
Annali di Matematica pura ed applicata 
(IV), Vol. CLIX (1991), pp. 357-369 

Almost Everywhere Convergence of Riesz Means 
on Certain Noncompact Symmetric Spaces (*). 

SAVERIO GIULINI - GIANCARLO MAUCERI (**) 

Summary. - Let G/K be a rank one or complex non compact symmetric space of dimension I. 
We prove that if  f �9 LP, 1 <. p <~ 2, the Riesz means of order z o f f  with respect to the eigen- 
function expansion of the Laplacian converge to f almost everywhere for Re (z) > 8(l, p). The 
critical index 8(1, p) is the same as in the classical result of Stein in the Euclidean 
c a s e .  

1.  - I n t r o d u c t i o n .  

The purpose of this paper is to study the almost everywhere convergence of the 
Riesz means of the eigenfunction expansion associated to the Laplacian on complex 
and rank one symmetric spaces. Let A0 be the Laplace-Beltrami operator on the sym- 
metric space G/K, where G is a noncompact semisimple Lie group with finite center 
and K is a maximal compact subgroup of G. The operator -n0 is elliptic and formally 
positive on L2(G/K) that is 

(-AoU, u) >t tIpII 2 (u, u) u ~ Cc (G/K), 

where ~ is the half sum of the positive roots of the pair (G, K) with multiplicities. 
Let 

-{-oo 

- A  = f t dEt 
II~lj 2 

be the spectral resolution of the unique self-adjoint extension - A of - %  there. For 
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z ~ C, Re z t> 0, the Riesz means of  order z are the operators 

+ ~  

S~ = J (1 - t/R)~+ dEt R >I Ilzll 2 . 
IMI 2 

Since A0 is G-invariant the operator S~ is given by convolution on G with a C ~ kernel 
s~. Thus S ~ f = f .  s~ is well defined also for any distributionf with compact support. 
I f f  e L 2 it is clear that S~ f = ERf tends  to f i n  L 2 as R tends to + ~. Since the classical 
work of E. M. STEIN (see exposition in [13]) on the Riesz summability for multiple 
Fourier series, many authors have investigated the LP norm and almost everywhere 
convergence for Riesz means for the eigenfunction expansions of elliptic or hypoellip- 
tic differential operators on manifolds [1, 6, 7, 9, 10, 11, 12]. In this paper we shall in- 
vestigate the almost everywhere convergence of S ~ f  to f as R ~  + ~, for 
f e L P , l  <.p<.2. 

On noncompact symmetric spaces the problem of norm summability in L p , p ~ 2, 
is ill posed since the operators S~ are not bounded on L p , p ~ 2, for any z. Indeed the 
spherical transform of the kernel s~ does not extend to a holomorphic function in any 
tube domain over the dual of the abelian component of the Iwasawa decomposition of 
the Lie algebra of G. Nevertheless we shall see that in the complex or rank one case 
S~, Re z I> 0, maps L p into L q for all p, q such that 1 ~< p ~< 2 and 2p/(2 - p) ~< q ~< ~. 
Moreover if f e L  p, 1~<p~<2, S~f- -~f  almost everywhere provided that 
Re z t> ~'(1, p) = (l - 1)(1/2 - 1/p) where l = dim (G/K). We remark that the critical in- 
dex ~(l, p) is the same as in the classical result of Stein for the Euclidean case [13]. 
Our results are based on estimates for the kernel s~ of the form 

Is~(x)l <. c(z)Rt/2(1 + R 1/2 IXi)-(R~+(Z+I)/2)(1 + IXl)% -~'~' , X C G, 

where 8, ~ are positive constants which depend on G. These estimates are obtained in 
Section 3. In the complex case they follow by explicit inversion of the spherical trans- 
form of s~. In the rank one case they follow by using the inversion formulae for the 
Abel transform to express s~ as a Weyl fractional integral of kernels of Euclidean 
Riesz means of appropriate order. In Section 4 we use the estimates of s~ to estimate 
the maximal function S , f ( x ) =  sup{IS[~f(x)l: R >llpl12}. We prove that if Z e z >  
> ( l - 1 ) / 2  then S . f ( x ) < - M ~ f ( x ) + c l f l . k ( x ) ,  where M~ is the Hardy-Littlewood 
maximal function over the balls of radius less than i and k is a kernel in L q for every q 
sufficiently large. Thus, when Re z > (1 - 1)/2, S .  is bounded from L p to L p + L ~ , for 
p > 1 but sufficiently close to 1, and r large. Since S ,  is bounded on L 2 for every z e C, 
Re z > 0, we can apply complex interpolation to prove that, for Re z > ~(l, p), S .  maps 
L p into L p + L ~ for every 1 < p  ~< 2 and r sufficiently large. For p = 1 the same argu- 
ment shows that S~ satisfies a weak type estimate when Re z > (1 - 1)/2. The almost 
everywhere convergence results then follow by standard measure theoretic argu- 
ments. 

Finally we point out that the methods of this paper, in combination with the 
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method of reduction to the complex case introduced by FLENSTED-JENSEN [4] allow us 
to obtain almost everywhere convergence of the Riesz means  of L p functions, 
1 ~< p <~ 2, also when the Lie algebra of G is a normal real form of its complexification. 
However, since in this case the critical index that we obtain is not sharp, as it can be 
seen by considering SL(2, R) which is a normal real form of SL(2, C), we omit the 
details. 

2 .  - P r e l i m i n a r i e s .  

In this section we shall briefly recall some basic facts on the spherical Fourier 
transform on complex and rank one symmetric spaces. The main references for this 
section are [5] and [8]. 

Let G be a semisimple, noncompact Lie group with finite center and Lie algebra 
g. Let K be a maximal compact subgroup of G and G/K the corresponding symmetric 
space. Let r be the Cartan involution of (G, K) and g = * @ p the corresponding Car- 
tan decomposition of the Lie algebra of G. Fix a maximal abelian subspace ct of ~ and 
let G = NAK and g = n | a | ~ be corresponding Iwasawa decompositions. For any g 
let H(g) �9 a denote the unique element of a such that g �9 NexpH(g)K. Let 2; denote 
the set of roots of g with respect to a, let 2; + denote the subset of positive roots and 
let 

z = ~  

m~ denoting the multiplicity of ~. Let a~ denote the complex dual of a. The spherical 
functions on G are the functions 

~ (g) = f exp [(i), + ,a)H(kg)] dk 
K 

g e G ,  

;~ �9 a*c. The functions ~a are K-biinvariant. Moreover (~, H) --+ ~a (exp (H)) is invari- 
ant under the action of the Weyl group both as a function of ~ �9 a* and of H �9 a. We 
shall systematically identify K-invariant functions on G/K with K-biinvariant func- 
tions on G. I f f  is a K-biinvariant function on G its spherical Fourier transform is de- 
fined by 

G 

The inversion formula is 

(2.1) f (x) = c(G, K) ~Tf()~)~ (x)lc(~)l-2 d~, 
a* 



360 S .  G I U L I N I  - G. MAUCERI: Almost everywhere convergence, etc. 

where c(G, K) is a constant which depends on the normalization of the measures of G 
and K and c is the Harish-Chandra c-function. The exponential map Exp(X)= 
= exp (X)K is a diffeomorphism of p onto G/K. Let J denote its Jacobian. Then for 

f �9 L 1 (G/K) 

f f(x) dx = ff(Exp(X))J(X) dX. 
G/K P 

Let Log: G/K---> ~ be the inverse of the exponential map. Then for x �9 G/K we shall 
denote by Ix I = IILog(x)ll the distance from x to the origin o = eK in G/K. Here I1"11 de- 
notes the norm induced by the Killing form on p. 

If  G is complex its Lie algebra g has a Cartan decomposition g = f | iL In this 
case all Weyl-invariant functions of H �9 a or ~ �9 a* can be extended uniquely to K-in- 
variant functions of Z �9 p or A �9 ~*. In the complex case ~ = i~, p* = (i~)*. Moreover 
one has the following representation for the spherical functions 

?A (Z) = J (Z)  -1/2 f e x p  [iA(AdkZ)] dk, 
K 

for Z �9 i~, A �9 (i~)*, from which one can derive a different expression of the inversion 
formula 

(2.2) f (exp  (Z)) = c(G, K)J(Z) -1/2 f f(A) e ia(Z) dA Z e i~. 
(it)* 

We now turn to a discussion of the inversion formula in the rank one case. Let 
F = R, C, H, or 0 be the real numbers, the complex numbers, the quaternions or the 
Cayley octonions. The rank one symmetric spaces can be realized as the hyperbolic 
space Hn (F). Here the subscript n denotes the dimension over the base field F. No- 
tice that n = 2, 3, 4, ... for F = R, C or H, but n = 2 for F = O. Let d = dimR F. Thus 
the dimension of G/K over R is l =dn .  The subspace a c p is one-dimensional. We 
shall denote by a and 2a the positive roots of q with respect to a. They have multiplic- 
ities m~ = d(n-  1) and m2~ = d -  1 respectively. Let H be the vector in a such that 
~(H) = I and write at  = exp (tH). The measure on G/K is normalized so that i f f  is a K- 
invariant function on G/K then 

(2.3) f f(x) dx = 1~(i/2---- ~2r:u2 f f(at)(sinh t)r~~ "~ dt 
G/K o 

Let f #: [1, + ~)--* C be the function such that f ( a t )  = f # (cosh t). The Abel transform 
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of f is 

(2.4) (9,f(at)= f dy f dxf#[(cosht--[-Ixt2/Z)2-~-]yl2)l/2] , 
Rm~ R~n2~ 

Then the spherical Fourier transform is the composition of the ordinary Fourier 
transform 5 ~ on R and of the Abel transform, i.e. j~(~) = ~Qf(~),  where ;~ e a* ~ R .  
Thus to invert the spherical transform on G/K we only need to invert the Abel trans- 
form. The inversion formulae for the Abel transform are the following (see for in- 
stance [7]). Let Dy = - (2= sinh y)-~ d/dy. Then 

i) i f F = R  and l i s  odd 

(2.5) F(a~ ) = D(J - i)/~ QF (%) 

(2.6) 

ii) if F = R and 1 is even 

~-oo 

F(ay) = (27:) 1/2 f [cosh (x) cosh -1/2 I/e - (y)] Dx QF(a~ ) sinh (x) dx, 
Y 

iii) if F = C, H or 0 there exist constants cl, c2..., Cd/2 such that 

+oo 

F(a) = ~" cj J [cosh 2 ( x ) -  cosh 2 (y)]-1/2 (cosh x)J + 1-dDJx+('~d2)QF(ax)sinhxdx. 
j=l Y 

Let A be the Laplace-Beltrami operator on the symmetric space G/K. Then for ev- 
ery smooth function f with compact support on G/K 

(2.7) ( A f ) -  = -($HI 2 + H II 

e a*. For every R > II~l] 2 and z e C such that Re z >I 0 let s~ be the K-biinvariant func- 
tion on G whose spherical transform is 

( 2 . s )  (>,) = (1 - (jl, Jl 2 + I) }l 

Then for every function ~ e C~ (G/K) the Bochner-Riesz means of order z are given by 
S~ ~ = ~. s~. Notice that, since A is elliptic, S~ = (I + zl)~ maps L 2 (G/K) into C ~ (G/K) 
continuously, by the spectral theorem. Thus s~ e C ~ (G) and S~ ~ is well defined 
whenever ~ is a distribution with compact support on G/K. 

3. - Es t imates  for the kernel  o f  the Riesz  means .  

In this section we shall estimate the decay at infinity of the kernels s~. Our main 
results are Propositions 3.1 and 3.3 below that show that, as a function of the hyper- 
bolic distance from the origin, s~ behaves essentially as the product of a function of 
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exponential decay and of the Bochner-Riesz kernel of the same order for the Eu- 
clidean space R z where l = dim(G/K). Le t  -J,, (t) = t-~Jv (t), t > 0, where J~ is the Bessel 
function of order ~. We shall begin with the complex case for which the result  is 
trivial. 

PROPOSITION 3.1. - Let  G be complex, l= dim(G/K).  Then for z e C, Re z/> 0, 

R / >  t1,~11 ~, z ~ i~: 

s~ (exp Z) = c(G, K)2 ~ (27:)z/2F(z + 1)R -~ (R - [t,oll ~)~z § ~z~ § ~(R - il,oll ~)~z ItZll]J - ~  (Z). 

PROOF. - The proof is a straightforward consequence of (2.2) and (2.8). 

Next  we assume that  G/K has rank one. Since 

(s~)~ (~) = ~(Qs~ )(~) = (1 - (ltPII ~ + I1~11 ~)/R)~+, 

we have 

(3.0) 

where c(1, z) = c(G, K, 1)2~s + 1). 

LEMMA 3.2. - Let  k > 0, f~ (t) = ~ + 1/~ (k 1/2 t). For  every positive integer ~t there 
exist constants c~ and functions ~j in C~(R + ), j = 1, ..., ,~, such that  

(3.1) D~fi(t) = ~ k~f~+j(t)~j(t) t e R+.  
j = l  

Moreover the functions ~j satisfy the estimates 

(3.2) Ir <~ cj(1 + t)J e -z~t t e R +  . 

PROOF. - Let  ~l(t)=t/sinht,  ~ , ( t )=Dt~_~( t ) ,  r e N .  Using the identi ty 
~,i ( t )  --= - - t ~  + l ( t )  it is now easy to prove by induction on ,~ that  (3.1) holds with func- 

J 
tions pj which are sums of products  ~ 1 . ~ 2 . . . . . ~ j ,  where ~ r~ =~z and with coef- 

i=1 

ficients which do not depend on z. 
To prove the estimate (3.2) observe that  ~ r ( t )=  ~(02*+l)(at) where ~(02r+1) is the 

spherical function on H2~+ ~(R) corresponding to the eigenvalue -[HI 2. Thus by Har- 
ish-Chandra's estimate [5] we have 

I~r(t)l<~c(r)(l+t)e-~, t > 0 ,  r ~ N ,  

from which (3.2) follows at once. 

REMARK. - It  follows from the proof of the previous lemma that  ~,~(t)= 
= (t/sinh tF.  
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From now on c(z), ck(z) will denote constants that  grow at most exponentially in 
Im z when Re z is in a bounded subset of [0, + ~) and that  may vary from line to 
line. 

To prove the desired estimate of the asymptotic decay of the kernels s~ we shall 
make use of the following (elementary) facts. 

A) By the integral representation of Poisson type of Bessel functions [3] we 
have 

(3.3) I~ (t) I <~ c(z) t > O. 

Moreover by the asymptotic expansions for Hankel's functions [3] we have 

(3.4) t ~  (t)i <- c ( z ) t - R ~  - ~/2 , 

(3.5) ~ (t) = t -~ -  1/2 (cl (z)e i(t- ~) + c2 (z)e -i(t- ~) ..~ R z  (t) ) , 

where IR~(t)l <~ c(z)t -1, t > 0 and z = [z - 1-1-= 
' 2 J 2 "  

B) For  every k > 0  the function t ~  (1 + t)(1 + k-1/2t) -1 is a monotone function 
on [0, + ~). I t  is increasing or decreasing according as k < 1 or k > 1. Thus 

(3.6) win(l,  k -1/2) ~< (1 + t)(1 + kl/2t) -1 <. max (1, k-1/2),  

C) The functions u - ~  cosh(h/-u))and u - +  cosh' (V~)are  convex on [0, + ~). Thus 
for every x > ~ y ~ O  

(3.7) cosh x - cosh y ~> (sinh y/2y)(x  2 - y 2 ) ,  

(3.8) cosh 2 x - cosh 2 y i> (sinh y cosh y/y) (x  2 - y 2 ) .  

PROPOSITION 3.3. - Let  R t> IIp!l 2, l = dim(G/K), Rez  >I 0. Then for every t e R  

(3.9) IS~ (at)1 <- c(z)R z/2 (1 + R 1/2 t t i)-Re~ -(z + 1)/2 (t/sinh t) (~- 1)/2 (cosh t) "~/2 , 

where c(z) is a constant that  grows at most exponentially in Im z when Re z is in a 
bounded subset of [0, + ~). 

PROOF. - Le t  m = 1/2, ~ = Rez,  k = R -  NpH 2. Since t---)s]r is even, we can as- 
sume that  t I> 0. Suppose k i> 1. I f  d = 1 and 1 is odd the proof of estimate (3.9) is very 
simple. From (2.5), (3.0), Lemma 3.2 and the estimates of Bessel functions we 
get 

m - 1/2 

IS~ (at)l <~ c(z)R-~ k ~+1/2 ~ kJ(1 + k 1/2 Ill) - z - j - 1  (1 + Itl)Je -(~-1/2)t . 
j = l  
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From (3.6), k(1 + ltI)(1 + k 1/2 Itl) -1 >I 1, so 

j~=ll { l+kl /21t ,  ~ m -  kl/2 1 + Itl 

Next we consider the case d = 1, 1 even. By the inversion formula (2.6) for the Abel 
t ransform and Lemma 3.2 we have 

(3.10) S]~(at) = c(z)R -~ ~ cjk ~+j+1/2 x 
j = l  

x f (cosh x - cosh t)-1/2 ~z +j  + 112 (k 1/2 X) ~j (X) sinh x dx.  

We decompose the integral over [t, + ~) into the sum A]~,2 (t) + B~,j (t) where A~,j (t) is 
the integral over [t, t + k -1/2 ] and we estimate the two terms separately. We break 
the proof up into several lemmata. 

LEMMA 3.4. - Le t  k = R - I1,:112 I> 1, fi = Re z. Then 

i k z +j + 1/2 A~,j (t) l <- c(z)R ~ + ~ (1 + R 1/~ t) -z-  m- 112 (t/sinh t) m- 1/2, 

for l <..j<.m. 

P R O O F .  - Since k I> 1, by (3.10), (3.7), the estimates for Bessel functions and the 
fact that  the dominant term in the sum is that  with j = m, we have 

t + k-l~ 

- m - 1  X (X 2 __ t2)_l/2xd x [kJA~,j(t)l <_c(z)(t/sinht)l/2. f km( l+k l /2x )  -~ ( s i ~ x  ) ~-1 

t 

t 1"~-1/2k m_ kl/2t)-~-~-l/2 <. c(z) s~nht / 112 (1 + . 

Since (1 + 11 :̀II2)-~/2R ~< k ~<R the conclusion follows. 

LEMMA 3.5. - Le t  k =R-]I`:II2~ 1, ~ = R e z .  Then 

Is +j + 1/2 ~ ,  (t)[ ~< c(z)R m + ~ (1 + R 1/2 t) -z - m- 1/2 (t/sinh t) m - 1/2 LJR,j 

for l < j < . m - 1 .  

P R O O F .  - By (3.2) and (3.4) we get 

kz+J+l/2B z (t ~ c(z)k(~+J )/2 k -1/2 ) t]-1/2 R,j ) ~ [cosh (t + - cosh 

+oo 

f 
t + k-If2 
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Hence by (3.7) 

k~+j+l/2,~ r~, c(z)k~+(~+j+l)/2(X kl/2t)_Z_m_l/2( t )1/2 
~R,jkvZ] ~ q- s~nh t  X 

+oo 

X ~ m - 1  t I m-1/2 " 
• f ( s inhx ] dx<.c(z)k ~+'~(1+ k 1/2t) - z -m- ' /2 (s~nht  ] 

t + k 1~2 

Thus we only need to estimate B~,~. This we shall do by integrating by parts,  ex- 
ploiting the oscillatory properties of Bessel functions. 

LEMMA 3.6. - Le t  k = R -II~ll 2/> 1, ~ = Rez.  Then 

k z + m + l / 2 ~ z  r§ �9 JR,,~ ~J <- c(z)R "~ +~ (1 + R 1/2 t)-z- ~ - 1/2 (t/sinh t) ~ -  1/2. 

PROOF. - By using the asymptotic expansion (3.5), we write B~,m(t) = p(t)+ r(t), 
where 

(3.11) p(t) = k -(~+'~+1)/~ f 
t+k-m 

(cosh x - cosh t) -112 x-~-  1 • 

• [cl (z)e i ( ~ -  ~) + cz (z)e - i ( ~  - ~) ] (sinh x) 1 - ~ dx = P l  (t) + P2 (t) 

and 

(3.12) 

-boo 

Ir(t)t <.c(z)k-(Z+m+2)/2 f 
t+k-m 

(cosh x - cosh t) -1/2 x -8 -  2 (sinh X )  1 - m dx.  

The est imate of r is straightforward. By (3.7) we have 

t + k-i /2 

x -~-m-1 (x 2 - t2) 1/2 dx <. 

<~ c(z)k -1/2 (1 + k 1/2 t)-~- m- 1/2 ( ~ I m - 1/2 
\ sinh t ] 

Finally to estimate p it is enough to consider Pl. Le t  H ( x , t ) =  ( c o s h x -  
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- cosh t) -v2 x -~- i (sinh X) 1 - m. By an integration by parts  we have 

Pi (t) = ci (z)k -(~ + m + 1)12 e -@ ( - i k  -1/2 ) _el(1 + Wkt) (k -1/2 + t)-i Imz • 

-I-r 

•  + k -li2, t) - f 

t + k - ~  

eiWk'~ -~x (x -iImz H(x ,  t)) dx 

Now 

then 

~x(X -i~m~H(x, t)) <- Ilmz]x-lH(x, t ) -  ~ x ( H ( x ,  t)) 

Ipl(t)i < Cl (z)k -(~ +'~+ 2)/2 [2H(t + k-112, t) + lira, zl f x - i l l ( x ,  t) dx  . 
t -~- ~ -1/2 

The desired est imate follows at once. 
The proof of Proposition 3.3 in the case R t> IHI 2 + 1 is an immediate  consequence 

of Lemma 3.4 and Lemma 3.6. 
I f  k ~< 1, i.e. tlpll 2 ~< R ~< IIplI2 + 1, then we must  prove tha t  

~ )m-  1/2 
(3.13) IS~ (at)t <<- c(z)(1 + ]tt) - z -m  ~ . 

This est imate is obvious if 0 < t < 1. If  t > 1, it follows from (3.6) and the hypothesis  

k ~ l  tha t  

[k(1 + y)/(1 + kl/2y)]~+J+ l ~  k (z+j+ i)/2 < 1. 

Then 
+zv 

ISIr (at)t <~ c(z)(sinh 0 -1/2 (1 + t) -~- i f (x - 0 -1/2 e-(~n- 1)~ dx  <. c(z)e -('~- 1!2)t (1 + t) -~- 1. 

t 

F or  d = 2, 4, 8 the proof is analogous. We simply use (3.8) instead of (3.7). 

COROLLARY 3.7. - I f  G is complex or G / K  has rank I there  exist  constants ~,, ~ > 0 

such that  

IS~ (x)l <~ c(z)R 1/2 (1 + R 1/2 Ixl)-Re~-(t + 1)/2 (1 -~- txlYe-~l~l, 

for all x in G / K .  I f  G has rank 1, ~, = IIPII and ~ = (1 - 1)/2. 
In both cases S]~ e Lq (G /K)  for every  q, 2 ~< q ~< + ~.  
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4. - Es t imates  for the  ma x ima l  operator.  

In this section we shall s tudy the boundedness of the maximal operator 

S , f ( x )  = sup ]S~f(x)] for f in L p (G/K), 1 <, p <- 2. 
R>0 

We begin with the L 2 estimates, using an idea introduced in [2]. 

LEMMA 4.1. - I f f e L 2 ( G / K )  we have, for fixed z with R e z > 0 ,  

z IIs,fll2 -~ c(z)llfll2. 

PROOF. - Let  WR, R > O, be the heat  kernel on G/K,  i.e. eR~f = f *  WR, f �9 L p (G/K). 
Since the heat  maximal operator f - * W , f = s u p { ] f * w R ] : R > O }  is bounded on 
L 2 (G/K), it suffices to prove the boundedness of (S z - W),. By using the spectral the- 
orem for A and the Mellin t ransform we can write 

(4.1) (S~ - WR )f  = f R - # c ( z ,  y ) ( -A) i r fdy .  

R 

for f in L 2 where 

c(z, ~,) = [F(z + 1)F(-i~,)F -1 (z + 1 - i~,) - F(-i~,)]/2~. 

Hence I c(z, y)] <- c(z)(1 + ]y])-(Rez+ 1) and the integral in (4.1) converges. Since L 2 (G/H) 
is a complete Banach lattice we can write 

(S ~ -  W ) . f =  sup ](S~ - W R ) f !  <~ c(z) f(1 + I t) 1) I ( -~ )~f  i @ .  
R > 0  

R 

Thus 

[](S * -  W).f]]e ~< c(z)llf]le 

since the operators (-~1) ~r, ~.eR, are isometries on LZ(G/K). 

Next we turn to the L v estimates for p close to 1. For  every p, q, 1 ~<p, q ~< ~, we 
denote by (LP + L q ) (G/K)  the Banach space of all functions f on G / K  which admit a de- 
composition f = g  + h with g e L p and h e L q. The norm o f f  is given by 

Nf]lp +q = inf{tlglfp + []hllq: f = g + h} . 

The space (weak-L I + Lq)(G/K) is the space of all functions f =  g + h with g e weak-L 1 
and h �9 L q. 

LEMMA 4.2. - Let  Rez > (1 - 1)/2. There exists q0 t> 2 such that  if I < p < q~ then 
S ,  maps L p (G/K) continuously into (L p + L~')(G/K) for every r e [qoP' /(P' - q o  ), + ~]- 
Moreover S ,  maps LI(G/K)  continuously into ( w e a k - L l + L r ) ( G / K )  for every 
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r �9 [qo, + ~]. The norm of S ,  grows at most polynomially in Im z if Re z is in a bounded 
subset of ((1 - 1)/2, + ~). 

The constant q0 depends only on G/K. 

PROOF. - Let p :R+ --~R+ be the function ~(t) = (1 + t)e(t/2)-le -Yt/2 where y, ~are as 
in Corollary 3.7. Consider the maximal operator on functions on G/K 

( 
ggJ(x) = sup p(t) J l f  (Y)l dy. 

t > 0  
B(x, t) 

We shall prove that if Re z > (1 - 1)/2 then 

(4.3) IS , f  (x) l <~ c(z) gg~ f(x) , 

for every f � 9  C~(G/K) and x in G/K. Since both S ,  and ~ commute with the action of 
G it is enough to prove (4.3) at the origin. Now by Corollary 3.7 

-t-c~ f Z IS~f(O) I <. ~ If(y)llsR(y)l dy <~ 
v =  - c ~  

2 "~< I~1 < 2  ~+~ 

<. c(z) ~ (R1/22')t(1 +R1/2T)-Rez-(t+l)/2p(2 ~+1) If(Y)l dy <~ c(z)ggJ(O), 

since for Re z > (1 -  1)/2 the series converges and is a bounded function of R. 
Now we can write ~ f  (x) <~ :;rCS(x) + i f  I* k(x), where X~f has the same definition 

as ~ f ,  but the sup is taken only for t e [0, 1], k is the function given by k(x) = 
= rain(c, ~(Ixl)) and c is some positive constant. Since ~(t) ~ constlB(0, t)] for t--~ 0 +, a 
classical covering lemma argument shows that the maximal operator g~ is weak type 
1-1 and is bounded on L p (G/K) for every 1 < p  ~< ~. On the other hand the function k is 
in L q (G/K) for every q t> q0, for some q0 I> 2, which depends only on G/K. Thus the 
operator f - ~  If  I* k maps L p (G/K) for 1 <~ p ~< qd continuously into L ~ (G/K) for every 
r �9 [qoP'/(P' - qo), +~] .  This proves the lemma. 

THEOREM 4.3. - Let 1 ~< p ~< 2. If Rez > (2/p - 1)(l - 1)/2 then for every r >1 Pqo/(2 - 

- P  + Pqo-qo) 

IIs~fll~ +r  < c(z)llfll~, 
for every f e LP(G/K). 

PROOF. - We use Stein's complex interpolation theorem [13], interpolating be- 
tween the L p result for p close to 1 (Lemma 4.2) and the L e result (Lemma 4.1). No- 
tice that Stein's theorem extends to the setting of the spaces L p + L q with almost the 
same proof. 
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COROLLARY 4.4. - Le t  1 ~<p ~< 2. If  Re z > ( 2 / p -  1 ) ( l -  1)/2 then 

lim S]~f(x) = f ( x )  a.e. for f e  L p . 
R--* +~ 

PROOF. - The proof  is a s t ra ightforward consequence of Lemma 4.2 for p = 1 and of 
Theorem 4.3 for 1 < p  ~< 2. 
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