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Structure of Equilibria in N-person Non-cooperative Games 

By H. H. CHIN, T. PARTHnSAgATHY ~) and T. E. S. RAGHAVAN 2) 

Abstract: Here we study the structure of Nash equilibrium points for N-person games. For two- 
person games we observe that exchangeability and convexity of the set of equilibrium points are 
synonymous. This is shown to be false even for three-person games. For completely mixed games we 
get the necessary inequality constraints on the number of pure strategies for the players. Whereas 
the equilibrium point is unique for completely mixed two-person games, we show that it is not true 
for three-person completely mixed game without some side conditions such as convexity on the equi- 
librium set. tt is a curious fact that for the special three-person completely mixed game with two pure 
strategies for each player, the equilibrium point is unique; the proof of this involves some combi- 
natorial arguments. 

1. Introduction 

NASH [1951-1 developed the theory of non-cooperative N-person games by 
introducing the concept of equilibrium points. He showed that every non-co- 
operative finite N-person game has at least one equilibrium point in mixed 
strategies. When N = 2 and the game zero-sum, this reduces to the well-known 
minimax theorem or voN NEUMANN. For the zero-sum two-person games 
KAPLANSKY [1945] introduced the notion of completely mixed strategies and 
showed that in games where both players have only completely mixed optimal 
strategies, the payoff matrix is a square and each player has a unique optimal 
strategy. RAGrtAVAN [1970] extended this result to the non-zero-sum bimatrix 
games. 

In this paper we try to see, how far the results in two-person games extend to 
general N-person games. In two-person zero-sum games, the optimal strategies 
are exchangeable. We observe that the convexity of the set of equilibrium points 
implies the exchangeability of equilibrium points in bimatrix games. 

Convexity is no more adequate for the exchangeability in 3-person games. 
It is well-known that in zero-sum as well as in non-zero-sum two-person games, 
if one player has more pure strategies than the other, then the game is not com- 
pletely mixed. In a 3-person game, if a player has more strategies compared to 
the other two players, the game may be completely mixed. In fact we give an 
example to substantiate this statement. If a 3-person game is completely mixed 
then the sum of the number of pure strategies for the three players is greater than 
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twice the n u m b e r  of  pure strategies for any player. In a complete ly  mixed N- 

person game, the equi l ibr ium set may  contain more  than  one point. However ,  
if the set is convex, there is only one equl ibr ium point. It  is a curious fact to note  

that  for 3-person complete ly  mixed games with two pure  strategies for each 

player, the equi l ibr ium point  is unique. We are unable  to say anything abou t  the 

cardinali ty of  the equi l ibr ium set for complete ly  mixed N-person  games  in general. 

2. Exchangeability 

Let I i ,  12 . . . . .  IN be N finite sets and X1, X2 . . . .  ,XN be the sets of  probabi l i ty  

vectors on 11, 12 . . . .  , I s  respectively. An element of  I~ is called a pure  strategy for 
player  j = 1,2 . . . .  , N  and an element of  Xj  is called a mixed strategy for player j. 

Let  K 1 , K z , . . . , K N  be N real valued functions on 11 x I~ x . . .  x IN. If  i l , . . . , iN 

are the pure  s trategy choices of the N-players  then player  j receives an income 

equal to Kj(i l ,  i2,...,  iN). We again denote  by Kj(Xl ,X2, . . . ,  x~) the expected income 
to t h e j  th player  when xl ,x2  . . . . .  x ,  are the mixed s t rategy choices of the N-players.  

A point  0 0 (xl ,x2 . . . . .  x ~ E X1 x X2 x . . .  x XN is called a NASH equil ibrium 
point  if 

o o o o 0 . . , x  o )  K j ( x 1 , x 2 ,  . . . , x j _  1 , X j , X j +  1, .  

o o o o o >_ K j ( x l , x z , . . . , x j -  1,xj,xj+ 1,...,xN) 

for all xj e Xj  and j = t, 2 , . . . ,N.  

For  a p roo f  of  the existence of a N a s n  equi l ibr ium point  see Nise i  [1951] or 
PARTHASARATHY and RAGHAVAN [1971]. 

Let  e _c X 1 ;K X 2 x . . -  X X N be the set of  all equil ibrium points. We call e 
exchangeable  if for o o " (X1,X2 . . . .  xO) ~ g, 1 1  (xl,x2 . . . . .  x~c)ee, we have (x] ~ . . . . .  x~, ~ )̀ 

2 . . . .  ~'q ) ~ e where ij = 0 or  1 for all j. 

V~ hen c is exchangeable  e is always convex. For  N = 2 we have the following. 

Theorem 1: 
In a two person game e is exchangeable  if e is convex. 

Proof." 
We will p rove  e is exchangeable  ife is convex. We will take X and Yas the mixed 

strategy sets for the players  I and I1. Let (x~ ~ and (x',y') be in e. By assumpt ion  
for 0 < 2 < 1, (2x ~ + (1 - 2 ) x ' , 2 y  ~ + (1 - 2)y ' )~5.  Tha t  is 

Kl (2X ~ + (1 - 2 ) x ' , 2 y  ~ + (1 - 2)y') > K l ( x , 2 y  ~ + (1 - 2)y') for all x e X .  

K2(,~x ~ + (1 - 2 ) x ' , 2 y  ~ + (1 - 2)y') > K2(2x  ~ + (1 - ;.)x',y) for all y e  Y. 

By put t ing x = x ~ and x' in the first inequality we get 

K l ( 2 x  ~ + (1 -- 2)x' ,  ).yO + (1 -- 2)y') _> K l ( x ~  ~ + (1 -- 2)y') 

K I ( 2 x  ~ + (1 - 2)x',  yO + (1 - 2)y') _> KI(x ' , 2y  ~ + (1 - 2)y') 



Structure of Equilibria in N-person Non-cooperative Games 3 

and hence 

Kl(~.x ~ + (1 - ~.)x', 2y  ~ + (1 - )o)y') = K~(x~ ~ + (1 - ~.)y') 

= Ki(x ' ,  fry ~ + (1 - 2)y') 

for all 0 _< 2 < 1. Putt ing 2 = 0 and 2 = 1 we get 

Kl(x~  ') = Kl(x ' ,y ' )  and K l (x~  ~ = Ka(x' ,y~ 

Similarly we get K2(x~ ~ = K2(x~ ') and K2(x' ,y  ~ = K2(x',y'). This implies 
(x ~ y') and (x', y0) are in 5. This completes the proof  of theorem 1. 

Remark." 
Convexi ty  alone is not  sufficient for the exchangeabili ty of equil ibrium points 

in N ( >  3) person games. We construct  below a 3-person game with e convex 

but  no t  exchangeable. 

Example: 
Consider  a three-person game in which each player has two pure strategies. 

We will define the payoffs K 1 , K g , K 3  in such a way that  e is precisely the line 
segment joining {(1,0),(1,0),(1,0)} and {(0,1),(0,1),(0,1)}. Here (1,0) for any 

player stands for choosing the first pure strategy with probabil i ty  one and (0,1) 
means choosing the second pure strategy with probabil i ty one. In other  words 
we will have e to be equal to 

e = {(2,1 - ).), Q., 1 - 2), (2,1 - ) .) :0 < 2 < 1}. 

Let K,(i,j, k) stand for the payoff  to the r th player when i,j,k are the pure strategies 
chosen by players 1,2, and 3 respectively. 

N o w  we define 

al  = K I ( 1 , 1 , 1 ) -  Kl(2,1,1), 

a2 = Kl(1,1,2) - K1(2,1,2), 

a3 = KI  (1,2,1) - K1(2,2,1), 

a4 = K1 (1,2,2) - K1(2,2,2), 

Now we define the matr ix 

bl = K2(1,1,1) - K2(1,2,1), cl = K3(1,1,1) - K3(1,1,2) 

b2 = K2(1,1,2) - K2(1,2,2), c2 = ga( l ,2 ,1)  - K3(1,2,2) 

b3 = K2(2 ,1 ,1 ) -  K2(2,2,1), c3 = K3(2,1,1) - K3(2,1,2) 

b4 = K2(2,1,2) - K2(2,2,2), c# = K3(2,2,1) - K3(2,2,2) 

Eaxa2a3 aj li l l il bl b2 b3 b4 = - 1 1 

Cl c2 c3 c4 1 1 

We will show that  the equil ibrium points are of the required type. For  simplicity 
we will write (p~176176 instead of (pO, 1 - pO), (qO, 1 - qO), (r o, 1 - r~ If (pO, qO, r o) e 
we have 

Kl (p~176  ~ ~ Kl(p ,q~ ~ 



4 H.H. CmN, T. ]3ARTHASARATHY and T. E. S. RAGHAVAN 

That  is p~ Kl(1 ,q~176 ) + (1 - p~176176 > pKt(1 ,q~ ~ + (1 - p)Kl(2,q~176 
Here  K1 (2, qO, r o) for example  refers to the expected income to player  1 if he uses 
the second strategy, p layer  2 uses the mixed strategy (qO, t - qO) and player  3 uses 

the mixed strategy (r ~ 1 - r~ 

We get f rom the above  inequali ty 

(pO _ p)((Ka(1,qO, rO) _ Kl(2,qO, rO)) > O. 

Namely (p  ~ - p) (q~176 1 + q~ - r~ + (2 - q~176 + (2 - q~ - r~ > O. 

In  our  example  this reduces to 

(/7o _ p)(qO _ r o) _> 0 for all 0 

Similarly by considering the K2 and K3 functions 

( q O _ q ) ( r  o _ p o ) > _ 0  for all 0 

(r ~ 1 7 6 1 7 6  > 0  for all 0 

F r o m  inequali ty (1) we have either (a) qO = r o 

~ p ~ l  ~ 1 

w e ~ t  

~ q ~ l  ~ 2 

~ r ~ l  ~ 3 .  

or (b) qO _ r o > 0 and pO = 1 

or (c) qO _ r o < 0. Case (b) and (c) are not  possible if they have to satisfy (2) and  (3). 
Thus  qO = rO. Similarly f rom (2) we infer pO = r o. Thus  pO = qO = rO. Thus  any 

equil ibrium point  is of  the required type. Also it is clear that  any  p* = q* = r* 
where 0 < p * <  1 satisfy the three inequalities and that  (p*,q*,r*)ee. Clearly 

( p = l , q = 0 ,  r = 0 )  is not  i n e  though ( p = 0 ,  q = 0 ,  r = 0 )  a n d ( p = 2 ,  q = l ,  

r = 1) are in 5. In  other  words  e is convex but  not  exchangeable.  

3. Completely Mixed Games 

Let i = 1, 2 . . . . .  m; j = 1, 2 . . . . .  n and k = 2, 2 . . . .  ,I be the set of  pure  strategies 

for players  1, 2, and 3. Let K,(i,j,k), r = 2,2,3 be the payoff  to the r th player  when 

i,j,k are their s trategy choices. Let x ,y ,z  denote  mixed strategies for 2,2, and  3. 
A mixed strategy x is called complete ly  mixed if each co-ord ina te  of x is positive. 

As before we use K,(x,y,z)  to denote  the expected income to the r th player  when 

x ,y ,z  are used by the respective players. F o r  an equi l ibr ium point  (x~176 ~ 
let A, B be n x m and 1 x m matr ices  defined by 

aji = K2(i, j ,z  ~ j = 1,2 . . . .  ,n, i = 1,2, . . . ,m. 

bki = K3(i,Y~ k = 1,2, . . . , / ,  i = 1,2, . . . ,m. 

We define s(y~ ~ = {x' : (x ' ,y~176 We say s(y~ ~ > 0 if every x' in it is 

complete ly  mixed. 

Theorem 2: 
Let  (x~176176 and vl = 1)2 = / ) 3  = 0 where 1), = K,(x~176176 r = 2,2,3. 

Let s(y ~ z ~ be complete ly  mixed. Then the rank  of  the matrix ~s m or  m - 1. 

In case it is m - 1, x ~ is the only element  in s(y~176 
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ProoJ." I - .q 

Clearly the rank p o f ~ l < m .  I f p o s s i b l e p < m - 2 .  Then there exists a / /  
I . . -  q l  

independent  of x ~ such that  A H = 0, B 1-I = 0. Since (A x ~  K2(x~ z ~ < v 2 = 0 
for a l l jw  have (Ax  ~ < O. (Here we mean each coordinate  of (Ax  ~ is less than or  

equal to 0). Similarly B x ~ < 0. 

As in KAPLANSKY'S p roof  [1945] consider x* = x ~ - 2 / /  in case S//~ = 0 
or  x* = (1 + 2)x ~ - 2 / I  in case ~;Hi = 1 (we can assume this when Z / / i  ~ 0). 

For  suitable 2 > 0, x* is a mixed strategy but not  completely mixed. Thus 

K2(x*,j,z ~ = K2(x ~ - 2I-l,j,z ~ or K2((1 + 2)x ~ - 2// , j ,z  ~ and that  K2(x*,j,z ~ < O. 
Similarly K3(x*,y~ Also we have K2(x*,y~ ~ = K 3 ( x * , y ~ 1 7 6  
But Kl( i ,y~  ~ = 0 for all i as x ~ is completely mixed. Thus (x*,y~176 and 

s(y~ ~ is not  completely mixed. This contradicts our  assumpt ion regarding 

s(y~176 
Hence p = m - 1 or  m. Lastly in case it is m - 1, A H = 0, B H = 0 has a solution 

/ / .  We claim tha t / - / i s  a multiple of x ~ for otherwise if 17 and x ~ are independent  

we can repeat the above p roof  verbat im and contradict  our  assumption on 
s(y~176 Hence the last assertion in the theorem. 

Theorem 3: 
Let m > n + I. Then given any (x~ ~ z ~ ~ e there is always an (x*,y ~ z ~ in e 

such that  x* is not  completely mixed. 

Proof: 
In case x ~ is no t  completely mixed we have nothing to prove. Let x ~ be com- 

pletely mixed. Wi thout  loss of generality Kr(x~176176  ~, = 0, r = 1,2,3. 

Consider  the matrix 

where 1 denotes an appropr ia te  column vector with all entries unity. The rank 

of  C is at most  n + l < m. We have at least 2 linearly independent  solutions to 

H 0] E;I= ~ 
and clearly one of  them is independent  of  the vector (x~ Let (/-/,c~,/~) be that  

solution. C l e a r l y / / 5 ~  0 for otherwise e = fl = 0 and that  (/7, ~, fl) is the trivial 
vector. We get A H = e .  1, B / - / =  ft. 1. 

Since A x  ~ <_ 0 with equality attained for some co-ordinate  and B x  ~ <_ 0 with 

equality at tained for some co-ordinate  x ~ a n d / / a r e  independent  if c~ or  f l r  0. 

If ~ = fl = 0, by our  very choice x ~ a n d / / a r e  independent.  As in theorem 2 we 
can construct  an x* such that  x* is not  completely mixed and (x*,y~ ~ E e. This 
completes the p roo f  of  theorem 3. 
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Corollary: 

If  a three person game is completely mixed we should have m + n + l >  
max(2m, 2n, 2/). 

Proof: 
This follows easily from the previous theorem. 

Remark:  

The inequality condit ion in theorem 3 cannot  be weakened as the following 

example shows. 

Let m = 3, n = 2,1 = 2. Let K~(i , j ,k)  = constant.  

We define 

1 , K 2 ( i , j , 2 ) =  _ - 1  " 

Here i refers to column and k refers to row. 

K3( i , l , k )  = 0 - 2  " 

Here i refers to co lumn and k refers to row. 

We have x ~ = (1/3, 1/3, 1/3), yO = (1/2, 1/2), z ~ = (1/2, 1/2) as an equilibrium 

point  and x ~ is the only element in s(y ~ z~ Note  that  m = n + l - 1 and s(y ~ z ~ 
is completely mixed. Of  course the game is not  completely mixed, for the strategy 

(1,1,2) is a pure equilibrium point. We will later construct  an example with 

m = 3, n = 2, l = 2 where all the equilibrium points are completely mixed. We 

see that  the assertion in theorem 3 is sharp. However  with some added condit ion 

we can prove the following. 

Theorem 4: 
Let in a three person game m = n + l - 1 and let ( x~176176  I f y  ~ or z ~ is 

not  completely mixed, then s(y~ ~ is not  completely mixed. 

Proof." 
As before we assume K~(x~176  ~ = v, = 0, r = 1,2,3. Suppose, say z ~ the 

last co-ordinate  of  z ~ is zero. Consider  

C =  B1 O -  

where B1 is the submatrix of B with the last row omitted. Since C has n + l - 1 

rows and n + l + 1 columns, there is a non-trivial solution to 

B1 O -  
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which is l inearly independent  of (x ~ 0, 0). N o w  H 4 0 for otherwise (H, ~, fl) is a 

trivial vector. If  ~ 4 0 and since K z ( x ~  ~ = (Ax~  = 0 for some j, x ~ a n d / 7  

are independent .  Suppose  ~ = 0 and fl = 0 then evidently by our  choice of 

(/7,~,[3), H is independent  of x ~ Last ly let ~ = 0, but  fl 4 0. Since z ~ > 0 for 

some k < I we have  v3 = k3(x~176  = 0 and that  (BlX~ = 0 for that  k. There-  

fore x ~ a n d / 7  are independent .  
Let  b~ be the last row of B. We have (bzH) < fl or (b~/7) > [3. Let x* = x ~ - 2 / / ,  
= x ~ + 2 / / ,  x '  = (1 + 2)x - 2 /7 ,~  = (1 - 2)x ~ + 2/7. We will choose one 

of them depending on 27/7i = 0 or 1 and (Bt H) < [3 or (b~/7) > [3. If  27/7i = 0, 
for suitable posit ive 2's x*,~ are both  mixed strategies but  not  complete ly  mixed. 

If  27/7~ = 1 (without  loss of generali ty when S/Ti :~ 0), similar s ta tement  can be 

made  on x'  and ~. 

I f  27 Hi = O, b~/7 < [3, choose ~; if S Hi = 0, bz H > [3 choose x*. 

If  27/7~ = 1, b~H < [3, choose ~; if 27/7~ = 1, bzFl >_ [3 choose x ' .  

Depend ing  on these cases we have  

A x *  < - 2~, A~c < 2c~, A x '  < - 2~, A~c < 2~ 

B~x*  <_ - 2[3, B~Sc < ,~[3, B l x '  < - 2[3, B~Yc < ).[3 

btx* <_ - 2[3, b~2c <_ 2[3, btx'  <_ - )~[3, btYc <_ 2[3. 

This shows, say for the case K 2 ( x * , j , z  ~ < - 2~ for all j, there is a jo with 

K 2 ( x * , j ~  ~ = - 2 ~ .  In fact when yO > 0 the equali ty is attained. Similarly 

K3(x* , y~  <_ - 2 [ 3  for all k and for some k ~ < l, K a ( x * , y ~  ~ = - 2 f t .  This 
shows that  ( x* , y~  ~ E e. Similarly the other  cases can be disposed of. Hence  

s(y ~ z ~ is not  complete ly  mixed. 

Remark:  
When m = n + l - 2 and when player  2 or 3 misses a pure  strategy in an 

equi l ibr ium (x~176176 we cannot  conclude s (y~  ~ is not  complete ly  mixed. 

We have simple examples  even when m = n = l = 2. 

4. Non-uniqueness of Equilibrium Points in Completely Mixed Games 

We call a game  comple te ly  mixed if every equi l ibr ium is complete ly  mixed. 
In o therwords  no player  can be in equi l ibr ium with the other  player  if he misses 

a pure  strategy. In  two-person  zero-sum as well as non-zero-sum complete ly  
mixed games,  the equi l ibr ium set has just  one point  in it. Fo r  games  with N > 3 
this is no m o r e  true. We const ruct  below a 3-person complete ly  mixed game 
where e consists of  precisely two points. This demons t ra tes  that  wi thout  further 
conditions,  we cannot  assert  the uniqueness in general. 

We int roduce the following notat ions.  Player  1 has 3 pure  strategies. Player  2 
and 3 have two pure  strategies each. 
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Let  Kr(i,j,k) d e n o t e  the  p a y o f f  to  the  r th p l a y e r  w h e n  i,j,k are  the  p u r e  s t r a t egy  

cho ices  of  1, 2 a n d  3 respect ively .  W e  def ine  

Kl(1,1 ,1  ) - 

Ka(1 ,1 ,2 )  - 

Ki(1,2,1 ) - 

K~(1,2 ,2)  - 

W e  def ine  a~ = - (ai + 

Le t  
K2(1,1 ,1  ) - 

K2(1, I, 2) - 

K2(2 ,1 ,1 )  - 

K2(2  , 1,2) - 

K2(3 ,1 ,1 )  - 

K~(2 ,1 ,1)  

K1(2 ,1 ,2 )  

K1(2 ,2 ,1 )  

K1(2 ,2 ,2 )  

= al, Kx(2,1,1) - K x ( 3 , 1 , 1 )  = a'l 

= 32, K1(2 ,1 ,2  ) - Kx( 3 , 1 , 2  ) = a~ 

= a a, K1(2 ,2 ,1 )  - K1(3 ,2 ,1 )  = a~ 
t 

= a4, K1(2 ,2 ,2 )  - K1(3 ,2 ,2 )  = a4 

a'~) for  i = 

K2(1 ,2 ,1  ) = 

K2(1 ,2 ,2 )  = 

K2(2 ,2 ,1  ) = 

K2(2 ,2 ,2 )  = 

K2(3 ,2 ,1  ) = 

1,2,3,4.  

b l ,  K3(1 ,1 ,1 )  - K3(1 ,1 ,2  ) = c 1 

b 2, K3(1,2,1) - Ka(1 ,2 ,2 )  = c2 

b3, Ka(2 ,1 ,1 )  - K a ( 2 , 1 , 2  ) = c a 

b4, K3(2 ,2 ,1 )  - K3(2 ,2 ,2  ) = c 4 

bs ,  K3(3 ,1 ,1 )  - K3(3 ,1 ,2  ) = c 5 

K2(3 ,1 ,2  ) - K2(3 ,2 ,2 )  = b6, K3(3 ,2 ,1 )  - Ka(3 ,2 ,2 )  = c6 

In  fact  we will c h o o s e  these  c o n s t a n t s  such  t h a t  e con t a in s  prec ise ly  the  fo l lowing  

t w o  e l e m e n t s  
{(1/3, 1/3, 1/3), (1/2, 1/2), (1/2, 1/2)} 

a n d  
{(1/3, 1/3, 1/3), (1/3, 2/3), (1/3, 2 /3)} .  

C o n s i d e r  the  fo l lowing  m a t r i x  

i la2 a 1I 3551 1 a'1 a~ a~ a~ - 4  1 1 

a'; a~ a~ a~ - 7.5 - 1 . 5  - 2  

bl  b2 b3 b4 b5 b6 - 1 0  1 9 - 2  1 1 

c l  c2 Ca ca c5 c6 - 1  - I  - 3  - 3  4 4 

O n e  can  check  tha t  this g a m e  is c o m p l e t e l y  mixed .  

W e  will n o w  es tab l i sh  t ha t  ~ c on t a i n s  prec ise ly  

{(1/3, 1/3, 1/3), (1/2, 1/2), (1/2, 1/2)} and  {(1/3, 1/3, 1/3), (1/3, 2/3), (1/3, 2/3)}. 

In  o r d e r  t ha t  {(Pl, P2, 1 - Pl - P2), (q, 1 - q), (r, 1 - r)} to  be  an  e q u i l i b r i u m  

p o i n t  in ou r  e x a m p l e  we shou l d  h a v e  

Kl (1 , (q ,1  - q), (r,1 - r ) ) =  K l ( 2 , ( q , l  - q), (r,1 - r)) = Kl(3 , (q ,1  - q), (r,1 - r)) 

i.e., 
6 q r - 4 . 5 q - . 5 r +  1 = 0  

6 q r -  5q + 1 = 0 .  

By e l iminat ing  q we have  6 r  2 - 5 r  + 1 = 0, i.e., r = 1/2 o r  1/3. S imi la r ly  q = 1/2 
or  1/3. W h e n  q = 1/2, we h a v e  r = 1/2 a n d  w h e n  q = 1/3 we  h a v e  r = 1/3. W e  

will s h o w  in e i ther  case Pl = P2 = 1/3. 
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Cons ide r  

i. e., 

K2((pl ,p2 , 1 - 

= K2((pl ,P2,1 - 

Ka((pl ,P2,1 - 

= Ka((pl ,P2,1 - 

P l  - -  P2), 1 , ( 1 / 2 , 1 / 2 ) )  

P l  - -  P 2 ) , 2 , ( 1 / 2 , 1 / 2 ) )  

P l  - -  P2) , (1 /2 ,  1/2) ,  1) 

Pa - -  p 2 ) , ( 1 / 2 , 1 / 2 ) , 2 )  

- 1 1 p l  + 5p2 -+- 2 = 0 

--10pl--  1 4 p 2 + 8 = 0 .  

W e  get Pl = P2 = ( 1 -  pa - P 2 ) =  1/3. Similar ly,  we sett le the o ther  case 

when q = r = 1/3. This  comple tes  the cons t ruc t ion  of  the  requi red  example .  

5. Uniqueness of the Equilibrium Point 

Here  we p rove  the fol lowing 

Theorem 5." 
Let  in a th ree -person  game  the set of equ i l ib r ium po in t s  be comple te ly  mixed  

and  convex. Then  e has  jus t  one element.  

Proof." 
As before let K,(x ,y , z )  be the expected payoff  to p layer  r when x ,y , z  are  the 

mixed  s t ra tegy choices of  p layers  1, 2, and  3. Let, if possible,  e have two equi l ib r iums  

(x~176  ~ and  (x',y',z'). By as sumpt ion  (2x ~ + (1 - 2 ) x ' , 2 y  ~ + (1 - 2)y',  

2z ~ + (1 - 2)z') e e for 0 < 2 < 1. Since e is comple te ly  mixed  

K l ( i , 2 y  ~ + (1 - 2 )y ' ,2z  ~ + (1 - 2)z') = c for all pure  strategies i 

i.e. 

22 Kl ( i , y~  ~ + (1 - 2)2 Kl ( i , y ' , z  ') + 2(1 - 2) {Kl ( i , y~  ') + Kl( i ,y ' ,z~ = c. 

K l ( i , y~  ~ = v ~ and  Kl( i ,y ' , z '  ) =- v' 1 
we have 

Kl(i ,Y~ z') + KI(i,Y',  z~ = ~1 say. 
S imi la r ly  

K2(x~ z') + K2(x',J, z~ = ~2 
and  

K3(x~ k) + K3(x',Y~ k) = ~3. 
Cons ide r  

x* = (1 + t )x  ~ - tx ' ,y*  = (1 + t)y ~ - ty ' ,z* = (1 + t)z ~ - tz ' .  

F o r  t > 0 a n d  small ,  x*,y*,z* are  all mixed  strategies.  Since (x~176 ~ 4= (x',y',z') 
there  is a t > 0 for which x*,y*,z* are  mixed  strategies  bu t  at  least  one of  them is 

no t  comple te ly  mixed.  F u r t h e r  we will show (x*, y*, z*) e ~. Cons ide r  

Since 



10 H.H. CmN, T. PARTHASARATHY and T. E. S. RAGtlAVAN 

K l ( i , y * , z *  ) = (1 + t)2 K l ( i , y ~  ~ + t2 K l ( i , y ' , z  ') 

- t(1 + t ) ( K l ( i , y ~  ') + Kl ( i , y ' , z~  

- (1 + t2)v ~ + t2v'l - t(1 - t )cq .  

S i m i l a r l y  we e s t ab l i sh  the ident i t i es  for  K 2 a n d  K 3. H e n c e  ( x * , y * , z * ) e e .  This  

c o n t r a d i c t s  the  a s s u m p t i o n  t ha t  ~ is c o m p l e t e l y  mixed .  H e n c e  the  proof .  

Remark  1. 

T h e  p r o o f  on ly  uses the  ex is tence  of  a l ine segmen t .  T h e  t h e o r e m  says  t ha t  e 

w h e n  c o m p l e t e l y  m i x e d  c a n n o t  c o n t a i n  l ine segments .  

Remark  2." 

W e  have  to  go  to  m = 3, n = 2, k = 2 to  c o n s t r u c t  a c o u n t e r  e x a m p l e  for  

n o n - u n i q u e n e s s  of  e q u i l i b r i u m  p o i n t s  in c o m p l e t e l y  m i x e d  g a m e s ;  for  when  

m = n = k = 2 we have  the  fo l lowing  c u r io u s  

Theorem 6." 

Le t  a t h r e e - p e r s o n  g a m e  have  two  p u r e  s t r a t eg ies  for  each  p layer .  I f  the  g a m e  

is c o m p l e t e l y  mixed ,  t hen  the e q u i l i b r i u m  p o i n t  is un ique .  

W e  wil l  s t a r t  wi th  s o m e  p r e l i m i n a r i e s  for  the  p r o o f  of  th is  t heo rem.  

As  before  let 

a I ---- K I ( 1 , 1 , 1 ) -  K~(2,1,1),  

a 2 = K1(1 ,1 ,2  ) -  K1(2,1,2),  

a 3 = K1(1,2,1 ) - K1(2,2,1), 

a4 = K1(1,2,2) - K1(2,2,2), 

b 1 = K2(1,1,1 ) - K2(1,2,1),  c l  = Ka(1,1 ,1  ) - K3(1 ,1 ,2  ) 

b2 = K2(1,1.2)  - K2(1,2,2) ,  c 2 = K a ( 1 , 2 , 1 ) -  K3(1,2,2)  

b 3 = Kz(2,1,1 ) - K2(2,2,1), c3 = K3(2,1,1 ) - K3(2,1,2 ) 

b 4 = K2(2,1,2 ) - K2(2,2,2), c4 = K3(2,2,1 ) - Ka(2,2 ,2  ) 

Le t  (p,(1 - p)),(q,(1 - q)),(r,(1 - r)) be  m i x e d  s t r a t eg ies  for  the  th ree  p laye r s .  F o r  

s im p l i c i t y  we d e n o t e  the  a b o v e  cho ices  of  m i x e d  s t r a t eg ies  b y  (p, q, r). Le t  (pO, q0, r 0) e e 

a n d  0 < p~176176 < 1. T h e n  we have  

q~176  - a2 - a3 + a4) 

pOr~ I - b 2 - b 3 - b4) 

pOqO(q _ c2 _ c3 - -  C4 ) 

W e  wil l  wr i te  

2 i  = a l  - -  a 2 - -  a 3  - -  a4, 

# i = b l - b 2 - b 3 - b 4 ,  

1J 1 ----- C 1 - -  C 2 - -  C 3 - -  C4, 

+ q~ - a4) + r~ - a4) + a4 = 0 

+ p~ 2 - b4) + r~ - b4) + b 4 = 0 

+ p~ 2 --  C4) + q~ 3 --  C4) + C 4 = 0 

~'2 ~--- I;12 - -  a4., ~ 3  = a 3  - -  a 4 ,  ,~4 = a4 

# 2  = b2 - b4 ,  ~/3 -~ b 3  - b 4 ,  / t 4  = b4 

V 2 ---- C 2 - -  C4~ V 3 ~ C 3 - -  C4, 1~ 4 ~- C 4 

L e m m a  1: 
W h e n  m = n =-- k = 2 a n d  the  g a m e  c o m p l e t e l y  m i x e d  w i th  (p~176176  ~, pO 

a n d  qO a re  u n i q u e  for  r~ n a m e l y  if (p*,q*,r  ~ ~ e t hen  p* = pO, q .  = qO. S imi l a r  

a s s e r t i o n s  h o l d  for  pO a n d  qO. 
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Proof:  

Consider  the equat ions  

qr2 a + q2  2 § r2  3 -+- )~,, = 0 

Pr#I + P#z + r#3 + # 4 = 0  

pqvl + PV2 + qv3 + v4 = 0 

(p~176176 is a solut ion to them and any (p,q,r) with 0 _< p,q,r _< 1 satisfying the 

above  lies in e. Clearly ro21 + 22, ro#  ~ + #z, qovl + v2 cannot  all be zero;  for 
then (1,q ~ ,r  ~ satisfies the above  equat ions  contradic t ing  the fact that  the game 

is comple te ly  mixed. Thus  at  least one of them is not  0. Say roA ~ + 22 # 0. Then  

q~ + 22) § (ro)~ 3 + 24) = 0 

q*(ro21 + 22) + (roAa + 24) = 0 

i.e., q* =qO. We have (p*,q~176176176176 and p * =  pO for otherwise e will 

conta in  the line segment  jo ining (p*,q~176 and (p~176176 This contradicts  that  e 
is complete ly  mixed. 

Similarly if r~ + ~2 =~ 0 we have p* -- pO, q ,  = qO. We will show that  

r~ + 22 = 0 and r ~  + #z = 0 is not  possible. Suppose  so. We saw that  in 
this case qO va + v2 ~ 0. We  have 

Consider  

pO = -- (qOv3 § V4 ) 
(qOvl + V2) 

(qv3 + v4) 
p =  (qvl + v2) �9 

p is a cont inuously  differentiable funct ion in a ne ighborhood  A ofq  ~ with 0 < p < 1, 
when q e A. 

dp (vl •4 -- V2 •3) for q e d 
dq = (qv 1 ~  v2) 2 

If va v~ - l/2173 = 0 ,  then p - pO for q ~ A. Tha t  is, the line segment  {(pO,q,r o) : q e A } _z e, 
which is clearly not  possible. 

I f  v~ v 4 - v 2 v 3 > 0, in this case p is an increasing funct ion of q in A. Consider  
p a = sup {p : (p, q, r ~ e e}. Clear ly there is a q ~ with (p i, q a, r~ e e. Also p i < 1, q 1 < 1. 
Since r~ + 22 = r~ + #2 = 0, we know q l v l  § v2 @ 0. This shows tha t  

dq ql > 0 and hence we have  a (pE, qz,r~ with P2 > Pl. This contradicts  

the maximal i ty  of  pl .  Similar cont radic t ion  can be arr ived at  when v~ v 4 - v 2 v 3 < 0. 
This  completes  the p r o o f  of  the lemma.  
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Lemma 2: 
Let e be completely mixed and let 

f(r) = (r23 + 24)(r#3 + #r 1 - (r23 + 24)(r# 1 + #2)v 2 

- (r)-i + 22)(r#3 + #~,)v 3 + (r,~ 1 + 22)(r#1 + ]./2) Vzl. ~ 0 

for all r. Then e has a unique point. 

Proof." 
Let if possible (p~176176 (p*,q*,r*) be two distinct elements in e. By lemma 1, 

pO ~ p,,  qO # q, and r ~ # r*. We will analyze different cases to establish the 
uniqueness. 

Case (i): 
r~ +;~2 =0 ,  r~ +]./2 =0.  Clearly (p*,q*,r~ and by lemma 1 p* =pO 

and q* = qO a contradiction to our assumption. 

Case (ii) : 
r121 + 22 # 0, rl]#1 + ]'/2 ~ 0 for any(Pl ,ql , r l )Ee.  Let~3={rl"(pl,ql,rl)~e}. 

e 3 is closed in [0,1]. We will prove e 3 is open. Let r i ~ e3. There is an open interval 

A,~ such that p(r)= (r/~3 + #4) and q(r)= (r23 + 2`0 with 0 < p(r), 
q ( r )<  1 for allr~A~,, r#l "~-#2 r~.l "~2  
Also (p(r),q(r),r) satisfies the equations (1) and (2) of lemma 1. Further by as- 
sumptionf(r)  = 0 and that 

(P(r)q(r)vl + P(r)v2 + q(r)v3 + v4)(r)q + 22)( r ]./1+ ]./2) = 0 

for all r ~ d,,. Also r2~ + 22 # 0, r]# 1 + ]./2 # 0. Thus p(r), q(r) satisfies the third 
equation. Hence (p(r),q(r),r)~ e for all rr A~,, i.e., e 3 is open. Hence e3 = [0,1], 
as e3 # 0. This contradicts ~ is completely mixed. 

Case (iii): 

since r ~ # r*, ]'/1 
mixed. 

r~ + 2 2 ~ 0  r~ + # z = 0  

r ' 2 1 + 2 2 4  =0 r*#1 + ] . / 2 = 0  

= #z = 0. Also ]./3 = #~ = 0. Such a game cannot be completely 

Case (iv): r~ + 22 = 0 

r* 2-1 + )'2 = 0 

This is similar to case (iii). 

Case :v ). 
r~ Jq + 2 z # 0 

r '21 + 2 z = 0 

r~ + ]./2 4= 0 

r*#1 + #z + O. 

/.0 #1 "~ ]./2 1. 0 

r 'P1 + ]./2 4= 0. 

Here #1 # 0 for otherwise #2 = 0 and this contradicts our assumption 
r*#1 + ]./2 # O. Similarly #2,#3,#4 # 0 (observe r~ + ]./4 = O, r*#3 + ]./4 # 0). 
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Further (#1/a2),~a,#4) are linearly dependent as r~ + #2 = 0 and r ~ #3 + #4 = 0. 
Therefore (#3,#4) = ~(/q,#2) for some ~ # 0, Further 

r * ~ 3  + ~4 p* = = - ~ .  
r*#l + #2 

Consider 
p(r) = rlz3 + #4  

r# l  + #2 

q(r) = r ~'3 + 24 
r21 + 22 

in a neighbourhood A, of the point r ~ except at r ~ 
Since #1,21 # 0 and since r~ +/~2 = 0, in this neighbourhood both p(r) and 

q(r) are defined except at r = r ~ Further (p(r),q(r),r) satisfies equations 1,2 and 
also 3, by our assumption onf(r) for all r ~ A,o except for r = r ~ Also p(r) = p* 
at all those points. This contradicts 1emma 5.1. 

Case (vi).' 
r~ + 2 2 =~ 0 r~ + #2 = 0 
r*21 +22 # 0  r*#l +#2  # 0 "  

As before #1 # 0, ]A 2 =~ 0, /~3 ~ 0, ]A 4 ~ 0. A l s o  

p ,  = ( r ~ 3  + #4) for all r # r ~ 
(r//1 + P2) 

This is similar to case (v). Hence the proof of the lemma. 

Remark: 
If (p~176176 e then one can easily check that f ( r  ~ = O. 

Proof  o f  Theorem 6." 
Consider the matrix 

I al~ a2, a3,  a'~ 1 
A =  b 1, b2, b3, b4 

LCl, c2, C 3, C 4 

associated with the completely mixed game. Since it has no pure equilibrium, 
for each one of the vectors 

[a I I a21 I aal [ a41 
V 1 = b I , /32 = b2 , v3 = - b l  , 134= - b 2  , 

(71 - -  C1 C 2 - -  C 2 

/35 ---- b3 , v6  = b 4  , v7 = - b a  , v8  = - b 4  

C3 C3 C4 C4 

at least one coordinate is negative. 
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We will assume for the present no entry in A is zero. This means there will not  

be any equilibrium where some two players use pure strategies. 

For  any given matrix A we can consider which of  the following 6 condit ions 
are satisfied. 

S~ : b~ b 2 < 0 and c 1 c 2 < 0, S 2 : b 3 b 4 < 0 and c3 c4 < 0, 

S 3 : a  l a  2 < 0 and c l c  3 < 0, S 4 : a  3a 4 < 0 and c2r < 0, 

S s : a l a 3 < O  and b i b 3 < 0 ,  S 6 : a 2 a 4 < O  and b 2 b 4 < 0 .  

It is quite possible that  none  are satisfied. 

Let us consider the equat ions 

qr)`i + q)`2 -F r)` 3 + )`4 = 0 .  

p r # l  -4- P~2 -4- r~t 3 + ~4 = 0 

p q v l  + PV2 + q3 + v 4 = O. 

Let (po, qo, ro)~ e. We have 

qo(ro)`! + ),2) + (ro23 + )`4) = 0 ---* 1 

po(ro#l + #2) + (ro#3 + #4) = 0 ---* 2 

(to)` 1 + )`2)(ro/,tl q- [a2)(poqoV 1 + pov2 + qov3 .4- v4) = 0 .  

That  is 

po(ropl -4-/~2)qo(ro)`l + )`2)Vl -4-po(ro)`l + )`2) (ro~tl -4-/22)1; 2 

-4- qo(roPl + ~t2) (ro~, 1 -t- ~,2)v3 + (ro)`l + ,~2) (ro/,tl + ~t2)v 4 --- 0 .  

Using 1 and 2 we get 

(ro# 3 -4- #4)(ro)`3 + )`4)vl - (ro#3 + #4)(ro)`l + )`2)V2 

- (ro)`3 + )`4)(ro#i +/~2)v3 + (to21 + )`2) (ro~q + ~2) v4 = 0. 

Thus  the function 

f ( r )  = (r~t 3 + #4)(r)`a + ~,4)vl - (r#3 + #4)(r)`1 + )`:)v 2 

- (r)` 3 + )`4)(rgl + ~t2)v3 + (r)`l + )`2)(r#1 + ~t2) l~ 2 

has a roo t  at r = r o. By lemma 2 we can assume that  f ( r )  ~ 0 and that  f ( r )  is 

either linear or quadratic.  I f  it is linear, then for any (Po, qo, to) ~ e, r 0 is unique and 
f rom lemma 1 we have a unique equilibrium point. The non-trivial case is when 

f ( r )  is a quadratic.  We will wi thout  loss of  generality assume that  the three quad-  

ratics exist. Similarly one gets the quadratics in p and q. Let fp, fq, f ,  be the three 

quadratics.  
One  easily computes  

fp(O) = b4c4al - bac4a2 - b4caa3 A- bacaa4 

fp(1) = b2c2a 1 - b i c2a  2 - bECla3 + b l c l a 4  

fq(O) = a4c4b i - aac4b 2 - a4c2b 3 + aac2b4 
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fq(1) = a 2 c 3 b l  - a l c 3 b 2  - a 2 c l b 3  + a l c l b 4  

.1",(0) = a 4 b 4 c l  - a z b 4 c 2  - a 4 6 2 c 3  + a 2 b z c 4  

f,(1) = a a b 3 c  1 - a l b 3 c  2 - a a b l C  3 + a t b l C  4 

One can also compute  the following expressions which we need in the sequel. 

15 

f, 

f~ 

f, 

f,i  

c 3 

c 3 - -  c 1 

b3 
b3 - bl 

C4 

C 4 - -  C 2 

b4 
b4 - ba 

C2 

C 2 - -  c 1 

c4  

c 4 - -  C 3 

a 3  

a 3 - a 1 

a4 

a 4 - a 2 

a , ,  

a , ,  - a 3 

b4 

b4 - b3 

a 2  

\ a 2  - -  a 1 

b2 
(bib4 b 2 b 3 ) f p ( l )  

\ b2 -- b 1/] 

= ( c l c  4 - c2c3)fq(1 ) when CxC 3 < 0 

= ( b i b  4 - b 2 b 3 ) f , ( 1 )  when b i b  3 < 0 

= ( c l c  4 -  CEC3)fq(O ) when CzC, , < 0 

= ( b i b  4 - b z b 3 ) f , ( O  ) when b2b,  , < 0 

= (ClC 4 - -  CzC3)fp(1 ) when c l c  z < 0 

= (CxC 4 -  c z c 3 ) f p ( O  ) when c 3 c  4 < 0 

= ( a l a 4  - a z a 3 ) f r ( 1 )  when a x a  3 < 0 

= ( a l a 4  - a2a3)f~(O) when a2a4  < 0 

= ( a l a 4  - a2a3)fq(O) when a 3 a  4 < 0 

= ( b i b  4 - b2b3) fp (O ) when b3b, , < 0 

= ( a l a 4  - a za3 ) fq (1 )  when a l a 2  < 0 

when bl  b2 < O 

We call two matr ices equivalent  if their entries are non-zero  and they have the 

same sign structure. We have 21 z distinct matr ices  modu lo  equivalence. Of  these, 
certain matr ices may  possess pure  equi l ibr ium and hence can be omi t ted ;  for 

example  if the first co lumn is it can be omitted.  F o r  certain matr ices  one can 

directly check that  fp(0)fp(1) _< 0 or fq(0)fq(1) _< 0 or f , (0)s  _< 0 in which c a s e  
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there is only one positive root for one of the quadratics and by lemma 1, the 
equilibrium is unique. For  example, if the sign structure is 

L i  + - !] +,  + - ,  , 
, - ' ,  + ,  

L(o)L(1) < o. 

We computerized the matrices and in total we were left with 762 cases which do 
not fall in the above category. We have checked all the cases and the proof of the 
theorem depends on the location of the root in an appropriate quadratic. We 
will discuss a few of the typical cases which repeat in all other cases. 

Case (i):  

None of the conditions $1 or $2 . . .  or $6 satisfied. 
Consider for example the case 

A = +,  + - ,  
+,  - ' ,  + ,  

One directly checks that f,(0) < 0 and f,(1) > 0, and that there is a unique root 
for the r-quadratic in (0,1). Hence by lemma 1 the equilibrium point is unique. 

Remark," 

In fact when none of the conditions St to . . . ,$6 are satisfied and when no 
entry in A is zero, then one can check that each row has exactly two positive and 
two negative signs, when e is completely mixed. We can also assert that al a , <  0, 

b i b  4 < O, c t c  4 < 0 , a 2 a  3 < 0, b2b 3 < 0, c2c  3 < 0. 

Case ( ii ) : 
Let one of the conditions S t or . . .  S 6 be satisfied. Say a4a 2 < 0 and b , b  2 < O. 

For  example consider 

A =  + - ,  
- ' ,  + ,  

clearly in this case 

Let 

We have 

a4 b4 0 < - -  - - < 1 .  
aa - a2 ' b4 - b2 

b4 a4 = - - r  = 0. 
P b 4 - b 2 q = a4 - a 2 

Kt(1,q,2) = Kt(2,q,2 ) 

K2( p, 1,2) = K2(P,2,2) 
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and hence 

since e is completely mixed, 

i.e., 

Ka(p,q,1 ) - Ks(p,q,2 ) = 

But 

Hence  

Ka(p,q,2) < Ka(p,q,1) 

(a4b, cl - a2b4c2 - a4b2c3 + a2b2c4) 
(a4 - a2)(b4 - b2) 

( a ~  - -  a2)(b 4 - b 2 )  < O .  

a4b4cl - a2b4c2 - a4b2c3 + a2b2c4 = f,(O) < O. 

> 0 .  

We will also assume f,(1) < 0; for otherwise there is only one root  in (0,1) to the 
r-quadrat ic  and the p roof  was already discussed for that  case. Since a 1 a4 - a 2aa < 0 

a n d a z a 4 < O w e h a v e f q (  a~ ) a4 a2- = (ala4 - a2a3)f,(0) > 0. 

With the first row having the sign structure ( - ,  , , + )  

ro(qoa 1 + (1 - qo)a3) + (1 - ro)(qoa 2 + (1 - qo)a4) = 0 

(Here (po, qo, ro) ~ e) implies qoa2 + (1 - qo)a4 > 0, 

a 4 > qo(a4 - a2) 

i.e., 

and since a4 - a2 > 0 ,  qo < 

(p,q,r) e ~: .q < - -  a4 
a 4 -- a 2 

a4 
a 4 - a 2 

i.e., for any 

Thus  i f fq (0 )<  0, f rom the a s se r t i on~  ( a 4 )  - -  > 0 we know there is only one 
a4 a 2 

( a~ ) .  In this case e admissible root  for the q-quadrat ic  in the interval 0, a4 - a2 

has a unique element. Supposefq(0) > 0; we can assumefq(1) > 0. 

One checks 

( c3 ) = ( c l c 4 -  c2c3)fq(1)>O 
fP c 3 c 1 

and 

(b,) fP b , - -  b 2 = (b~b" - b2ba)f~(O) < O 

b._.__..54 c3 
anda l s~176  qo, ro)~e, b4 b2 < Po < - -  and that  po is the unique 

C 3 - -  C 1 

positive root  for the quadrat ic  in this interval. Hence  e has a unique element. 
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Case ( iii ) : 

Two of the conditions Sa or S 2 o r . . .  or  S 6 are satisfied. Say 

+ ,  4-, 

Here S I and Sz are satisfied. As before we demand 

1, c 2 _ c l  ' bz bl 6e and 0, c 4 _ c 3  ' 

i.e., 

and 

b4 ) 

b4--- b 3 ~ g ' 

(b2Czal  - b l c 2 a  a - b 2 c l a  3 4- b l c t a , , )  = fe(1) 
(b2 - b l ) (c2  - ci)  (b2 - b l ) (c2  - cl)  

(b4c4al  - b3c4a  z - b4c3a  3 4- b3c3a4) = fp(O) 

(b4 - b)(c,, - c3) (b,, - b3)(c 4 - c 3) 

< 0  

> 0 .  

We get fp(1)fp(O) < 0, and hence as before e has a unique element. 
One deals with all the other matrices in a similar fashion. This completes the 

proof  of the theorem when A has only non-zero entries. 

R e m a r k  1." 

If some four of the conditions S 1 , S  2 .... ,S 6 are satisfied and if A has all the 

entries non-zero, then the game has a pure equilibrium. This we observed from the 

computer output. 

R e m a r k  2: 

If we allow zeros in some of the entries, the same type of proof  goes through. 
It would be interesting if one could give a simpler proof  avoiding these combi- 

natorial arguments. 

R e m a r k  3." 
It  would b e  nice to know whether the uniqueness holds for general n person 

games with two pure strategies for each player. 

6. Further Remarks on N-person Games 

Some of the theorems proved in the previous sections are extendable to general 

N-person games as follows. 

Theorem 7." 
Let m~,m 2 , . . . , m  N, ( N  > 3) be the number  of pure strategies for N-players in 

an N-person non-cooperative game. Further let mi > ~ mj  - (N  - 3) for some i. 
i ~ i  
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Then for any equilibrium (x~176 o o ., x i , . . . ,  xN) e e, we can find another equilibrium 

(x ~ x2,...- o ,xi-  o 1,x~,xi+ . .  o 1, . . . ,x g) where xi* is not completely mixed. 

Theorem 8." 
In the above theorem suppose m~ = y '  m r - (N - 2) for some i. If in the 

j4=i 
equilibrium o o o o o is not completely mixed for ( x l , x2  . . . .  , x i , . . . , x N )  some one of the xj. 
j =~ i, then we can find another equilibrium (x l ,xv~ o ...,x~_~ 1,x~,x~+* o 1 , . . . , x  ~ where 

* is not completely mixed. x~ 

Theorem 9: 
Let an N-person game be completely mixed. If the equilibrium set is convex 

then the set contains just one element. 

Remark  1" 
It would be interesting to extend the theorem on the exchangeability of the 

equilibrium points for two-person games to N-person games, under suitable 
conditions. 

Remark  2." 

For  a general N-person completely mixed game nothing is known about the 
cardinality of the equilibrium set. We believe that it is finite or uncountably infinite. 
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