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Structure of Equilibria in N-person Non-cooperative Games

By H. H. CHIN, T. PARTHASARATHY ') and T. E. S. RAGHAVAN ?)

Abstract: Here we study the structure of Nash equilibrium points for N-person games. For two-
person games we observe that exchangeability and convexity of the set of equilibrium points are
synonymous. This is shown to be false even for three-person games. For completely mixed games we
get the necessary inequality constraints on the number of pure strategies for the players. Whereas
the equilibrium point is unique for completely mixed two-person games, we show that it is not true
for three-person completely mixed game without some side conditions such as convexity on the equi-
librium set. It is a curious fact that for the special three-person completely mixed game with two pure
strategies for each player, the equilibrium point is unique; the proof of this invoives some combi-
natorial arguments.

1. Introduction

NasH [1951] developed the theory of non-cooperative N-person games by
introducing the concept of equilibrium points. He showed that every non-co-
operative finite N-person game has at least one equilibrium point in mixed
strategies. When N = 2 and the game zero-sum, this reduces to the well-known
minimax theorem or vON NEUMANN. For the zero-sum two-person games
KAPLANSKY [1945] introduced the notion of completely mixed strategies and
showed that in games where both players have only completely mixed optimal
strategies, the payoff matrix is a square and each player has a unique optimal
strategy. RAGHAVAN [1970] extended this result to the non-zero-sum bimatrix
games.

In this paper we try to see, how far the results in two-person games extend to
general N-person games. In two-person zero-sum games, the optimal strategies
are exchangeable. We observe that the convexity of the set of equilibrium points
implies the exchangeability of equilibrium points in bimatrix games.

Convexity is no more adequate for the exchangeability in 3-person games.
It is well-known that in zero-sum as well as in non-zero-sum two-person games,
if one player has more pure strategies than the other, then the game is not com-
pletely mixed. In a 3-person game, if a player has more strategies compared to
the other two players, the game may be completely mixed. In fact we give an
example to substantiate this statement. If a 3-person game is completely mixed
then the sum of the number of pure strategies for the three players is greater than
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twice the number of pure strategies for any player. In a completely mixed N-
person game, the equilibrium set may contain more than one point. However,
if the set is convex, there is only one equlibrium point. It is a curious fact to note
that for 3-person completely mixed games with two pure strategies for each
player, the equilibrium point is unique. We are unable to say anything about the
cardinality of the equilibrium set for completely mixed N-person games in general.

2. Exchangeability

Let Iy, 1,....Iy be N finite sets and X, X,,..., Xy be the sets of probability
vectors on Iy, I, ..., Iy respectively. An element of I; is called a pure strategy for
player j = 1,2,...,N and an element of X is called a mixed strategy for player j.
Let K;,K;,...,Ky be N real valued functions on I, x I3 x - x Iy. If iq,...,ixn
are the pure strategy choices of the N-players then player j receives an income
equal to K(iy,i,,...,iy). We again denote by K (x;,x,,...,xy) the expected income
to the j* player when x,,x,,...,x, are the mixed strategy choices of the N-players.

A point (x3,x3,....x0)€X; x X, x -+ x Xy is called a NasH equilibrium
point if

0 .0 0 0 0 0
Kj(xlax29"-axj~laxjsxj+ 15-“st)

2 Kj(x(l)rx(z),"';x?—1axj7x§)+19--‘sxl(‘)l)
forall x;e X;andj = 1,2,...,N.
For a proof of the existence of a NasH equilibrium point see NasH [1951] or
PARTHASARATHY and RAGHAVAN [1971].

Let e C X; x X, x --- x Xy be the set of all equilibrium points. We call ¢
exchangeable if for (x9,x3,...x%)ee, (x1,x},...,x})ee, we have (xP,...,x¥)
(x%,....x¥)ee where i; = 0 or 1 for all j.

When ¢ is exchangeable ¢ is always convex. For N = 2 we have the following.

Theorem 1:
In a two person game ¢ is exchangeable if ¢ is convex.

Proof:

We will prove ¢ is exchangeable if ¢ is convex. We will take X and Yas the mixed
strategy sets for the players I and II. Let (x° y°) and (x',y") be in &. By assumption
for0<i<1, Ax°+ (1 - )x,Ay° + (1 — A)y)es That is

Ki(Ax°+ (1 = )x,4y° +(1 = Ay) = K{(x,4y° + (1 = A)y) forall xeX.
Ko(Ax® + (1 — )X, 4y° + (1 — AY) = K,(Ax° + (1 — A)x,y) forall yeV.
By putting x = x° and x’ in the first inequality we get
Ki(Ax® + (1 — )x, 4y° + (1 = )y) =2 K (x%4y° + (1 = A)y)
K (Ax® + (1 = x, y* + (1 —Ay) = Ki(x,4y" + (1 = Ay)
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and hence
KiAx® + (1 = Ax, Ay° + (1 = Dy) = K, (x%4y° + (1 = 2)y)
=Ky (x,2y° + (1 ~ Dy)
forall0 < A < 1. Putting A =0 and A = 1 we get
K (x%y) = Ky(x,y) and K,;(x%)° = K,(x,y°).

Similarly we get K,(x%1% = K,(x%y) and K,(x,y°) = K,(x',y). This implies
(x%y) and (x,y°) are in & This completes the proof of theorem 1.

Remark:

Convexity alone is not sufficient for the exchangeability of equilibrium points
in N(= 3) person games. We construct below a 3-person game with ¢ convex
but not exchangeable.

Example:

Consider a three-person game in which each player has two pure strategies.
We will define the payoffs K{,K,.K; in such a way that ¢ is precisely the line
segment joining {(1,0),(1,0),(1,0)} and {(0,1),(0,1),(0,1)}. Here (1,0) for any
player stands for choosing the first pure strategy with probability one and (0,1)
means choosing the second pure strategy with probability one. In other words
we will have ¢ to be equal to

e={A1 -4, L1 -4, (A4L1-2):0<A<1}.

Let K, (i,j,k) stand for the payoff to the r*® player when i,j k are the pure strategies
chosen by players 1,2, and 3 respectively.
Now we define

a,=K,(1L,1,)—K,(21,1), by = K,(1,1,1) = K5(1,2,1), ¢, = K5(1,1,1) — K5(1,1,2)
8, =K (1,1, =K, (2,1,2), by =K,(1,1,2) = K5(1,2,2), ¢; = K5(1,2,1)~ K5(1,2,2)
a3 =K (1,2,1)— K (2,2,1), by=K,(2,1,1)— K,(22,1), ¢3 =K5(2,1,1) — K5(2,1,2)
4= K,(1,22) — K1(2,2,2), by=K,(2,1,2)—K,(2,2,2), co=K3(2,2,1)— K5(2,2,2)

Now we define the matrix

a, 4a; 4z a, 0 1 -1 0
b1 bz b3 b4 = 0 —1 1 0
€1 €3 C3 €4 0O 1 -1 0

We will show that the equilibrium points are of the required type. For simplicity
we will write (p°,q°,r°) instead of (p°,1 — p°), (%1 — ¢°), (*°,1 — r°). I (p°,¢°,r%) e ¢
we have

Kl(.p()’qo,ro) = Kl(paqo’ro)
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That is p°K;(1,¢%7°) + (1 = p%)K1(2,4%7%) > pK,(1,4°%r°) + (1 — p) K((2,4°,1°).
Here K(2,q°°) for example refers to the expected income to player 1 if he uses
the second strategy, player 2 uses the mixed strategy (g% 1 — ¢°) and player 3 uses
the mixed strategy (+°,1 — r°).

We get from the above inequality

(r° — PUK1(1,4°%7°) — K;(2,¢°%7°) 2 0.
Namely (p° — p) (¢°r%a; + °(1 = r)ay + (1 = ¢")r%az + (1 — ¢°) (1 = r%)a,) 2 0.
In our example this reduces to
@ -p@®—r=0 forall 0<p<1 — 1
Similarly by considering the X, and K, functions we get
(°—q)(° -p° =0 forall 0<g<t — 2
P =nN@pE®—-q% =0 forall 0<r<1 — 3.

From inequality (1) we have either (a) g° = r° or (b) g° — r® > 0 and p° = 1
or(c)g° — r® < 0. Case (b) and (c) are not possible if they have to satisfy (2) and (3).
Thus ¢° = r°. Similarly from (2) we infer p® = r°. Thus p° = ¢° = r°. Thus any
equilibrium point is of the required type. Also it is clear that any p* = ¢* = r*
where 0 < p* < 1 satisfy the three inequalities and that (p*,q*r*)ee. Clearly

(p =1,g=0,r=0) is not in ¢ though (p =0,g=0,r=0)and (p = 1,9 =1,
r = 1) are in & In other words ¢ is convex but not exchangeable.

3. Completely Mixed Games

Leti=1,2,....m;j=1,2,..,nand k =1, 2,...,] be the set of pure strategies
for players 1, 2, and 3. Let K,(i,j,k), r = 1,2,3 be the payoff to the r't player when
i,j,k are their strategy choices. Let x, y,z denote mixed strategies for 1,2, and 3.
A mixed strategy x is called completely mixed if each co-ordinate of x is positive.
As before we use K,(x,y,z) to denote the expected income to the r'® player when
x,y,z are used by the respective players. For an equilibrium point (x°,y°,2%)
let A,Bben x mand! x m matrices defined by

ai = Kz(i,j,Zo) _] = 1,2,...,", j= 1,2,...,m.
bki == Kg(i,yo,k) k = 1,2,...,1, l = 1,2,...,m.
We define s(3°,z% = {x': (x,y% 2% € ¢}. We say s(y°,z°) > O if every x' in it is

completely mixed.

Theorem 2:
Let (x°,5°,2% ¢ and v, = v, = vy = 0 where v, = K,(x°,y°,2%, r = 1,2,3.

. {474,
Let s(y°,z% be completely mixed. Then the rank of the matrix [ ]IS morm — 1.

T, . . B
In case it is m — 1, x° is the only element in s(y°,z°).
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Proof:
Clearly the rank p of [g] < m. If possible p < m — 2. Then there exists a [T

independent of x° such that AT =0, BII = 0. Since (4x°%),; = K,(x°,j,z°)<v, =0
for all jw have (4x%) < 0. (Here we mean each coordinate of (4 x°) is less than or
equal to 0). Similarly Bx° < 0.

As in KAPLANSKY’s proof [1945] consider x* = x° — AIT in case 211, =0
or x* = (1 + A)x® — AIl in case £II; = 1 (we can assume this when X II; # 0).
For suitable 4 > 0, x* is a mixed strategy but not completely mixed. Thus
K, (x*,j,z% = K, (x® — 111,j,2°) or K,((1 + A)x° — A111,j,z°) and that K, (x*,j,z°) < 0.
Similarly K;(x* y%,k)<0. Also we have K,(x*,1°2% = K5(x* y° 2% = 0.
But K,(;,)°2°% = 0 for all i as x° is completely mixed. Thus (x*,y° z°) ¢ and
s(»°,z°% is not completely mixed. This contradicts our assumption regarding
s(¥°, z°).

Hencep =m — lorm. Lastlyincaseitism — 1, ATl = 0, BIl = O hasasolution
I1. We claim that [T is a multiple of x°; for otherwise if IT and x° are independent
we can repeat the above proof verbatim and contradict our assumption on
s(¥°,z°). Hence the last assertion in the theorem.

Theorem 3:
Let m > n + I Then given any (x° y°,z°% e ¢ there is always an (x* y°,2% in ¢
such that x* is not completely mixed.

Proof.
In case x° is not completely mixed we have nothing to prove. Let x° be com-
pletely mixed. Without loss of generality K,(x°y°z% =¢, =0, r=123.

Consider the matrix
[A -1 O]
C =
B 0 -1

where 1 denotes an appropriate column vector with all entries unity. The rank
of Cis at most n + | < m. We have at least 2 linearly independent solutions to

A

and clearly one of them is independent of the vector (x°,0,0). Let (II,a, f) be that
solution. Clearly IT # 0 for otherwise « = =0 and that (II,a,f) is the trivial
vector. We get AIl =o-1, BIl = §-1.

Since Ax° < 0 with equality attained for some co-ordinate and Bx° < 0 with
equality attained for some co-ordinate x® and I7 are independent if « or § + 0.
If « = f = 0, by our very choice x° and IT are independent. As in theorem 2 we
can construct an x* such that x* is not completely mixed and (x*, y°,z° e . This
completes the proof of theorem 3.
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Corollary:
If a three person game is completely mixed we should have m + n + [ >
max(2m,2n, 21]).

Proof.
This follows easily from the previous theorem.

Remark:
The inequality condition in theorem 3 cannot be weakened as the following
example shows.
Let m=3,n=2,1=2 Let K (i,j,k) = constant.
We define

. 2 2 -1 .. 0 0-3
Kl(la]al) = I:O 1 2] s K2(l9j12) = [_2 -1 0] -

Here i refers to column and k refers to row.

) 2 0 1 . 0 -2 -1
K3(la1’k)_[3 0 O}, KS(lszsk)—l:l __2 _2]

Here i refers to column and k refers to row.

We have x° = (1/3, 1/3, 1/3), y° = (1/2, 1/2), z° = (1/2, 1/2) as an equilibrium
point and x° is the only element in s(y°,z°). Note that m = n + [ — 1 and s5(3°,2°
is completely mixed. Of course the game is not completely mixed, for the strategy
(1,1,2) is a pure equilibrium point. We will later construct an example with
m = 3,n = 2,1 =2 where all the equilibrium points are completely mixed. We
see that the assertion in theorem 3 is sharp. However with some added condition
we can prove the following.

Theorem 4.:
Let in a three person game m = n + [ — 1 and let (x%)°,z% €& If y° or 2° is
not completely mixed, then s(y°,z°) is not completely mixed.

Proof:
As before we assume K,(x°°2% = v, =0, r = 1,2,3. Suppose, say z{, the
last co-ordinate of z° is zero. Consider

A-1 0
Cz[Bl 0 —1]

where B, is the submatrix of B with the last row omitted. Since C hasn + [ — 1
rows and n + | + 1 columns, there is a non-trivial solution to

A -1 0 n
x| =0
B, 0 -1 B
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which is linearly independent of (x°,0,0). Now II # O for otherwise (I1,«,f) is a
trivial vector. If o # 0 and since K,(x°,j,2°) = (4x°); = 0 for some j, x° and II
are independent. Suppose « =0 and f = 0 then evidently by our choice of
(I1,a,p), IT is independent of x°. Lastly let « = 0, but g # 0. Since z{ > 0 for
some k < [ we have vy = k3(x° y° k) = 0 and that (B; x°), = O for that k. There-
fore x° and IT are independent.

Let b, be the last row of B. We have (b, IT) < f or (b IT) > p. Let x* = x° — A1,
£=x"+ A x =1 + A)x — AILx = (1 — )x° + AIl. We will choose one
of them depending on 2I1; =0 or 1 and (B,II) < f or (b,II) > B. If X1I; = 0,
for suitable positive A’s x*,X are both mixed strategies but not completely mixed.
If ZII; = 1 (without loss of generality when X IT; # 0), similar statement can be
made on x’ and %.

If X1, = 0,511 < B, choose %;if Z11; = 0, b, 11 > B choose x*.
If2I,=1,bI < B, choose X;if ZII; = 1, b, Il = f choose x" .
Depending on these cases we have
Ax* < — da, AX < Ao, AxX < — Lo, AX < Ao
Byx* < — AB, BiXx < AB, Byx' < — A, BiX < Ap
bix* < — AP, X < AB, byx' < — i, hx < Af .

This shows, say for the case K,(x*,j,z%) < — A« for all j, there is a j° with
K,(x*,j%x% = —Aia. In fact when y? > 0 the equality is attained. Similarly
K5(x*,y% k) < —Ap for all k and for some k° < I, K5(x* y° k% = —1B. This
shows that (x*,y° 2% ee Similarly the other cases can be disposed of. Hence
s(y°,z% is not completely mixed.

Remark:

When m = n 4+ | — 2 and when player 2 or 3 misses a pure strategy in an
equilibrium (x°,y°,z°), we cannot conclude s(y°z° is not completely mixed.
We have simple examples even when m = n = [ = 2,

4. Non-uniqueness of Equilibrium Peints in Completely Mixed Games

We call a game completely mixed if every equilibrium is completely mixed.
In otherwords no player can be in equilibrium with the other player if he misses
a pure strategy. In two-person zero-sum as well as non-zero-sum completely
mixed games, the equilibrium set has just one point in it. For games with N > 3
this is no more true. We construct below a 3-person completely mixed game
where ¢ consists of precisely two points. This demonstrates that without further
conditions, we cannot assert the uniqueness in general.

We introduce the following notations. Player 1 has 3 pure strategies. Player 2
and 3 have two pure strategies each.
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Let K,(i,j,k) denote the payoff to the r*® player when i,j,k are the pure strategy
choices of 1, 2 and 3 respectively. We define
K;(1,1,1) — K,(2,1,1) = ay, K,(2,1,1) — K,(3,1,1) = qa]
K,(1,1,2) - K,(2,1,2) = a,, K,(2,1,2) — K,(3,1,2) = a}
K,(1,2,1) — K;(2,2,1) = a,, K,(2,2,1) — K;(3,2,1) = a}
K,(1,2,2) - K,(2,2,2) = a,, K,(2,2,2) — K,(3,2,2) = a,
We define af = — (a; + @) for i = 1,2,3,4.

Let
K2(1a131) - K2(17251) = bl) K3(1’131) - K3(19192) =C;

K,(1,1,2) — K,(1,2,2) = b,, K;5(1,2,1) — K;3(1,2,2) = ¢,

K,(2,1,1) — K,(2,2,1) = b;, K;3(2,1,1) — K5(2,1,2) = ¢,

K,(2,1,2) — K,(2,2,2) = by, K3(2,2,1) — K;3(2,2,2) = ¢,

K,(3,1,1) — K,(3,2,1) = bs, K5(3,1,1) — K5(3,1,2) = ¢,

K,(3,1,2) — K,(3,2,2) = bg, K;3(3,2,1) — K;3(3,2,2) = ¢
In fact we will choose these constants such that ¢ contains precisely the following
two elements

{(1/3,1/3,1/3),(1/2, 1/2), (1/2, 1/2)}
{(1/3,1/3,1/3),(1/3,2/3), (1/3, 2/3)} -

Consider the following matrix

and

a; a, a3 a, 2 =35 5 1
a, a, a; d, 2 -4 1 1
a; day a; ay -4 715 —-15 =2
b, b, by b, bs bg -10 1 9 -2 11
C; € C3 C4 Cs5 Cg -1 -1 -3 -3 4 4

One can check that this game is complétely mixed.
We will now establish that ¢ contains precisely

((1/3,1/3,1/3), (1/2,1/2), (1/2,1/2}  and  {(1/3,1/3,1/3), (1/3,2/3), (1/3, 2/3)}.
In order that {(p;,p,,1 — Py — P2, (&1 = @), (r,1 — 1)} to be an equilibrium
point in our example we should have

Kl(ly(q,1 - q), (T,l - r)) = K1(2,(‘1,1 - ‘I), (r51 - r)) = K1(3>(q,1 - q), (r’I - T))

i.e.,
6qr —~45q—5r+1=90

6gr —5q+1=0.

By eliminating g we have 6r2 — 5r + 1 = 0,i.e,r = 1/2 or 1/3. Similarly ¢ = 1/2
or 1/3. When g = 1/2, we have r = 1/2 and when g = 1/3 we have r = 1/3. We
- will show in either case p, = p, = 1/3.



Structure of Equilibria in N-person Non-cooperative Games 9

Consider
Kz((PL’pbl - Py — pz)al,(l/z’l/z))
= Kz((Pan,l ~ P~ p2)925(1/2’1/2))
KS((plap251 - P11 p2))(1/2’ 1/2)’ 1)
. = K3((pl’p2’1 - Dy — p2)5(1/251/2),2)
1.€.,

—10p, — 14p, + 8 =0.

We get p; = p, = (1 — p; — p;) = 1/3. Similarly, we settle the other case
when g = r = 1/3. This completes the construction of the required example.

5. Uniqueness of the Equilibrium Point
Here we prove the following

Theorem 5:
Let in a three-person game the set of equilibrium points be completely mixed
and convex. Then ¢ has just one element.

Proof:

Asf before let K,(x,y,2) be the expected payoff to player r when x,y,z are the
mixed strategy choices of players 1, 2, and 3. Let, if possible, ¢ have two equilibriums
(x%,3%2% and (x,y,Z). By assumption (Ax° + (1 — A)x,4y° + (1 — A)y,
4z° + (1 — A)z)eefor 0 < 4 < 1. Since ¢ is completely mixed

K (i, Ay + (1 — )y,42° + (1 — A)z) = ¢ for all pure strategies i
i.e.

AP2K(0,)%2% + (1 = DK, (G,y,2) + M1 = D {K,(,y%2) + K, (,y,2°) = c.

Since

K.(,y%2% = 0%, and K,(i,y,z) = v}

we have
Ky(5,5°%2) + Ki(,y.2%) = o, say.
Similarly
K,(x%j,2) + K,(x',j,2% = az
and
K3(x0’y/’k) + Ks(xlayoak) =03
Consider

x*=(1+0x°—tx,y*=(1+0)° —ty,z*=(1 +0)z° — tz.

For ¢t > 0 and small, x*,y*,z* are all mixed strategies. Since (x°,y°,z% # (x',y',2)
thereis a t > 0 for which x*,y*,z* are mixed strategies but at least one of them is
not completely mixed. Further we will show (x*, y*, z*) e e. Consider
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Kl(iay*92*) = (1 + t)zKl(i»VO,ZO) + tZKl(Ly/azr)
— (1 + (K, (,y%2) + K,(,y,2°)
=1+ )% + 2] — t(1 - Da,.

Similarly we establish the identities for K, and K,. Hence (x*,y*,z*) e e. This
contradicts the assumption that ¢ is completely mixed. Hence the proof.

Remark 1.
The proof only uses the existence of a line segment. The theorem says that ¢
when completely mixed cannot contain line segments.

Remark 2:

We have to go to m =3, n =2, k = 2 to construct a counter example for
non-uniqueness of equilibrium points in completely mixed games; for when
m = n = k = 2 we have the following curious

Theorem 6

Let a three-person game have two pure strategies for each player. If the game
is completely mixed, then the equilibrium point is unique.

We will start with some preliminaries for the proof of this theorem.

As before let

=K,(1,1,1)-K,(2,1,1), b; =K,(1,1,1) - K,(1,2,1), ¢, =K,(1,1,1) - K;(1,1,2)
a,=K,(1,1,2) - K,(2,1,2), b, =K,(1,1.2) - K,(1,2,2), ¢, =K;(1,2,1)—K;(1,2,2)
a; =K (1,2,1) — K,(2,2,1), b, =K,(2,1,1) — K,(2,2,1), ¢; =K;(2,1,1) — K4(2,1,2)
as =K (1,22) — K,(2,2,2), b4 =K,(2,1,2) — K,(2,2,2), ¢, =K;3(22,1) - K5(2,2,2)
Let (p,(1 — p)),(g,(1 — g)),(r,(1 — r)) be mixed strategies for the three players. For

simplicity we denote the above choices of mixed strategies by (p, q,r). Let (p°,¢°%,r%) e
and 0 < p°4°r° < 1. Then we have

°°(a1~a2—a3+a4)+q°( —a) +1%a; —a) +a, =0
p°ro(b, — by — by — by) + p°(by — by) + r°(b; — by) + by =0
P‘1(01_02_03_04)+P(2_C4)+4(03_C4)+C4=0

We will write
= a; — Gy — A3 — Qg Ay = Ay — Qg A3 =03 — Gy, Ay = ay
py =by —by — by — by, py =by —bs, sy =b3— b4, p="b,

Vi=C —Cy —C3 —C4y Vy=Cy —Cy V3 =C3—Cy Vqg=C4

Lemma 1.

When m = n = k = 2 and the game completely mixed with (p°q°r° e, p°
and ¢° are unique for 7°; namely if (p*,q*,7°) € & then p* = p°, g* = ¢°. Similar
assertions hold for p° and ¢°.



Structure of Equilibria in N-person Non-cooperative Games 11

Proof:
Consider the equations

qri, +ql, +riz; + 4, =0
Priy + Py + Ty + g =0
pqvy +pvy +qvy + v, =0

{r°,q°r°) is a solution to them and any (p,q,r) with 0 < p,q,r < 1 satisfying the
above lies in &. Clearly ro4; + A, rouy + py, qovy + v, cannot all be zero; for
then (1,4°,r°) satisfies the above equations contradicting the fact that the game
is completely mixed. Thus at least one of them is not 0. Say ryi, + 4, # 0. Then

qo(roil -+ Az) + (rO;L3 + 14) = 0
q*(roj.l + )\.2) -+ (7'0}.3 + 14) = 0

Le., g* =¢°% We have (p*,q°1°),(p%q%r°) e e and p* = p° for otherwise ¢ will
contain the line segment joining (p*,¢°,r°) and (p°,¢° r°). This contradicts that ¢
is completely mixed.

Similarly if r®u, + g, # 0 we have p* = p%q* = ¢q°. We will show that
r°%; + 4, =0 and r®u; + p, = 0 is not possible. Suppose so. We saw that in
this case ¢°v, + v, # 0. We have

p0 = — (@°vs + va) )
(@' vy +vy)
Consider
po gyt vy
(gvy +vy)

pisa continuously differentiable function in a neighborhood 4 of ¢° with0 < p < 1,
when g e 4.

dp (vivs — V3v3)
aq = RrTREEALE e for ge 4.
1fv; vy —v,v; =0, then p = p® for g e 4. That s, the line segment {(p°,q,r%): ge 4} C &
which is clearly not possible.

If vivs — v,v3 > 0, in this case p is an increasing function of ¢ in 4. Consider
py = sup{p:(p,q,r°) €e}. Clearly thereisa q, with (p,,q,,r%) e &. Alsop, < 1,4, < 1.
Since r°4; + A, = r°u; + pu, = 0, we know q,vy + v, = 0. This shows that

d . .
TZ— a: > 0 and hence we have a (p,, ¢,,r% e¢ with p, > p,. This contradicts

>

the maximality of p, . Similar contradiction can be arrived at when v, v, — v, vy < 0.
This completes the proof of the lemma.
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Lemma 2:
Let ¢ be completely mixed and let

) = (rds + A) (rus + p)vy — (rd; + Aa) Ty + p)v,
—(rAy + A (rps + pg)vy + (P + A) (rpy + pp)ve =0
for all r. Then ¢ has a unique point.

Proof:
Let if possible (p°4°,r°), (p*,q*,7*) be two distinct elements in ¢. By lemma 1,

p° # p*,¢° # g* and r° # r*. We will analyze different cases to establish the
uniqueness.

Case (i):
ry + A, =0, r°u; + p, =0. Clearly (p*,q*,r%)c¢ and by lemma 1 p* =p°
and ¢* = ¢° a contradiction to our assumption.

Case (ii):

r'hy + Ay # 0,7 py + p, # 0for any (pl,g',r') ee Let g5 = {r':(pl,q',r)ee).
&, is closed in [0,1]. We will prove ¢, is open. Let r* e ¢,. There is an open interval

_ o rus +op) __(riz+Ay) .
4,: such that p(r) = . and ¢q(r) = - m with 0 < p(r),

qry < tforallrea,.
Also (p(r).q(r),r) satisfies the equations (1) and (2) of lemma 1. Further by as-
sumption f(r) = 0 and that

(p(r)q(r)vy + p(r)vy + q(r)vs + v ) (riy + A (r py+ py) =0
forallred,. Alsord; + 4, # 0, ru; + u, # 0. Thus p(r), q(r) satisfies the third

equation. Hence (p(r),q(r),r) € ¢ for all re 4,,, i.e., &5 is open. Hence &; = [0,1],
as ¢; # (. This contradicts ¢ is completely mixed.

Case {iit): A+ #+0 Py +u,=0

r*111+1125é0 r*ﬂ1+ﬂ2=0

since r® # r*, u, = u, = 0. Also u; = u, = 0. Such a game cannot be completely
mixed.

Case (iv}: A+, =0 ru +p, %0
¥, + A, =0 rfu, +u, #0.

This is similar to case (iii).

Case (v).
PP+ i #0 u+ =0
¥, + 2, =0 r*u, + u, #0.
Here u, # 0 for otherwise u, = 0 and this contradicts our assumption
r*u, + uy # 0. Similarly p,, ps,u, # 0 (observe r'u; + py = 0, r* s + u, # 0).
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Further (i, u,), (43, 1) are linearly dependent as 7, + p, =0and r°uy +u, =0.
Therefore (i3, u4) = a(uy,1,) for some o #+ 0, Further

p*= - r*ﬂ3+ﬂ4 = —
A )

Consider

qr) = -

in a neighbourhood 4, of the point r® except at r°.

Since u;,4; #0 and since r®y; + y, =0, in this neighbourhood both p(r) and
q(r) are defined except at r = r° Further (p(r),q(r),r) satisfies equations 1,2 and
also 3, by our assumption on f(r) for all r € 4,, except for r = r°. Also p(r) = p*
at all those points. This contradicts lemma 5.1.

Case (vi):
A+ #0 Pu+u,=0
A+ A, F0 r*u, +u, #0.
As before p; = 0, u, # 0, uy # 0, u, # 0. Also
(rps + p) 0
= — —2 1% forall r+#r°.
P (rpy + pp) *

This is similar to case (v). Hence the proof of the lemma.

Remark:
If (p°,4°r°) € ¢ then one can easily check that f(r°) = 0.
Proof of Theorem 6:
Consider the matrix
ay, a3, 4z, 44
A=|by, by b, b,
€1, €2 €3 C4

associated with the completely mixed game. Since it has no pure equilibrium,
for each one of the vectors

vy = |by| . vy,=

Us = byl, vs

a;
b,
L~ €1
F_ (12—
b,

€3]

at least one coordinate is negative.

s

U3
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We will assume for the present no entry in A is zero. This means there will not
be any equilibrium where some two players use pure strategies.

For any given matrix A we can consider which of the following 6 conditions
are satisfied.

Siibyb, <0 and cyc, <0, S,:b3b, <0 and ¢3¢, <0,
S;:a,a,<0 and c¢;c; <0, S§,:a3a,<0 and c,c, <0,
Ss:a,0,<0 and b by <0, Sg:a,a,<0 and b,b, <O
It is quite possible that none are satisfied.
Let us consider the equations
qri, +qi, +riz + A, =0.
Prigy +ppy +rps + g =0
pqvy +pvy 43 + vy =
Let (po,qo.70) € &. We have
Golrody + 4g) + (rods + 44) =0 — 1
Polrots + pa) + (rops + pg) =0 — 2
(roAy + ) (ropts + 12)(Pogo Vi + PoVa + qovs + v4) = 0.
That is
Polropty + p2)qo(rody + A)vy + Polrody + A5) (ropty + pa)v,
+ qolrops + pa)(rody + A2)va + (rody + 4g) (rouy + py)ve = 0.

Using 1 and 2 we get
(rops + py) (rods + A)vy — (rofis + wa) (ro 4y + Ax)v,
— (roAs + A (ropy + pa)vs + (rody + A3) (ropty + p2) va = 0.

Thus the function

fO) = (rps + p)(rhs + Avy — (rus + pa) (rdy + 43)v,
—(rhs + A (rpy + p)vs + (A + ) (rpy + pa)v,

has a root at r = r,. By lemma 2 we can assume that f(r) # 0 and that f(r) is
either linear or quadratic. If it is linear, then for any (py,4,7¢) € &, 7 18 unique and
from lemma 1 we have a unique equilibrium point. The non-trivial case is when
f(r) is a quadratic. We will without loss of generality assume that the three quad-
ratics exist. Similarly one gets the quadratics in p and q. Let f,, f,. £, be the three
quadratics.
One easily computes

F(0) = bscia; — bycga; — bycsas + bicsa,

fo(1) = bycya; — bycya, — bycyas + bycya,

£,0) = agcyby — azcyby, — aser by + azcyby
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f1) = aze3by — aye3by — ay¢0b5 + ayciby
J0) = asbsey — azbyc, — agbyes + azhyey

£() =azbsc; —aybye, —azbiey +aghicy

One can also compute the following expressions which we need in the sequel.

C3

—-—————) (cyeq — c3c3) f(1) when c¢yc3 <0

b3

N
/\
S
|
0

<

= (byby — byby) fi(1) when b, by <0

I
o>
-

&

(cicq — €3¢3) f(0) when c,c0 <0

|
o
(5]

o~
.p
II

>

bybs — byby) f,(0) when b,b, <O

G"
»

g

(cicq — c3¢3) f{1) when ¢;¢, <0

|
Q
~

(cycq — c3¢3) f,(0) when ¢3¢0 <O

&

— )= (aia, — ayas)f,(1) when a,a; <0
-

= (a,a, — a,a;)f,(0) when a,a, <0
a4 - a2

Y

T = (a,a4 — aya3) f,(0) when aza, <0
— U3

=

= (b1bs — byb3)f,(0) when byb, <0

c~
|
c~
w

|
u?
\_/\_/v\_/\_/\_/\_/\_/vv
H

4

™

/"\/‘\/‘\/‘\/\A/‘\/\/\/’\

= (a,a4 — a,a5)f,(1) when a,a, <0

I
2
o

f(bz-—zb1> (byby — byb3) f,(1) when b b, <0

We call two matrices equivalent if their entries are non-zero and they have the
same sign structure. We have 2'? distinct matrices modulo equivalence. Of these,
certain matrices may possess pure equilibrium and hence can be omitted; for
+

example if the first column is |+| it can be omitted. For certain matrices one can
+

directly check that £,(0) f,(1) < 0 or £,(0) £,(1) < 0 or £,(0) £,(1) < 0 in which case
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there is only one positive root for one of the quadratics and by lemma 1, the
equilibrium is unique. For example, if the sign structure is

- +, - +
+, +, -, =], £LOf(1)<0.
+, > +, -

We computerized the matrices and in total we were left with 762 cases which do
not fall in the above category. We have checked all the cases and the proof of the
theorem depends on the location of the root in an appropriate quadratic. We
will discuss a few of the typical cases which repeat in all other cases.

Case (i):
None of the conditions S, or S, ... or S satisfied.
Consider for example the case

s +, -, +
A= +3 +9 ) -
+5 -+, —

One directly checks that £,(0) < 0 and f,(1) > 0, and that there is a unique root
for the r-quadratic in (0,1). Hence by lemma 1 the equilibrium point is unique.

Remark.

In fact when none of the conditions S, to ...,S, are satisfied and when no
entry in A is zero, then one can check that each row has exactly two positive and
two negative signs, when ¢ is completely mixed. We can also assert that a, a,<0,
biby <0,¢;¢y <0,a,a; <0,b,b5 <0,c,c3 <O

Case (ii):
Let one of the conditions S, or... S¢ be satisfied. Say a,a, < 0 and by b, < Q.
For example consider

T > it +
A= T +a ) -
T > +3 -
clearly in this case
0<—% b <1
a4 - az ’ b4 —_ b2 ’
Let
b, a,
= = r=0.
p b4 - b2 q a4 - a2
We have

K1(19q12) = K1(2,q,2)
K2(pa1a2) = KZ(p,z’z)
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and hence
KS(p,q92) < K3(Pa‘1, 1)
since ¢ is completely mixed,

ie.,

agbyc, — azbycy — agbycy + azbycy)
K3(paqa1)_K3(p,q,2)=(4 4.1 27442 4203 20,7Cy

(as — a,)(by — by)

>0.

But

(@4 — ay)(by — by) < 0.
Hence
a4b4C1 - a2b462 - a4b2C3 + 02b204 =f;(0) < 0.

We will also assume f,(1) < 0; for otherwise there is only one root in (0,1) to the
r-quadratic and the proof was already discussed for that case. Since a, a, — a,a; <0

and a,a, < 0 we have f, (%——) = {a,a, — a,a;) f,(0) > 0.

4 — Gz
With the first row having the sign structure (—, —, —, +)

ro(@oa; + (1 — go)as) + (1 — ro)(goa; + (1 — golay) =0
(Here (pg,q0,70) € €) implies gga, + (1 — gg)a, > 0,

ie.,
. a
a, > qola, — a,) and since a, —a, >0, gy < 4
a4 - a2
i.e., for any
4

o < —
(p.g.rV€ey = a,

Thus if f,(0) < 0, from the assertion f, <—a—a4—a> > 0 we know there is only one
4 T &

.. . . a .
admissible root for the g-quadratic in the interval { O, 4 . In this case ¢

has a unique element. Suppose £,(0) > 0; we can assume f,(1) > 0.

One checks
c
Iy (*3—'—> =(c1¢4 ~ Ca¢3) f(1) > 0

€3 — €
and

5, <—b”_;bz) = (b1by — b3b) £0) < 0

b . .
and also for any (py,go, 7o) € & ——=—— < p, < —3__ and that Do 1s the unique
b, — b, €3 — 0

positive root for the quadratic in this interval. Hence ¢ has a unique element.
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Case (iii):
Two of the conditions S, or S, or...or S, are satisfied. Say
+ 5 + s T -
A = + b R Y +
s + ) + 3 .

Here S, and S, are satisfied. As before we demand

c b C b
1 2 2 4 4
(’cz—cl’ bz—bl>ég and <0’ e b¢—b3>¢8’

ie.,
(byc,a; — bycya; = byeyas + byciay) _ fp(1) <0
(by = by)ley —¢q) (by = b)ley —¢y)
and
(bscaay — bycqa, — bycyas + bycyay) ) >0
(by — b)(cs — ¢3) (by — b3)(cy — c3) '

We get £,(1) f,(0) < 0, and hence as before ¢ has a unique element.
One deals with all the other matrices in a similar fashion. This completes the
proof of the theorem when A has only non-zero entries.

Remark 1:

If some four of the conditions S,,S,,...,S¢ are satisfied and if A has all the
entries non-zero, then the game has a pure equilibrium. This we observed from the
computer output.

Remark 2:

If we allow zeros in some of the entries, the same type of proof goes through.
It would be interesting if one could give a simpler proof avoiding these combi-
natorial arguments.

Remark 3.
It would be nice to know whether the uniqueness holds for general n person
games with two pure strategies for each player.

6. Further Remarks on N-person Games

Some of the theorems proved in the previous sections are extendable to general
N-person games as follows.

Theorem 7:
Let m,,m,,...,my, (N > 3) be the number of pure strategies for N-players in

an N-person non-cooperative game. Further let m; > Y. m; — (N — 3)for some i.
JFi
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Then for any equilibrium (x?,x3,...,x?,...,xy) € &, we can find another equilibrium
(x9, x9,...,x%_ 1, x5x2, 1,...,x%) where x*¥is not completely mixed.

Theorem 8:

In the above theorem suppose m; = Y m; — (N — 2) for some i. If in the
iFi

equilibrium (x3,x3,...,x?,...,x3) some one of the x? is not completely mixed for

j # i, then we can find another equilibrium (x9,x3,...,x2_;,x5x?, 1,...,x%) where

x¥ is not completely mixed.

Theorem 9:
Let an N-person game be completely mixed. If the equilibrium set is convex
then the set contains just one element.

Remark 1.

It would be interesting to extend the theorem on the exchangeability of the
equilibrium points for two-person games to N-person games, under suitable
conditions.

Remark 2:
For a general N-person completely mixed game nothing is known about the
cardinality of the equilibrium set. We believe that it is finite or uncountably infinite.
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