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Boundedness, Periodicity, and Convergence of Solutions 
in a Retarded Li6nard Equation (*). 

T. A. BURTON(**) - BO ZHANG(***) 

1.  - I n t r o d u c t i o n .  

In this paper we consider the equation 

(1.1) x" + f ( x ) x '  + g(x(t  - h)) = e(t), 

where h is a nonnegative constant and e is a bounded function. With appropriate 
assumptions on f and g we obtain necessary and sufficient conditions for solutions of 
(1.1) to be uniformly ultimately bounded. Thus, by an asymptotic fixed point 
theorem, those conditions imply that (1.1) has a T-periodic solution whenever e is 
T-periodic. We also give conditions under which all solutions of (1.1) converge. 

The book of SANSONE and CONTI [11] gives much history and foundation for (1.1) 
without a delay, say 

(1.2) x"  + f ( x )  x '  + g(x) = e(t), 

and for the unforced form 

(1.3) x" + f ( x )  x '  + g(x) = O. 

It is shown in BURTON [1] that when 

(1.4) f ( x )  > 0 and xg(x) > 0 for x ~ 0 
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then the zero solution of (1.5) is globally asymptotically stable if and only if 

(1.5) J [f(x) + I g(x) I] dx  = +_ :r 
. $  

0 

Recently, that results was improved through relaxation of (1.4) by HARA and 
YONEYAMA[8], SUGIE ([13], [14]), VILLARI [15], and VILLARI and ZANOLIN [16]; those 
papers also give extensive bibliographies not listed here. 

Condition (1.5) proves to be central. It is shown in BURTON and TOWNSEND [4] 

THAT WHEN (1.4) Is STRENGTHENED AND WHEN e(t + T ) =  e(t), then all solutions of 
(1.2) are bounded and there is a T-periodic solution if and only if (1.5) holds. A 
fairly extensive bibliography for (1.2) and (1.3) is contained in that paper [4] which 
updates the one from the SANSONE and CONTI book [11]. GRAEF [6] continues the work 
on (1.2) and reduces (1.4) showing that solutions of (1.2) are bounded and there is a 
T-periodic solution of (1.2) if and only if (1.5) holds: he also updates the 
bibliography. 

KaASOVSKII [9; pp. 173-4] studies a generalization of (1.3) including 

(1.6) x" + f ( x ) x '  + g(x(t  - h)) = 0 

and obtains sufficient conditions for uniform asymptotic stability of the zero solution 
when at least (1.4) holds. His work generated much interest, as may be seen in the 
writing of SOMOLINOS [12], YOSHIZAWA [18], MURAKAMI [10], BURTON and 
HATVANI [3], as well as in the bibliographies given in those references. Recently, 
ZHANG [19] showed that under suitable conditions on f and g, then the zero solution of 
(1.6) is globally asymptotically stable if and only if (1.5) holds. 

Our first result extends the work of Zhang to (1.1) where we show that solutions 
of (1.1) are uniformly ultimately bounded if and only if (1.5) holds, when (1.4) is 
suitably modified. When we add the condition that e(t + T ) =  e(t) then this 
boundedness will imply that (1.1) has a T-periodic solution, as may be seen in 
HALE [7] or BURTON and ZHANG [5]. 

In our last result we adapt a technique of WALTMAN and BRIDGLAND [17] (cf. 
MURAKAMI [1O] also) which they used on (1.3) to show that when solutions of (1.2) are 
uniformly ultimately bounded and e(t + T)  = e(t) then all solutions of (1.2) converge 
to a T-periodic solution of (1.2). 

When a function is written without its argument, then that argument is t. 

2. - B o u n d e d n e s s  a n d  p e r i o d i c i t y .  

Consider the Li6nard equation 

(2.1) x"(t) + f ( x )  x '+ g(x(t  - h) ) = e(t) 
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where 

t 

(2.2) h i> 0, f, g, e are continuous and e(t), E(t) = I e(s) ds bounded. 

0 
X . X 

Let  F(x) = f f (s)  ds, G(x) = ~ g(s) ds, 
o o 

(2.3) l e(t) I <<. m,  IE(t) l <~ M for some m, M > 0. 

Assume also that  

(2.4) there are constants k > 0, N > 1 such that  x g ( x ) >  0, x ( F ( x ) -  N h g ( x ) -  
- (sgn x) N M )  > 0 for Ix I > k, where M is defined in (2.3). 

A system equivalent to (2.1) is 

(2.5) 
x ' =  y 

y '  - f (x)  y - g(x(t  h)) + e(t). 

I t  is known [2] that  for f, g, and e continuous, given a continuous initial function 
r [ - h ,  0]--) R and a number Yo, then there exists a solution of (2.5) on an interval 
[0, a) satisfying the initial condition and satisfying (2.5) on (0, ~); if the solution 
remains bounded then ~ = ~ .  

D E F I N I T I O N  1. - Solutions of (2.5) are uniformly bounded at t = 0 (UB) if for each 
B1 > 0 there is a B2 > 0 such that  {r [ - h ,  0] ---) R, Yo �9 R with ]1r + lY01 < B1 } imply 
that  I x(t)l + l y(t)l < B2 for all t t> 0 where (x(t),y(t)) is any solution of (2.5) 
satisfying the given initial conditions. 

D E F I N I T I O N  2.  - Solutions of (2.5) are uniformly ultimately bounded for bound B at 
t = 0 (UUB) ff for each B1 > 0 there is a K > 0 such that  {r [ -  h, 0] --) R, Yo �9 R with 
[1r + l Yo I < B1} imply that  Ix(t) l + lY(t) l < B for all t i> K where (x(t), y(t)) is any 
solution of (2.5) satisfying the given initial conditions. 

THEOREM 1. - Suppose that  (2.2), (2.3), and (2.4) hold. Then solutions of (2.5) are 
UB and UUB if and only if 

(2.6) lira sup [F(x) -+ G(x)] = _+ ~ .  
X - - >  • ~ 

P R O O F .  - We consider a system equivalent to (2.5) 

x '  = z - F(x) + E(t)  + g(x(s)) d s ,  
(2.7) t-h 

z '  = - g(x) 
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with 

Let  

t 

y = z - F(x)  + E(t)  + I g(x(s)) ds .  

t - h  

Qo = 2 sup{IG(s)l :  Isl <~ k}. 

Then there is a constant p with 

G ( - k )  + p = G(k).  

Let  c > 0 be chosen so that  

(2.8) (N - 1) M - 2c > 0, 

and define 

Notice that  

and 

k ( N  + 1) - 2hc > 0 

f 
z ~ + 2G(x) + Qo 

W(x, z) = (z + c) 2 + 2G(x) + Qo + 2p 

(z - (cx/2k) + (c/2)) 2 + 2G(k) + Qo 

W(k, z) = z 2 + 2G(k) + Qo 

W ( - k ,  z) = (z + c) 2 + 2G(k) + Qo, 

= (z + c) 2 + 2G( -k )  + Qo + 2p.  

for x > k ,  

for x < - k ,  

for Ix I ~< k.  

(2.9) 

0 t 

- h t + s  

t 

+ [(N - 1)/4] I 
t - h  

g2 (x(s)) ds .  

This implies that  W(x,  z) is continuous. 
Let  x(t) = x(t, r Zo), z(t) = z(t, r Zo) be a solution of (2.7) with r e C( [ -h ,  0], R), 

x(s) = r for s e [ -  h, 0] and z(0) = Zo. Then (x(t), z(t)) exists on R +. We define 
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Differentiate (2.9) to obtain 

V'(t) = W'(x(t), z(t)) + ( 2 )h(N + 1)g2(x(t)) - 

t 

1 1 1 - ( ~ ) ( N +  1 ) f g 2 ( x ( s ) ) d s + ( - ~ ) ( N - 1 ) h g ~ ( x ( t ) ) - ( ~ ) ( N - 1 ) h g 2 ( x ( t - h ) ) .  
t - h  

If x(t) > k, then 

(2.10) V'(t) = 2zz' + 2g(x) z - F(x) + E(t) + g(x(s)) ds 
t - h  

t 

+ ( 1 ) h ( N + l ) g 2 ( x ( t ) ) _ ( 1 ) ( N + I ) f  ~(x<~))~ + 
t - h  

+ 

1 + ( 1 )  (N -1 )  hg2(x(t)) - (--~ ) (N -1 )  hg2(x(t - h)) <<. 

t 

<~ - 2g(x)F(x) + 2[g(x)lM + hg2(x) + [ g2(x(s))ds + 
.J 

t - h  

t 

1 1 + (-~)h(N + 1)g2(x(t))- (-~)(N + l) f g2(x(s))ds + ( 4 ) ( N -  l)hg2(x(t)) = 
t - h  

= - [ 4 / ( N  + 1)]g(x)[F(x)- {(N + 1)hg(x)/2} - M ( N  + 1) /2 ] -  

3 - ( ~ ) [ 1  - (2/(N + 1))][F(x)- (N + 1)hg(x)/2]g(x) - 

t 

1 - (-~ ) [ 1 -  (2/(I + N))]g(x)F(x) - ( 1 ) ( N - 1 )  f g2(x(s))ds~ 
t - h  

~< - (4/(N + 1))g(x)[r(x) - Nhg(x) - NM] - 

3 
- ( 2 / ( 1  + - - 

t 

t - h  

which is negative for x > k. 
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For x(t)  < - k we have 

(2.11) [ I t V'(t) = 2(z + c)z' + 2g(x) z - F (x )  + E( t )  + g(x(s ) )  ds + 

t - h  

t 

t - h  

1 ( 1 ) ( N -  h))<~ + ( - ~ ) ( N - 1 ) h g 2 ( x ! t ) )  - 1)hg2(x(t - 

<~ - [ 4 / ( N  + 1)] Ig(x)][  IF(x)] - c - ( ( N  + 1) /2)  h ]g(x)] - ( N  + 1 ) M / 2 ]  - 

- ~ [1 - (2/(N + 1))](IF(x)] - c -  ( ( N  + 1 ) / 2 ) h ] g ( x ) l ) ] g ( x ) ]  - 

t 

1 1 - ( - ~ ) [ I  - ( 2 / ( N  + I ) ) ] ( , F ( x ) ,  - c )[g(x) l  - ( ~ ) ( N - 1 ) I g 2 ( x ( s ) ) d s .  
t - h  

Taking into account (N - 1)M - 2c > 0. we get 

(2.12) g ' ( t )  <. - [4/(N + 1)][IF(x) I - N h l g ( x )  ] - N M ]  - 

- ( 3 ) [ 1  - ( 2 / ( N  + 1 ) ) ] l g ( x ) [ [ I F ( x )  I - N h [ g ( x ) l  - N M ] -  

t 

1 - ( 1 ) [ 1 -  (2 / (N+ 1 ) ) ] ( ,F (x ) , - c ) , g (x ) , -  ( ~ ) ( N - 1 ) I g 2 ( x ( s ) ) d s  
t - h  

for x ( t ) < - k .  Thus, V ' < 0 i f x < - k .  
Next. consider I x( t ) l  <<. k. Then 

[ ; ] - g ( x )  - ( c /2k )  z - F (x )  + E( t )  + g(x(s) )  ds  

t - h  

(2.13) V'( t )  = 2(z - ( c x / 2 k )  + (c/2)) + 

t 

t - h  

= 2 [ z  - ( c x /2k )  + ( e / 2 ) l [ - g ( x )  + ( c F ( x ) / 2 k )  - ( eE( t ) /2k ) ]  - 

- (cz 2 / k )  + ( c z / k ) [ ( cx /2k )  - ( c / 2 ) ]  - 
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Notice that 

(2.14) 

t t 

- ( c z / k )  ] g(x(8))d8 + (clk)r(cx/2k)- (cl2)11 ~(x(8))~ + 
t - h  t - h  

+ 
t 

h (~ - ) (N+ l )g2 (x ( t ) )  _ ( 1 ) ( N + I )  I g2(x(s))ds+ 
t - h  

1 1 

t 

(c/k)lzl I Ig(x(s))ids 
t - h  

by (2.8). 

t 

< (c/2k)z 2 + (ch/2k) I g2(x(s))ds <<" 
t - h  

t 

+ 1) I g2(x(s)) ds 
t - h  

Substituting (2.14) into (2.13) and using the fact that Ix(t) I <~ k, we obtain 

(2.15) V'(t) <<. - ~ z 2 + g2(x(s))ds +~, 
t - h  

where ~,/~ are positive constant depending only on k and c. 
Let Q > 0 be a constant such that Q - k 2 > 0 and 

We consider 

~(-~ - k 2) - ~ > o .  

t 

Iz(t)]2 + Ix(t)12 + I g2(x(s))ds 
t - h  

>~. 

If Ix(t) I > k, then V'(t)< 0 by (2.10) and (2.12). If Ix(t) I <~ k then 

Thus, 

t 

[z(t)12 + I 
t - h  

g2(x(s ) )  ds  > -~ - k 2. 

V' (t) <<. - ~(Q - k2) + ~ < 0 
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by (2.15). We then conclude that  

(2.16) V'(t) < 0 
t 

whenever I z(t)] 2 + Ix(t) l 2 + ~ g2(x(s))ds > -Q. 
Notice also that  t-h 

(2.17) V(t) ~ L [z 2 + ] G(x(t)) I + f g2(x(s))ds 
t - h  

+ q  

for some positive constants L and q. 
We now show that  solutions of (2.7) are uniformly bounded (the definition is the 

same as Definition 1 with Yo replaced by Zo). 
Let  D > 0 and r �9 C([-h, 0], R), Zo ~ R such that  I1r + IZo I ~< D. Then there is a 

Q = Q(D) such that  Q > Q and 

o 

Iz(0) 12+ 1r 12 + I I g(r 2ds <<. Q. 
- h  

Then either 

(2.18) 

o 

Iz(t) 12 + Ix(t) 12 + I 
- h  

I g(x(s)) 12 ds <<. Q 

for all t � 9  + or 

(2.19) 

tl 

Iz(tl)12+ I x(t 1)]2+ I I g(x(s)) 12ds 
t l -h  

>Q 

for some tl > 0. 
Let  G* = sup{]G(s)l :  Is] <<. Q1/2}. If  (2.18) holds, then 

(2.20) V(t) <. L(Q + G* ) + q for all t .  

If  (2.19) holds, then there exists a to i> 0 such that  to < tl with 

to 

Iz(t~ + Ix(t~ I g2(x(s))ds = Q 
to-h 

and 

8 

Iz(s)l 2 + Ix(s)l 2 + f g2(x(v))dv > Q 
s - - h  
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for s �9 (to, t~ ]. By (2.16) we have 

Thus 

V(tl ) <~ V(to) <- L(Q + G * ) + q. 

V(t) <<. L(Q + G* ) + q =: Q1 for all t �9 R +. 

This implies that  

t 

(2.21) Iz(t)l + IG(x(t))l + I g2(x(s))ds <<" Q2 
J 

t - h  

where Q2 depends only on Q1. I f  l ira G(s)= ~,  then 

x(t) <~ Q.~ for some Q~ = Q~ (Q) > 0. 

I f  lira sup F(s)= ~,  then there  exists a y > 0 such that  
8 - - ~  

F(y) - (Q2 + h + M) > 0 and r > Q1/2. 

From (2.7) we have 

for all t 1> 0 

- Q5 <<- x(t) for all t �9 R + if lira sup [F(s) - G(s)] = - ~ .  
8 - - -> - -  c~ 

We therefore  conclude that  solutions of (2.7) are uniformly bounded. 
Next, we will show that  solutions of (2.7) are uniformly ultimately bounded. Le t  

I1r + IZol ~< D; then there  exists a D1 > 0 such that  

Ix(t) l + I z(t)l <~ D~ for all t � 9  + 

where x(t) = x(t, r Zo), z(t) = z(t, r zo) is a solution of (2.7) with initial data (r Zo). 

t 

x'(t) <<. - F(x) + Iz(t) + IE(t)l + h + ~ g2(x(s))ds <<. - F(x) + (Q2 + h + M ) .  
J ! 

t - h  

Since x(0) ~< Q ~/2 < ),, we claim that  x(t) < ~, for  t i> 0. In fact, ff there  exists a t~ > 0 
with X(tl)=~" and x(s)< y on [0, y), then 

O <~ x'(tl)  <~ - F(x(t~)) + Q2 + M + h = - F(y) + Q2 + M + h < O, 

a contradiction. Thus there  exists a Q4 = Q4 (Q) such that  x(t)<<. Q4 for all t �9 R +. 
Finally, we have x(t) <~ Q8 + Q~ if 

lira sup [F(s) + G(s)] = ~ .  
8---> ao 

Using the same argument  we can show that  there  exists a constant Q5 > 0 such 
that  
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From (2.10), (2.12), and (2.16) we conclude that  

(2.22) V'(t) ~< - ~ for some t~ > 0 
t 

whenever Iz(t)l 2 + Ix(t)l 2 + I g2(x(s))ds > ~" There exists 02 > 0 such that  V(0) ~< 
t - h  

~< D2. By (2.22), there is a K = K(D)> 0 such that  

tl 

IZ(tl)l 2 + IX(tl)l 2 + g2(x(s))ds <. -~ 
t r h  

for some tl �9 [0, K]. Now suppose that  there exists t2 > tl such that  

Then 

V(t2) = max {V(s): tl ~< S ~< t2 }. 

t2 

Ix(t2)l 2 + [z(t2)l 2 + f g2(x(s))ds < -~ 
t2-h 

by (2.22). This implies that  

V(t2) <. B1 

Consequently, we have 

V(t) <. B~ 

and 

for s o m e  B 1 = B I ( Q )  > 0. 

for all t1>K1>t l  

t 

Iz(t) l 2 + G(x(t)) + I g2(x(s)) ds <<. B~ 
t - h  

for some B2 = B~(Q) > 0 and all t I> K. Using the same argument  following (2.21) and 
replacing Q2 by B2, we can find a constant B > 0 depending only on Q such 
that  

Ix(t)] + I z(t)] <<. B for t i> g .  

Hence, solutions of (2.7) are uniformly ultimately bounded. We therefore conclude 
that  solutions of (2.5) are UB and UUB. 

Now we show that  (2.6) is necessary. Suppose that  (2.6) fails. To be definite, we 
assume that  

lira sup [F(s) + G(s)] < :r 

Then there exists F* > 0 such that  

I F(s) I <~ F* for all s �9 R § 
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Let  r �9 C( [ -h ,  0], R) and r k for ~ e [ - h ,  0], Xo = r (Here, k is defined in 
(2.4).) Define 

y = max {g(r s �9 [ - h ,  0]} 

and 

yo = 2 + h~ + 2F* + f g(s) ds + M .  

xO 

Let  (x(t), y(t)) be the solution of (2.5) with x(s) = r for s E [ -  h, 0] and y(0) = Y0. 
We claim that  y(s) > 1 for all s e R § 

Now suppose that  there exists t l  > 0 such that  y(tl) = 1 and y(s) > 1 on [0, t~). 
Consequently, x(t) is increasing on [0, t 1 ). 

Case 1. Suppose that  t~ ~< h. Integrate  the second equation in (2.5) from 0 to t l  to 
obtain 

t l  tl 

y(tl)  = Yo - I g(x(s - h))ds - I f ( x ( s ) ) x ' ( s )ds  + E(t~) 
0 0 

x( t l  ) 

Y o -  h~7- ~ f(s) ds - M >l Yo - h ~ -  2F* - M > l ,  
x(O) 

a contradiction. 

Case 2. Suppose that  t I > h. Integrating the second equation in (2.5) from 0 to tl ,  
we have 

h tl tl  

0 h 0 

tl - h tl 

Y o -  h ~ -  I g ( x ( s ) ) d s -  Ifl(x(s))x'(s)ds + E(tl) >t 
0 0 

>1 Yo - hy - 

tl - h t 1 

I g(x(s))x'(s)ds - I f (x (s ) )x ' ( s )ds  + E(t,) 
0 0 

o~ x( tl ) 

xo x(O) xo 

> 0 ,  

a contradiction. Thus, y(s) > 1 on R + and x(t) > t + Xo --~ ~ as t --* ~ .  This completes 
the proof of Theorem 1. 
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3. - C o n v e r g e n c e  o f  s o l u t i o n s .  

We first consider the half-linear equation 

(3.1) x"  + f ( x ) x '  + kx ( t  - h) = e(t) 

where h I> 0, k > 0 and f i e  are continuous. 

T H E O R E M  2 .  - Suppose that  

(3.2) f ( x )  > kh  for all x e R .  

Then any pair of bounded solutions (xl(t), x2(t)) of (3.1) satisfies 

(3.3) Ixl(t)- x~(t)l + Ix~'(t)- xg(t)l--*0 as t--> ~ .  

PROOF. - A system equivalent to (3.1) is 

(3.4) 
x '  = z - F ( x )  + kx (s )  ds + E( t )  

t - h  

Z r =  - k x .  

Let  ( X l ( t ) ,  z l ( t ) )  and (xe(t), z2(t)) be two bounded solutions of (3.4) and define X( t )  = 

= xl(t) - x~(t), Z ( t )  = z l ( t )  - z2(t). Then (X(t) ,  Z ( t ) )  satisfies 

(3.5) X '  = Z - ( F ( x l )  - F(x2 )) + kX(s )  ds  

t - h  

Z ' =  - k X .  

Now define 

0 t 

v(t) = kx2(t) + z2(t) + I I k2x (v)dvds 
- h  t+s 

so that  

(3.6) V '  (t) = 2 k X  Z - (F(x~) - F(x2))  + kX(s )  ds 

t - h  

+ 

t 

+ 2 Z [ - k X ]  + h k 2 X " ( t )  - k 2 f X 2 ( s ) d s  <<. 

t - h  

<<. - 2 k { ( F ( x l  ) - F ( x 2 ) ) / ( x l  - x2 ) }  X 2 + 2 h k 2 X  2 �9 
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Since xl(t)  and x2(t) are bounded, it follows that  V' ( t )  <~ - ~X2(t )  for some ~ > 0 by 
(3.2). This implies that  X ( t ) e  L2(O, ~ )  and, in fact, X(t)---)0 as t---) ~ since X'( t )  is 
bounded. Moreover, by (3.5) and the definition of V(t) it follows that  Z ( t ) - ,  C as 
t--)  ~ for some constant C. Since X l ( t )  and x2(t) are bounded, we conclude that  

Thus, C = 0 by (3.5) and 

F(x l  ) - F(x2 ) --) 0 as t -~ ~ . 

I x l ( t ) - x 2 ( t ) l  + I x ; ( t ) - x ~ ( t ) l  = IX(t)l + IX' ( t ) l - - -~0 

as t--> o0, as required. 
We turn now to (2.1) and consider its equivalent system 

(3.7) 
x ' =  z - F(x)  + g(x(s)) ds + E( t ) ,  

t - h  

z '  = - g(x) ,  

where h i> 0, f, g', e are continuous. 

THEOREM 3. - Suppose there  are positive constants p, q, and 0, with 0 E (0, 1), such 

that  

(3.8) 

where 

(g '(x) - qf(x) - p)2 <~ 40(pf(x) - qg '(x) - H(x))  q ,  

I H(x)  = l (Nph  + h(p + q~) lg ' (x )]2) ,  

(3.9) [8  = hi(1  - 0), N > 1.  

Then any pair of bounded solutions (xl(t), zl(t)), (x2(t), z~(t)), of (3.7) satisfies 

I x l ( t ) -  x2(t)l + I z ~ ( t ) -  z2 ( t ) l - - )0  as t--> ~ .  

(3.10) 

PROOF. - Le t  X(t)  = xl(t)  - x2(t), Z(t)  = z~(t) - z2(t), so that  

t ; X'( t )  = Z(t)  - ( F ( x  I ) - F ( x  2))  + ( g ( x  I (s)) - g(x2 (s))) ds ,  

t - h  

[g ' ( t )  - (g(x~(t)) - g(x2( t ) ) ) .  

Now define 

V(t) = pX2( t )  - 2qX( t )Z( t )  + Z2(t) 
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so t h a t  

( ; ) V'(t) = 2(pX - qZ) Z - F ( X l )  + F(x2) + (g(xl(s)) - g(x2(s)))ds 
t - h  

+ 2(Z - qX)( - g(xl) + g(x2)). 

To simplify the  notat ion,  define 

= l (F(x ,  (t)) - F(x2 (t)))/(xl (t) - xz (t)), if x~ (t) ~ xe (t), 

FH (t) If(x1 (t)), if x~ (t) = xe (t) ,  

I ( g ( x  l( t))  - g(x2 (t)))/(x~ (t) - x2 (t)) , if x~ (t) ~ x2 (t) , 

g11(t) = [ g ' ( x l  ( t)) ,  if xl (t) = x2(t), 

Then  

V'(t) = - 2(pFll(t) - qgll( t))X 2 - 2qZ 2 + 2(p + qFll(t) - g11(t))XZ + 

t 

+ 2 ( p X -  qZ) f g 1 1 ( 8 ) X ( 8 ) d s .  

t - h  

L e t  A = pF11(t) - qg11(t), B = p + qF11(t) - g11(t) so t h a t  

t 

V'(t) = - 2 [ A ( X -  (B /2A)Z)  2 + {(4qA - B2)Z2  /4A}] + 2 ( p X -  qZ) f g~(s)X(s)ds .  
t - h  

t 

V'(t) = - 2[q(Z - (B/2q)X)  2 + {(4qA - B 2 ) / 4 q } X  2 ] + 2 ( p X -  qZ) I gl~(S)X(s)ds 
t - h  

and 

t 

V'(t)  <<. - { ( 4 q A -  B2)/4q} X 2 -  { ( 4 q A -  B2) /4A}  Z2 + 2 ( p X -  qZ) I g11(s)X(s)ds, 
t - h  

V'(t)  <. - {(4qA - B2)/4q} X 2 - {(4qA - B2) /4A}  Z 2 + 

t 

+ p h X 2  + P  I 
t - h  

t 

I gll (s) l 2 IX(s) l ~ ds + (qh/e) Z 2 + qe I I gll(s) 12 IX(s) 12 ds.  
t - h  
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Let  

0 t 

= Wit)-~ (p -t- q~) I I Ig11(8)]2]X(8)12dsdv Vl(t) 
. J  

-h t+v 

so that  

V; (t) <~ - {(4qA - B2) /4q}  X 2 - {(4qA -- B 2 ) / 4 A }  Z 2 + 

+ h(p + (p + q~)lg11(t)12)X 2 + q(1 - O)Z 2 

- {[4qO(A - H ~  ) - B 2 ]/4q} X 2 - {(4qOA - B 2) /4A}  Z 2 - h (N  - 1)pX2(t), 

where 

Notice that  

Hll  = (1/O)[Nph + h(p + q~)Igl112] �9 

1 

Fll( t)  = I f ( s X ( t )  + x2(t))ds ,  
0 

1 

gll (t) = I g '  (sX(t) + x2 (t)) ds .  
0 

Then 

] B 2 = (g ' ( sX( t )  + x2(t)) - qf(sX(t) + x2(t)) - p ) d s  
d 

1 

<~ I (g ' ( sX( t )  + x2(t)) - qf(sX(t) + x2(t)) - p)2ds <~ 
0 

1 

<<. 40q ~ (pf(sX(t)  + x2(t)) - qg '(sX(t) + x2(t)) - H(sX(t)  + x2 (t)) ds <~ 40(A - Hl l  ) q. 

0 

By (3.8) there is a constant ~ > 0 such that  

Vi  (t) <<. - ~ ( x 2 ( t )  + z 2 ( t ) ) .  

Since xl(t),  x2(t) are bounded, it follows that  

IX(t) 1 + I Z(t) I --) 0 as t -~ 

This completes the proof. 

We now show that  (2.6) is a necessary condition that  every pair of solutions xl(t),  
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x2(t) of 

(3.11) 

satisfy 

(3.12) 

x"  + f ( x )  x '  + g(x( t  - h)) = e(t) 

I X l ( t ) -  x2(t)l + t x ; ( t ) -  x~(t)l---~0 as t---~ ~ .  

THEOREM 4. - Suppose tha t f i  g, e are continuous with e(t), E(t)  bounded and there 
is a k >t 0 such that xF(x)  >>- 0, xg(x)  >>- 0 for I xl >/k. Then every pair of solutions of 
(3.11) satisfies (3.12) only if (2.6) holds. 

PROOF. - Suppose that  (2.6) fails. To be definite, we assume that 

oo 

I [f(s) + I g(s) I ] ds < oo . 
o 

Write (3.11) as the equivalent system 

(3.13) { x ' =  y 
y '  - f ( x ) y  - g(x( t  - h)) + e(t).  

Let  r e C([ - h, 0], R) and r 1> k for ~ �9 [ - h, 0], x0 = r We define 

= max {g(r ~ �9 [ - h ,  0]} 

and 

oo 

yO = 2 + h~ + I[f(~) + g(~)] d~ + M 
xO 

where M is defined in (2.3). Let  (xl(t), yl( t ))  be the solution of (3.13) with Xl(~) = r 
�9 [ -  h, 0] and yl(0) = yO. By the proof of Theorem 1 (for the only if part), it follows 

that yl( t)  > 1, xl( t)  > t + Xo for t � 9  + 
Next, let 

oo 

yO = yO + 2 + I [ f ( s )  + g(s)] ds + h~. 
x 0  

Let  (x2 (t), Y2 (t)) be the solution of (3.13) with x2 (~) = r ~ e [ - h, 0] and Y2 (0) -- yO. 
Then Y 2 ( t ) > l  and x 2 ( t ) > i t + x o  for t � 9  + 
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Now consider 

t 

y 2 ( t ) -  y:(t): ~ o _  yl o _ i f ( x , ( s ) )  y,(~) ~8 + 
0 

t t t 

+ ff(x:(s))y:(s)ds- f g(x2(s- h))+ f g(x:(s- h))ds, 
0 0 0 

t t 

y,(t) - y: (t) ~> yo _ yo _ ] f (x , (~) )  y, (~) ~8 - I g(~,(8 - h)) ds,  
0 0 

x2 (t) t - h 

Xo - h 

I f 0 ~ < t ~ < h ,  then 

y2(t) - y:(t) >1 yO _ yO _ I f ( s ) d  s _ @ >i 1. 

Xo 

I f h ~ < t <  ~ ,  then 

t - h  

x0 0 

y2(t) - y:(t) >1 yO _ yO 1 _ I f ( s ) d  s _ h~ - f g(s)ds >1 1. 
xO ~0 

Hence, y 2 ( t ) - y : ( t )  t> 1 and x 2 ( t ) - x l ( t )  I> t .  This completes the proof  of 

Theorem 4. 
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