, the strict inequality says that the total 
value added by Israeli professors to their country is less than the total value that 
they could add to the rest of the world. Or, in terms of salaries, the total salary 
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that Israeli professors command abroad is larger than the total they command 
at home. For all x in X~, we have 

v*~(Bk) > V(Bk W (N~Bk)) - x(N\Bk) = v(N) - v(N~Bk) > V(Bk) = X(Bk). 

Let X\Bk be the nucleolus of (Bk, v*, Xk). Assume further that, for all S C Bk, 
v*(S) = ~ v*({i}): the salaries that Israeli professors could earn abroad are 

ieS 

unaffected by the presence there of other Israeli professors. It is readily verified 
that the nucleolus of (Bk, v*, Xk) is such that x~ = v*({i}) - c for all i e Bk, where 

c = ( ~ i  ~v*({i})-v(Bk))/JBk[; 

this property holds whenever v*({i}) > c for all i s  Bk. That is: each Israeli pro- 
fessor would, in the nucleolus, receive a salary equal to his "opportunity cost" 
(the salary which he could earn abroad), minus a flat deduction which is the same 
for all Israeli professors. 

12. Discussion 

1. For a given characteristic function v, the major novel element introduced 
by the coalition structure N lies in the conditions x(B,)  = V(Bk), which constrain 
the solution to allocate exactly among the members of each coalition the total 
payoff of that coalition. As a consequence of this, the bargaining over the payoff 
inside coalition B, will involve a mixture of considerations which are endogenous 
to B k and of considerations which are exogenous to B k and reflect the "outside 
opportunities" of the members of Bk. 

In so far as the value is concerned, the solution is determined entirely by con- 
siderations which are endogenous to each coalition Bk (Theorem 3). In so far as 
the other solution concepts reviewed here are concerned, considerations exo- 
genous to Bk are relevant, but they are fully described (conditionally on the 
outside imputation x lN~Bk) by the characteristic function v* of the auxiliary game 
(Bk, V*~, Xk). 

2. Whereas the implications of a coalition structure are quite clear, the idea of 
a coalition structure needs some clarification. On the one hand, the players are 
constrained to "form" the coalitions B1,. . . ,Bp that make up the structure 09. 
On the other hand, considerations of other coalitions, including those that 
~ across" the Bk, is by no means excluded. Such coalitions are used to dominate 
as in the definition of core and YON NEUMANN-MORGENSTERN solution, and to 
object as in the bargaining set and its relatives; the excesses of these coalitions 
enter into the definition of nucleolus and kernel. This raises the question: what, 
precisely, does the "constraint" to the structure ~ mean? 

The scenario usually associated with the coalition structure idea is as follows:- 
the players consider forming the coalitions B1 .... .  Bp; one may think of them as 
going to business lunches in p different groups, each Bk forming a group. At these 
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lunches they negotiate the division of the payoff, on the assumption that the 
coalitions B1 ..... Bp will be formed. In such negotiations, it is perfectly reasonable 
for each coalition Bk to base the division of the payoff on the opportunities that 
its members have outside of Bk. The negotiations at the lunch may of course break 
down, and at no time is it asserted that they will or even should succeed. What 
is being asserted is only t ha t / f  the structure ~ forms, then the Bk should divide 
the payoff in whatever way the particular solution concept under consideration 
dictates. 

What this scenario does not explain is why the groups Bk would form, or why 
the process of formation of the groups Bk should be separated from the bargaining 
for the payoff. 

In attempting to answer that question, we will consider first some of the tradi- 
tional explanations for the formation of coalition structures, and show that they 
do not survive close examination (Subsection 3). We will then advance three 
different arguments that show why coalition structures might arise. The most 
transparent one of these (Subsection 4) is valid only for games that are not super- 
additive. The other two arguments (Subsections 5 and 6) are more subtle; but 
the apply to all games, superadditive or not. 

3. The arguments traditionally advanced for the formation of coalition structures 
include a) difficulties of communication; b) legal barriers such as anti-trust laws; 
c) personal, family, patriotic, geographical or professional relationships. Un- 
fortunately, they do not survive close examination. The arguments advanced 
under a) and b) apply to potential coalitions S - those used in dominating, 
objecting, threatening, and so on - to exactly the same extent as they apply to 
the coalitions Bk constituting the structure. If a coalition is difficult or impossible 
to form because of communication difficulties, then these difficulties should 
also be taken into account when the players are comparing their opportunities. 
If antitrust laws forbid the formation of a coalition, and this coalition is thereby 
excluded from participating in a coalition structure, it should by the same token 
be excluded from considerations affecting the payoff. 

There remain the groupings formed for a variety of "personal" reasons - item 
c) in the above list. It might be argued that one uses such considerations to choose 
the people one deals with, but there would be no hesitation about breaking up 
such a grouping if it would lead to material gain. When examined carefully, this 
argument is seen to imply a kind of lexicographic utility, with personal relation- 
ships coming out on the short end, i.e. counting for next to nothing. Most people 
value their personal relationships more highly than this indicates. But even if one 
accepts such a lexicographic utility, it would seem better to allow the entire 
lexicographic utility to determine the payoff, and not arbitrarily to use one 
component for the coalition structure and another component for bargaining. 

4. In certain non-superadditive games, one can give a fairly straightforward 
explanation for the formation of coalition structures. But before we do that, 
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let us try to understand the phenomenon of non-superadditivity - to see how 

it is that a game arising in applications might actually fail to be superadditive. 

After all, superadditivity is intuitively rather compelling; why shouldn't disjoint 
coalitions, when acting together, get at least as much as they can when acting 
separately? 

The answer is that the very act of "acting together" may be difficult, costly, 
or illegal, or the players may, for various "personal" reasons, not wish to do so. 
In other words, we return to points a), b), and c) of the previous subsection - but 
as explanations for non-superadditivity of the game, rather than for the formation 
of coalition structures. In fact, they are simply restrictions on the formations of 
coalitions. As such, it is perfectly natural to embody them in the definition of the 
characteristic function v; and in general, a non-superadditive v will result. For  
instance, if coalitions of n players or more are forbidden by the law, then 
"v(S) = - oe whenever IS[ > n" describes the situation correctly. 

Another point is that there is more involved than just "acting together"; there 
is also the matter of side payments. If v(S ~ T) > v(S) + v(T), then S can transfer 
some of its own payoff to T. Even when communication is unrestricted, such 
transfers may be illegal, restricted, or subject to transaction costs. Moreover, 
"acting together" and sharing the proceeds may change the nature of the game. 
For example, if two independent farmers were to merge their activities and share 
the proceeds, both of them might work with less care and energy; the resulting 
output might be less than under independent operations, in spite of a possibly 
more efficient division of labour. 

Suppose then, that v is a game on N, and let ~ be its superadditive cover (see 
Section 10). Call a coalition structure N efficient if ~kV(Bk) = ~(N). Obviously 
O(N) > v(N). If ~(N) = v(N) - as is the case in all superadditive games - then 
one could consider it reasonable for the coalition structure { N} to form. If, however, 
~(N) > v(N), then the coalition structure {N} is inefficient, and so a major incentive 
for its formation is absent. In that case it is possible that an efficient coalition 
structure N will form; but since a major cause of non-superadditivity is lack of 
communication for one reason or another, it might well happen, too, that N will 
be inefficient. In any case, when ~(N) > v(N), one may expect the formation of 
a N other than {N}. Thus one sees that points a), b), and c) in the previous sub- 
section, though not directly valid as an explanation for coalition structures, 
nevertheless are involved in an indirect manner; they explain non-superadditivity, 
and this in turn leads to coalition structures1~ 

If the reader wishes, he may view the analysis in this subsection as part of a 
broader analysis, which would consider simultaneously the process of coalition 

to) In some cases, one might wish to model the situation by means of a game in "partition function 
form" [THRALL and LUCAS, 1963], where the characteristic function is a vector-valued function 
on the family of partitions of  N. For instance, if the law requires the existence of at least m coalitions, 
then only coalition structures with m elements or more should be considered. The theory of games 
in partition function form raises substantial technical difficulties, and is not considered in this paper. 
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formation and the bargaining for the payoff. Let a given coalition structure 9~, 
and a given payoff x consistent with it, provide a "solution" to the game (N, v); 
then certainly the payoff x must provide a "solution" to the game (N,v,~). Our 
analysis has been concerned with this last topic, and should thus be understood 
as a contribution to partial equilibrium analysis. 

5. If the game (N,v) is superadditive, the arguments for the formation of the 
structure {N} sound rather compelling. Must we then abandon altogether the 
concept of coalition structure, in the context of superadditive games? 

We think not. Coalition structures represent groupings formed for reasons that 
are important and weighty, but whose impact is 
a) difficult to measure, and~or 
b) difficult to communicate believably, and~or 
c) consciously excluded by the players from bargaining considerations. 

As an example that illustrates all three points, consider the world academic 
community, which we may think of as having partitioned itself into countries. 
From the point of view of material payoff, this partition is inefficient. Thus the 
United States could probably absorb the entire academic community of a small 
country like Israel, and pay each of its members a salary considerably higher 
than the one he is now getting. The professors do not move because for personal 
reasons they prefer to live in their own country. In competing for payoff within 
their own country, though, they may very well cite the opportunities they have 
abroad (see Example 2 in Section 11). 

Now the question arises, why do not the professors incorporate their preferences 
for living in their own country into their utility functions explicitly, and bargain 
accordingly? One answer is that it is difficult to measure such preferences on the 
same terms as salary, another is that because of their subjectivity it is difficult to 
communicate such preferences to one's colleagues, or at least to communicate 
them in a convincing and believable manner. 

But the most important consideration, perhaps, is of the third kind. We can at 
least imagine a situation in which one's love for one's country can be assessed in 
monetary terms; it is simply a question of deciding what increase in salary abroad 
would make a person want to move. We could even imagine situations in which 
these assessments could be believably communicated to one's colleagues. Consider 
now the consequences of using such assessments in the bargaining: The result 
would be that people who value their home country highly would be penalized. 
Indeed, the worth v(S) of coalitions including such people would tend to be lower 
than the worth of coalitions containing their colleagues who are relatively indif- 
ferent, and the excesses would of course behave in the same way. This is quite 
understandable, as the indifferent professor is in a better position to exert pressure 
by means of threats to leave than the professor who values highly the place in which 
he lives and is unwilling to consider a move. Nevertheless it is quite conceivable that 
all concerned would agree that this kind of consideration should not enter into 
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salary determinations. Given such an understanding, it is clear that the situation 
would best be analyzed by a game with a coalition structure determined by the 
countries, in which the worths v(S) of the coalitions are expressed in more or less 
"objective" monetary terms. 

A coalition structure may thus reflect considerations that are excluded from 
the formal description of the game by necessity (impossibility to measure or 
communicate) or by choice. This situation may arise in the non-superadditive 
as well as in the superadditive case - but in the former case it is not the only 
possible explanation of the coalition structure. Finally, the difficulty to measure 
or communicate may exist at the level of the scientist and not only at the level 
of the players. This illustrates a basic principle of modelling; following SAVAGE 
[-1954], one might call it the "small worlds" principle. A model cannot always 
be expected to take into account in a systematic and consistent manner all the 
complexities of a complex situation. It is often necessary - or if not necessary 

at least convenient - to treat basically similar phenomena in a methodologically 
different fashion. Thus in SAVAGE'S theory of subjective probabilities, a very clear 
distinction is made between the concepts of "act", "consequence", and "state of 
the world", and this distinction is basic to his theory. But in the real world these 
distinctions blur, and it is sometimes difficult to distinguish between these concepts. 
Our situation here is similar; we cannot say exactly which considerations go into 
determining a coalition structure, and which go into bargaining; we are not even 
sure that these two elements can be clearly separated from each other; but we 
feel that there are situations in which the two elements are present, and are better 
treated separately. 

6. In the previous subsection we adduced an exogenous argument for the 
formation of a coalition structure .~, i.e. we took the coalition structure to be 
based on factors not taken into account in the characteristic function v. On the 
other hand, in Subsection 4 we used an endogenous argument, i.e. we explained 
the formation of ~ in terms of v itself. In this subsection, we will adduce another 
endogenous argument; but the current argument, unlike that in Subsection 4, 
is valid for superadditive as well as non-superadditive games11). 

Briefly, the point is that the coalition structure N might arise because for the 
players in some of the Bk, it might be more worthwhile to bargain in the framework 
of ~ than in the framework of the all-player coalition N. 

For example, consider the game v on {1,2,3} defined by 

v ( s )  = 

0 if IS[ = 1 

8 if ]Sf = 2 

9 if IS[ = 3. 

11) The argument  in this subsection is due to MICHAEL MASCI-ILER, and we are grateful to him for 
permission to publish it here. 
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Assume that there are no significant asymmetries between the players (i. e. 
asymmetries not included in the description of the situation by v). Suppose that, 
for some reason, players 1 and 2 find themselves at "lunch" (see Subsection 2) 
without player 3. There is little doubt that they would quickly seize the opportunity 
to form the coalition (1,2) and collect a payoff of 4 each. Thus the outcome would 
be (4,4,0), with N = {(1,2),(3)}. This would happen in spite of its inefficiency. 
The reason is that if players 1 and 2 were to invite player 3 to the lunch, the out- 
come would presumably be (3, 3, 3). Neither would they want to risk inviting him 
and offering him, say, �89 (and dividing the remaining 8�89 among themselves); 
because each of the two players 1 and 2 would realize that once player 3 is invited 
to participate in the negotiations, the situation turns "wide open" - anything 
can happen. 

All this if players 1 and 2 happen "to find themselves at lunch". But even if this 
does not happen by chance, it is now fairly clear that the players would seek to 
form pairs for the purpose of negotiation, and not negotiate in the all-player 
framework. 

Our example is particularly convincing because of its symmetry. Even in 
unsymmetric cases, though, it is clear that the framework of negotiations plays 
an important role in the outcome, so that individual players and groups of players 
will seek frameworks that are advantageous to them; and this may well lead 
to inefficient coalition structures. The phenomenon of seeking an advantageous 
framework for negotiating is also well-known in the real world at many levels - 
from decision making within an  organization like a corporation or a university, 
to international negotiations. 

The remarks at the end of Subsection 4 about the partial equilibrium nature 
of the analysis apply here as well. Incidentally, considerations of coalition forma- 
tion are implicit in the voN NEUNANN-MORGENSTERN solution, even when 
applied only to the coalition structure {N}. But we know that the voN NEUMANN- 
MORGENSTERN approach to game theory is only one of a number of possible 
approaches, and it is worthwhile to study coalition structures explicitly and in the 
context of notions other than just the VON NEUNANN-MORGENSTERN solution. 
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