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Characterization of Cores of Ass ignment  Games 1,2 

By T. Quin t  3 

Abstract: We consider the assignment game of Shapley and Shubik (1972). We prove that the class 
of possible cores of such games (expressed in terms o f payoffs for players on one side o f the market) 
is exactly the same as a special class of polytopes, called "45~ ''. These results parallel 
sflnilar work done by Conway (in Knuth, 1976) and Blair (1984) for marriage markets. 

I Introduction 

The so-called "ass ignment  game" of Shapley and  Shubik (1972) has been the subject 
of  much  research. One  par t icular  thrust  has been in the area of the structure of  the 
core when expressed as a set of  uti l i ty vectors for players on one side of the market.  
Shapley and Shubik themselves prove this set is a lattice. Other  papers (Thompson  
(1980), Balinski and  Gale (1988)) take more advantage  of  the special characteristics 
of these games in order to prove their results. 

Certainly it is easy to see that  the core will always be a special type of lattice 
in these games, here called a "45~ ''. Geometrically,  such a lattice is formed 
by start ing with a cube and  cut t ing away t r iangular  cylinders where the " t r iangles"  
are 4 5 0 - 4 5 0 - 9 0  ~ . In  this paper, we show that  the converse is true, i.e., that  every 
such 45 ~  is the core of  an appropria te ly  def ined ass ignment  game. Hence, 
our  results parallel the lattice characterizat ion theorems of Conway (in Knuth ,  1976) 
and  Blair (1984) concern ing  another  type of two-sided matching  market  - the stable 
match ing  problem (Gale, Shapley 1962). 
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2 Background 

Let us briefly review the assignment game of Shapley and Shubik (1972). This is a 
TU-game in which there is a set I = [1 .... e } of  sellers and a set J = {1 ..... m} of  buyers.  
Let N = I U J be the player  set. The data for the model is an e • m nonnegative 
matrix C, whose entries ci j  represent the worth of  a coalition containing only seller 
i and buyer j .  

Define an assignment ,  or matching,  as a sequence of  seller-buyer pairs ~ = 
{(i lJl)  ..... ( i k Jk ) }  in which no player appears more than once. I f  pair ( i  j )  E ~, we 
write ~(i) = j and ~ - l ( j )  = i. On the other hand, if a seller i does not appear in 
any pair in tz, we say i is u n m a t c h e d  by t~ and write/~(i) = o. Similarly, j unmatched 
is written tz- l ( j )  = o. 

Next, define a m a x i m a l  match ing  ~* as a matching for which 

cil~.(i ) >- ~ cil~(i ) 
i E I  i@I 

it*( i) :/:o iz( i) ~ o 

for all other assignments ~. Note that a f u l l  maximal matching, i.e., a maximal mat-  
ching ~* where t~*(i) :g o Vi o r / z * - l ( j )  :~ o V j ,  must exist. 

The game's characteristic function V is given by 

V ( S )  = max E ci~(i ). 
I~ i , l z ( i )Es  

The interpretation here is that, for any coalition of  players S _ N, the best that S 
can do is "split into (one-seller-one-buyer) pairs and pool the profit". In game 
theoretic terms, these pairs are the essential coalitions of  the game. Finally, note that 
V ( N )  = ~ i  cit~*(i) for any maximal matching ~*. 

The core of  this game is never empty, and turns out to be equivalent to the set 
of  utility vectors (u,v)  for which 

u i + vl~.(i ) = cil~.(i ) Vi :/~*(i) :go (2.1) 

u i + vj >. c i j  V i , j  (2.2) 

u i , vj >_ 0 V i , j  (2.3) 

u i = 0 Vi : /~*(i)=o (2.4) 

vj = 0 Vj  : / z * - l ( j ) = o ,  (2.5) 

for any full maximal matching/~*. We can think of (2.1), (2.4), and (2.5) as feasibility 
constraints, (2.2) as stability constraints, and (2.3) as individual rationality. 
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Using (2.1) and (2.5), we can substitute for the v's and write the core as a vector 
u of utilities for the sellers: 

u i + c # , - l ( j ) j -  u/~*-l(j) 

u i >_ c U 

ui>_O 

u/z,-l(j ) ~ c # , - l ( j ) j  

u i =  0 

>_ cij  (2.6) 

V i , j  : # , - l ( j ) ~ o  

V i , j :  ~*- l ( j )=o  (2.7) 

Vi (2.8) 

V j : / z * - l ( j )  ~ ~ (2.9) 

V i :  #*(i)=~ (2.10) 

Here (2.6) and (2.7) come from (2.2), and (2.8) and (2.9) from (2.3). We call the set 
of u 's  which satisfy (2.6)-(2.10) the u-space core o f  assignment game C. 

Next, denote by Pgthe set of nonempty polytopes P c IR e which can be written 
as (u] .... ,ue) satisfying: 

u i - u  k >>. dik V i , k  E 1 .... , e : i  ~ k 

b i <_ u i <_ e i V i  E 1 ..... f 

(2.11) 

(2.12) 

for some constants {d ik]~, k = 1' and some nonegative constants {b i,ei l f= 1 . We call 
Pethe set of 45 O_lattices in IRf. The reason for this is that, geometrically, we are star- 
ting with a cube (2.12), and "lopping of f"  the 45~176176  triangular cylinders 
indicated by (2.11). 4 

We can see that the u-space core of any assignment game C with e sellers is an 
element of Pg. Indeed, this can be seen by just setting 

if #*(k) ~ o  

otherwise, 

bi 
= (" max cij if 3j  : ~* - l ( j )=o  

L :#*-1 (j)=o 

0 otherwise, 

ei = I~i~,(i  ) if/z*(i):~o 

otherwise. 

M is a large positive number. 

4 Of course, while maintaining the lattice property. 
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Next, consider the special case in which f _> m. In this case, there are no buyers 
j for which/x*-l( j )  = o. Thus, the (u-space) core will be an element of  pez, where 
p f z  is defined as the subset of  P f  consisting of P's in which b i = 0 Vi.  We call pez 
the set of  zero-possible 45~ because they are the only ones that could 
possibly contain the point 0. 

3 The Characterization Theorem 

We now state and prove the converse of  the results of  the previous section. 

Theorem: Let 15 E pg, (thus 15 :g o), say/5 can be written as (u I ..... ue) satisfying: 

u i - u j  >_ dij  V i , j  E 1 ..... e : i - ~ j  (3.1) 

bi <- ui -< ei Vi E l ..... e (3.2) 

for some constants {dij }, {/~ } _> 0, and { ei} -> 0. Then we can define an assignment 
game C ( P )  with g sellers in which the u-space core is exactly P. I f /5  E pez, then 
C(15) will have g _> m (the number of  sellers will be at least the number of  buyers). 

Proof" Define the e x (f + 1) assignment game C by: 

r = ei V i  E 1 ..... e 

cij = [~j + d i j ]+  V i , j  E 1 ..... f, i--/:j 

ci,e+ 1 = l) i V i  E 1 ..... g 

(3.3) 

(3.4) 

(3.5) 

Here the notation [x] + means max (x,0). We will prove that C has the necessary 
properties for the first part  of  the Theorem. 

Lemma: ~* defined by/z* (i) = i Vi is a maximal matching for C. 

Proof" It sufficies to prove E~= 1 ci~(i ) <- El= 1 cil~,(i ) for any matching ~. To show 

this, we need a preliminary result: 

Definition." Given assignment/~, a cycle D of/z is a sequence of  distinct numbers 
i 1 ..... i r for which t~(i k _ 1) = ik for all k E 2 ..... r and #(ir)  = i 1. 

Proposition: Let D be a cycle of  ~, in which r ~ 2. Then Z i E D  did(i) <- O. 



Proof." Let u E /5. Then  

Ui 1 -- U.i 2 >-- dili2 

Uir_l - blir >-- dir_lir 

blir -- blil >-- d ir i l  
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Adding  the above inequalities gives the Proposi t ion.  
Now, given/~, let T = {i: ci#(i ) > 0}. For all i E T, if tz(i) ~ { i , f+ l} ,  ci~(i ) = 

[e~(i) + di~(i)]  + = e~(i) + di~(i) .  [Otherwise, i f /x( / )  = i, cit~(i) = Oiand, f l z ( i )  

= e+l ,  cilz(i) = 4 . ]  Define the directed graph G with nodes {1 ..... f + 1} and 

where arc i j  exists i f f /z ( i )  = j .  Let G T b e  the subgraph of  G consisting of  arcs i j  
where i E T, together  with the incident nodes for  these arcs. 

f 
I t i s e a s y t o s e e t h a t  E ci l z ( i )=i~TCi lz ( i )=__. ,~  c i j .  

i=1 ij @G T 
Fur thermore ,  the set o f  arcs of  G T can be par t i t ioned into paths { Pl ..... Oh }, 

where Px and py contain no c o m m o n  incident nodes i f x  4= y. Call this par t i t ion ~.. 

Finally, define the no ta t ion  i E p to mean  tha t  node  i is incident to at least one 
o f  the arcs of  pa th  p- In this sense, ~ is a par t i t ion  o f  R,  where R is the set o f  nodes 
o f  G T . 

Claim: ~C ci j  <_ C #i VPx E ~_@. 
ij Ep x iEPx: i~g+l  

Proof" There are two cases: 

Case 1: Px is a cycle. I f  it is also a loop (i.e., it contains only one arc), the Cla im holds 
trivially with equality. Otherwise,  t~(i) ~ i and i :~ e + 1 Vi  E Px. We have: 

---~ c i j  = ~ #Ix(i) + 3itz(i) <- ~ elx(i) = ~ ei" 
ij EPx iEPx iEPx iEPx 

The inequali ty above o f  course follows f rom the Proposi t ion.  

Case 2: Px is not  a cycle. In this case, let ili2, i2i 3 ..... iK_ 1 i K be the arcs of  Px �9 F rom 
the construct ion,  i k E Tand /z  ( i k )  = /k+ 1 for  k E 1 ..... K -  1, while i K ~ T. Again,  
we have/~( i )  g= i Vi  E Px" Let u E P. 
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Case 2A." i K = f + 1. Then  

K-2 
--..~ ci j  = k~l(el~(ik ) + t~ik#(itc ) ) + b~'K_ 1 
ij Ep x = 

K-2 

<-- k~ l (e#( ik )  + ui k -Uik+l )  + biK_ 1 

K-1 K-1 
= (k~=zeik) + (U/l) + (/3iE 1 - -  UiK-1) <- k=l  ~ eik" ~ 

Both  o f  the inequalities in the above chain follow f rom the fact tha t  u E /~. 
Q.E.D. 

Case 2B: i K ~ e +  1. 

K-1 
_..~ ci j  = k~=l(el~(ik) + dikt~(ik)) 
U EOx 

K-1 

<-- k~=l(elz(ik ) + U i k -  Uik+l) 

K K 

(k~=2 ~ik) + (U/ l ) -  (UiK) --< k=l  ]~ eitc" ~ 

Now, to prove the Lemma,  we need only to take the Cla im and sum over all the 

paths  Px: 

---.~ ci j  < ~ ~ ei 
p x E ~  ij Ep x p x E ~  i E P x : i ~ + l  

~ cit~(i ) <- ~ ei ~ ~ cil~(i ) < c il~*( i ) �9 
i@ T iER:i~e+ l i=1 i=1 

Having  finally proven the Lemma,  we can thus write the following equat ions  
for the core o f  C: 

ui + vi = ci#*(i) = ei 

u i + vj > c i j  = [~j + dij] + 

u i + 0 >-- ci(g+l ) = bt" 

u i>-O ,  v j > - O  

' r  E 1,...,e (3.7) 

V i , j  : i4: j ,  j ~ s  (3.8) 

' r  E 1 ..... ~ (3.9) 

V i , j  C 1 ..... g (3.10) 
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Substituting using (3.7), we have that the u-space core of C is the set of  u's which 
satisfy 

t.t i + O j -  uj >_ [ej + di j]  + g i , j : i ~ j , j - - / : e + l  (3.11) 

6 i <_ u i <__ 0 i V i  E 1 ..... g (3.12) 

So, in order to prove (the first part of) the Theorem, we need to show that u satisfies 
(3.11) and (3.12) if and only if it satisfies (3.1) and (3.2). 

First, we prove the " i f "  statement above. If  Oj + d/j > 0, then u i - uj >_ dij  

implies "i  + O j -  , j  > Oj + dij  : [Oj + dij  ]+.  And, if 6j + dij  < 0, then u i + 

(Oj - u j )  >_ u i >_ 0 = [Oj + dij  ] +. Hence, (3.1) and (3.2) together imply (3.11). Also, 

trivially, (3.2) implies (3.12). 
For the "only i f "  part of the statement, again first suppose ~j + dij  >_ 0. Then 

U i + ~j - blj >_ [0 i + dij  ] +, which implies u i + ~j - lgj >_ Oj + d i j ,  which in turn 
implies u i - uj >_ dij  . And, if ~j + dij  < 0, then, since u i >_ 0 and uj <_ Oj , we have 
u i - uj >_ -Oj >_ d i j .  Hence, (3.11) and (3.12) together imply (3.1). Trivially, (3.12) 
implies (3.2). 

For the second part of the Theorem, note that if /5 E p f z ,  i.e., all the 6 / s  are 
equal to zero, then our assignment game C(/5) has its f + 1 st column all zeroes. 
Thus, we can just use as "C( /5)"  the f x e matrix consisting of  the first e columns 
of  C(/5). 

4 Discussion 

A natural question to ask is to what extent C(/5) is unique for any/5. First, one can 
m see that we can replace the e + 1 st column with any set of columns K = {C k } k= e+ 1' 

where m a x k > l C i k  = b i for every i. This is because Ix* would still be the "diagonal", 
and the core equations would change only inasmuch as new redundant constraints 
would be added. Second, we can clearly rearrange the columns of C(/5) without 
changing the u-space core. [Rearranging the columns changes/x* and the v-space 
core, but not the u-space core.] Finally, we surmise that equations (3.3)-(3.5) may 
produce many c i j ' s  for which u i + ~ > c i j  for every (u,v)  in the core. In this case, 
the ci j  could be perturbed without changing the core. In fact, we conjecture that 

there is some link between the set of e l i ' S  which behave in this way, and the set of  
d i k ' S  which can be set equal to - M  when determining a " P ( C ) "  [section 2]. 
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Thus, there may exist a result such as: "Given/~ E pC, there is a unique C(P) 
which satisfies: 

1) Core (C(/~)) = P. 
2) C(/6) contains e + 1 buyers (or e buyers i f /~ E pez). 
3) A maximal  matching for C(/~) is/z* : ~* (i) = i, i E 1,...,~. 
4) The Cu'S, j ~ i, are "as high as possible". 

In  such an issue may lie the basis for future work. 
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