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Summary.  - We consider the ~ ixed  problem ]or a general, tiqne independent, second order 
hyperbolic equation in  the unknown n, with datum g e L2(X ) in the ~eumann  B.C., with 
datu~ / e L2(Q) in the right hand side o] the equation and, say, initial conditions u o = u 1 -~ O. 
We obtain sharp regularity results ]or u in Q and f ix  in ,V., by a pseudo-di]]erential approach 
on the hall-space. 
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1. - Regularity problem, preliminaries, and statement of main results. 

L e t  �9 > O b e  a sca la r  p o s i t i v e  v a r i a b l e ,  t be  a r e a l  v a r i a b l e ,  a n d  y ~ [y~ . . . ,  y._~] 

be  a n  ( n - -  1 ) - d i m e n s i o n a l  v e c t o r  w i t h  r ea l  c o m p o n e n t s .  I n  s y m b o l s :  x e R~+; t e R~; 

y ~ R~-~.  L e t  

(1 .1 )  9=_R~+XR] -I  , I'=_R~-~=f21~=o dimf2 = n > 2 .  

b e ,  r e s p e c t i v e l y ,  a n  n - d i m e n s i o n a l  h a l f - s p a c e  t9 w i t h  b o u n d a r y  F .  On  ~ we con- 

s ide r  t h e  s econd  o r d e r  d i f f e r en t i a l  o p e r a t o r  

(1.2) 
n--1 ~--I 

P ( x , y ; D , , D ~ , D ~ ) ~ - - a , D ~ q - -  Z a~,D~D~jq- 2 Z a,jD~D~ ff- D~ 
i ,5=1 i = l  

w i t h  space -dependen t~  b u t  t i m e - i n d e p e n d e n t  coefficients  

(1.3) a ~- a(x, y) , a~j -~ alj(x, y) ; [x, y] e T2 ; i ,  j -~ 1, . . . ,  n - -  1 
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satisfying the symmetr ici ty  condition a~j ---- aj~, i, ~ ---- 1, ..., n -  1. Here and 
throughout  we use the notat ion 

D t ~- ~d '~l  ~-~; ~ / ~  ~x' e t c . .  

On _F, the boundary of the half-space 2 ,  we consider the first order operator 

n - 1  

(1.4) B(y;  D~, D~) ~ D ~ +  ~b jD~j  
j = l  

o n  x = O  

with space-dependent, bu t  t ime-independent coefficients 

(1.5) bj -~ bj(y) , y G T' .  

The present paper investigates regularity properties of the solution u(t, x, y) of the 
following second order hyperbolic mixed problem with l~eumann boundary condi- 
tions 

(1.6a) P ( x , y ; D t ,  D ~ , D ~ ) u : ] ( t , x , y )  on 2 ,  t > O ,  

(1.6b) B(y;  D~, D~)u = g(t, y) on F, t >  0 ,  

(1.6c) u]t= o = uo ; Dtult= o = ul on ~, t = 0 ,  

at  least for a few specific fundamental  function spaces for ] and g. Other classes 
of functions spaces are examined in a subsequent paper [L-T.5]. Generally, we are 
interested in the continuity of the map from the data  (uo, u:,  ], g) in preassigned 
function spaces (possibly, subject to compatibility conditions) into the solution 
u, ut ,  ... and possibly its trace ulr , ... in suitable (optimal) function spaces. 
Throughout the paper, problem (1.6) will be subject to the following assumptions: 

(i) the coefficients a, a~j, a~i of _P and b~ of B are assumed real, t ime inde- 
pendent,  sufficiently smooth in the space variables, and constant  outside a com- 
pact  set 35~ of : ~-i R~+ xR~ ----- 2 ;  

(ii) the boundary F (x ---- 0) is non-characteristic for P and P is (( regularly 
hyperbolic with respect to t ~), i.e. the characteristic polynomial of P. 

(1.7a) 
n--i n--I 

i , j = l  J = l  

(:l.7b) 
n--1 . ]2 n--1 I n - - 1  \ 2  

has two real and distinct roots in z, for (x, y)G 2 and (~, ~) on the unit  sphere 
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n - - 1  

~:~ -~- i~]l 2 = 1, where l~l 2 = ~ ~ .  I f  we consider ~ = 0 und ~ = 1, this require- 
ment  yields the condition ;=~ 

(1.8) rain a(x~ y) > 0 in t2 ; 

moreover, if we consider the points of the unit  sphere in ($, ~) which lie also on the 
~q.--1 

hyperplane ~ d - ~  a,~J~b = 0, this requirement yields the necessary condition, which 
j = l  

is plainly also sufficient, t ha t  the quadratic form in 

(1.9) 
i ,  ' ~  "=  

(independent of ~) be positive definite 

(1.10) d(x,y; ~ ) > c l ~  P uniformly in ( x , y ) e ~ ,  c > 0  ; 

(iii) the first order operator D~ defined by 

n - - 1  

( i . i i )  D~ - ~  D~-~ ~ a,j(x, y)D~j 
i = 0  

restricted on the boundary  / ' ,  coincides with B; i.e. 

( i . i2) B=:D~I~=o; i.e. bj(y)~a.j(O,y), ] = l , . . . , n - - 1 .  

The following results are known and provide the a-priori regularity needed in 

the subsequent development.  

LE~iYIA 1.1. - Let uo : u~ : 0 in (l.6e) and let 0 < T < ~. 

~) Let g ~ 0 and / e L l ( 0 , / ' ;  L~(~9)) in (1.6). Then 

u e  C([0, ~]; H1(9)),  ~ e  C([0, r];/1~(~)) 

(a *ortiori H i ( E 0 ,  continuously. 

b) Let  / ~ 0 and geL2(0 ,  T;/12(/")) in (1.6). Then 

u e  c([o, T];/t~/~(~)), ~ e  C([o, T]; H-1/~(.O)) 

(a fortiori 
( LIOSTS-1V[AGESTES~ VO]. I I ,  p. 120 provide only L2(O, T; .); but  this can be im- 

proved to C([0, T]; .) with the same space regularity,  as e.g. in [L-T.2], [L-T.4]~ 
[L-T.5] .) E] 
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Trace theory  applied to Lemma 1.1a) then  gives 

(1.13) 

/eL,(o, r ;  

g=O 

Uo = Ctl = 0 

-+ u]z ~ C([0, T]; H1/2(F)) cont inuously .  

A main goal of the  present  paper  si to show the following results when dim Q~> 2. 

MAI~ TItEOI~E~ 1.2. - Le t  g = 0 and Uo = u~-~ 0 and let  ]+ Lp(Q+), Q+ = R~+ x Q. 

Then, 

a) if Z+ ~-~ Rt]+ x/~, the trace u]~ of the solution to (1.6) satisfies u[x e H m ( Z + )  

continuously:  there  is a constant  C > 0 independent  of ] such tha t  

(1.14) 

b) In  the special cases where the coefficients a , ,  i, ~ = 1 ,  . . . , n - - 1 ;  a~j, 
j ---- 1, ..., n - -  1 ei ther do not depend on x, or else do not depend on y, then  u ] X ~  
e HP/3(Z+) continuously:  there is a constant  C > 0 independent  of ] such tha t  

(1.15) < c ]]lll:.++). 

I~ElVIARI;S 1.1. 

(i) The general case (1.14) represents an improvement  by  <~1/10 ~ (1/2 + 
+ 1/10 = 3/5) in the space regular i ty  of the trace over (1.13). 

(ii) Le t  ~ be a smooth open bounded domain in /~ ,  dim D > 2 .  Then, The- 
orem 1.2 provides regular i ty  results for a general t9, Eq.  (1.14), as well as for the 
case where the coefficients of the spatial part ial  differential operator  a~j depend 
near  the boundary  ei ther  only on the tangential  direction~ or else only on the direc- 
t ion normal  to  the boundary ,  Eq.  (1.15). In  addition to  these the following results 
for specialized geometries hold true,  when the operator  P in (1.6a) is P u  -~ []u -= 

-~ u , -  A u  (i.e. the  spatial differenti~J operator on f2 is the Laplacian) and g = 0: 

the map 

{1, Uo, ul : .&(Q+) -+ y 

is continuous, where 

a) Y ~- H~/4-~(Z+), Ve > 0, when /2 = parallelopiped; 

b) Y = HP/8(Z+), when t9 = sphere; 

(while Y = H31~(X+) and :Y = H2/8(2:+) in the cases of Theorem 1.2 a), b), respec- 

t ively) .  
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The proof of parts a), b) can be given by use of the same techniques (eigenfunc- 
t ion expansion for the solution followed by Fourier transform in time) which were 
employed in [L-T.1] to obtain corresponding results for the interior regulari ty under 
non homogeneous boundary  conditions g eL~(X+), i.e. the corresponding dual 
problem. (These interior results will be stated explicitly in Remarks 1.2 (ii), (iii), 
below.) 

(iii) Addition of a ]irst order differential operator to P does not  affect the 
results. [] 

A second main result of this paper is the following 

MAI~ TKEORE~[ 1.3. -- Le t  / = 0 ,  Uo= u ~ = 0 ,  and geZ2(Z+).  
uously for any  s > 0: 

a) 

Then, contin- 

(1.16) 

and 

(i.l) 

( improvement by 1 / 1 0 - - s  over Lemma 1.1 b)) 

uk e H  " ~ - ~ ( z + )  . 

b) In  the special cases where the coefficients a~, a.~, i, j = 1, . . . , n - - 1 ,  
either do not depend on x, or else do not depend on y, then 

(i.18) u e H~/S(Q+) 

and 

(1.19) u]z e H~/s(Z+) . [] 

R E ~ R K S  1.2. 

(i) For dim ~Q>~2 and the Laplacian case, one can show tha t  u~H~Id+~(Q), 
Ve > [L-T.3]. 

(ii) Result  (1.17) is a regularity result. Truce theory applied to interior 
regularity (1.16) gives only H315-~-l/2=ln~ a result worse than  (1.17) by 
,.( ]/10 ~>. Similarly, trace theory applied to (1.18) gives H~J~-I/2=I/~(X+), a result 
worse than  (1.19) by  <~ 1/6 )~. 

(iii) The regulari ty in (1.18)-(1.19) coincides with tha t  proved directly, by 
eigenfunction expansions, for the Laplacian A on a sphere-~ ~ [L-T.1], 

(iv) Direct computations, by  eigenfmlction expansions, with the Laplacian 
on a parallelepiped ~Q produced u e Hs/4-~(Q+), uI~ e H2/8-~(Z§ e > 0 [L-T.1]. 
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(v) When Q is a smooth bounded domain in R n, one obtains a f o r t i o r i  f rom 

(1.17) tha t  with ] = u o - - - - u l = 0 ,  the map g - + u [ z  is compact f rom L2(Z+) to 
H1/~-~(Z+), for any  fixed ~ > 0. The special case ~ = 1/5, i.e. compactness of said 
map from L2(Z+) into itself, plays an impor tan t  role in the s tudy  of the quadrat ic  
cost opt imal  control  problem With control  function L2(Z+) and with boundary  (~ obser- 
vat ion ~) u]z and related differential, opera tor - -Ricca t i  equation, see [L-T.6]. [] 

The proofs of Theorem 1.2 and 1.3 are very  lengthy and technical and are given 

in the subsequent  sections. 

Acknowledgement .  - We wish to thank  J. L. L ions  for some correspondence 
exchanged during May 1984 which included a proof by  J. L. Lions and a different 
proof by  the authors of the trace result 

] = Uo = Ul = 0 ,  g E L2(Z)  --> u[z e L ~ ( Z ) ,  

see Remark  7.1. 

2. - Comparison with the case of  compactly supported data. 

The present  article is a companion paper  to our work [Z-T.3], which is chiefly 
devoted to the impor tan t  special case of problem (1.6) where, say g ---- 0, and where 
in addit ion the data  ], u0, ul are compact ly  supported away from the boundary  P. 
This case was previously studied also in [S.3] by  different methods. A s tudy  with 
general da ta  ], g - -bo th  smoother than,  or less smooth than,  L~ in t ime and space- -  
is carried out  in [L-T.5]. 

Le t  g _= 0 in (1.6b). Then, Theorem 1.2, complemented by  Remarks 1.1 (ii), 
points out  the proper ty  tha t  the regular i ty  ~f the trace U]z depends in general on 
the geometry.  (This is in contrast  with the corresponding Dirichlet  problem, see 
Remark  2.1 below). I t  is instructive to compare these results with those tha t  one 
obtains when the assumption is added tha t  the data  are compact ly  supported away 
from the boundary.  In  this case it  suffices to take _Pu = []u = u ~ t -  Au.  By  the 
principle of superposition, we m ay  consider the following ~wo cases. 

THEO~]~I 2.1 [S.3], [L-T.3]. - Consider problem (1.6) with P u  = V]u = u t t - -  Au ,  

as in (1..1) and u 0 = u l = 0 .  Assume tha t  ] e L ~ ( Q ) ,  Q = D x ( 0 ,  T] and, more- 
over, t ha t  

(2.1) ] has compact  support  contained in /2 .  

Then,  for any  0 <  T <  c% the  trace u[~ of the solution u satisfies: 

(2.2) ulz  = u l z = o ~ H ' ( Z )  ; Z =  i f •  (0, T ] .  [] 
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TH.EOZ~ES'~ 2.2 [S.3], [L-T.3]. - Consider problem (1.6) with P u  -~ [Z]u -~ u t t - -  zJu, 

as in (1.!) and ] = 0. Assume tha t  uo e H~(zg) and u~ c L2(9) and that ,  more- 
over, 

(2.3) Uo and u~ have compact support contained in Y2. 

Then, for any  0 <  T <  ~ ,  the trace u[z of the solution u satisfies 

(2.~) u[z = uj~=0  e H ~ ( 2 )  �9 [ ]  

I~EbfAgK 2.1 (Sharp trace regulari ty of the corresponding h3~perbo]ic problem of 
Dirichlet type). - In  an a t t empt  to find~ in addition to (1.13)~ a second limitation 
for the trace u[z of the :Neumann problem (1.6), this t ime from below, we next  con- 
sider the corresponding second order hyperbolic problem of Dirichlet type,  which 
consists Eqts.  (1.6a)-(1.6c) and of the homogeneous boundary  condition 

(2.5) u(z, t) ~ 0 on Z = F x  (0, T] ,  

replacing (1.6b) on a smooth bounded ~ 2 c R %  dim.Q~>l. The Dirichlet problem 
(1.6a), (1.@), (2.5) admits  the following trace regulari ty result, which was established 
recently (in fact, even in the case of sufficiently smooth t ime dependent coeffi- 
cients of the spatiM differentiM operator, see [L-2], [L-T.1], [L-T.2] and [L-L-T.1]): 
the map 

~u 

is continuous. (Actually, the space L~(0, s  L~(~O)) may  replace the space L~(Q) 
in (2.6)). In  (2.6) we are considering the conormal derivative with respect to the 
spatial differential operator o~, which becomes the regular normal derivative 8/8v, 

v being an outward uni t  vector to / ' ,  when g - ~ -  LJ. 
Since the @tterior regula.rity of the solution to the Dirichlet problem (1.6a), 

(1.6@, (2.5) is the same as for the Neumann problem (1.6a)-(1.6c), i.e., is described by 

(217) {], ~o, u,_} e L2(Q) xH~(9) x L2(9) ~ u e C([0, r ] ;  Ho~(9)), 

with H 1 of Lemma 1.! a) replaced by H i now, we see tha t  (2.6) is an independent 
regulari ty res~flt, not obtainable by applying (formally) tra.ce theory to the interior 
optimal regulari ty (2.7). In  fact, (2.6) shows tha t  the Neumann trace of the solu- 
t ion of the hyperbolic problem of Dirichlet t~pe (1.6a), (1.6e), (2.5) behaves in the 
space variable <~ ]/2 better ~> (in Sobolev space order) than what  one would obtain 
by  applying formally trace theory to the interior regularity (2.7). [] 
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RE~ARK 2.2 (A conjecture on the Neumann problem). - On the basis of Re- 
mark  2.1, and by  ~nalogy with the more established elliptic and parabolic theory,  
the following conjecture has been advanced tha t  in the case of the Neumann 
problem (1.6a)-(1.6c), we may  perhaps have 

(2.8) {/, uo, u~) -~ Ulz: L~(Q) • H~(/2) • L~(tg) --> H~(X) . 

As a reinforcement,  one may  notice tha t  s ta tement  (2.8) is precisely the one tha t  
one would obtain,  if the Dirichlet t race u[z of the solution u to the l~eumann problem 
(1.6a)-(1.6e) ns in Lemma 1.1 a) would likewise behave (( 1/2 bet te r  ~ (as it  is t rue 
for the Diriehlet ease (1.6a), (1.6c), (2.5) described in Remark  2.1) than  the regu- 
lar i ty tha t  we would get by  application of t race theory  as in (1.13). [] 

Our studies reveal tha t  conjecture (2.8) is false in general, except  for the one 
dimensional case, where for Pu  = u t t - - d u  and /2----(0, + oo), the half-space, 
where the regular i ty  (2.8) can be verified by  direct computat ions as in section 3 
of [L-T.3]. In the general case d im /2  > 1, the situation is much more complex 
and is described by  Theorem 1.2 and Remark  1.1 (ii). 

In  contrast ,  Theorems 2.1 and 2.2 establish tha t  undei  the additional assumption 
tha t  the da ta  have compact support  in /2, conjecture (2.8) holds true. This l a t t e r  
assumption is crucial for the val idi ty of conjecture (2.8), as shown by 

T E E O ~ E ~  2 .3  [ L - T . 3 ] .  - Consider problem (1.6) with Pu  = [ B u  =:- u t t -  Au and 
/2 as in (1.1). Then for any 0 < T < ~ ,  the map 

(2.9) {/, Uo, ul} -+ ul~: L~(Q)• • -+H~/~(2) 

is continuous. Moreover, for d i m / 2 > 2  

(2.10) ulz~  HS/4+~(Z) , Vs > O . [] 

We now let / ~ 0 and g =/= O in problem (1.6). By  dual i ty  or transposition, The- 
orem 2.3 shows that ,  say with Uo = ul ~- 0, and for any  0 < f < 0% we have in 
general 

(2.11) geH-~la-~(X)  -+ u ~.L~(Q), e >  0 .  

A more sat isfactory s ta tement  for our purposes tha t  the gain from boundary  to 
interior regularity,  f rom g to u, cannot  exceed 3/4 is obtained when g is in L~(X) 

as in the following counterexample given by  the authors in 1984, in response to the 
proposed conjecture of Remark  2.2. This eounterexample preceded [L-T.3] and in 
fact  it is easier than  the one from / to u[z given by  Eq.  (2.10) of Theorem 2.3; 
see [L.1]. 
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COU~TE~EX~eLE. - Consider the following two dimensional problem 

(2.12a) u~ = u~, § u~ in Q+ =- /2  • (0, ~ ) ,  

(2.12b) u]t= o = utlt= o ~- 0 in /2 ,  

(2.1~e) %[~=o = g in 2+ = r •  (0, ~ ) ,  

where zP- -  {(x,y) eR~:  x > 0 }  and /1---- {(x,y) eR~:  x = 0 } .  With  reference to 
problem (2.12) we shall prove tha t :  given ~ny e > 0, there  exists g~ 

(2.~3) g~6Z~(Z+) such tha t  uCH~/*+~(Q+); 

To the  end we use the  Fourier-Luplace t ransform, Laplace in t ime t -~ ~ : ~ + in, 
~, > 0, a e R1, Four ier  in y - ~  i~, ~ ~ R ~, leaving x as ~ parameter  

(~.~4) 
r 

g(v, x, ~) = (2~)-~Jexp [-- (y § in) t] exp [-- iy~] u(t, x, y) dt dy 

where we extend the initial and boundary  data  to vanish identically for t < 0. 
We obtain 

(2A5) 

Hence 

Since 

or g(~, x, ~7) = -- ~(~, fl) 
~(~, o, ~) = ~(% ~l) V ~  + ~ 

co 

0 

x,  V)l~dx = 

(2.17) 

then  for fixed ~ > 0, we define the region :~+, say in the first quadrant  of the (a, N) 
plane, by 

(2.1s) + - -  . ~ 2 :  ~ ,  - ((~, v )e  2y~>1, v >  0; ly2§ n ~ -  ~[<1}  

comprised between the equilateral  hyperbolas y~ § ~2_ a2 _ • 1, around the equi- 
lateral  hyperbola  Re (72 § ~7 ~) = ~2 § ~2 _  as = 0 for a>l/2~/. :Note tha t  in :~+, 
where o',~fl, we have 

(2.19a) 2 y a <  IvY+ ~'21 ---- ( (~  § ~2_  a2)2+ 4y~a~}a/~<2VZya 
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which we shall re-write in short as [~ - [ -~2 ]~a ,  as usual) 

7~ 
2.19b) arg ( ~  ~ ~ )  --> ~ as a -> ,~ oo 

(more precisely: 

arg (~  + V~ )~ ~/2 as a -+ + oo for 7 ~ + ~2_ a~ > 0 ,  

while 

arg (v 2 + ~ )  ~, :~/2 ~s a -+ + ~ for 7 '  -[- ~ - -  a* < O), 

so tha t  in ~+ we have:  

(2.20a) l ~" ~- ~2~I ~ a ~ 7  ; Re V/~  § n ~ ~ a~2"~ V ~ 

for 0 < c.2~ < C2~ < oo. Thus, by (2.20), we re-write (2.16) on :~+ as 

o o  

(2.2~) fla( , x, ,7)l~dx~v-~/~ Ig(~, ~)I '~a-~/~ Ig(~, n)l ~ on ~,+. 
0 

Next, to prove Eq. (2.13), we notice tha t  if it  were true t h a t  (( g e L2(2:+) implies 
u ~ Hs/4+~(Q+)~, we would equivalently have 

(2.22) (I~V*+~+ [~[u/4+~)I~I~L~(Q+) , or f ( [~ l~ / - -+  [~]s/4+~)~l~el2dQ< o~, 
~+ 

But  the validity of (2.22) is contradicted by 

oo  

(2.23) I~l ~/e+2~ Ig(% x, ~])]~dxdad~ 7 ~ IO(v, ~) l~da@ = 

a ;  o 

which follows from (2.21) when given e > 0, we choose ~ = ~ defined by 

(2.24) 
/ ]/~/2 in ~+ ,  

L2(R~)  ~ g~(~' ~) = 0 outside ~L + . 

Similarly, the integral for [als/2+2~ld P is infinite over :~+ • c~). This proves 
(2.13). [] 
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We observe 

a, 7 > 0 where 
region ~+, we 

We observe 

from (2.16) tha t  in the (( good )) regions of, say, the quar ter  space 
ei ther  a<e~7 , c~< 1; or else a>c~7, e2 > 1 which avoid the ~ bad )> 
do have H ~ regular i ty  for u. 

f rom (2.21) tha t  for any  # e L~(Ro,) we have 

(2.25) 
P A i + I4( , 7)I tiT,-..,! Ig( , 7) t d7 < o , o .  

~ o ~ 

I t  can be seen tha t  in this special ease of problem (2.12) involving the Laplacian, 
we actual ly have tha t  :~+ is the  <~ bad ~> region in the first quadrant .  (Similar con- 
siderations apply to other  quadrants  of the (~, 7)-plane with the regions around 
the hyperbola  7 2 +  7 ~  a 2 =  0 being the (~ bad ~) regions outside which the solution 
behaves (( be t te r  ~).) I t  can be proved in fact,  tha t  in this ease of the special problem 
(2.12), we have 

(2.26) g E L~(Z+) -+ u ~ Hm(Q+) 

see [L-T.3] by  use of the sa,me techniques of splitting the (a, 7)-plane in (~good ~ and 
(( bad  ~) regions tha t  will be employed in the general cause in the subsequent sections. 
(Albeit in a much simplified form by  use of Fourier  t ransform analysis plus Plan- 
cherel- theorem ra ther  than  pseudo-differential operators analysis.) Indeed,  problem 
(2.12), in any  dimension, worked initially as a test ing ground of the techniques 
developed for the general ease in the subseqnent  sections. For  future  purposes, 
note  tha t  the role of y ~ - 7  ~ -  a2=_ 0 in ident ifying the (~ bad)) regions, will be 
p layed in the general ease by  d~(x, y; a, 7) -= 0 with d~ defined in (3.13a), (3.11a) 
below. Indeed  in the  ease of the Laplaeian we have d~ ~ a~-- 7 2 -  y2. The above 
example is enlightening in tha t  it shows what  are the regions of the  dual vari- 
ables a, 7 which are crucial for the  loss of regular i ty  of u, where a finer analysis is 
needed. This will be carried out in the subsequent  sections in the genera~l non 

constant  coefficient case (in the space variable). 

3 .  - L o c a l i z e d  p r o b l e m .  

The auxil iary boundary  value problem associated with (1.6) is 

(3.1a) P ( x , y ;  D ~ , D ~ , D ~ ) u - ] ( t , x , y )  on ~ ,  ~ < t <  ~ i  

(3.1b) B ( y ; D ~ , D ~ ) u  = g ( t , y )  on F, -- ~ < t <  ~ ,  

where the original functions f and g are ex tended  by  zero for negative times. 
Multiplying problem (3.1) by  exp [ - -y t ] ,  y > O, and using ident i ty  

(3.2) exp [-- rt]D~ u = (D~-- iy)~(exp [-- y t ]u ) ,  i ~- V/-~ 1 ,  
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we re-write problem (3.1) as 

(3.3a) 

(3.3b) 

(3.3c) 

-P(x, y; D~-- iy, D~, D.~)u, = ]~(t, x, y) 

B(y; D~, D~)uv = gv(t, y) 

u, ~ exp [-- ~t] u ; ]~ ~ exp [-- ?t] ] ; 

on ~2, -- ~ < t <  c~, 

on i f ,  -- c o < t <  co,  

g~ ---= exp [-- ?t] g ,  ? > 0 . 

n - -  1 

For  ~ , > 0  (fixed), ~ R  1 and with y . ~ = ~ y ~ ,  we set 
i = l  

(3Aa) 

(3,~) 

h(7 ~- ia, x, ~) =~ [~-t.~h(t, x, y)]@ ~- ia, x, ~) = ]~v(a, x, ~) ,  

h(y -~ i~r, x, ~) ~ [57t,,hv(t, x, y)](a, x, ~) --= 

~_ (2~)-'~fexp [ -  (y + ia)t] exp [ -  iy.~]h(t, x, y) d t d y ,  

where 5f,~ = ^ is the Laplace-Fourier  t ransform on h (or Fourier  t ransform on 
h~ ~ exp [-- 7t] h). Thus, Dt -+ ~ ~ ~ -- iy (or ~/~t ~ 7 ~- i s ) ,  Dt h = ~]t, D~ --~ ~ ,  

D~ h ~- ~ ]~ and ]~(~, x, ~]) = ]~(7 + is, x~ ~). Using the inversion formula 

(3.5) Dt D,j hv(t, x, y) = (2u) -~ exp [i(crt -f- y .~7)] ~ ~v(a, x, ~) da d~ 

with f l = 2  we obtain 

(3.6) [P(x, y; Dr, D~, D~)u~](~, x, y) = 

(2zl)-,~ fex p [i(at ~ y.~)Jp(x, y, ~:, D~, ~)~tv(g, x, ~7) da d~ . 

We shall next  recall H6rmander  symbol class S'~,~ [H.1], [T.1]. 

D E F I N I T I O N  3 . i .  - -  Let  z and $ be t w o  k-dimensional variables and let v(z, ~) be 
a C~ in z running in the open set 0 of / ~  and in $ i~anning in all of R~. 
Le t  m, ~, ($ r R, with 0<Q, ~<1 .  Then,  s(z, ~) is said to belong to the symbol class 
S~,~(O), s(z, ~)~ S~,o(O), in case: for any  compact  set K e 0,  a.ny multi-indeces 
and fl, there  exists a constant  CK,~, ~ such tha t  

(3.7) ID~9~ s(z, ;)l < e~.~,~(1 + J;l) ~-~~ 

for all z r  K and all ~ e R z. 
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Then, the pseudo-differentiM operator 

(3.s) V(z) h(z) = (2~)-k~v(z, ~) exp [ -  iz .$](5~h)(~) d~ 

is likewise said to be of class OPNo~,o(O), [] 

Thus, from (1.7a) with z =  [ t ,x ,y ]  and ~ =  [o,$,~] and O an open set of 
R~ X R~- 1 x R~+, we have plainly 

(3.9) p(x,y;  a, $, r/) e S~,o(0) ; P(x,y;  D,--iT,  D~,D~)eOPS~,o(O). 

In addition, the following symbols and corresponding operators, defined via (3.8), 
will be frequently used in the sequel 

n - - 1  
1 Rn- 1 (3.10a) ~(x, y; ~, ~l) = ~ + ~a, j (x ,  Y)~lJ e S~,o( ~ • 

with corresponding operator 

(3.10b) D~ = D~ + ~ a,,j(x, y)D~,e OPS~,o, 
J = l  

(3.11a) d(x, y; V) -- a~( x, Y) Y ) W ~ -  Y)W eS~.o(R~ ~ • 

with corresponding operator 

(3.11b) D = a2(x, y) y)D~,D~r ~ a~j(x, y)D~j , 
i \ j = l  ' 

(3.12a) d~(x, y; o) = a(x, y ) ~ e  S~,o(R~ • , 

with corresponding operator D2...~a(x, y)(Dt + i~) 

(3.12b) 

(3.i3a) 

h = (2n)-~d~(x, y; a) exp [-- iat] ~(a) da, ^ = 5 t ,  D2 

ddx ,  y; o, 77) = a(x, y)(a ~ - -  ~2) a2(x, y) 
2 n 1 - -  d(x, y; ~7) e SI,o(R~ xR~+) 

with corresponding operator 

(3.13b) Dlh = (2~)-~f d~(x, y; o, ~) exp [ - - i [a t+ y.~J]h(a, ~)dad~, 
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Thus, f rom (1.7b), (3.10a), (3.12a), (3.13a) we obtain ~ 

(3.14a) p(x, y; v ---- a - -  i7, ~, 7) = ~(x,  y; ~, 7 ) -  

-- [d~(x, y; a, 7) -- 2i~d,(x, y; a)] e $12.o(Q • R~), 

with corresponding operator  

(3.14b) ~- D~-- (D1-- 2i?D2) P(x, y; D,,  D~, D~) " ~ 

Finally,  the symbol corresponding to the boundary  operator  B in (1.4) is 

n - - 1  

(3.15) b(y; ~; 7) = ~ + ~ bj(y)~j. 
j = l  

In  the sequel (sections 4, 5 and 6), we shall encounter  the following modification 
of the si tuat ion described in Definition 3 .1--where  the symbol v depends on a 
pa ramete r - -which  we formalize in another  definition. 

DEFInitiON 3.2. - Le t  v(x, y, a, ~):be a C~-function in all of its variables, x being 
a parameter .  Le t  m, ~o, ($ e R with 0~< ~, ~<1 .  We shall say tha t  

(3.16a) v(x, y, a, ~l) e S~,o(R~),  uniformly in x e R~§ 

in case: for any  compact set K in R~- ~ and any  multi-indeces ~, fl, there  exists a 
constant  CK,~, ~ such tha t  

(3.16b) 
y 

as ]a], IT] -> c~ for all x e R l + ,  y e K ,  

where the constant  C~,~.~ does not  depend on x e R~+. 
pseudodifferential operator  V, defined by  v through the 
version of (3.8), 

For  the corresponding 
following corresponding 

(3.16e) V(x, y)h(t, Y) (2rO-~Jv(x, y, a, 7) exp [-- i(at + ~ 'y ) ] (~ t ,  h)(a, 7 )dad~  

we shall then  write tha t  

(3.16d) V e OPSQm~(Rt~,), uniformly in x e R~+. [] 

R E ~ R K  3.1. -- Actually, in our analysis below (sections 5, 6 and 7), we shall 
encounter  the even more speciahzed situation where the symbol v(x, y, a, 7) is 
constant in the space variables x and y outside a eompaet set J ~  of R~§ • - 1 -  ~2~ 
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a consequence of the  assumption (i) above (1.7a) in section i. As a result, the  
constant  CK,~, p will then  be independent  of y e R$ -~ as well, in which case we shall 

1 ~-1 ~ ) .  [ ]  simply write C~,~ (uniformly in x, y e R~§ • R~ ~- 

Thus, re turn ing  to (3.11)-(3.14) we have tha t  the symbols d(x, y; ~); d~(x, y; a, U); 
ddx, y; cs, U); p(x, y; ~, $, ~7) and b(y, $, U) are in their  respective classes uniformly 

~)I ~ ~)n-- I ~(~. in (x, y ) ~  ~ . . . . .  ~ = 
The following consequences of Definition 3.2-Remark 3.1 will be often invoked 

in the sequel, and thus are s ta ted only in the cases of interest.  

.~" IR n ~ uniformly in x e R~+ (see LESIlVIA 3.1. - Le t  the  symbol v(x, y, a, ~) e ~o,~ lvJ 
(3.16)) with 1 > ~ >  ~ > 0  and let  v be, in addition, constant  in x and y outside a 
compact  set of f2. Then,  if Q ~ aO• as in section 1, and V is the corresponding 
operator  (defined via (3.16c)), we have for 0 < m < l  and 0 < s < l :  

a) If m=O and O<s<l 

(3.17a) V: continuous H'(Q) -+ HffQ) . 

b) Ifm:l 

(3.17b) V: continuous Hi(Q) ---> Z2(Q) . 

c) I f  0 < m < l  

(3.17c) , H l _ m  n . V: continuous H~(Q) -~- G ( R ~  ; (Rt,)) 

PROOF. -- Let  first m = s = 0. The assumption on v then  implies 

(3.18a) V: continuous L~(R~)-->L~(~t~), uniformly in xeR~§ ; 

i.e. if h(t, x, y) ~ LdQ), then  

(3.18b) 2 n C 12 !l(Vh)(t, x, Y)l!~,(n,~)< ![h( t, x, Y)ll~(nr~) 

with C independent  of x ~ R~+. This is seen by  applying the argument  in the proof 
of [T-l ,  Proposi t ion 6.1, p. 49] under  the additional assumption tha t  v is constant  
in w and y outside a compact  set of f2, whereby ID:v l<cons  % as required  in tha t  

y 

proof. In tegra t ing  both  sides of (3.18b) over R~§ yields the desired conclusion for 
m = s = 0 .  The case m = l  of pa r t  b) is similar. 

Next ,  take m----0, s = 1; then  

(3.19a) V: continuous HI(R~) -~HI(R~v), uniformly in xeR~+ 
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i.e: for h(t, x, y)eH~(Q),  Q = / 2 •  we have 

(3.19) 
J 

with C independent  of x ~ R~+. This again follows as in the proof of [T.1,  Chapt. I I ,  
w 6] with the remark  tha t  the specification <~ loc ~> in [T.1] can be dispensed with 
now, because of the assumption tha t  v be constant  in m and y outside a compact  
set o f /2 .  In tegra t ing  both  sides of (3.19b) over R~+ yields D W h  and D~jVh ~ L~(Q), 
as desired. To show tha t  D~Vh ~ L~(Q) as well, we note  tha t  the symbol of the 
operator  D, V is precisely D~v(x, y, a, ~) (via (3.16c)). Then,  the assumption (3.16b- 
implies 

(3.20a) 

i . e .  

(3.20b) 

ID~D~.D~v(x, y, ~r, ~7)1< G([a[ + I~l)-t=lq+(l~l§ V(l~l + 1~1) x-l=t~247 
y r/ 

as IGI, I~1-+ ~ uniformly in R~+, 

D , V  ~ ~ ~ uniformly in x e RI+ OP~.~(Rtv) , 

The case m ~ 1 of par t  b t rea ted  before applies and gives 

(3.20e) D~F" continuous H~(Q) -+ Es(Q) 

as desired. The case m ~ O, s = 1 is complete. The other  cases of par t  a) follow 
by interpolation. The proof of par t  e) is similar. [] 

I~EMA~K 3.2 (On neglecting ~ loc ~). - In  the sequel we shall often consider an 

operator  A ~ OPS~,e(/2 ) 0 < ~ < e < l  with corresponding symbol which is constant  
in x and  y outside a compact  set of Q. As a Consequence, we shall then  conclude 
from [T.1, Theorem 6.5, p. 51] tha t  in such cases 

A: Hs(9)  -~ H.-,.(/2) 

where the qualification (( loc ~ in [T.1] can now accordingly be discarded. If  in addi- 
t ion the symbol of A is also t ime- independent - -as  it will be the ease in the sequel - -  
then  the above result  holds t rue  with /2 replaced by  Q. This : remark will be used 
freely below. [] 

In  the sequel the  class 0 f s y m b o l s - - a n d  corresponding pseudo-differential opera- 
tors--s ingled out  in Definition 3.2 and l~emark 3.1 will cover, in particular,  the 
crucial class of so-called symbols o] localization and corresponding operators o] localiza- 
tion (localizers). These will be quant i ta t ively  defined in sections 4-5. For  now, 

quahtat ively ,  a symbol Z(x, y, a, V) of localization will be a C~-funetion in all of 
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its variables, constant  in x and y outside a compact set 3L~ of f 2 -  R~+• n-~ 
(the same as the compact set for the coefficients of P and B, mentioned in assump- 
tion (i) in section 1, above (1.7a)), such tha t ,  for given x and y, the symbol Z is 
identically one in a certain (x, y)-dependcnt region of R ~ and decreases smoothly 
to vanish identically in another (x, y)-dependent region of R ~ .  Then X will be the 
corresponding localizer defined by 

(3.21) X(X, y)h -= (2~r)-~fg(x, y, ~, U) exp [/[at + U.y]](SG~h)(a, V) dadu 

in agreement with (3.16c). 
Specific symbols of localization will be defined precisely in sections 4-5. Let, 

for now, g(x, y, ~, U) be any  such symbol. Applying the operator exp [yt] Z, with Z 
the corresponding localizer, on the auxiliary problem (3.3) and using (3.2) yields 
the following localized problem 

(3.22) 

(3.22b) 

(3.22c) 

(3.22d) 

P(x, y; Dr, D., D~)(Xvu) = ]z~, 

B(y; D~, D,,)(Xvu ) = gz. , 

]x~ ~ X~ f + [P, X~]u, 

in Q~ ~ c o < t <  ~ ,  

in / ' ,  -- c o < t <  co, 

where [., .] denotes the commutator  operator and P and B in (3.22c)-(3.22d) are 
the operators at  the left of (3.22a)-(3.22b), respectively, and where 

(3.22e) exp [yt] X(x, y) exp [-- # ]  ~ Xv(x, Y) �9 

I ~ E ~ K  3.3. -- The operators X(x, y) and Xv(X, y) = exp [yt] X(X, y) exp [-- yt] 
belong to the same class. Thus, for simplicity, we shall accordingly drop the sub- 
script and work with X henceforth. [] 

We close this section by noting a result essentially from [T.t, (4.7), p. 46], 
al though not  explicitly s tated there, which will be invoked repeatedly. We shall 
use the notat ion of [T.1]. 

,u L E n A  3.2. - Let  p(x, D)~ OPS*Q~,,o, and q(x, D)~ OPSr be properly sup- 
ported. Suppose 0 < 8 " <  ~<1 ,  where 

q = min (o', o") and 3 = max  (8', 8"). 

Then for the commutator  [p(x, D), q(x, D)] we have 

'q~+z-~ ml ~ min [q'-- 8", ~"-- 8'] . [] symbol of [p(x, D), q(x, D)] e _+.~ 
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4. - Trace theorem and (r energy ~ equalities for the  local ized problem (3 .22) .  

The aim of the present  section is to state and prove a trace theorem along with 
some ~undamental  energ T equalities (inequalities) for the localized problem (3.22). 
Their version for the auxiliary problem (3.1) is need first. These results will be 
crucially used in the sequel. 

4.1. Statement o] trace theorem and energy equalities ]or auxiliary problem (3.1). 

We recall the notat ion to be used throughout.  

-- xR~xR: ~-R~xQ; Z'=--R~xR~-~----R~xZ ', 

(,)Q, ( , ) a :  L:(Q), L:(g2)-inner products with Imrms IJ ]IQ, ]l" [Is, 

( , ) ~ ,  ( ,  ~r: Z2(X), JS+=(F)-inner products with norms t lz, I It. 

Any other norm will be specified by a self-explanatory subindex; thus II tlHo(+) 
---- norm of space H~ -~ H~176 -~ L~(-- c~, c~; H~ n H~ c% c~; L2(~)) and 
similarly for ] I~o(~). 

Finally, to state the trace theorem~ we shall need the operator A ~ ~ A ~ de- t,y 

fined by 

We have IT.l,  p. 51] for any  s e R  and any  O e R  

8 - 0  (4.1b) A e: isomorphism H'(R~) --> H (R~).  

Tn:EORE~ 4.1 (Trace theorem). 

a) For  u ~ H~(~), we have 

(4.2a) lul~ = 2 Im (D~u, u) .  + i(u, wu)~ , 

n - - 1  

(4.2b) w(x, y) ~-- ~ D~ja,,(x, y) ,  
~=1 

(4.2c) [(u, wu)al <const~ ]Iu]l~, const~ : sup [w(x, Y)I < ~ " 

b) For  veHl+~ 0 > 0  

e OPS[,o(R~ • R~-I) ,  

(4.3) lvl~o(~) ---- 2 Im (A~ A~ ~- O( [Iv fifo(o)). 
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Tm~ogE~ 4.2. - The following identities hold for the operators _P = P(x, y; 
Dr, D., D~) and B = B(y; D., D~) (see (3.105), (3.125), (3.13b) and (4.3)) 

a) 

(~.da) 2 Im (Pu,/5:u)+ = [Bu[~ + (D~u, u): + 4y Re (D:u, D:u)+ § 

+ i(wD~u, u)Q-- i(D~u, wD~u) + i([D~, D~]u, u)~ + i(D~u, r~u)~ 

where we recall from assumption (1.12) tha t  D~u = Bu on Z, and where 

(4.4b) symbol of F~ = ~ /,(x, y)~,eS~.o(R~§ , uniformly ia x, yeR~+ • -~ 

],(x, y ) =  smooth, depending on Coefficients of P. 

b) 

(4.5) 2 I m  (Pu, D~u)~ : IBut~+ (D~u, u } z §  O(ltul[~(o)) . [] 

RE~_A~K 4.1. - 57ore from (3.14a) tha t  the operator / )~ has symbol 

2 p(x, y; % ~, ~). G 

TgEo~E~ ~.3. - The following identities (inequalities) hold for P = .P(x~ y; 
D~, D~, D~) and B = B(y; D~, D~) 

a) 

(4.6a) 

(~.6b) 

(Pu, u)Q = l[/)~uI[~-- (Dlu, u ) ~ +  (])~u, wu)Q+ 2i~,(D2u, u)o+ i(Bu, u}z ,  

~ e  (Pu, u)~ = II~oul l~-  Re (Dlu, u)o§ Re (D~u, wu)o-- Im (Bu, u}z, 

where from assumption (1.12) /)~u : Bu on X; 

(4.6c) 1--  IiD~uilg~Re(Pu, u)o~- Re(D~u,u)~+ I m ( B u ,  u}z-~-~--eO, 1 ' 

for any  s > 0 small; 

b) (variation of (4.6)) 

(4.7) []D~ull~ = O{Re (Pu, u)~ + Re (Dlu, u)o + []ul!~ + IBul$} �9 [] 

REMA~ 4.2. - Note tha t ,  unlike (4.6b), ident i ty  (inequality) (4.7) does not 
require k~owledge of u on Z. (As we shall see in the proof below, (4.7) combines 

both  (4.6b) and (4.3) for 0 : 0.) 



I. ~ASIECKA - t~. TRIGGIANI: Sharp regularity theory, etc. I 305 

The next result will be used only in section 7 when dealing wi th  the non- 
homogeneous boundary case g ve 0 in (L6b). To this end, we first introduce a new 
pseudodifferential operator, denoted by �89 and corresponding to the symbol 
�89 : -  av (from (1.7)), which is defined by 

2~-~T h = ( 2 ~ ) -  ~ ~ ( x , y , a )  e x p [ - - i [ o ' t ~ - ~ ] . y ] ] [ ~ ' t ~ h ] ( a , x , ~ ) d a d ~ c . r  

in agreement with (3.8). 

Tn:EO~E~ 4.4. - a) With �89 defined above, ~nd P = P(x, y; D,, D., D~) 
we have the following identity: 

(4.8) - -2  Im 
1 ~P i)u, ~ ~ u) . = ~ Re </)~ u, D~ u>z 2 y Im <b~ u, au>z q- 

§ 

-~ 2~ Re (D~u, [wa + (D~a)]u)~ 

U)o/ 

where on Z: D~U ~--Bu-~ g from (1.12) and (1.6b), and where 

(4.9a) 

(4.9b) : . 

(4.10a) 

(4.10b) 

(4.11a) 

(4.ilb) 

1 n--i t)p,ql t~l+~ uniformly in x, yeR~+• , 

symbol of /r~ = ~(x, y )a ,  smooth /c(x, y) ,  

1 lq-~ uniformly in x, yeR~+ • :1 , [wD2 ~ _~] e OPSI.o(Rt~ ~ ) , 

2 ~+1 uniformly in xeRl+ ,  S 2 e OPSI,o(Rt~ ~ ),  S~ = self-udjoint on LdQ), 

~ - - 1  

symbol of ~ 2 =  [r sj(x, y ) , j ] a ,  smooth s~(x, y) ,  

S~ is define4 explicitly in (4.64)below, 

b) There:exist constants Co, Yo > 0 such that for all ~>. yo, and for  all-Com- 
pact sets K e / ~  we have: 

i~p  ) 
(4.12a) - -2  Im Pu, ~ ~ u Q> 2 Re <D~ u, D2 u > z -  

: 2~ Im <gfu, au~ § 7GIlullh,(o) 
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for all u c C~(K) • C~247 where 

(4.12b) 2 ~ -- Do. -~ iayI .  

4.2. Applieation to lovalized problem (3.22). 

We now collect the trace theorem and energy equalities in the form in which 
they  will be used in section 6; i.e. as they  apply to the localized problem (3.22). 

CO~0LLA~u 4.5. - The following identities hold for the localized problem (3.22): 

a) (trace theorem, see (4.3)) 

(4.13) i ,[ Xu ]],0(=) = 2 Im  (A~ Xu, A ~ Xu) + 0(H Xu lt~,(Q)), 

b) (see (4.5)) 

(4.14) (D1 •u, Xu}z : -- {gutl -~ I m  (fz, D~ Zu)q + 0( H X u H,,(o))2 , 

c) (see (4.6)) 

(4.15) IlD  x'uli  = (D1Xu, Xu)o-- Xu, wXU)o-- 2i (D  XU, Xu)o-- 

- -  i ( g ~ ,  Xu}~ + (1~, Xu)~, 

d) (see (4.12)). There exist constants Co, Yo > 0 such tha t  for all y > ~o 

(4.16) - -2  Im  J~, ~ ~ (Xu) Q)2 Re (gx, D2xu}z - -2y(g~ ,  axu}z + YcoliXuil~'(Q) �9 

4.3. 2reels. 

We begin with an integration-by-part  Lemma for the operator / ) ,  in (3.10b). 

LF.M~A 4.6. -- For  U, v e Hi(D) 

(4.17) ( ~ u ,  v)a = i(u, v}c -~ (u, D~V)~ + (u, wv)a 

where w is defined by (4.2b) and I(u, wv)oI<const= NuHo Hvt[o~ see (4.20). 

PRooF. - We perform integration by parts in x and yj on the definition 

(D~u, v)~ : (D~u, v)a-~ Z (a,jD,,u, v)a 
i = 1  

and use tha t  an element of H~(~J) vanishes at  x : ~ and y~ = • oo. [] 
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In tegra t ing  (4.17) in t, we obtain 

COROLLARY 4.7. -- For  u, v e Hi(Q) 

(4.18) (/)~u, v)~ = i(u, v)z ~- (u, f)~v)~ ~- (u, wv)~, I(u, wv)~l<constw Itu]l~ ][v]l~. 

P~ooF oF THEORE~ 4.1. -- a) Select u = v e Hi(Q) in (4.17). b) In tegra te  (4.2a) 
in t af ter  replacing u with A~ to get 

(4.19) ]A~ : 2 Im  (D~A~ A~ § i(A~ wA~ : 

:= 2 Im  (A~ A~ § 2 Im  ([~x, A~ A~ ~- i(A~ wA~ 

and (4.3) of pa r t  b) follows from (4.19), since 

[A~ : [U[H,(~ ) (from (4.1b) with s = 0) ,  

and moreover,  with 0 > 0, the commuta tor  in (4.19) is a fortiori 1 + 0 - 1  0/~$1,o (Q) and 
thus is continuous H~ --~ L~(Q): see [T.1, Thin. 6.5, p. 51] where the qualification 

loc ~> can now be discarded since 1)~ (and A ~ are constant  in the variables x and y 
outside a compact  set in ~ (Remark 3.2). [] 

PROOF OF THEO~E.'~ 4.2. - a) F rom (3.14b) 

(4.20) (Pu, D~u)~ --- (~**u, D~u)Q-- (Dlu, ~u)~ + 2i~(D~u, Dxu)~. 

The first t e rm on the right hand  side of (4.20) is computed via (4.18) 

(D~u, D~u)~ = ilD~ul} + (D~u, D~u)o + (D~u, wD~u)o 
and thus 

(4.21) 2i Im  (/)~u,/)~u)o : i].D~u[} 4- (D~u, w.D~u)Q. 

Similarly for the second te rm on the right of (4.20); by  (4.18) 

(JD~u, Dl u)~ = i (u, Dl u}z ~- (u, D~Dl u)o -~ (u, WDl U)Q , 

(4.22) (D~u, D~u),~ : ( ~ u ,  D~u)~: --i(D~u, u )x+ (D~D~u, u)o + (wDlu, u)Q: 

-- - - i (D,u ,  u)~ -~ (D~D~u, u)~ + ([9~, D,]u, u)o + (wD, u, u)o. 

B y using IT.l ,  Theorem 4.2, p. 45] on the operator D~ with real symbol d~ given 
by  (3.31a), one can readily show tha t  

n - -  1 

(4.23a) [symbol of D*] : dl + ~ ]~(x, y)~ . 
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Thus recalling (4.4b) we have 

(4.23b) D* = D~ + _F~. 

Inserting 

(D~D~u, u)~ = (O~u, D~u)~ + (D~u, F~u)Q 

into (4.22), we obtain 

2i Im (D~u, D~u}~ = (D~u, D~u)~-- (D~u, D~u)o = 

= -- i<D~u, u>z -~ (wD~u, u)Q -~ ([/)~, D~]u, u)o ~- (D~u, F~u)o. 

Taking ~he imaginary part  of identity (4.20) and using (4.21) and (4.24) yields 
(4.4), as desired. 

b) We use part  a) along with the estimates 

(4.25) 

(4.26) 

(4.27) 

(~.28) 

(4.29) 

I (~u ,  ~/)~u).  I < consto [1 u l[~,(.), 
l 2 [(wD~u, u)~] ---- O(llUH,,(~>) , 

i(D~u, 9,u)Ql 0 '~ , 

I(/5~u,Y,u)~[ = o(liuIi~,(~)). 

Equation (4.25) follows from D~ D,j: continuous H~(tP) --> L2(Y2) [L-M.1, p. 85]. For 
(4.28) we use, in addition, that D~ E OPS~,o(Q), see (3.12), and then Remark:3.2 
implies D2: H~(Q)-~L~(Q), because of the coefficients constants in x, y outside a 

2 n compact set of /2. As to (4.26) with D~cS~,o(Rt~,) uniformly in xER~§ see (3.13), 
we write: (wD~u, u)Q ~ (wJ-~D~u, Ju)o 4- lower order terms, where J is a self adjoint 

'~ L~(R~) has symbol (1 a2 1~12)1/~), j S~,o(Rt~). isomorphism H (Rt~) -+ (e.g. J ~- ~- 
Then J - ~ D ~  .q-~+2/n-~ uniformly in x eR~+ by the product theorem IT.l, p. 46] 
and J, J-~D~: H~(Q) -+ L2(Q), continuously by Remark 3.2 and Lemma 3.1 b), and 
(4.26) follows. The proof is similar for (4.27) and (4:29). [] 

PlC00F 0~' TttE01~EM 4.3. - (4.6) Again by (3.14b) 

and by (4.18) 

(P~t, u)Q : (D~u, u)~-- (Dlu, u)~ ~- 2iy(D~u, u)~ 

(D~u, u)~ = i<[)~u, u>~ + lii)~uIl~ + (D~u, wu)Q . 

These last two equations yield (4.6a). Then (4.6b) follows using the fact that D2 
is self-adjoint in L~(Q)~ see (4.37) below. Finally (4.6c) is obtained from (4.6b) by 
applying Schwarz inequality to the term ( ~ u ,  wu)Q. 
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(4.7) We rewrite (4.6b) as 

(4.30) II/)~ui]~ = Re (Pu, u)~ 4- Re (Dlu, u)o -- Re (.~u, wu)Q + Im  (Bu, u}z< 

<Re (P~,, u)~ + Re (9~u, ~)~ + ~ ~ ~wllu[l~ + ~ [Bur~+ -~ I~'li" �9 

But  recalling the t race theory  result (4.3) for 0 = 0, we obtain 

lull- = 2 Im (D~u, u)~ + O(liuilg) <,ltD~,]pg + O,(lt~ll~) 

which inserted into the right hand  side of (4.30) produces 

(1 2s 22)[lD~ull~<ge(Pu' u)Q+ Re(D1u' u)~ O'{Ilu']~ + IBul~} 

choosing e > 0 sufficiently small yields (4.7). [] 

PRool~ oF THEOREM 4.4. -- First ,  from (1.7) 

(4.31a) 2 ~v -- a(x, y)v : --a(x, y)(a--i~) = --a(x, y)a 4- in(x, y)y  

so tha t  the pseudo differential  operator  l(&P/~v) defined above Theorem 4.4 is 

(4.31b) I ~P 2 ~ -- D~ 4- iayI 

from (4.31) and (3.12a), and (4.12b) is verified. We then  compute from (3.14b) and 
(4.31) 

( (4.32) Pu, ~ ~ u = Q~- (D~U--Dlu 4- 2iyD2u, --D2u 4- iayu)o 

---- --(/)~U, D2u)Q -~- (Dl u, D2u)o + 2y~(D2u, au)~-- 

- ~/{2 i]D~ ~'~ ullQ + (D~u, au)~ - -  (D~ u, au)~} . 

But  from (4.18) of Corollary 4.7 we h ~ v e : '  

(4.33) (D~u, D~u)~ = i<T)~u, D~u}z + (D~u, D~D~u)o + (D~u, wD~u)Q, 

(4.3~) (D~u, au)~ = i<D~u, au>~ + (D~u, D~(au))~ + (D~u, wau)~, 

where, from (3.10b), D~(au)--~ (D~a)u 4- aD~u, and so 
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Inser t ing  first (4.35) into (4.34), un4 then  the resulting (4.34) ~s well as (4.33) into 
(4.32), we arrive ~t 

(4.36) ( P u , ~ - ~ u ) : - - i ( D ~ u , D ~ u } z +  , ( ~ u ,  au}z - -  

+ (D~u, n~u)Q + 2y2(D2u, au)Q -- ~iylln~uli~ + iy(D~u, au) -- 

We need the following results, to be We now take  the imaginary par t  of (4.36). 
established at  the end of this proof. 

CLAB~ l .  - D2 is self-adjoint on LdQ): 

(4.37) D~ = D** and (D,u, au)q = r ea l ,  

CLAI~ 2. - Wi th  S~ given by  (4.11), we have 

(4.38) 2 Im  (Dlu, D,u)Q = (u, S~u)~ . 

CLAB[ 8. -- Wi th  / ~  given b y  (4.9), we have 

(4.39) Im  (/)~u, D,D~u)Q = Im  (/)~u, - ~ 2 u ) o  �9 

Im  (.D, u, au) = 0 . [] 

[] 

[] 

Thus taking twice the imaginary par t  of (4.36) and using (4.37)-(4.39) yields 

(4.40) - -  2 Im  (Pu, 

(4.41) 

(4.42) 

(4.48) 

= 2 Re ( f ) ,u;  D2u}z --  2y Im  (D~u, au}z ~, (1) q- (2) q- (3), 

(1) = 2 I m  ( D ~ ,  [~Z),. + R~]u)~- (u, &u)~, 

(2) = 2~, :Re (b,u, [wa + (b~a)]u)~ , 

(3) - -  2~,{2tlD, u[l~ § IIa'~b, ull~ - (D1u, au) 6 . 

But  from (3.L3a) and (3.12a) 

1 D~ - -  ay 2 .1 D (4.44) 

and thus 

(4.45) 
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Subst i tut ing (4.45) in (4.43) yields 

(4.~6) 

Then (4.40), (4.41), (4.42) and (4.46) prove (4.8), once the three Claims above, 
(4.37)-(4.39), are established (below). 

b) We now est imate the terms (1), (2), (3). By  Schwarz inequali ty 

(4.47) ( 1 ) > -  l lb~ l [~-  II [wD~ + ~]ull~-- [(u, S~u)~l , 

(4.48) (2) ~>-~c [~]I/)~ut: + -1 llu]l~] 

where C is a positive constant  depending on the coefficients a and a.j  (recall (4.2b)). 
Thus we obtain from (4.46)-(4.48) 

(4.49) (1) ~- (2) -~- (3)>~2yl]D2uli ~ --]][wD~ +/~2]  utl ~ -~ 

+ 7{2],a~D~ul!~-~C',JD~u,l ~} ]l~u,]~ + 2,(~ Du, u) + 

+ ~,{2,'-],auil~-!e,]uH~}-,(u, S.~u)~,. 

Recalling now that  both D2 and wD~ + I~: have symbols of the type :  coeff (x, y)a,  
see (3.12a) and (4.10b), we select e > 0 suitably small, and ~ sui tably large in com- 
parision with :l/e, and obtain from (4.49) 

(4.50) (1) + (~) + (3)>2~ cl, ~ 
q 

+ r3e3]IuH~ - I ( u ,  S~u)ol 

for suitable cl, e2, e8 > 0 and suitably large ~, say ~ >  som ~ > 0. Consider now 
the operator (recall D~ ~-D~* from (4.37)) 

(4.~1) w -  clD~ + 1 D 
whose symbol  is 

(4.52) symbol  of W =  old,(x, y; (~) + 1 d(x, y; ~) . 

We now recall the strict hyperbolici ty condition (1.10) plus posit ivi ty of a in (1.8) 
to claim that  

1 
(4.53) - d ( x ,  y; ~)>CI~/I 2, I~] large 

a 
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while from (3.12a), d~(x, y, a)>~ela] ~, so that  

(4.54) Re{symbol  of W}>~C{ta[~ - [~I'~}, I~[, [~] large, uniformly in x e / ~ §  

W e c a n  then apply Garding~s inequali ty IT.l, Theorem 8.1 with s ~--0, p. 55] oll 
(4.54) and conclude: there are constants C~, C~> 0 such that  for any compact  

•  (R~§ we have set K in t ~  and  all u ~ C o ( K )  ~ 

(4.55) n e ( W u ,  u)~ C~I[D,~ul]~ § Du,  u 

But  from (3.10b) 

(4.56) I" ][uI~,,(Q) = [D~u]]! ~- HD~,u]I~, + /)~u- 2 ao, ;< 
j = l  

<C{ItD,ulI~ + tlb~uIl~ + llD~ull~} �9 

Thus using (4.55) and (4.56), we have that  for all u e C o ( K  ) •162247 

(~.57) (~ll]D~ ~'~2 (~ ) ~ ~ ~ ~ E,Q ~- .Du, u ~-e2].D~utlt~>eolullti,(Q)--clr~lui]~ 
Q 

where co - - m i n  {C~ c,~,}/C. Using (4.57) into (4.50) we obtain for all u e C o ( K ) •  

(4.58) (1) + (2) + (3)>2~eo]LU]!~,(Q) + (~e~--  z~)e, lluH~- I(u, s~u)~]. 

I f  now J is the self-adjoint isomorphism 

H~(R~v ) -+Z~(R~) with symbol  (1 + a~q - Iris) ~/~ , 

1 , x~R~§ and Lernma 3.1b) we have from (4.11a) tha t  J-~S~ ~ OPSl,O(Rtv),  uniformly in 
yields J-~S2: continuous H~(Q)-+ L~(Q). 

Thus  by  Schwarz inequali ty 

(4.59) l(u, S~u)e I = ](Ju, J-IS~u)Qt < Ciluii~(Q ) �9 

Finally, (4.58) and (4.59) imply for all u ~ C o ( K ) •  C~(R~+) 

(4.60) ~1) ~- (2) -j- (3) ~> (2~,Co-- 2 ~ , ,~ ' C)llul/.~(Q)~- (r~'C:, - 2~ , )c ,11u !o>~rCollUll.,(~) 

for all ~ > s u i t a b l y  large 7 o >  O, where Co is a suitsble constant.  Then (4.49) and 
(4.60) together prove (4.12), as desired. 

I t  remains to prove Claims 1 through 3, (4.38)-(4.39). 
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CLAIM 1. - (4.37) That  Dz* = D2 with 

[symbol of D*] = [symbol of D2] = a(x, y) ~ = real ,  

follows from IT.X, Theorem 4.2, p. 45] since d~(x, y; a) in (3.12a) is real. 

C~AI~ 2. - (4.38). l~ecalling (4.23b) with E1 as in (4.4b) we have 

.(4.61) (Dlu, D2u)~ = (u, D*D2u)~ = (u, D1D~u)~ § (u, -F1D~u)~ = 

(4.62) 

where 

(4.63) 

(4.64) 

(by (4.37) 

= (u, D~D,u)o § (~, [K~ + F~D~]u)~, 

= (D~u, D~u)Q § (u, S~u)~ 

KI~ ~ [ D 1 ,  D . ]  = D1D2-- D2D1 , 

From (4.62) we obtain the sought after  (4.38) 

2 Im (Dlu, D2u)r = (u, S~u)o. 

moreover,  from (4.63), using the product  theorem IT.l ,  Theorem 4.4, p. 46] We 
readily compute  

n-- 1 

(4.65) [symbol of K12 ] = [ ~1 kj(Z, y)~],] 0", j= 

k~(x, y) = smooth, depending on coefficients of P .  

Similarly from (4A6a), (4.16b) a n d  (3.12a) and the product  theorem we readily 
check 

[symbol of F1Dz] = L ~= 1 rj(x, Y)~b] a + to(x, y)a , 

rj(x, y) = smooth, depending on coefficients of P .  

(4.66) 

Then (4.64)-(4.66) prove the desired form (4.11b) for the symbol  of S~. Also, (4.38) 
shows that  S2 is self-adjoint on Z~(Q). 

CLAI~ 3. - (4.39). Let  

(4.67) ~ ~ [•=, D~] = J~D~--  D ~ .  
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Then using (4.67) and D~ =-D*2, 

(~5~u, 9~D2u)~ = (D~u, D.,D~u)~ + (/)~u, R~u)~ = (gjS~u, D~u) + (~u,/~u)~ 

(4.68) (by (4.67)) =- (JD~u, ~)~D~u)~ § (D~u, ~ u ) ~  --  (R~u, D~u)o . 

Thus (4.68) yields the desired (4.39) 

2 Im  (1).u, ]D~D~u)~ -~ 2 Im  ( /~u,  ]~u)~ .  

~oreover  (4.67) ~nd [T.I~ Theorem 4.4, p. 46] yield readily from (3.10a) and (3.12a) 
tha t  the symbol of _~ has the form as in (4.9b). 

The proof of Theorem 4.4 is now complete. [] 

5. - Operators of  localization Z and their properties. 

5.1. De/initions and statement o] properties. 

We return to the symbol dl(X~y; (~, ~1) of class s SI.o(R~v ) uniformly in x E/~+ 
defined by (3.13a), where we consider ~ ~ 0 to be fixed. (If we wish, we may  take 
the symmetric  positive definite quadratic form d(x, y; ~) in (1.9)-(1.10), or (3.11a) 

to be in canonical form d(x, y; ~)--: ~ 2~(x, y ) ~  without  loss of generality; i.e. 
i = 1  

modulo ~ similarity t ransformation with an (x, y)-dependent orthogonal matrix).  
We recall tha t  as a consequence of assumption (i), section i ,  above (1.7a) on the 
coefficients of P and B, all symbols d(x, y; ~), d~(x, y; (5 V) etc. are constant  in x 
and y outside a compact set J~ ,  of ~ = ~ - n . - ~  .~+ ~ . ~  . As the point (x, y) varies and 

> 0 is fixed, the equation 

a s d ( x , y ; v )  = 1  
(5.0) d~(x, y; a, V) ~- 0 ,  i.e. by  (3.13a): r~ a~(x ' y ) ~  

describes a family of hyperboloids in the space R~ • R~ -~ (which reduces to a fixed 
hyperboloid for (x, y) outside JS~), all passing through the points a -~- ~= r ,  ~ -= 0. 
Henceforth,  because of the symmet ry  in a, we may  restrict our analysis to the half- 
space a > 0. Sett ing 

d(x, y; ~) = M2 d(x, y; ~) = m2 ; sup aS(x ' y) (5.1) inf a~(x, y) ~.~, 
[vl~l [~[=i 

we have m > 0 and M < §  oo by (1.8), (1.10) and assumption (i), section 1. Then, 
from (5.0)-(5.1) 

d(x, y; *1) ~,~ 
(5.2) ~ i v I ~ < ~  ~ = r ~ § a3(x ' y) < § ~ ] ~ t ~ < ~ l ~ l  ~ 

for all ~ outside the ~-sphere of radius ~/M centered at the origin. 
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Thus, for 0 > 0 ,  all points of the family of hyperboloids with I~I>r /M,  lie 
between two equilateral cones: o----mI~ t and a = v/2M[~I, uniformly in (x, y). 
With  this observation at  hand, we now introduce a few mutual ly  disjoint sub- 
regions (cones), which will exhaust all of R~"(+) ~-RI§ •215247215 -1. They 
are (see Fig. 5.1): 

{ o } 
(5.3) ~(x,y; ~,~) - (x,y; ~,~)eR~,,(+): ~I~I<~<2Mf~I 

(5.4) 9~'(x,y'~ a,~):{(x,y; a,~)eR2,~(+):  2M,~[< (~<~ 2MI~,} 

(5.5) 9~(x,y~ ~,~):  (x,y; a,~)eR~(+): ~ M ] ~ l < a  

{ ~ ~ (5.6) g~(x,y~,~)  = (x,y; o, ~ ) e / ~ ( + ) :  -i-I~l<~< )--I~l 

l ~  (5.7) ~ (~ , y ;  ~,~) = (x,y; ~,~)e~,~(+): o < ~ <  -i-I~t 

I I  ~ I I  . ~ ( + )  ___ ~ ~ ~ ~ ~ ~ ~ 

(~ stands for <~ good ,  region, ~ for <~ bad ~ region, with respect to the symbol d~, 
see (5.0); the subscript (( t r  ~) stands for (~ transit ion ~), as the definition of the local- 
izing symbols below makes it transparent) .  

g i  ~x 

I : /  

5r 

family of hyperbo] 
~ ( x ,  y ;  a, ~) = 0 

9' 

~ ~  

Figure 5.1. Regions ~ and gI, ..., glI. 

F~ 
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For  future  use, we note  the following two claims. 

CL~UM i. - In 9~ 9~r , where a > 2 M ] u ] ,  we have 

(5.8) 
i d~(x,y;a,~7)>~C~[a~+lrjl ~] for a'~>~y ~ m a x a ( x , y )  

, 

C~ : min  g ;  2 ] j m m a t x ' Y ) "  

CLAI~r 2. -- In gll u 9tI~, where s< (m/2)i#] , we h~ve 

(5.9) , ~ C2 rao - - d ~ ( x , y ; a , W ~  2L " +  [~/[2], 

PROOF 0t~ CLAX~ 1. - By  (3.13a) ~nd (5.1) (also (1.8)) 

d~(x, y; a, V) >a(x, y)a ~ -  a(x, y)r  ~ -  a(x, y)M~ [,1[~ 

>a(x, y)[1 -- [](;~-- a(x, y)y2> ~ [min a(~, y)]a  ~ , 

d~(x, y; a, 7 )~  M2 [min a(x, y)] ]7[*. 

Summing up the last two inequalities yields (5.8). [3 

P~ooF oF CL~I~[ 2. - By  (3.13a) and (5.1) 

d(x,y;  ~) q(x ,y) a2 d - a (x ,Y)Y2~ - -d l ( x , y ;  a, v) : a~(x ' y) 

Wb 2 

> m2a(x' Y)I~I[2 - -  T a(x, y)[v] "~ -4- a(x, y)y~ >~ 

3 
(by  (1.8)) >~ ~ [71 ~ m2 min a(x, y) 

- -  dl(x, y; a, 7) ~> 3a~ min  a(x, y ) .  

Summing up the last two inequalities yields (5.9). [] 

We now introduce symbols of localization of the  above regions. Le t  Z(x, y; a, *1) 
- -d is t inguished by  an appropria te  superscr ip t - -be  C~-functions in all variables, 
monotone,  such tha t  

(5.1o) 
1 on ~ ,  

ZS~(x, y; a, ,]) = 0 on 9r td 9i~, 
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(5.11) 

(5.12) 

and 

(5.13a) 

(5.135) 

1 on 9 ~ , 

%~(x,y;a, fl) = 0 on 8 3 W P ~ W 9  I~ 

1 on ~n 
zlI(x, y ;  (Y, ~) = 

0 on ~ w P ~ , u 9  ~, 

Xa~(x, y; a, fl) q- %~(x, y; a, fl) q- %~(x, y; a, 2}) - -  1 in R~"(§  

Moreover, X ~ and %i are defined by  homogenei ty  of order zero in the transit ion 
region 9,~ ( they are first defined on the uni t  sphere of R ~ •  -~ for fixed (x , y )  
and then  extended by  homogenei ty  of order zero, i .e.  by  constancy on each r~y 
in R~,). Likewise~ Z ~ and %~ are defined by  homogenei ty  of order zero in the tran- 
sition region 9r~. Thus [T.1, p. 37] 

(5.14) g:~, %~, g ~re homogeneous symbols of order zero in (a, ~), i.e. of class 
o ~+1 c-.~o ( ~ + ~  uniformly in x e R~+. S ( R , ~ ) ~  ~l,o~ot~ , 

Finally,  we need to divide fur ther  the region ~ into three  mutual ly  disjoint 
subregions, which will exhaust  all of $ .  Le t  r be a number  which for the t ime 
being we take  to be str ict ly between 1 ~nd 2 : 1 < r < 2 (r will be identified in sec- 
t ion 6 to be r = 8/5) (z). Define 

(5.15) 

(5.16) 

(5.17) 

~+(x, y; a, v) - {(~, y, ~, 7 ) e  ~ :  2 ~ <  d,(x, y; ~, v)}, 

:BT(x , y; a, 7) - -  {(x, y, a, 7) ~ :~: G(x, y; a, ~ ) < a q ,  

~r,~(x, y;  a, ~/) - -  {(x, y, a, fl) E3~: a~< ddx, y; a, ~)<~2a~}. 

Then, :~ = ~+ u $~- ld ~r ,*  (tr  -= (~ transit ion ~>). Le t  %(x, y; a, , / )~dis t inguished by  
an appropriat  e supe r se r ip t~be  C~-functions in all variables, monotone,  non-homo- 
geneous such tha t  ( they will be precisely defined in the proof of I~emma 5.1 below): 

(5.18) -%* % ,(x, y; a., ~) = 

(5119) Zff~7(x, y; a, ~1) 

1 on &+, 

0 on ~ -  I,J ~ I  I,.) ~II ~j ~ I ,  

.%m on ~r  (homogeneous of order zero in a, 7) ,  

1 on ~ 7 ,  

0 on ,~$ (.J ai r  (.J ~I (.j ~II,  

;/~ on ~,i (homogeneous of order zero in a, ~/), 

(1) The subsequent reading is simplified if one thinks of r as r = 8/5. 
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and, moreover, 

(5.20a) Z:~;(x, y; a, *1) + )r y; a, ~) -- Z~(x, y; a, ~) on ~5. 

Thus, by (5.13) 

(Z.~; + Z.~; + ,~I + ZII)(x, y;  ~, r/) -- 1 in R l " (+ )  . 

The symbols os localization defined in (5.11), (5.12), (5.18), (5.19) are those for 
which we shall consider the corresponding localized problem defined by  (3.22). As 
seen in (3.22), crucial to the analysis of (3.22) will be the determinat ion of the 
character or action of the commutator  operators [P, X] and [B, X], where X is the 
pseudo-differential operator defined by (3.21) with the symbol Z there being now 
any of the symbols in (5.11), {5.12), (5.18), (5.19). The analysis is simplest for 
Z ~ Z ~ and  Z = Z ~ since these symbols are homogeneous (of order zero) i.e. of class 
S~ c S~ The differential operators P and B have also, of course, homo- 
geneous symbols of order 2 and 1, respectively. 

Zi~- l 

o" = (5 /~)MI~ I  

k=2 

' /  ,u 
[ 4 r \ f l / $"" 

root of 
a a t  - -  k r  - -  a y  ~ = 0 

Figure 5.2. Regions :B~, ~tr, t and :B~'. 

k=l 

t , 
l,fl 
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L E ~ - ~  5.0. -- With  P = P(x,: y; De, D~, D~) ~ OPS~,o(Q), BIZ= o ~ OPS~,o(Z), and 
�9 0 X~6 S~,o(Q) , i ~ I,  I I  we have: 

(5.21a) 

(5.22a) 

Hence 

(5.21b) 

(5.22b) 

(5.22~) 

[P, x ~] e o P ~ , o ( Q ) ,  

[B, X ~] l~=o ~ 0PSI~ 

[P, Xi]: continuous //8(Q) ._+Hs_I(Q) , 

[B, X i] I~=0: continuous H~(27) --+H~(Z), 

moreover X~: contiauous HS(Q) --> He(Q). 

PttooF. - Conclusions (5.21a), (5.22a) on commutator  in the homogeneous case 
are s tandard (or apply Lemma 3.2). Then Eqts. (5.21b)-(5.22b) follow via [T.1, 
Thm. 6.5, p. 51] as in l~emark 3.2, since P, B, Z ~ are constant  in (x, y) outside a 
compact set JL~ of ~ .  [] 

However, the symbols g ~  are non-homogeneous (and of order zero) and the 
question regarding the character or action of the corresponding commutators with 
P and B becomes much more delicate. In  this respect, the following temma is 
fundamental .  

LEM~A 5.1. - In  the notat ion of (5.15)-(5.19) with 1 < r < 2, and recalling 
Definition 3.2 below (3.15) and /~emark 3.1, we can define--in fact, constructively 
ia the proof below--symbols of localizatioll g$~ + and g:~; so tha t  

(5.23) ID~D~,z:~(x, y; 0, ~) < Q,;~( [01 -4- [~ ])-N(~-~)+ lal(2-~) 

as t o l ~ f n l - ~ ,  

where C~,~ is independent of x, y ~ R~x+ ~-~ xR~ . Recalling from (5.18)-(5.19) tha t  
g ~  are homogeneous of order zero in 9~, or 6tit I, respectively, and identically zero 
or one elsewhere, we conclude from (5.23) tha t  

(5.24) 
,~b ~ 0 n + l  Z ,(x, y; o, ~)~S~_I,2_,(Rt~ ~ ) ,  

)~:~ ~ O_PS~ ~ +  ~ 

unifarmly in x ~ R~§ 

uniformly in x e R~+. 

C01~OLLA~u 5.2. - For 3/2 < r < 2, we have 

(5.25a) 

(5.25b) 

X:~: continuous H'(Q) ->He(Q), 0 < s < l ,  

Z ~ [ ~ 0 :  continuous H'(Z ') -+H~(27), 0 < s < l .  
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P~oo~ " OF COrOLLArY 5.2. - Use (5.24) and apply Lem m a  3.1 with 

r - - ~ > 2 - - r .  [] 

5.2. Proo] o] Zemma 5.1. 

We shall write the  proof for the symbol ;/~+ which~ for simplicity, will be indi- 
cated as ~ .  The proof for ;/~7 is similar. 

SsE~ 1. - DefinitioI~s (5.15) and (5.17) suggest introducing a family of smooth 
surfaces 8~ in the ((tube ~> :5~,~ which will be parametr ized  by  a real parameter  k~ 
l~ <k<2 .  These surfaces are defined by  (see (3.13a)) 

(5.26) $~: d~(x~y; ~,~?) ~ k.~ ~, or a(x, y)((r ~- --7~) - - k o  ~ -- d(x,y;  ~) 
a~(x, y) 

Conversely, for any  point  (x~ y, ~, ~)~33~,~ there  is only one surfaces $~ passing 
through it~ namely  the  surface corresponding to the parameter  (comprised between 
1 and  2) 

(5.2~) 

Thus :5~r,~---- ~ 8~ l < k ~ < 2 .  

a(x, y)((r 2 --72) --d(x,  y; ~)/a~(x, y) 
~(x, y, ~, ~) = ~ 

CONSTRUCTIVE D2E~I1NITIO~ Ot~ ~r ~+ =:Z ~(x,y; g,U) I~ R2~(+). - See Fig. 5.3. 
Wi th  U~ being the first coordinate of ~ we first fix a re]erence point (xo, Yo) and 
select a sufficiently large ao > 0 so tha t  the re]erence level hyperplane (~ = ~o inter- 
sects on the  re]erenee coordinate plane ((~, ~ )  both  curves 

(5.2s) 0 = d~(xo, Yo; o, ~ = [ ~ ,  O, . . . ,  0 ] ) -  k~ ~ = (by (5.26) and (1.19)) 

= a(~o, yo)(~ ~ -  ~ ) - -  ~ - -  {a~(Zo, yo)-- a~(Xo, Yo)}V~, 

for k-- - - !  and k ~-2 ,  in two points ~1,~ = ~l,left and Ul,r = Ul,right" The segment 
on a = go~ ~ = [ ~  0 ... 0] comprised between these two intersection points is 

(5.29a) 

(5.29b) 

when k ruas  over l < k < . 2 ,  where by  (5.28) 

a( xo , y• ) ( ~ - 72) - I~ ;  
(5.30) v~(k, .~o~ yo, ~o) = 

all(Xo, yo) "a~ , (Xo ,  yo) ' 
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a =  (512)MIv] 

root of ~. 
�9 a a  ~ -  k a  r - a y  2 ~  0 - - + ~  

v~ 

o ~ ~- 

Figure 5.3. Definition of Z~= )/~+. 

Le t  now Fh(S) be a Ca-function of the real scalar variable s defined so tha t  

1 s<O,  
(5.31) ~h(s) ---- 0 s > h > 0 ,  

and mollotonically decreasing on 0 < s < h .  With  ~V~(s) at hand, we now define the 
symbol Z~(X, y;  a, ~) over all of 33tr,~ through the following steps: 

(i) l~irst define Z" on the re]erenee segment (5.29) 

(5.s2) {(xo, yo; ao, ~ = [~1, 0, . . . ,  0]), Vl,~< v l <  ~1,,} 

by <( t ransplant ing ~> the decreasing par t  of the graph of F~(s) suitably <( dilated or 
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compressed ~ so tha t  the point s = 0 of the graph falls on the point (xo, Yo, no, ~ = 
= [N~.z, 0, ..., 0]), while the point s = h of the graph falls on the point (Xo, Yo, 
ao~ ~ / ~  [~,~, 0, ..., 0]). This means tha t  we set 

27(Xo, Yo; ~o, ~ = [rh, O, ..., 0]) -- -~(~h-- ~,~) ,  rh , ,<  rh < rh,~ 

where in (5.33) we have by (5.29b) 

(5.34) h = T]l,r--/]l,l  = /11( k = 1, Xo, Yo, f ro ) -  ~1( k = 2, Xo, y~ a~ 

(ii) Igext, we extend the definition of Z ' =  Z :~ over the entire (~ tube ~ 
S t , . , ~  ~ 8 k by paramctrizat ion,  as follows: we impose tha t  the symbol Z" 

assumes the  same constant  value on each surface 8k, for each fixed k, l < k < 2  
(such value is therefore equal to the value tha t  Z" takes on at the intersection point 
of 8 k with the reference segment (5.29)). Analytically this means the following: 
given any  point  (x, y, a, ~)e~t~,~,  we first determine via (5.27) the particular 
value of the parameter  k(x, y, a, ~) (between 1 and 2), whose corresponding 
surface 8k(~.v.,.,~ ) passes through it. l~ext, we consider via (5.30) the coordinate 
~h(k(x, y, a, ~), xo, Yo, ~0) on the re/erenee segment (5.29), which has the same param- 
eter as the original point @, y, a, ~1) and finally set 

(5.35a) z ( . ,  y, = Z(-o,  y~ y, a, , ) , . ~  y~ o, ..., o ] ) ,  

(5.35b) (by (5.33)) = 2'~(~(k(x,  y, a, ~), xo, Yo, no) --  ~ . , ) ,  (x, y, a, ~?)~ ~tr.,, 

where h is given by (5.34). Equat ion (5.35) defines g, in ~tr. , .  
F rom (5.18) we have, moreover, tha t  

(5.36) 
;Ca'+ = l 1 on $ ~ ,  Z * 

t 0 on  ~ 7  k.J (~,l.II U ~II U ~I 

As to the definition of Z' over ~t~r, we proceed in agreement with (5.18) and the 
paragraph preceding (5.14); i.e. by  homogeneity of order zero in a ,~"  we first 
define Z r smoothly decreasing from the value one on the cone (x, y, a = 2MI~I,  ~) 
- - fo r  (x, y) f ixed-- to  the value zero on the cone (x, y, a = ~M[~], ~) along, say, a 
uni t  sphere and then  extend to all of 9~r by homogeneity or order zero (constancy) 
in a, ~/. 

The definition of Z" = Z ~'+ on all of R2"{+) is complete, as an C~-function on all 

of its variables. 
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STE~ 2. - We now prove (5.23) in the case fl = 0, [~[ = 1; i.e. we must  estimate 
~Z'/~#~ and ~Z~/~ on 3~,~, where ~--, ]#[. From (5.35b), by  chain rule 

\ 
= (k(x,  y,  ,) ,  Xo, yo, go)) = 

(from (5.30) with k == k(x, y, (x, V)) 

(5.37) _ d E a l  --cr~ ] ~ k  
-a.~(~o, yo)] ~ (x, 

(5.38) =o(~(x,y,~,~)) 
with 0 denoting as usual an upper bound for the absolute value with a constant  
independent of x, y e ~2. From (5.27) and (1.9) 

] 1 ~d 
(5.39) ~-:- (x, y, a, ~]) -- (x, y; ~]) = 

c ~  a ~ a~(x, y) 3~j 

(r~ + 2a~j~j - -2  a~j = 
i r  

1 
= a-- 70(l~I ) = O(a 1-~) x, y e f2; (x, y, a, ~) e 5]tr., 

the constant  on 0 being independent of x, y ~ f2 (by assumption (i), section 1), 
since in the region ~r,~ we have ~--~ I~[. Returning to (5.38), we conclude 

~X r 
(5.40) ~--~ (x, y; a, ~) = 0(~ l-r) ; (x, y, (~, ~) e 55tr.,; x, y e ~  

which is (5.23) in the present case. In  the same way, we compute 

~X r 
(5.41) ~ (x, y, (~, ~7) 

(from (5.27)) 

-=0(~ l-r) for ( x , y , ( ~ , ~ ) e . ~ r , ,  , a>~l, x, ye.O. 

which is (5.23) in the present case. The case fl = 0, [:r = 1 is settled. 

S T E P  3 .  - We now analyze the ease ~ = 0, Ifll = 1 by estimating ~Z~/~x and 
~X~/~yj, From (5.35b) and {5.30) with k =  k ( x , y ,  (r, ~), we obtain as before 
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(see (5.38)) 

~x 

( f rom (5.27)) 

( f rom (~ .9)) 

y, yo, = o ) 

= 0(r + 0 + 0 ~x a~(x, y) ] 

Thus ,  us ing  a , - - I~ ]  in ~t~,~, a.nd ~ > 1  we o b t a i n  as ~,-~ [~/[-+ 

(5.42) 

~Z r 

~x  (x, y, ~, ~1) 

D 
~y--~j Z~( x, Y, ~, ~l) 

= 0(a  :-~) ~ (x, y, a, ~) e :~t~,~ (x~ y) e ~2 

which  is (5.23) in t he  p r e s e n t  case. 
S imi la r ly ,  one can  cheek  the  genera l  case.  [] 

5.3. The commutator [P, X:~t]. 

T h e  goal  of t he  p r e s e n t  subsec t ion  is to  p r o v e  the  fo l lowing resul t ,  which  will be  
fmlda .mentu l  in  t he  ana lys i s  in sec t ion  6. H e r e  P = P(x ,  y;  D~, D~, D~) as in (1.2). 

Tm~OI~E~ 5.3. - L e t  (~) 3/2 < r < 2. T h e n  

a) 

(5.43) [P, ~ ~ - ~  X ~JZh con t inuous  HI(Q) -->LdQ), 

b) (recall  A -= At. ~ f r o m  (4.1a)) 

(5.44) [P,  X:~f]A r-2 con t inuous  Hi(Q) -~ L~(Q) . 

P~oo~' .  - W e  p r o v e  first  p a r t  a). 

STEP 1. - -  W r i t i n g  X r for  X s t  t h r o u g h o u t  and  recal l ing (3.14b) and  (3.10b), we 
h a v e  

n - - 1  --1 

~D ~ ] 
j = ~ \ j  = I 

(2) As alread pointed out, r will be identified in sectioa 6 as r = 8/5, so that  r - -  2 = - -  2/5. 



I .  LASIECKA - 1:~. TI~I~IA~r Sharp regularity theory, etc. - I 325 

STEP 2 (Analysis o] [D~, )C]: statements). - W e  c o m p u t e  b y  cha in  rule  

(5.46) IDa, X*Ju ---- D~(;Cu)- x~(D~u) : (D~ X~)u + 2(D, X*)(D~u). 

Hence ,  since D;  -2  c o m m u t e s  wi th  D ,  

(5.47) [D~, " ,.-2 x']Dt u -~ (D~ ~r)D;-UU -~ 2(Dx xr)D;-~(D~u) 

W i t h  u e H~(Q), we h a v e  D~u e L~(Q) in (5.47). The  fol lowing two  l e m m a s  are  t h e n  
seen to  be  needed.  

LEM~A 5.4. - L e t  3/2 < r < 2. Then ,  wi th  re fe rence  to  Def in i t ion  3.2, be low 
(3.15) we  h a v e  

(5.48) (D~ x~)D; -2 e OPS~-;,2_r(R~+~), u n i f o r m l y  in x e R~§ 

L E n A  5.5. - L e t  3/2 < r < 2. Then ,  wi th  re ference  to  Def ini t ion 3.2, we h a v e  

(5.49) (D~;~)D;-2eOPS~ u n i f o r m l y  in xeRl+.  

COI~OLI~AXu 5.6 (to L e m m a  5.4). - L e t  3/2 < r < 2. T h e n  

(5.50) (D~ ,~/ ) , -2 .  X , ~ t  . eon t innous  Hi(Q) --~]~2(R~; , -1  H [] 

COI~OL~ARu 5.7 (to L e m m a  5.5). - L e t  3/2 < r < 2. T h e n  

(5.51) (D~x~)D~-2: con t inuous  L2(Q) -~Z~(Q) .  [] 

COIr 5.8. -- L e t  3/2 < r < 2. Then 

(5.52) .2 ~ ~-2. [D~, ~L ]D t . cont inuous  H~(Q) --> L~(Q) [] 

S T E P  3 .  - Analysis o/ [D~, X*]: proo]s. 

P ~ o o F  oF L n ~  5.4. - F r o m  (3.21) t a k i n g  7- - - -0  w.l.o.g. 

(5.53) s y m b o l  of (D~xr) ---- D~z*i  

The  essence of the  p roof  is t h a t :  

(5.54) D~Z, e ,~2(2-~) / ~ + l ~  
~ , ~ - . 1 , 2 - - r ~ , ~ t y  x / 

(5.55) ~-~ ~-2 a e S 1 ,  o (2~t~), 

s y m b o l  of D ~ - ~ - -  - a r-~ . 

u n i f o r m l y  in x E R~+, 

un i fo rmly  in x ~ R~+. 
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Then, D~Z having compact support in .Q (by assumption (i), section 1), the product 
theorem as in IT.l ,  Thin. 4.4, p. 46] applies and gives the desired conclusion (5.48) 
since: 2 ( 2 - - r ) + r - - 2 ~ - 2 - - r ,  m i n ( r - - l ,  1 } : r - - 1 ,  max {2 - - r ,  0 } : 2 - - r .  To 
see (5.54), i t  suffices to consider D~% ~ in the region :Bt~,~ where (5.23) of Lemma 5.1 
holds, Z ~ -~ %~r ~ (for %~ is either homogeneous of order zero in 9tx~ or 9 ~t~, respec- 
tively, or identically zero or one elsewhere). Then, by  replacing Ifll with lfll-~ 2 
in (5.23), it follows tha t  

(5.56) {D~D~D~z (x, y, ~, ~/)< C~,~(I~ I @ I~/[) 2(2-~)-1~1(~-1)+1r , 
Y 

with C~.,~ independent  of (x, y) e f2; i.e. (5.54) is obtained, via Definition 3.2, Re- 
mark  3.1, below (3.15). 

( Instead if appealing to the product  theorem, one can use 

(5.57) {(D~x )Dt } -~ symbol of 2 r ~-z (D~%~ ~)o~-2 

which follows from the asymptot ic  expansion [T.1, (4.5), p. 46]). [] 

P~ooF oF L E p t A  5.5. - I t  is similar to tha t  of Lemma 5.4. Now 

(5.58) symbol of (D,;C) ~- D,Z ~ 

so tha t ,  from (5.23) with Ifli replaced by Ifll-~ 1, we obtain 

(5.59) ~ ~ r (D~D,D~% (x, y, ~, ~)[< C~,~(lal-~ t~]) 2-r-i~/(r-t)+l~l(2-~) , 
Y rt 

(x, y, a, ~) e ~t~,~,  a ~ Ivl -~  ~ ,  

with C~,Z independent of (x, y) e ~.  This means 

(5.6o) o S~_l,2_r(Rt~), uniformly in xeR~+.  

Then, (5.60) and (5.55) imply the desired conclusion (5.49) via the product  theorem 
[T.1, Thm. 4.4] since 2- -  r + r - -  2 : 0. [] 

PROOF OF COROLLARY 5.6. - -  Apply Lemma 5.4 and Lemma 3.1, Eq. (3.17v). [] 

PI~OOF or  COIr 5.7. - Apply Lemma 5.5 and Lemma 3.1, Eq. (3.17a) 
with s ~ 0. [] 

P~oor  oF COrOLLArY 5.8. -- Use ident i ty  (5.47), Corollary 5.6 and Corollary 5.7. 
[] 
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STEP 4. - -  Analysis of [a,jD~D~, Xr]: statements. By direct computa t ions  

(5.61) [a,jD~ D~, X~]u = a~jD~jD~(x,u ) -  xra~jD~D~ = 

= a~(D~jD~xr)u + a.j(D~ Xr)(D~ u) -]- an~(D~jx')(D~u ) + 

-4:- a~i x~D~(D~u)- x~a~jD,~(D~u) . 

Thus, since D~ -~ commutes  wi th  bo th  D~ and D~j 

(5.62) [a~jD~jD~, x~JD;-2u = a.j(D~D~ x~)D~-2u + a.~(D~ x~)D~-~(Dv~u) + 

q- a,~(D~x~)D~-2(D~u) + [a.j, x~]D~jD~-2(D~u). 

With  u e H~(Q), the following l emmas  are then  needed for the te rms  in (5.62). 

L E n A  5.9. - Le t  3 / 2 < r < 2 .  Then 

(5.63) a) anj(D~ D~x~)D~ -2- continuous Ha(Q) --~ Z~(Q) , 
1 " 

(5.64) b) a,j(D~x~)D~-e: continuous L2(Q) -+L~(Q), 

(5.65) e) a,~(D~xr)D~-~: continuous Z~(Q) -+L~(Q). [] 

LE~M2~ 5.10. - Le t  3/2 < r < 2. Then 

(5.66) [a.j ,  X"]D~ D~ -2" continuous L2(Q) -+L~(Q) [] 

COROLLARY 5.11 (tO L e m m a s  5.9 and 5.10). - Le t  3/2 < r < 2. Then 

(5.67) [a,~D~D~, ~,~11)~-2. continuous H~(Q) -+ J52(Q) [] 

ST:~v 5. - Analysis o/ [a,~D~D~, X']: proo/s. 

P~ooF oF L E n A  5.9. - Assertion (5.63) follows as in the  a rguments  leadin~ 
to Corollary 5.6 for ~ ' , -2 (D~x)D t . Also ,  assertions (5.64)-(5.65) follow as in the  

D - ~ D  ~-2 a rguments  leading to Corollary 5.7 for ( ~ . ~  t �9 [] 

P~oov  OF L E n A  5.10. - The essence of t h e  proof is the  following argument .  
Since 

(5.68) a , j e  o . o t ~ - + ~  uniformly in xeR~+ S~,o(R~) and Z ~e S~_~, 2 - - r X ~ l y  x l 

the  second s t a t e m e n t  in (5.68) being L e m m a  5.1, then  (the commuta to r )  L e m m a  3.2 
implies t ha t  

v'~eOp,q ~-~ t~n+h uniformly in xeRl+ (5.69) [an~, t. ~ ~r-~,~-~'~'~tw ~ , 
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This is so since in this ease (in the notat ion of Lemma 3.2), we have 

~r-- 6~'= 1--  (2-- r) = r - -  1~ ~'r-- ~ ' =  r - -  1 _  0 = r _  1 ~ 

so t ha t  m l = r - - !  and the order is 0 4 - 0 - - m l - - - - 1 - - r .  (Assumption ~ " ~ 2 - -  
-- ~ < min {1, r -  1} holds for 3/2 < r < 2). But  in the crucial region 33tr,~ where 
a--~ I~1, the two operators Dt and D~ have (~ the same behavior ~) in the variables 
t and y. This means tha t  

(5.70) D~jD[-2eOpS[.ol(R~)~ uniformly in xeR~+. 

Finally,  f rom (5.69)~ (5.70)~ the product  theorem [T.1, Thin 4.4, p. 46] gives 

~-2 o ,+1 uniformly in xeR~+ (5.71) [anj~ Z ]Du~Dt e OPS~_I,,,_~(Rtv~ ) 

since 1 -- r -~- r - -  1 = 0, rain {r-- 1, 1} = r - -  1, max [2 -- r, 0] -- 2 -- r. Once (5.71) 
is proved, then  the desired conclusion (5.66) follows by  applying Lemma 3.1, 
Eq. (3.17) with s = 0. 

The detailed proof of (5.71) is based on noticing tha t  the asymptotic  expansion 
for the symbol of a product  gives [T.1, (4.5), p. 46] 

(5.72) symbol of {a~,~x~D~ D~ -2} : a~ j z~a  ~-~ , 

(5.73) symbol of {X a~jD~jD~ } ~ o  ~ .  {Did/r} (D;a~j}~ ~j(~-2 

so tha t  in the region ~3t~,~ where a ~  i*~l, we have:  

(5.74) symbol of ~[a,r X ]P~jP~ } ~ 2. -~. {D~z~} {D; a,J} a r - ' -  (D~z~} ar-~. 

F rom (5.74), using Lemma 5.1, one obtains by considering the Eorst  case ~ = 1 

i 

(5.75) D~D;{symbol  of {[a~,, x~]D~D~-2}} <C~,.~(la I + [~])-l~'l(,-~)+l~)(e-~), 
a 

C~.,~ independent  of (x, y )~  ~ ,  and (5.71) follows. [] 

Pl~oo~ o~ C o ~ o ] . r ~ v  5.11. - Use ident i ty  (5.62) and Lemmas 5.9 and 5.10. [] 

STE~ 6. - Analysis o] [D~(a~D~)~ X~]. We reduce this te rm to the te rm consid- 
ered in Step 4, modulo a first order (lower order) commutator  in all variables 

(5.76) D~(a,sD~ ) : (a~D~)D~ ~- [D~, a~D~] . 
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Thus, by  Corollary 5.11, we have 

LE~AWA 5.12. - :Let 3/2 < r < 2. Then 

(5.77) [Dx(a~,D~,), X']D~-~: continuous Hi(Q) -> L~(Q) . 

STEP 7. - Analysis o] remaining terms [(a,jD,,)(a,D~,), X'], [D1, Xr], and [D2, Xr]; 
l~ecalling ident i ty  (5.45), Corollary 5.8, Corollary 5.11 and :Lemma 5.12, we see tha t  
the proof of par t  a) of Theorem 5.3 is complete, us soon as we establish the following 
lemmas 

L E ~ A  5.13. - :Let 3/2 < r < 2. Then 

xr lDr-2  } 
(5.78) [(a,jD~,)(a,jD~,), x ~+1 uniformly in x e R~+ 

Hence, by  Lemma 3.], Eq. (3.17b) 

X ]D~ } 
(5.79) ([a~,D~)(a~iD~,), ~ ~-~ : continuous Hi(Q) -->Z2(Q). [] 

r r--2 [D1, X ]Dr 

LElVrMA 5.14. - Le t  3/2 < r < 2. Then 

~n~-2 o "+~ uniformly in xeR~+ (5.80) [D2, X J ~  eOPSt~-~,~.-,(R~ ), 

Hence, by :Lemma 3.1, Eq. (3.17a) with s = 1 

.,., rl D r - 2 (5.81) [D2, ~ , ~ ,  : continuous Hi(Q)-->H~(O). [] . 

PROOF OP LEPTA 5.13. - l~ecMling Lemma 5.1 and (3.13a), we have 

} e OPS~.o(Rt~ ~ ), uniformly in x e R~+ (5.82) �9 2 n + l  

.D~ 

x.eSt_~,o t~.+l~ , " uniformly in xeR~+ 

Thus, (the commutator)  Lcmma 3.2 implies 

(5.83) [(a~jD~)(a.tD~,), X~] 1 P ~-' "+~ 
" e O  S~_I,~_r(Rt~ ~ ) ,  uniformly in xeR~+ 

[D~, X ~] ] 
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since, in the notat ion of Lemma 3.2, we have 

@'-- ~" ~ - 1 -  ( 2 -  r) - -  r -  1 ,  @"-- 8 ' =  r -  1 -  0 ,  

i.e. m l = r - - 1 ,  and the order is then  2 + 0 - - m l - ~ 3 - - r .  (The assumption 
(~"= 2 -- r < @ -- r -- 1 holds for 3/2 < r < 2). The product  theorem [T.1, Thm. 4.4 
p. 46] between the operators in (5,83) and D~-2eOPS~-~'(R~+I), uniformly in 
x e R ~ ,  yields (5.78), as desired. [] 

PROOF OF L E m ~  5.14. - Similarly, since D ~  OPS~,o(R~v~) , uniformly in x eR~+ 
(see (3.12a)), the commutator  L e m m s  3.2 implies 

r i~n+ ~ uniformly in x e R~+ (5.84) [D2, X r] e ~ - - - , _ 1 , 2 _ , , ~  i , 

since m~ ---- @'-- ~ ' =  @"-- 5 ~= r - -  1 and the product  theorem yields (5.80). [] 

Pa r t  a) of Theorem 5.3 is proved. Par t  b) then  is an immediate  consequence 
of par t  a), in view of the  definition (4.1a) of At~ (in the crucial region :Btr,~ , we 
have tha t  D~ -2 and D~ -~ behave likewise, a ~ IVl). [] 

5.4. The commutator [B, X~ 

Let  B - ~  B(y; D~, D~) ~s in (1.4). The object of this subsection is to prove 

TnEo~E~ 5.15. - Le t  1 < r < 2. Then 

a) 

(5.85) [B, X~] L=o e oP~,~:;,~_,(~), 

b) more generally, for any  real k 

2 - - r + k  (5.86) [B, X ~ ]  I~=0 D7 e O-PS~_~,2_,(Z), 

v) let 3 / 2 < r < 2  (so tha t  r - - l > 2 - - r ) .  Then, with A : A ~  as in (4.1a) 

(5.87a) Ak[ B, X ~ ]  i~=0 1: continuous Hs(X) --> H~-(~-~+k)(X) . [] 

(5.875) [B, X:B~] 1~=o Dt k ! 

P~OOF. - The essence of the proof is tha t  Bl~=oeOPS~,o(X) and X "1~=o e 
e OPS~162 by Lemma 5.1. Then, (the commutator)  Lemmu 3.2 implies at  
once (5.85), since in the notat ion of Lemma 3.2, the order is 1 q - 0 -  m~ ~ 1 -  
-- ( r - - 1 )  ---- 2 - -  r, for m ~ =  @'-- 0 " ~ - 1 - -  ( 2 - - r ) =  @"-- 0 ' =  r - - 1 .  The product  
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theorem [T.1, Thm. 4.4, p. 46] with D~ e OPS~,o(X) then yields (5.86). (Note that 
the operator in (5.85) is constant in y outside a compact set). Lemma 3.1, Eq. (3.17v) 
---applied this time on X--yields (5.87) from (5.86). About A ~ we recall that  A ~ 
and D~ belong to the same class in ~ where ~--~ 171. 

A detailed computation, based on asymptotic expansions of symbols, IT.l, (4.5), 
p. 46] can be given to show (5.86) explicitly. One has, writing I ~ ~ 1 ~  

(5.88) (symbol of Bl%=o} = bx~ + l 'D~z~ + (D~'I=lb)(D~C'[=l z~) a t  x = 0, 

(5.89) {symbol o:[ ~Bl~=o } 

~x>l 
at x = 0  

n - - 1  

where D~ b = b,(y) and D~b = ~ (D~b~(y))7, from (3.15). 

from (5.88) one obtains an explicit expansion 

After subtracting (5.89) 

(5.90) D~ D$' (symbol of {[B,x~]t~=0D~}) 

Y 

,~ {D~'D~(D~z,)c?' + (D~ D~']=~b)(.D[~l=~ D~_'~,~)a ~ + (D~~ b)(D~t D~I=~.D~'z')c~ + 

~ i  ~z! (D, D,, D~Z ) (D~b,(y))7, + (D,, D,77 " ) + 
l �9 ~ ~ " =  

1 ( )} 
i '  ~ ~ ~ '  D ~ b , ( y ) ) ~  a t  ~ = 0 .  + (D~D~z ~)D ~(D~b~(Y ~l, + (D,z  ) D~ 

Using (5.23) in Lemma 5.1 on the terms of (5.90) yields the upperbound 

~ ,  ~(a + 17])(2-,+k)-I~'t(,-~)+J~l(2-,) for (x --- o, y, a, 7) e ~t~,, 

a N  [71-> c~ as desired, and (5.86) follows. [] 

5.5. The operator D1X~;. 

The goal of the present subsection is to prove the following result. 

THEO~E~ 5.16. - Let 3/2 < r < 2. With reference to (3.13) and (5.16)i (5.19), 
we have 

a) 

(5.91a) D ~;  ' ~.1 uniformly in x e R~+ i I  eOPS~-a,2-,(Rt~x ) , 
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(5.92a) 

Hence  

(5.92b) 

]~eD.ce 

(5.91b) D~ ~:~;: continaous H~(Q) -~ Le(R~+; H~-"(R~.~)) . 

b) Wi th  reference to (4.1a), we have for g>~0 

A~D~ ~ ;  ~ OPS ~+~ ~p~§ h uniformly in x e R~+ 

A~Dlx:~;: continuous H~(Q) -+ L2(R~§ H (R~)) . 

PRooP. - I t  suffices to prove (5.91a) and then invoke the product  theorem 
[T.1, Thm. ~:.4, p. 46] with ( ~ " = 2 - - r < m i n { 1 ,  r - - 1 } - - - - r - - 1  for (5.92a); and 
Lemma 3,1 e) with r - -  1 > 2 -- r for (5.91b)-(5.92b). 

P~ooF oF (5.91a). - The asymptot ic  expansion for the  symbol  of D~Xm; is 
[T.1, (4.5), p. 46] 

(5.93) {symbol of (D1x~;)} ~ ~ -~. {D~ d~(x, y, ~, ~)} {D;z~;(x  , y, ~, V)} = 
�9 I { ~ > o  �9 

1 

since d~ is a second order symbol  in ~ ((3.13), (3.11)). Recalling from (5.19) tha t  
g~7 vanishes on ~5 + and recalling from (5.17)-(5.18) tha t  the  growth of d~ is O(c ~) 
On ~ - l . J  ~tr,r ~ we obtain the  first of the est imates below, while the other two 
est imates follow from (5.23) of Lemma 5.1 along with ~ ;  -~ 1 ca  5~-: 

d l g ~ r  = 0(0 "r ) 

{D~jdl}{D~,y,2s; } = 0(In[ [~71 "2-') in ~ where a ~  l~?l-->+ cr 

{D~, dl}{D~, Zg;} = 0 ({~1 ~(~-0) 

Moreover~ ior 3 / 2 < r < 2 ,  we have 3 - - r < r ,  and 2 ( 2 - - r ) < r .  Thus 

(symbol  of (D!x:3;)}----O(l~){ ~) in :g. 

F rom (5.93) applying DvD , we obtain similarly 

D~D~'{symbol of (nix:g;)} = 0({,[ T-b'{(~-l)+lpl(u-r)) in 3~ 

and (5.91a) follows. [] 
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6. - Completion of  the proof of  Theorem 1.2. 

We re tu rn  to the par t i t ion  of uni ty  relat ion (5.20b) 

(6.1) Zc~+~(x,y; (~,~)-f- %cB;(x,y; (~,~)-~ ZI(x,y; (~,~)-~ %n(x,y; a, 7 ) ~ l  

(x, y, ~, 7) e R2~(+),  

so tha t  af ter  mult iplying (6.1) by  ~(a, x, 7) and applying (3.8) with v ~ u, we obtain 

(6.2) u(t, x, y) ~ X~,+u(t, x, y) -k X$;u(t, x, y) -k XIU( t, x, y) -k XnU( t, x, y) .  

We shall then  seek the  desired est imate (in the desired norm based on X) of each 
t e rm on the r ight  hand  side of (6 .2)separately,  by  analyzing each localized problem 

(3.22), with X there  being each of the operators in (6 .2 ) .  

6.1. Regularity o/ XiU, i = I, I I .  

An est imate of the last two terms in (6.2), involving the (( good ~> regions 9 ~ and 
gn, is readily ob ta ined- - in  a norm, in fact, higher than  our final result.  This is 
conta ined in the following: 

Tn-~OR~.~ 6.1. - Le t  3/2 < r < 2. With  reference to the localized problem (3.22) 
with g =  O, we have XIU and X n u e H i ( 2 : ) ;  more precisely 

(6.3) I 2 = o(IIIIt~,(Q)). 

PROOF. - We use Corollary 4.5 b ) ,  Eq.  (4.14), with Z = g~, i ---- I, I I ,  where ]z 
and gz are given by  (3.22e)-(3.22d), and g = 0. We obtain 

(6.4) <D~ X'u, X'u>z : 

I[B, i 
: ] l  x ]~1~=ot~ + e(I;x'ull,t(o)) + I m  (x ' ]  + [P, x ' ]u ,  ~ x ' u ) o .  

B y Lemma  5.0, Eq. (5.21b) with s -~ 1 and the a-priori regular i ty  of Lem m a  1.1, 
we have 

(6.5) I1 [P, x']  uIl~,(Q) = O(llull.,(o)) = O(ll/tl~,(~) �9 

Similarly, by  Lemma  5.0, Eq.  (5.22b) with s = 0, s tandard  trace theory,  and Lem- 
ma 1.1 on a-priori  regular i ty  

(6.6) I[B, , 2 x ]ul~=ol~,(~) = O(lul.=ol~,(~)) - O(llult.,(o)) = O(llfll~,(o)) �9 
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Also, b y  Lemma 5.0, Eq. (5.22e) and (3,lOb), we have 

This, along with (6.3)-(6.5), yields 

(6.7) <D1Xcu, X i u ) z  = O(l[llt~), i = I, I I .  

We now recall Claims 1 and 2 in (5.8), (5.9) 

(6.8) dl(x, y; ~, ~) > '~l'~'z t~r~2 • [~12] ou ~* U ~ , ,  

(6.9) - - d l ( % y ;  inl on r ,  

outside a finite sphere of the half (x, y, a, ~)-space R2~(+). By  (6.8) we can then 
define a real symbol  dl,ext(x, y; a, ~) belonging to the  same class S~, o as the  symbol 
d~(x~y; a, V) in (3.13), such tha t  

(6.10a) dl,ext(X~ y;  a, ~) ~- dl(x , y ;  a, ~) on ~z (.j ~Itr , 

(6.10b) dl,ext(x, y ; a, ~) > c[a ~ + I~1 ~] outside a finite sphere of R ~ ( + ) .  

Thus, Gi~rding~s inequal i ty  for symbols [T.1, Thm. 8.1, with s = 0, p. 55] gives 

C Iu2  (6.11) <D~,ex t XI~, x l u ) ~  : l:~e <D,,ex t x l u ,  x lu>  > C01[XI~H2,(2:) - 1 X L,(z) 

where D~, e~t ~ OPS~,o is the pseudo-differential  operator corresponding to the symbol 
d~,ex t via (3.8). But ,  f rom the product  theorem [T.1, Eq. (4.5), p. 46] one sees tha t  

(6.12) support  oi symbol  of (Dx,~x t X I) c support  of symbol  of X I =  

-~ support  of Zi ___ 91 u 9It.  

Thus, the definition (3.8) and (6.10a) give 

(6.13) Dl,~x t x l u  ----- Dx x l u .  

Using (6.13) in (6.11) 

(6.14) I<D1 xi{+, xi~Jb>~[ > Co][xiq~H~l(~) - Cl{Xiuil,(2:) 

for i = I. The val idi ty of (6.14) for i ~ I I  follows in a similar manner  from (6.9). 
Recalling (6.6) in (6.14) 

(6.15) 'L ' .~ O( o(lxh*lL( )) o(lltli)Lr 
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where in the last step we have applied eq. (5.14), s tandard trace theory,  and the 
a-priori regulari ty of Zemma 1.1. Equat ion (6.15) gives (6.2). [] 

6.2. Regularity o] X~+,u. 

We next  obtain an est imate of the te rm X:~$u (see (5.15)) in (6.1). 

TtIEORE:~ 6.2. - Le t  3/2 < r < 2. With reference to the localized problem (3.22) 
with g = 0, we have tha t  X~,+ueH~-l(2:); more precisely 

(6.16)  II x ~'+ u I1.~-=(~ = o (ll/II~,<~>) �9 

PROOF. - We apply the operator D~/e-1 (where r/2 -- 1 < 0, we shall eventually 
ident i ty  r = 8/5, whereby then  r / 2 -  1 - = -  2/5) to problem (3.22) with X = X :~;. 
Since D~ 1~-1 commutes with the t ime invariant  coefficient operators P, B, X, [t', X], 
[B, X], (a proper ty  we shall use freely below), we obtain 

(6.17a) P(X:~+,D~t/2-1u) = Xc~+~.D~ 12-1 ] -~ [P, X~+~JD~12-1u on Q,  

(6.175) B(X~+~D~/e-lu) = [B, X~+,]D~/e-lu]~=o on ~ ' .  

Applying Corollary 4.5 b), Eq. (4.14)~ with u replaced by D~le-lu to the solution 
Xt~+,D~/2-1u of (6.17), we obtain (gx and ]~ are defined in (3.22e)-(3.22d)) 

(6.18) <D1%- ~+" ~'tnr/2-1"~, X~+, D[I2-1U}z -= -- [ [B, ~.'~:~§ J~t ~Jx=0,L.(z)le .• 

+ Im  ([P, X:~+]D[-2u, 1~ X:~+u)Q + I m  (D~/2-1 X:~+~f, D~t/e-~D~ X~+u)~ + 

+ e(llD7 ~-~ X~u]l~,~o~). 

C ~ z ~ .  - We have 

(6.19) <D~ X~+~D~/2-~t, X:~+,D~/2-1U)z = 0( I]/H~,(~))~ �9 

P~ooF OF CLAng. - We analyze the four terms on the right of (6.18). 

First term. With u e H~(Q) (~ priori regularity of Lemrna 1.1) we have u[~=o e 
e HI/~(X). Theorem 5.15e, Eq. (5.87b), applies with s = �89 and k = r / 2 -  1~ so tha t  
�88 < s + r / 2 - - 1 <  �89 Hence 

(6,20) 

Sevond term. 

(6.21) 

l I B ,  X ~ ] D T ~ - ~ u l ~ = o l ~ , < ~  = O(IIIII~,<Q~) �9 

By Theorem 5.3 a)~ Eq. (5.43) and a-priori regularity (Lemma 1.1) 

It [P,  x~'+lD~-~u]l~,<~> = o(1t/11~,<~>) 
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while by Corollary 5.2, (5.25a), and (3.lOb), 

(6.22) + i _ _  l ID  ~ :y,S, u Is,(~) - -  O(i l t l l~,(~)) 

Equations (6.20)-(6.22), combined with the obvious analysis of the last two terms 
on the right of (6.18), :produce the claim. [] 

We re turn  to (6.19) and recall definitions (5.15), (5.17) for the real symbol d~: 

(6.23) d~(x, y, a, ~7) > a '  on 55 + U 55t,.,,, where a--. [~71. 

Thus, we are in a si tuation similar to the one in (6.7), (6.8). Proceeding as in going 
from (6.8) to (6.14), we likewise apply Giirding=s inequali ty for symbols [T.L, p. 46] 
and obtain from (6.23) 

C "~+~D "tl2-1'~" .2 (6.24) (D~ :zS; D~Z2-%, ~tS; D ~ / 2 - % ) z >  OoIIX~t D~/2-~!In,/,(s ) -  ~ ,,,. t ~ ~,~(~) " 

Thus, using (6.19) ia  (6.26) implies, since J9~/2-1 commutes with Xat; 

(6.25) re-1 ~+ -z liDs X "ulin,/~(~) O(  ! ~ + 2 = I1 ]lr,(o)) + O(ID~/2-1 K s'uIL,(~)) = O(ll]l!~,(a)) 

where in the last step we used r / 2 -  1 < 0 and ~55r+ula=oEJ~1/~(E) by Corollary 5.2, 
Eq. (5.25b), and Lemma 1.1 (a-priori regularity). Moreover, since a ~  [~] in the 
region 55+, see (5.3), we have tha t  the operators D~/~-IX at+ and D~/~-Ix:~t belong 
to the same symbol class. Thus from (6.25), we obtain likewise 

(6.26) x "~/L,a~) = o(IIIII~,<Q>) �9 

Equations (6.25)-(6.26) together  give the desired est imate 

I lD~-I  + ~ + 2 ~ID~, x ~ , u l l ~ , ( : )  O(IItlI~,(Q>) 

i.e. (6.16). Lemma 6.2 is proved. [] 

6.3. Regularity o] X:~;u. 

Finally,  we est imate the t e rm X:~;.u (see (5.16)) in (6.1). To this end, we col- 
lect some prel iminary results needed in the proof of the theorem below. 

LEzVC~__~ 6.3. - Let  3/2 < r < 2. With  reference to (4.1a), (3.10), (3.13) we have 
for 0 < 0 < 1  
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a) 

(6.28a) 

b) 

(6.29a) 

~) 

(6.30a) 

Hence: 

(6.28b) 

(6.29b) 

(6.30b) 

[A ~ D~] o ,~+1 uniformly in xeR~+,  O-PSI,O(Rtw ) , 

[p ,A  o] o+1 ~+1 OPS1, o (Rtv ~ ) ,  uniformly in x e R~+, 

0+1 n + l  [D~, A ~ ~ OPS1, o (Rt~ ~ ) ,  uniformly in x ~ RI+. 

[A ~ D~] 

Aq[P, A ~ : 

Aq[D1, A~ 

continuous Hi(Q) ~ L2(R~+ ; HI-~ "l'~ 

t t l - ( ~  q < -  0 continuous Hi(Q) -+ L2(1~.; ._ ~mvu , , 

Z 1 . H I - - ( O +  continuous Hi(Q) --> ,~(R:+ ,  1)-~(R~)) , q < - -  0. 

PROOF. - The proofs of eases a), b), e) are similar, and are based on the asymp- 
totic expansions of symbols [T.1, (4.5), p. 46]. A main point in claiming uniformity 
with respect to x e R.~+ is that the symbol of the commutator in each of the three 
cases does not depend on ~. 

a) 

(6.31) 

(6.32) 

{symbol of (AoD~)} ~ (y~ + a ~ + 1~12)0/2 ~ + a~jw + 

@ k,l>l a~[ 
~7 y 

{symbol of D~A ~ : (~ + ~ a,,~,)(~,2 + ~2+ [~2l)o/2 ' 

so that  subtracting (6.32) from (6.31) ~nd noticing that in (6.31) only the terms 
corresponding to derivatives in ~ and y are active 

(6.33) {symbol of [A o, D,]} '~'1>~ ~'-~" {D~(~ 2 + a~ q- t~l~-)ol~} / ~ (Dr a~,)~,} 

and the symbol of the commutator is independent of ~. From (6.33), one obtains 
easily (6.28a), according to Definition 3.2. The proof of (6.29a), (6.30a) are similar. 
Then, /~emma 3.1 e) applies and yields, respectively, (6.28b), (6.29b), (6.30b), the 
last two after applying the product theorem [T.1, p. 46]. [] 

TttEOtCE~ 6.4. - Let 3/2 < r < 2. With reference to the localized problem (3.22) 
with g ~ 0, we have X~;u e HI-'t4(X); more precisely 

(6.3~) ~ z ;  ,Ix ull~,-.(~)= 0(llllt~(Q)). [] 
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PROOF.,  The proof makes use of bo th  par t  a), Eq. (4.13), and pa r t  e), Eq.  (4.15), 
of Corollary 4.5, as t hey  apply to problem (3.22) with X = X~; and g = 0. In  fact,  

f rom the  present  version of eq. (4.13) 

(6.35) IX ~lm<~> = 2 I m  (A~ u, A ~ x:~;% + o( IIx:~;~ItNo(Q)) 
for now: O < 0 < 1 

where u, hence X:B;~, belong to H~(Q), (Lemma 1.1 and Corollary 5.2), we see tha t  

we obtain 

(6.36) X.~;ueH~ indeed ]!X.m;ull~o(x)= O(II]i[L,(Q)) 

provided we show tha t  for such 0 

(6.37) (A ~ f )  : x:~7 ++, m ~ X:~7 +% --- 0 (11/l[~,(o>) 

with A ~ = A ~  defined in (4.1a). To this end (3), we first note  t h a t  for  0 <  e < l  and 
ueHa(Q), hence X:g;ueHS(Q), t hen  by  Lem m a  6.3, Eq.  (6.28), 

(6.38a) 

In  fact  

(6.38b) 

Next ,  we write 

(6.39) 

Thus 

(6.40) 

11 EA ~, b~] x~ ;  ~I1~,+)= o([tills,m)) �9 

(by (6.3Sbl) =9~A=x:+;+++O(llfh~+)), 0<++<1. 

( A ~ D~ Xm; u, A ~ Xg; u),+ = f (A ~ D ~ X.g; u, A~ u)r,(++;O dx 

(by self-adjointness of A on L~(R~)) 

= f (A.-1~+x++;++, AX:+;u)~,<~:o> d++ 

(by (6.39)) =f(D~A 2~ XPsT++,/Xg;u)J~,(Rp+) d~ + O(Hfll~,m)) 

(3) Instead of working with A ~ we could work only with D o (which commutes with the 
various operators !Z). Then, we use that D~ and D~ belong to the same class symbol, 
since ~ Iyl in ~g~-; ~his approach was followed in Theorem 6.2. 
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since ][Ax~;u]!z,(o ) = 0(I]]HL,(Q)). Thus, the desired equation (6.37) is established, as 
soon as we prove that 

( 6 . 4 1 )  {{~A2~ O(l{]l{L,(o)) , � 8 9  

since for 0 < 0 < � 8 9  Eq. (6.37) is plainly true. To this end, we re turn  to problem 
(3.22) with Z---- Z :~; and apply A 2~ to it, in the interesting ease 0 < 2 0 - - 1 < 1 .  
We thus obtain the following problem (P and B as in (3.22)) 

(6.42a) P(A 2~ u) = A 2 ~  [P, A 2~ X u in Q,  

(6.42b) B(A 2~ = A2~ g z + [B, A 2~ xul~=o in 27, 

(6.42c) ]z = X] + [P, X] u , 

(6.42d) gz ----: xgL=o + [B, X]u[~=o, 

in the solution A 2 ~  , X -~  X:~;, where we are presently taking g =  0. We now 
use Corollary 4.5 c), Eq. (5.15), as it applies to problem (6.42), in particular with 
Zu in (4.15) replaced now by A~~ We obtain 

(6.43) 

(6.44) 

(6.45a) 

(6.45b) 

(6.45c) 

(6.46) 

(6.47a) 

(6.47b) 

(6.48) 

(6.49a) 

(6.49b) 

(6.50) 

I[D~A 2~ X:~;u][~,(o)= (1) + (2) + (3) + (4), 

(1) = (A 2~ + [_P, A 2~ X~; u, A 2~ X~; u)o ---- (la) + (lb) + ( lc) ,  

by (6.42c), 
( l a )  = (A ~~ X:~; /, A 2~ XS~; u)o, 

(lb) ~- (A2~ X~;]u,  A 2~ X~;u)o , 

(lc) = ([P, A 2~ X~;u ,  A 2~ X~Tu)o, 

-- (2) = (2a) + 2i7(2b), 

(2a) = (D~A~ 20-lX:~;u, wA2O-lX~Tu)o (w as in (4.2b)) , 

(2b) = (D2A 2~ ~ X~;u, A 2~ x X~; u) a , 

- -  i ( 3 )=  (3a) + (3b) (using [B, A 2~ = [B, A ~~ Xa~; q-A2~ X:~;]), 

( 3 a ) =  <A 2~ [B, Xs~;]uL_o, Ae~  ],=o)z , 

(3b) = <B, A 2~ Xs$Tulz o, A2~  \ 
= " ~  J i .  r x = O / ~  ) 

(4) = ( D1A ~~ 1 XS~; u, A 2~ 1 X,q$'~ U )O . 

We shall examine individually each of the terms on the right of (6.43). 
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~irst term (1). 

(6.51a) 

From (6.45a), since A is self-adjoint on L2(Rt~) 

= I/]1t~,(o)), 

0 < 3 / 4  

O (  �84 2 = IIIll~,(Q)), 

provided 40-- 2~J., i.e. provided 

(6.51b) 

by Corollary 5.2 with u ~ H~(Q). 
Similarly, from (6.45b) 

(6.52) (lb) =f(A~-~[P, x~;]~,  A2-'+4~ 

provided 2--  r ~- 40-- 2<1 ,  i.e. provided 

l @ r  
(6.53) 0 < i ~ 

by Theorem 5.3 b), Eq. (5.44), and Corollary 5.2 with u ~ H~(Q). 
From (6.45c) 

~g ~ 

nl 

provided, by Lemma 6.3~ Eq. (6.29b), we have 

1--  (20-- !-~- 1)-- (20-- 2) = 3--  4 0 > 0 ,  

Combining (6.51), (6.52), (6.54) we have 

"~ / 0<3/4 , 

(6.55) (1) ~- 0(ll/llL,(o)) provided t 0<1/4 + r/4. 

Second term (2). From (6.47a) 

i.e. provided (6.51b) holds.  

(2a) -~ j~ fi~oz~z~ ~ X~;u, wA2O- l x~; u)L~(R~) dx ~_ f (A"-O-~ ~A'~O- tX$; u, wAx:~; u)L:(~7~) d ~ 

(using (6.39), (5.25a) with s ~ t ,  and (4.1b)) 
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provided 4 0 - - 3 < 0 ,  i.e. provided (6.51b) holds (both D~XS~;u undwAx$;ueZ , (Q)  ). 
Similarly, from (6A7b) 

(6.57) (2b) f(A2~ 2~ O( = = lltll  (o)) 

provided 20- -2  + 2 0 - - 1  + 1<1  (recall (3.12)), i.e. provided (6.51b) holds. 
Combining (6.56)-(5.57), we obtain 

(6.58) I 2 (2) = prov ided  0 < 3 / 4 .  

Third term (3). From (6.49a), since A is self-adjoint on Z~(X) 

(6.59) 

provided 

(6.60) 

2 (3a) = <A 2~176 [B, X~;] UL=o, A!/2 X:~;~l~=o> = 0(II/h~(o)) 

o<1/4 + r/4. 

This is so since, with ueHl (Q) ,  we have AI/~Z:~;UL=oeLz(X) by Corollary 5.2 
and, moreover, [B, X~;]ul~=oeH1/n-(2-')(X) by Theorem 5.15, Eq. (5.87) with 
s = 1/2; thus, we must  require for the left hand side term in the Z-inner product 
of (3a) to be in L~(X) that :  1/2-- (2-- r):-[- 40-- 5/2>0,  i.e. (6.60). Similarly from 
(6.4:95) 

(6.61) ((3b) = <Ae~ Ae~ , Ai /2x ,~ ; l z=o>,y  ' .~_ O(1]]][~(o)) 

provided 0<3/4. This is so, since plainly [B,A 2~ L=o e OPS~~ so that  ul~=oe 
eH1/2(X) and [B, A2~176 ) and the left hand side term in the 
Z-inner product o f  (3b) is in ]~(X), provided 1/2-- (20-- 1)-- (20-- 3/2)>0, i.e. pro- 
vided 0<3/4.  Combining (6.59) and (6.61), we conclude that  

(6.62) 

Fourth term (4). 

(6.53) 

But 

(6.64) 

0<3/4 
(3) o (  = 1]]]]L,(Q)) provided 0<1/4 + r/4. 

From (6.50), 

(4) = f (A ~~ DxA ~~ 1 X ~  ~, AX~; u)L~(~7~) dx . 
~+ 

Ae~ 2 D1A e~ I X:B; u ~ AeO- ~ A2O- I D1 X~3? ~ + A 2~ ~ [DI ~ A~ ~ Xss; u =__ 

= Ad~ X'~;~ + O(I[][]~(o)) 
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by applying Lemma 6.3, Eq. (6.30b), Corollary 5.2 and u ~ H~(Q) (Lem_m~ 1.1), pro- 
vide4 1--  (20-- 1 + 1 ) -  (20-- 2)>0,  i.e. 0<3/4. Moreover, recalling Theorem 5.16, 
Eq. (5.92b), with u ~ H~(Q), we have 

A4~ H 1-~-(4o-~) )(R,~) ) , ,  

and we then require 1 -  r - -  ( 4 0 -  3)> 0, i.e. 

(6.64) 

to obtain 

(6.65) 

Putting together (6.63)-(6.65), we get 

0 < 1 - r / 4  

]l A u I1 , o) = o (li/IIL,(o)) �9 

0 < 1 -  r/4, 
(6.66) (4)---- O(li}ll~.(Q)), provided 0<3[4 .  

We can finally conclude. W~e return to (6.43) using (6.55), (6.58), (6.62), and (6.66). 
We thus obtain 

(6.67) 

provided 

]IDEA ~~ X:~;ul[L,(o) = O(II]I]L,(Q)) 

o < 3 / 4  

(6.68) 0 < 1 / 4 + r [ 4  with 3 / 2 < r < 2 .  

0 < 1 -  r/4 

But, t~or 3 / 2 < r < 2 ~  we have 1 - - r / 4 < 1 / 4 + r / 4 ~ 3 / 4 .  Thus we have 

(6.69) HD~A2~ ) -~ o(]l]llv(o) ) for all 0 < 1 - - r / 4 .  

l~eturning to (6.36)-(6.37) and the statement above (6.41), we conclude by virtue 
oi (6.69) that  

(6.70) (6.36) holds for all 0 < 1 - - r / 4 .  

The highest regularity of X~; u is then obtained by choosing 0 --~ 1-- r/4. Theorem 6.4 
is proved. [] 

6.4. Finai step in the proo] o] Theorem 1.2. 

Theorems 6.1, 6.2, and 6.4 provide the regularity of the various components 
of the partition of unity decomposition in (6.1). Intersecting the segments {1 -- r/4, 
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3/2 < r < 2) and (r -- 1, 3/2 < r < 2}, we obtain (as already announced) 

r - -  8/5 

in which case r -  1 ~ 1 -- r/4 -~ 3/5 is the optimal value which provides the highest 
regulari ty to X~+u and X~;U on Z" simultaneously; i.e. 

for r ~- 815 ~ X : ~ u ,  X~;u~Ha/~(X) .  

The proof of Theorem 1.2 is complete!! [] 

7" - Completion of the proof of Theorem 1.3: ] = 0 and g ~ L~(Q) 

O~rE~TATIO~. -- The a-priori interior regulari ty result, bemma 1.1b), claims tha t :  
if uo ---- ~1 -~ f---- 0 and g ~ L~(X), then  a-fortiori the solution u of the corresponding 
non-homogeneous problem (1.6) satisfies u ~ H~/2(Q). Authorized by this, we shall 
then  assume as a-priori information the interior regulari ty u~Hq(Q), 1 /2~q<3/5  
for the solution. (Actually, only u eHq(R~; R~)  or D[ueZ~(Q) will suffice). As a 
consequence, we shall prove the following trace regularity, tha t  ul~eHq-2/5(X). 
This is the content  of Section 7.1. :Next, in Section 7.2, such trace theory result 
will then be used to improve the original interior regulari ty of the solution to read 
that ,  i n  fact, the solution u satisfies ueHq+(sl~~176 1/2<q<.3/5, 
and this, in turn,  induces a corresponding improvement of the trace regulari ty 
expressed by uIz~Ha-2/5+(a/l~176 Finally, in Section 7.3, we 

shall then  carry out the ensuing (( boost-strap ~> argument,  s tart ing with qo-----1/2, 
to conclude simultaneously that ,  in fact, ueH3/5-~(Q)~-H1/~+~ll~ and u l ze  
e H~/~-~(Z), Ve > O. 

7.1. From the a-priori information D~u ~ L2(Q) in the interior and u[z e L~(Z) on the 
boundary to the trace regularity ulx ~ Hq-~I~(X). 

The main goal of the present section is to prove the following theorem. 

T~EORV,~ 7.1. - Assume tha t  the corresponding solution of problem (1.6) with 
uo : ul ~ ] : 0 satisfies 

(7.1) 

g ~ L~(Z) ---> D~u ~ Z2(Q) 

[or ueR~ 
1/2<q<3/5 

continuously 

(a fact a fo r t i o r i  t rue at  least for q : 1/2 at  this stage, by  Lemma 1.1b). 



344: I.  LASlECKA - R. TI~IGG~I:  Sharp regularity theory, etc. - I 

Then, u!x e Hq-~/~(Z); more precisely 

lui l.o Clgl  

with constant  C independent  of q (1/2<q<3/5).  Afor t io r i ,  the map g~  L2(Z)-+ 
--> u[z e L2(X) is compact. [] 

RE~A~E 7.1. - Throughout this entire section, we shall also explicitly use the 
following ~-priori information tha t  

(7.3) g ~ L~(Z) --> u t ze  L~(X) 

for problem (1.6) with uo = u~ = / = 0. This result was apparent ly  unknown until  
1984. (I t  does not follow by the known result of the t ime [L-M.1, Vol. I I ,  p. 122] on 
interior regulari ty:  u e L2(O, T; H~/2(Y2)) (improved to u e C([0, T]; Hm(~9)) [L-T.2]) 
via trace theory.  In  May 1984, two independent  proofs were given, one by J.  L. 
L ions  [L.1] and one by the authors,  during an exchange of correspondence. 
J. L. Lions' proof uses a L~plaee t ransform technique. The authors '  proof is based 
on the following three steps (with u0 = u~ = / = 0): 

(a) re-proof of 5[yatake's  result [M.I] 

geLs(o, T; ue c([0, T]; m(9))  

(*) ~ trace theory  

(b) (consequence of step (a) by  transposition) 

(**) geLs(0,  T; H-~I~(F)) ~ ulzeZ~(0 , T; H-~/2(/')) ; 

(e) iaterpolat ion between ( . )  and (**). [] 

P~ooF oF Tm~o~.~  7.1. - As in Section 6, om ~ approach is based on analyzing 
separately the regulari ty of each component  of the part i t ion of uni ty  decomposi- 
t ion (5.13) or (6.0), i.e., X~Ul~, X~tUl~ and X:~;ul~. This will be done in subsee- 
tions 7.1.2, 7.1.3, and 7.1.4 respectively. First ,  however, in subsection 7.1.1 we need 
a prel iminary result which claims that ,  under assumption (7.1), not  only do we 
have DtD ~- t u e L2(Q) , but  also D~D~- 1 and D~D~- ~ u e L2(Q). 
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7.1.1. A preliminary improvement i~ the interior regularity in x and y: D~- lu  e HI(Q), 
1 / 2 < q < 1 .  

The main result  of the present  Subsection is 

P~OPOSITIO~ 7.2. - Under  assumption (7.1) there  exists a constant  Yo > 0 such 
tha t  for all k > yo, we have 

(7.4) ~-1 ][Dt ullm(o)< C~lgl~ 

with constant  C~ depending on y but  not  on q, 1 / 2 < q < l .  

P~ooF oF P~oI, oSITIO~ 7.2. - In  addit ion to DtD~-~ue  L~(Q) which is t rue by  
assumption, we must  likewise prove tha t  

(7.5) u e 

(7.6) D~p~- l  u e Le(Q) , 

xontinuously with respect to g e L2(S). This will be done below by  splitting u as 
u = X~U ~-X:~u. We begin with a prel iminary lemma on D~D~ -1 X~U. 

LEMMA 7.3. -- Under  assumption (7.1) we have 

(7.7) ]ID, Z x IJo < elgl  

with constant  e independent  of q, 1 / 2 < q < l .  

PlcooF oF LEI~I~ 7.3. The idea is tha t  the operators Dv~X~ and DtX ~ belong 
belong to  the same class, since a ~ I~l in ~ w g~ W 9~ = supp X ~ ~ supp [symbol 
of D,j X~], supp [symbol of D tX~ ]. This can be checked as usual via [T.1, The- 
orem 4.4, p. 46] and (5.14). For  this reason we have 

(7.8a) D~D[-1X:~ e o ~:~1 OPSI,o(R~ ~ ) ,  uniformly in x e  R~+ 

and hence by  Lemma 3.1 a) 

(7.8b) DvD[ -1 X~: continuous H"(Q) ---> HS(Q) . 

Then (7.7) follows f rom the assumption (7.1) and from (7.8b) with s = O. 

The crucial pa r t  of Proposit ion 7.2 is given by  the following result. 
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t ~o l ,  osI~IO~ 7.4. - Under  assumption (7.1) there  exists a constant  7o > 0 such 
t ha t  for all ? > ?o, we have 

(7.9a) 

and hence 

(7.9b) 

IID~DF x X~ ull~ < c. Ig[= 

]iD~D~ -1 Xt~ Ullo < Cvlglz 

where C, is a constant  depending on ? bu t  independent  of q, 1 / 2 < q < 1 .  

PROOF OF P~OP0SlTIO~ 7.4. - Inequa l i ty  (7.9b) follows easily form (7.9a) via 
the definition (3.10b) and inequal i ty  (7.7). To prove inequal i ty  (7.9a) we need the 

following th ree  lemmas.  

L E ~  7.5. - Under  assumption (7.1), for any  e > 0 sufficiently small, we have 

(TAO) D D~-~Z:~ C 5 

with constants  C and C independent  of q, 1 / 2 < q < l .  To gain informat ion on X~U 
in the  interior,  we begin with its t race on Z. 

L E ~ •  7.6. - Under  assumption (7.1), we have 

]ID~ X uh.,(~) I ,  x ul.~<~)<C{Igl~+ +11D, X ul[.,(o)} (7.11) D~-i g ~ z~ a-1 ~ ~.2 a-i :~ 

with constant C independent of q, 1/2 < q < 1. 

We now obtain information on X~U in the interior. 

L E ~  7.7. - Under assumption (7.1), there exists a constant 7o > 0 such that 

for all 7 > ?o we have 

, J. ~ , , (o)< Cv{Ig[~ + IlP~ -x X~ull~'(o)} 

with cons tant  C v depending on 7 bu t  independent  of q, 1 / 2 < q < l .  
Assuming for the  t ime being the val id i ty  of the above three  lemmas, we m ay  

now readi ly  prove Proposi t ion 7.4. In  fact ,  if we insert  (7.12) into the  right of 

(7.10) we obtain 

(7.13) 'ilD~D,~ "-'X "~ u![~<C,[g[z+i' , eC Cv{lglz+ HP~-'X~Uil}~(e)} 
l--eC 

where 

}[D~t-' XmulI~,(Q)= lID~-'XSuIlg + IlD~ X:~ullg + HD~D[-'XSuIIg + i[D~D[ -~ X:~u]lg 
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(by (7.1), (5.14), (3.10b), and (7.7)) 

(7.14) < Clgl~ + U)~DF 1 x~ull~ �9 

Hence, inserting (7.14) into the right side of (7.13), we obtain 

(7.15) {1 1--sCSC C,},,jD, D~_lx~u,I~<C,~,g,~ . 

Selecting now e suitably small with respect to 7 in (7.15), we obtain (7.9a) and 
Proposition 7.4 is proved, as soon as we establish the above three Lemmas 7.5, 7.6, 
and 7.7. t towever,  before so, we draw some corollaries. 

COROLL~mY 7.8 (to Lemma 7.3 and Proposition 7.4). - Under assumption (7.1), 
there exists a constant  7o > 0 such tha t  for all 7 > 7o, we have 

(7.16) HD~ -1Xm u]IH,(o)< Cv [g]z 

with constant  Cr depending on 7 but  independent of q, 1 / 2 < q < 1 .  

PROOF OF COttOLLARY 7.8. - Combine Lemma 7.3 and Proposition 7.4. [] 

COROLLARY 7.9 (tO Lemma 7.7 and Corollary 7.8). - Under assumption (7.1), 
there exists a constant  7o > 0 such tha t  for all 7 > 70 we have 

(7.17) ltD~- 1XguH,.(~) < C~lg l~  �9 

with constant  Cv depending on 7 but  independent of q, 1 / 2 < q < l .  

PROOF O1~ COROLLARY 7.9. - Combine Lemma 7.7 and Corollary 7.8. [] 

Continuing with the proof of (7.4) of Proposition 7.2, we see tha t  u = X~u + Xgu 
combined with (7.16) of Corollary 7.8 and (7.17) of Corollary 7.9 provide the desired 
conclusion. Thus Proposition 7.2 is proved as soon as we establish Lemmas 7.5, 
7.6, and 7.7. 

PROOI~ OF LEM-M~ 7.5. We shall invoke inequali ty (4.7) (or else inequali ty (4.6v)) 
of Theorem 4.3 for problem (1.6): 

(7.x8) II~,ull~ = O{~e (Pu, u)o + ~e (D~u, u)~ + tlull~ + IBul~} �9 

I f  now we apply D~ - '  to the localized problem (3.22) and use the property  tha t  Dt 
commutes with all other t ime-independent operators in (3.22), we then obtt~in 
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for  ] = 0 :  

, p(DT-1 Xu) = [P, x ] D ~ - l u ,  in Q,  -- ~ < t < c ~ ,  
(7.19) 

[ B ( D ~ - I Z u ) =  ~-1 in r - -  ~ < t <  c~ zDt glz=0-~ [B, z]D~-~u]~=o , , , 

which  we shall  use now for  Z = Z :~. App ly ing  the  vers ion  of (7.18) which cor responds  
to  p r o b l e m  (7.19) in the  solut ion D~-IX:~u ( ins tead of u), we ob ta in :  

(7.20) ,I9fl)~ -1 :~ x ~11r = o{(1) + (2) + (3) + (~)},  

(7.21) (1) Re  ([P, 8~ q--1 = X ]Dr u, D~-1X83U)0 , 

(7.22) (2) = Re  (DID~-IX~tt ,  D~-lZ3~u)~ , 

= lint Z uil~<Clgiz, (7,23) (3) ~-1 :~ 2 2 C i n d e p e n d e n t  of q ,  

(7.24) (4) = [(41) @ ~ ' 2 

= X Dt gIz=o ' (7.25) (41) :~ q-1 

Z ]Dt u[~o"  (7.26) (4~) [B, :~ a-1 

B u t  the  opera tors  Z g and  X ~ (cor responding  to  the  homogeneous  symbols  Z :~ 
and  Z ~ see (5.14)(, be long  a f o r t i o r i  to  the  class OPS~ un i fo rmly  in x e R E ,  
so t h a t  L e m m a  3.1 a) wi th  s = 0 applies.  ~ o r e o v e r ,  

(7.27) [P,  Z~] ,  [P, X ~] e OPS~,o(Q) , 

(7.28) [B, ZS],  [B, Z ~] e OPS~.o(X), 

b y  the  c o m m u t a t o r  L e m m a  3.2 (which is s t a n d a r d  for  h o m o g e n e o u s  symbols) .  

Term (1). Using (7.2'7) and  u = X'%uq - Xe~ we have  f r o m  (7.21) via Sehwarz  

inequa l i t y  

!!Dr Iw(~)L'D~ Z u,'Q-<-C{I['D~- 1Xg~ul, ~ _~_ sl ID~ u,].~(o)}< (7.29) i (1 ) I<2C q-lu '  I q-1 $ , ,-1 ~ 

(by  (7.1)) < C igt} @ '~.sC } ~D tq-1X ~ Ul]'~(Q)~ @ 2eCt]D~-IZ~uiI~'(Q) " 

Term (2). We rewr i t e  (7.22) as 

(2) = Re  (D~ D-~ 2 z ~  D~u, D~ Xff~ u)~ . (7.3o) 

We now use that 

(7.31) o ~, un i fo rmly  in x e/t~+ D 1 D (  ~ Z ~ e OPS (Rt~), 
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by the product  theorem IT.l, Theorem 4.4, p, 46], since 

supp [symbol of D 1 D/-2 X :~] c sup Z :~ ---- ~ U 9~r W ~ ,  

a region where  a .~  l~]: Then (7.31) and Lemma 3.1 a) with s = 0 give, together  
with (7.1) 

(7.32) 1(2)l<e[gl~, e independent  of q, 1/2<q<1. 

Term (3). Is handled by {7.23). 

Term (4). Plainly from {7.25) and (5.14a) since q -  1 < 0. 

(7.33a) 1(4~)t< Gig[z, O independent  of q,  1 / 2 < q < l  

while by using (7.28) ~nd the boundary  regulari ty (7.3) along with q -  1 < 0 ,  we 
have from (7.26) 

(7.33b) [(4~)[< C[g[~, C independent  of ft, 1 /2<q<.l .  

Combining (7.20) with (7.29), (7.32), (7.23), (7:24), (7.33a)-(7.33b), we obtain : 

q--1 ,.~ 2 q--I ~ 2 ]ID~D~-!:Zmull~<O~lglw + eel[D, X ull.,(Q)+ eOHD, X ultH,(Q) 

(recalling (7.14)) 

(7.34) < e~lgl~ + ecIID~D~ -1 xmult~ § eCItD~ -1 X~ull~,(Q) �9 

Thus (7.34) gives 

(7.35) (1 -- eC) It~D~- 'X'~" u Ilo < ~[gl~ if- eC I[D~ -1Xg u II~,(~) 

from which (7.10) follows and Lemma 7.5 is proved. [] 

PROOF OF Z E ~ A  7.6. - We shall invoke ident i ty  (4.5) of Theorem 4.2 for problem 
(1.6), as applied to the localized problem (7.19) with X-----X g i n  the  unknown 
Dylx%. 

(7.36) 

(7.37) 

(7.38a) 

(7.385) 

(7.39) 

(7..40) 

We obtain 

<D1D~ -1X(JU, D~ -1X~u>~ "-- [1] q- [2] q- [3], 

- [12 = t[1,11 + [1, ]1~<2{t[ ld1~ + I[1,]1~}, 

[11] ---- x~ D~-a gl~=o , 

[12] = [B, X~]D~-aul~=o, 

[2] = Im ([~, X ~] D V  1 u, D~ ~ - 1  Xg u)Q, 

[ 3 ]  O(DF 1 ~ = x ~I[H,(Q)) �9 
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Term [1]. Since q - - l < O ,  we plainly have from (7.38a) and (5.14) 

(7.41a) l[zz]I~<CIg]x, C independent  of q,  1 / 2 < q < 1 ,  

while recalling (7.28) and the boundary  regulari ty (7.3) we likewise obtain from 
(7.385) 

(7Alb) I[l~]lz<CIglz, C independent  of q,  1 / 2 < q < 1 .  

Term [2]. By (7.27) and u = X ~ u  -~ Xgu, we obtain from (7.39) via Schwarz 
inequal i ty 

,~.42) 1[2]l< r' a-1 ~ I1Dt UI[Z'(Q) ,!r)~Dt X UIIQ q--1 2 <�89 ull.,(Q)+ 

< i l D q - 1  X,~ul!~[,(Q) _}_ q - 1  ~ 2 liD, x ull.,(o)§ �89 - x ult . 

Recalling (3.10) we obtain from (7.42) 

(7.43) 

with C independent  of q, 1 / 2 < q < 1 .  Combining now (7.36) with (7.37), (7.41a)- 
(7.41b), (7.43) and (7.40), we obtain 

with constant  in 0 independent  of q. Thus, we are in (7.44) in the same technical 
si tuation encountered in (6.7), or (6.19). Proceeding as in going from (6.8) to (6.14) 
we likewise find by use of Garding inequali ty IT.l ,  Theorem 8.1 with s -~ 0, p. 55] 

(7.45) I<D1D~-IXgu, D~-I;(gu>xI>ColD~ -~ g 2 X ulH~(~)-- CIlD~ - I  Xgul~ �9 

Using (7.45) in (7.44) along with q - - 1  < 0 and the boundary  regulari ty (7.3) in 
the last t e rm on the right of (7.45), we obtain (7.11) as desired. Lemma 7.6 is 
proved. [] 

PROOF OP LEM~A 7.7. - We shall invoke, and for the first t ime in fact, ident i ty  
(4.12a) (with/)~ ~ B on 2:, by  (1.4)) which for problem (1,6) with ] ~ 0 we rewrite 
as follows: there exist constants Co, y0 > 0 such tha t  for all 7 > 7o we have 

(7.46) E 2 too  11utlw(Q)<- 2 Im  (Pu, - D,u + iayu)Q- 

-- 2 Re <Bu, D,u>z + 2 7 Im  <Bu, au)z ,  
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We shall now use the version of (7.46) which corresponds to the localized problem 
(7.19) with X----X ~ in the solution D~ -1 X~u. We obtain 

(7.47) 7ColID~ -a Xgu]I~(Q)<(1 ) + (2) + (3) + (3) + (4) + (5), 

X ]Dr u,n~D~ - l xgu)Q,  (7.48) (1) = 2 I m  ( [P ,  ~ 4-1 

(7.49) (2) 2 l~e ([P, ~ q-1 q-1 ~ X ]Dr u, aTD t Xgu)o, 

= (X Dt gL~=o, D~D~ - 1 x ~ u } z ,  (7 .50)  (3) - -  2 l:{e ~ q-1  

= - -  X ]Dt ul~=o, D2D~ -1 X~u}z,  (7.51) (4) 2 l~e <[B, ~ o-1 

-= I m < x  D~ g[~=o + [B, (7.52) (5) 2 r a 4-1 ~ ~-1 ~-~ X ]Dr ulx=o, aDz X ~u}z. 

We next  analyze the higher order terms (1), (3), (4) in (7.47). 

Term (1). Using (7.27), u ---- X:~u .4- X*u and (3.12a), we obtain from (7.48). 

(7.53) [(1)[ <2C[[D~-lulta.(Q)I]DZ -1Xgu]lm(o)< 

�9 ,~ 2 < C{liD~-lu][i,(o)+ ][D~ -1 X'u]]i,(o)} < C([ID~ -1 X ul[,,(o)+ liD~ -1 XauHi,(o)} 

with C independent  of q, 1 / 2 < q 4 1 .  

Term (3). Using q--  1 < 0  and D2[~= 0 e OPS~,o(X ) (from (3.12a)), we obtain from 
(7.50) 

](3)[ < 2Vigix ]D~ - ~ X9u[m(z) 

and recalling (7.11) of Lemma 7.6 

(7.54) l (3)<C{[gi i+ nD~ -~ g 2 X u]]. ,(o)+ HD~ -1 XmU]l~,(o)} 

with C independent  of q, 1/2 < q < 1. 

Term (4). Similarly, recalling (7.28), q - - 1  < O, the boundary regulari ty (7..3) 
as well as (7.11) of Lemma 7.6, we have from (7.51) 

(7.55) [(4)[<2C]u[~=oi~[n~-lXguia'(r.)<C({[gi~+l[D~ -l'~ull2,]~ HH(Q) + [[Dtq-i X ~ u [[H'(Q)}2 

with C independent  of q, 1 / 2 < q < 1 .  
We now hmndle the lower order terms (2) and (5) which, however, depend on ~. 
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F r o m  (7.49) we have using (7.27) and q - - 1 < 0  

(7.56) i(2)[<2CIDZ-luH,I(Q)TIID~-IXgulI~< 

(by (7.1)) <2CllD~-X(Xgu + x:~u)ll,,,(jlgt~< 
< C{iIDT~(X% + X:~u)]li,~(,, + r~tgl_~ < 

2CllDt :X, uil~,(Q)+ CT~lglw 

Similarly f rom (7.52), recalling (7.28), the boundary  regular i ty  (7.3) and q - - 1 < 0 ,  
we obtain 

(7.57) ](5)]<C~]giz lgtz, C independent  of q .  

Finally,  combining (7.47) with (7.53)-(7.57), we obtain 

(7.58) ~-1 ~ 2 ~-1 ~ 2 ~-1 :B 2 X ullz,(Q) ~ § CII-D~ X uli.,<Q) + 7hlgl~ 7Co]lDt X UiI,I(Q)<C[ID~ § C(1 

with constant  C independent  of q, 1 / 2 < q < 1  and also independent  of 7. 
Selecting 7 sufficiently large in (7.58) so tha t  7Co--C > O, we finally obtain 

from (7.58) 

~,Dq-Z.  go t,2 ~C,Dq-1 (7.59) (yC0-- ~'Jll t 1,. '~llH,(~)~ !l t X~uII~(Q)-~ - C(1 + 7 + y~)Igl~ 

f rom which (7.12) follows as desired. L e m m a  7.7 is proved.  [] 

Having  established Lemmas 7.5, 7.6, and 7.7 we have completed the proof of 

Proposi t ion 7.2. [] 

7.1.2. Regularity o] the trace :~gulz: Xgulz~ H~(X). 

The following is the  main result  of the  present  subsection. 

THEORE~[ 7.10. - Under  assumption (7.1), there  is a constant  7o > 0 such tha t  
if 7 > 7Q we then  have X~ulz e H~(X): more precisely 

(7.60) IXg uI~IH,(~) < C~Igi~ 

for a constant  Cv del)ending on 7 bu t  independent  of q, 1 / 2 < q ~ 1 .  [] 

P~ooF o~ T H E 0 ~  7.10. - We begin with a corollary to Lemma 7.6, Corol- 
lary 7.8 and Corollary 7.9. 
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COROLLARY 7.11. - Under  assumption (7.1), there  exists a constant  7o > 0 Such 

tha t  if 7 > 7o then  

ID~ -1 ~gu[H.(~ ) < C, Ig[~ 

with C~ depending on ~ but  independent  of q, 1 / 2 < q < ! .  D 

PROOF OF COROLLARY 7.11. -- We re tu rn  to (7.11) of Lem m a  7.6 and we use 
(7.16) and (7.17) of Corollaries 7.8 and 7.9 respectively, thus obtaining (7.61). [] 

Continuing with the proof of Proposit ion 7.10, we see tha t  (7.61) implies 

I D~ ~gu e L.2(X ) Continuously.  
(7~62) g Z~(X) / 
Hence 

n - - 1 .  q 1 (7.63) X%eLo(R~ ,H(Rt)) 
continuously in g ~ L2(X) , 

(7.64) DvX~ueL2(R;-~; Hq-~(R~)) 

and by  interpolat ion [L-M.1] 

(7.65) D~Z%eL~(R~ -~,Ho-~ 0<0<1 

since q(1--  0) ~- (q-- 1)0 : q- -  0. Choosing 0 : q < l  in (7.65) yields 

(7.66) D~X~ueL~(Z)~ continuously in geLs(X). 

Combining (7.62) with (7.66), we obtain Xgu e H~(Z) continuously in g e s 
i.e., (7.60). [] 

7.1.3. Regularity of the trace X~+~ulx: ~$ulxeHq-(2-~)(X)~ 1/2<q<r/2. 

As in Section 6, we split X~ into ~ +  and X:~7 as in (5.20a) and analyze X ~ u 
and X~Tu separately.  This subsection is devoted to ~ ~ u. The main result of the 
present  subsection is 

T~EORV,~ 7.12. -- Under  assumption (7.1) for problem (1.6) with Up ~ u~-~ 
/ ~  0, res t r ic ted to 1/2<q<r/2, 3/2 < r <  2, as iu Section 5 (4), we have ~+~ulxe 

(4) As in Section 6, we shall identify r in subsection 7.1.5 to be r --~ 8/5, so that ~< q< 4/5; 
see (7.110). 
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e H~-(e-~)(X) ; more precisely 

(7.67) 

with constant  C~ independent  of q, 1/2<q<r/2. [] 

P~ooF oF Tm~o~E~ 7.12. - ~ o t i v a t e d  by Sections 5.3~ 5.4 and 7.1.17 we apply 
D~-1+'12-~ = D~ +~/2-2 to the localized problem (3.22) with X = X :~'+ and obtain 
for ] ---- 0: 

I P[Dq+rl2-2"~t~+a~ [.~ 'vffS+'ll')q+rl2--2at in E2, -- c ~ < t <  c~ 

(7.68) B(D~ +v~-'z Xat+~ u) = 2,.'~+ Dq +~/2-z,~t ut~=o"l -q- [B~ ~.~al;lnq+~/Z-~ul,~t .,,=o ~ 

!. in /1, -- c ~ < t <  c~. 

Problem (7.68) will be the basic localized problem for this present subsection, as 
problem (7.19) was the basic localized problem for Subsection 7.1.1. We apply to 
(7.68) the corresponding version of ident i ty  (4.5) of Theorem 4.2 b) in the solution 
D~ +~I~-2 X:~r u. We obtain 

(7.69) 

(7.70) 

(7.71) 

(7.72a) 

(7.72b) 

(7.73) 

(D1D~+~/2-2X:~;u , D~+~/2-2X$+~u > = (1) + (2) + (3), 

(1) = 2 I m  ([_P, XZ+~]D~+':e-2u, D~D~+'/2-eXZ+,u ) , 

- (2) = I(21) + (2~)1~<2{1(21)1~ + 1(2,)I~}, 

(21) = x Z ; / ) ~ + ' / ~ - ~ g l ~ = o ,  

(22) = [ B ,  " ~+~ ~q+~ /2 -2o . i  ~ J-t*" t " t~ lz=  o 

(3) = O(IID~ +~/2-2 X~+ u][~,(o)) �9 

Term (1). We rewrite (7.70) as 

(7.74) (1) = 2 I m  ([P, x~JD~-2D~-au, 9~D~-lX~+~u)o. 

We now invoke (5.43) of Theorem 5.3 as well as (7.4) of Proposition 7.2 on the 
left hand  side t e rm of the inner product  in (7.74); while we invoke (7.9a) of Pro- 
position 7.4 on the right hand  side term. We obtain 

(7.75) {(1){<CIg{~:~ C independent  of q.  

Term 2. F rom (7.72a) we obtain, recalling (5.25b) and q + r /2- -  2 < 0 :  

(7.76) i(21)]z<CIg]z~ C independent  of q.  
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As to (7.72b) we rewrite it  as 

(7.77a) (23) : [B, X~]D~-2/)~-'/~ul~=o 

and invoke (5.87) of Theorem 5.15 with k -~ r -  2, s ~- 0, as well as the assumption 
q<r/2 and (7.3). We obtain 

(7.77b) 1(2~)]~. Crlgl~, Cr independent of q, 1 /2<q<r/2.  

Hence, from (7.76)7 (7.77a)-(7.77b) and (7.71) 

(7.78) [(2)l<C~lg]~ , Cr independent of q,  1 /2<q~r /2 .  

Term (3). We obtain from (7.73) 

(7.79) ~ / ~ - ~  q - 1  + 2 1(3)]< C]iD~ Dt X:~,uI[,~(~)<C[gI~ , 

C independent  of q, 1/2<~q<r/2, by recalling r / 2 - - 1 < 0 ,  (5.25a) and (7,4) of 
Proposition 7.2. 

Combining now (7.69) with (7.75), (7.78) and (7.79) we obtain 

(7.80) I(,D~ P~+'/e, e Xm~u, D~ +'/e-e X ~ u ) [  < C, rgl~. 

Thus we are in (7.80) in the same technical si tuation encountered in (6.7), or in (6.19), 
or in (7.44). S t a r t i ng  from (7.80) and proceeding as in going from (6.23) to (6.25) 
we likewise find by use of (6,23) and of Garding inequali ty tha t  

(7.81) 6o[D~+~/2-2 :~+ u q+r/e-e ~+ D~+~/2-2 + 

ID~ x ' u l~<  C, lgl~ 

where in the last step we have used (7.80) as well as (7.3), q ~-r /2- -2<0 and (5.25b). 
Equat ion (7.81) implies 

(7.82) g e L~(X) --> D~ +~-e X:~ + u[z e L2(X ) continuously.  

But  the operators D~+r-~X:~+, and Dq+~-2+~; belong to the same class, since a ~  [~[ yj 

in ~+  w 5~tr,~ W 9~ = supp Z:~ +. Thus we likewise obtain from (7.82) 

(7.83) g e L2(X)'--~ D~+~-e g'~: uize L~(X )' cont inuously.  

Combining (7.82) and (7.83), we obtain (7.67) as desired. The proof of Theorem 7.12 
is complete. [] 
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7.1.4. Regularity o/ the trace X~;U]z: XSTu[zeHq-r/~(~), 1 /2<q<r- -1 .  

This subsection is devoted  to X~; u. The main  result  of the presen t  subsection is 

Tmzo~E)[ 7.13. - Under  assumpt ion  (7.1) for p rob lem (1.6) wi th  Uo = u~ = ] ~- 0, 
res t r ic ted  to 1/2 <q<r- -  1, 3/2 < r <  2 as in Section 5 (5), we have  gS;ulzeHq-rl~(X); 
more  precisely 

(7.84) Ix ~; u]~l.~-.~,(~)< C, lg[~ 

with cons tan t  C~ independen t  of q, 1 /2<q<r- -1 .  [] 

PROOF OF Tm~o~Esi 7.13. - The proof  is divided in two steps. 

I n  Step 1, we provide  an interior regular i ty  resul t  for D~X:B;u , which is then  
used in Step 2 in combina t ion  with  the  t race  Theorem 4.1 to yield the  desired trace 
t heory  es t imate  given b y  (7.84). 

STy1" 1. - I t  is represen ted  b y  the  following 

LE)~MA 7.14. - Under  the  assumpt ion  of Theorem 7.13 we have  

more  precisely 

(7.85) 

D~Dq~- ~ +(~-'/~)X~; u -= D ~D~ -~:2 X:~; u ~ L2(Q ) ; 

i l / )  D q - r / 2  

with cons tan t  C~ independen t  of q, 1 /2<q<r- -1 .  [] 

REMARK 7.2. - One should compare  (7.85) involving X:B;u with (7.4) (or (7.9)) 
involving X:~u; n~mely  {7.85) provides a gain of 0 < 1 -  r/2 < 1/4 in t of the  reg- 

u la r i ty  of D~X~;u over  the regular i ty  of / )~X~u in (7.9). [ ]  �9 

PROOF OF Lv~i~A 7.14. - To begin with, we consider the localized problem 

(7.86) 

i P(D~ -rt2 Xt~;u) = [P, X:~;]D~-~/~u, in zQ, 

1 
B(D~-rIe X~;u) = ~,:~;n~-rz2.1 X:~;1 n~-~12 u 

in / " ,  

- -  o ~ t ~  c r  

- -  o o ~ t <  o o ,  

(~} As in Section 6, we shall identify r in subsection 7.1.5 to be r = 8/5, so that � 8 9  3/5; 
see (7.110). 
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which is ob t a ined  by  applying D~ -r/2 to the localized problem (3.22) with l ~-0  
and X---- X $; .  ~Text, we write the version if inequal i ty  (4.6e) of Theorem 4.3 for 
problem (1.6) which corresponds to the localized problem (7.86) in the solution 
D[-*I~XS~;u. We obtain (compare with the proof of Lem m a  7.5): 

(7.87) 1 - ~  �9 ~ x 

(7.88) (1) = Re ([P, "~:~;]D q-~/e. D~ -'12xff~;u)Q 

(7.89) (2) = l~e (DI D~ -~js X~; u, D~ -~/2 X~; u) o , 

(7.90) (3) = ~  o t ~ ul]~, 

(7.91) (4) ---- (4~) + (4~), 

(7.929) (4~) ~ Im  <'~S~; D~-~/2-1 D~ -~/2 X:~; u}~ t~ t Ylx~0, 

"~t~;]Dq-~]2u D~ -flu ~ 7  9>,~ . (7.92b) (49) -~ Im  <[B, ~ ~ ~=o, 

Term (1). We rewri te  (7.88) as 

(7.93) (1) : l~e  ( [ ~ ,  X Uq~-r ] Dtr -2  Dtq-1 u, D~-2~D~xff~;u)o . 

We now invoke  (5A3) of Theorem 5.3 and (7.4) of Proposit ion 7.2 on the left  hand 
side t e rm of the inner product  in (7.93); while we invoke assumption (7.1), 3 - - 2 r <  0 
and (5.25a) on the r ight  hand  side term.  We obtain 

(7.94) I(1){<C~{g{~, C~ independent  of q, 1/2<q<r-- 1. 

Term (2). We r e ~ i t e  (7.89) as 

(7.95) (2) ---- Re (D~-~D~ x~; D~u, D~ X~;U)Q 

where recalling (5.919) of Theorem 5.16, using D~-*E OPS~o IT.l ,  Proposit ion 1.3, 
(1.7), p. 37] and  the product  theorem [T.1, Theorem 4.4, p. 46 with ~ ---- rain (~', ~") 
~- r - -  1, ~ = max  (~', ~") = 2 - -  r] we obtain tha t  

o " uniformly in x e R~+ (7.96a) D[-~ D1 ~'~r ~ O.PSr_l ,2_r(Rty ) , 

Thus, f rom Lemma 3.1 a) with s = 0 we have 

(7.96b) Dt 'D  ~ X~;: continuous Z~(Q) -~ s 
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Using now (7.96b), assumption (7.1) and (5.25a) in (7.95), we conclude tha t  

(7.97) I(2)[<C~Igl~, C~ independent  of q, 1 /2<.q<r--1 .  

Term 3. By  (5.25a) and assumption (7.1) we obtain 

(7.98) i(3)[<C~lg]~, C~ independent  of q ,  1 / 2 < q ~ < r - - 1 .  

Term 4. As to (7.92a) since q < r - - 1 <  r/2 by  assumption,  we obtain 

(7.99) [(r Cr[g[z, Cr independent  of q 

by  use also of the t race regular i ty  of (7.3). As to (7.92b) we rewri te  it  as 

-D r/2 U (7.100) (43) = I m  <[B, X~;] ~ ~=o, D~ (~-~+1) X~;ul~=o> 

Invoking  now (5.87) of Theorem 5.15 with s = 0 and k = r -  2 on the left  t e rm 
of the inner  product  in (7.100), along wi~h q - -  r q- 1 < 0  (by assumption) and the 
trace regular i ty  (7.3) on the r ight  te rm,  we conclude tha t  

(7.101) i(42)[ < Cdg[z, 2, C~ independent  of q, 1 /2<q<r- -1  

Then (7.87) combined with (7.93), (7.95), (7.98), (7.91), (7.99) and (7.100) yields 
the desired conclusion (7.85). Lem m a  7.14 is proved.  [] 

COrOLLArY 7.15. - Under  the assumption of Theorem 7.13 we have A ~- ~/z/3~ X*; U e 
e LdQ); more  precisely 

(7.102) I[A~-~/2D~ X m; ullQ < C, Iglz 

with constant  C, independent  of q, 1 / 2 < 0 < r - - 1 ,  where the operator  At, ~ = A  is 
defined by  (&la). [] 

P~ooF oF COROLLARY 7.15. -- We use (7.85) of Lem m a  7.14 along with the fact  
t ha t  the  operators D~D.Xg~; ~nd A~D~X& belong to the same class with a ~  I~t in 

= supp gS~; ~ supp [symbol of D~ supp [symbol of A~ X95;J. [] 

ST~,P 2. - We now use ident i ty  (4.3) of the t race Theorem 4.1 with v there  
replaced by  X:~;u now. 

(7.103) 

(7.1o4) 

(7.1o5) 

We obtain 

IXts;ul~o(z) = [1] -~- [2],  

[1] = 2 I m  (A~ %t~;u, A ~ Xt~;u)o , 

[el = o(!14 ~ x:~;~ll)~. 
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Since A is self-adjoint on L2(R~) , we rewrite (7.104) as 

(7.106) [1]  = 2 Imf(A~ xS;u, A ~ Xs; U)L~(Br~)dx = 

�9 1 

f Ar/2-q+20 .~;~t~ . .7~ 

Recalling now (7.102) of Corollary 7.15 and t he  left term of the inner product in 
in (7.106) and using AqXa~TueL2(Q) (which follows from assumption (7.1) as in 
the proof of Lemma 7.3), we obtain from (7.106): 

(7.107a) [[1]l < C, rgl 2 , C, independent of q,  1/2 < q< r - -  1 

provided r/2 -- 2q + 20 < 0; i.e. provided 

(7.107b) O < q -  r/4. 

Similarly, we obtain from (7.105) that 

(7.108a) [[2]]<C~[g]~ , C~ independent of q, 1 / 2 < q < r - - 1  

provided 

(7.108b) O<q . 

We thus conclude from (7.103), (7.107a)-(107b) and (7.108a)-(108b) that 

(7.109) IX~;UlH,(z)<C~lg]z, C~ independent of q,  1 / 2 < q < r  

provided O<q-- r/4. Selecting 0 = q-- r/4 yields (7.84) as desired. 
Theorem 7.13 is complete. [] 

7.1.5. Completion o/ the proo/ o/ Theorem 7.1. 

The proof of 

Theorems 7.10, 7.12 and 7.13 provide the regularity of the various components 
X~U]~ e Hq(~); X~; u[z e Hq-(2-~)(27), 1/2 < q<r/2; and X:~; ul~ e H~-~/4(Z), 1/2 < q< 
< r - -  1 of the partition of unity decomposition in (6.1) for the trace of the solution. 
Intersecting the segments { q "  (2 -- r), 3/2 < r < 2} (with 1/2 < q<r/2) and { q -  r/4, 
3/2 < r <  2} (with 1/2<q<r--  1), we obtain (as already announced) 

(7.110) r =  8/5 
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(as in Section 6 in the ease ] eZ2(Q), g = 0), in which ease q - - ( 2 -  8/5)--- -q--8/5-  
�9 1 /4 - - - -q - -2 /5  is the optimal value which provides the  highest  regular i ty  to 

X~ulz,  X:~+ ul~ , and ~ ; u l z  

simultaneouly ; i.e. 

for r := 8 /5 -~  X~u[z, X:~+~u[x, X:~;u]ze Hq-~/5(X). 

The proof of Theorem 7.1 is complete.  [] 

7.2. From trace regularity ut~e Hq-2Is(X) back to i~terior regularity u~  Hq;=+31m(Q). 
Theorem 7.16: a~v improvement of [ 3 / 1 0 -  q/2] over the a-priori information 
u ~ Hq(Q). 

The main result  of the present  section is the following. 

THEOICE~ 7.16. - As in the s t a t emen t  of Theorem 7.1, assume hypothesis  (7.1) 
for the corresponding solution of problem (1.6) with uo----ul-~ ] = 0. Then, in 
fact,  u ~ HqJ2+s/l~ more precisely 

(7.11) Ilu]I,,J,+,f-(Q) < Cigl= 

with C independent  of q, 1 /2<q43/5 .  [] 

RE~tARK 7.3. - Conclusion (7.111) represents as improvement  of 3 / 1 0 -  q/2 = 
= (q/2 ~ 3/10) -- q in all variables over the original a-priori informat ion (7,1) (only 
in the t-variable alone). This fact  will give rise to a (( boost-strap ~) a rgument  in 

Section 7.3. [] 

PROOF OF THEORE~I 7.16. 

STEP 1. - We begin by  improving the regular i ty  of u in the t variable as needed 

in (7.111). 

L E n A  7.17. - Under  the assumption (7.1) of Theorem 7.16 we have tha t  
D~f~-~ll~ e Hi(Q); more  precisely 

(7.112) i q/2-,~/10 L,Dt UlIH,<O)<~ Clg]~, independent  of q, 1/2<q<3/5 

PROOF OF L E n A  7.17. - We shall invoke ident i ty  (4.12a) for problem (1.6) with 
P u - - - - I -  0 (rewri t ten as (7.46) in the  proof of Lem m a  7.7) as it  applies to the 
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localized problem 

{ i,(D~u) = o in ~9, 
(7.13) B ( D ~  in / ' ,  -- + < t < o o ,  

where 0 is a negative real number,  0 < 0 to be determined below. The version of 
(4.12a) or (7.46) which corresponds to problem (7.113) is 

' 0 2 (7.114) rCo[IDt uI[.,(o)< (1)+ (2), 

= <D t g, , (7.115) (1) -- 2 Re o D2D~u> z 

(7.116) (2) ---- 2), Im  <D~~ aD~u>z " 

We shall now exploit the new information on the trace uIz provided by (7.2) of 
Theorem 7.1. 

Term (1). We rewrite (7.115) as 

1)  l ) - -11)20+l+215-q I)q--2]5a~ ", (7.117) (1) -~ - -  2 I~e <g, -~2~t ~ t  ~ t  ~ / z  . 

By (3.12)and [T.1, Proposition 1.3, (1.7), p. 37, and Theorem 4.4, p. 46] we have 

D~D~-II~=o E OPS~ and hence 

(7.118) D 2 D {  1t~ = o: continuous H ~(X) --> H~(X) . : 

Thus, by (7.118) with s ---- 0 and (7.2) of Theorem 7.1 applied on (7.117) we obtain 

(7.119) I(1)[< CIg[~ , provided 2 0 < q - -  1 - -  2/5 = q - -  7/5 

with C independent  of q,  1 /2<q<3 /5 .  

Term (2). Similarly for the lower order te rm (7.116) 

al)20-q+2Is"DqA2/5~A i . t  ~ ,  ,~ 2 provided 20 < q - -  2 / 5  (7.120) ](2)]-<<27]<g, -~ ,  ~', - / z , ~  - r  v z ,  

Using (7.119)-(7.120) in (7.11~)we obtain as desired 

(7.121) 0 2 yCo]]D ~ ull~(o)< C(1 + 72)]g1~, provided 20<<.q-- 7/5 < 0 .  

Choosing the best value 20 ~ q ,  7/5 < 0 in (7.121) results in (7.112) as desired. 
Lemma 7.17 is proved. [] 

STEP 2. - We next  improve the regulari ty in the t and y variables for X~u. 
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CO~OLLA~ 7.18 (to Lemma 7.17). - Under the assumption of (7.1) of The- 

orem 7.16 we have: 

(i) 

IIDUlU-TIl~ l ~ } 
(7.122) t ~. ,B (Q) 

T ~q/'2-71to.,~,N~'(~) < Clglz ' 

C independent  of q, 1]2 < q<3/5. 

(ii) ~Ioreover 

(7.123) /A~176 X~ ull.,(Q)< Ctgf~ 

C independent  of q, 1/2 < q < 3/5, where the operator  A--~ A~ is defined by  (4.1). 

P~ooF o~ COROLLARY 7.18. - P a r t  (i) is a consequence of (7.112). As to pa r t  (ii), 
we use as usual tha, t D~ ~:~ and D~ ~:~ belong to the same operator  class since g ~  IVl 

in ~ u 9~r U 9t]~ ~ supp Z ~. [] 

STEP 3. - We now find the desired regular i ty  for X~q~. 

LEMMA 7.19. - Under  the assumption (7.1) of Theorem 7.16 we have Z ~ u ~  
HqI~+ail~ more  precisely 

(7.124) ]] x ~ uii.,z~+,~,,(o) < elgin. 

C independent  of q, 1[2<q<315. 

P~ooF o~' LE~_M~ 7.19. - F ro m  (7.123) we obtain (for the  s~me re~son as in the 
proof of Corollary 7.18) 

(7.125) AA~/~- 7/~o }r u = A q/2 + 3/~o X~ u ~ L2(Q ) , 

(7.126) D~A~( 2-~/1~ ~ u  ~ L2(Q), 

cont inuously in g eL2(X).  But  (7.125)-(7.126) imply 

(7.127) x ~ ~ ~(~i+; ~ + ~ 0 ( ~ ) ) ,  

(7.128) D e X3~ u ~ L~(RI+ "~ Hq/2-7/i~ ) , 

continuously in g e L~(2:) where to obtain (7.128) we use tha t  the constant  coeffi- 
cient  operator  A commutes  with /)~. We nex t  in terpolate  be tween (7.127) and 
(7.128) to obtain [L-M.1] 

(7.129) q ~ ~ 0 < ~ < 1  D~ ~ u ~ L2(Rx+ ; H q/2 + a/to-q[t~n i 
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If  we n o w  specialize to 0 < ~ : q/2 7 L 3/10 < 1, we obtain from (7.129) 

(7.130) ql2+Sllo. ~o - r ,,~, 

continuously m g e L~(X), which along with (7.125) yields (7.124), as desired. 
The proof of Lemma 7.19 is complete. [] 

S~.P 4. - We now find the desired regularity for Xe~ 

LE~EWA 7.20. - Under thc assumption (7.1) of Theorem 7.16 we have g ~ u e  
e Hq/2+3/l~ more precisely 

(7.131) I/x u~ll..~,+,;,~ < Clgtz, 

C independent  of q, 1 / 2 < q < 3 / 5 .  

PROOF 0F LE~MA 7.20. - From (7.122b) we have a fortiori:  

DtD~t 1~-711~ XgU = D~/2+3/~~ X~u e Z~(Q), 

DuDq$1~-7/10 ~gu ~- D~I2-VlI~ ~Vu ~ L~(Q) , 

(7.132) 

(7,133) 

re-written as 

(7.134) 

(7.135) 

fl . ~ U  ~ L2(R~+y , H q/2 +3/10(R1)~ t / ,  
f t  . 

continuously in g e L~(Z). By  interpolating between (7.134) and (7.135), we obtain 
[L-1V[.1]: 

(7.136) D~xgueL2(R~+~,  H q/u+3/~o-o (R t~ )),  0 < 0 < 1  : 

I f  we now specialize to 0 < 0----q/2-F 3/10 < 1, we obtain from (7.136) 

(7.137) -/)qv/g~-S/lO Xg~ e L2(Q) 

continuously in g e Z,(27). 
A similar argument  yields 

(7.138) q12+3110 g D~ X u e Ls(Q ) 

continuously in g e Z2(Z:), if we replace (7.133) with 

(7.139) D~D~12-m~ -~ Dqe/~-7/l~ X~u  e L~(Q) . 

Thus, (7.132)~ (7.137) and (7.138) combined yield (7.131) as desired, and Lemma 7.20 
is proved. [] 



364 !. LASIECKA - ~.  TRZGaZA~Z: Sharp  reg~darity theo~,y, etc. - S 

Finally, (7.124) of Lemma 7.19 and (7.1.31) of Lemma 7.20 together yield (7.111). 
Theorem 7.16 is proved. [] 

7.3. F i n a l  step in  the proo] o] Theorem 1.3: the (( boost-strap ~ argument.  

Starting with the a-priori information on the regularity of problem (1.6) with 
U o = U ~ : - - ] : 0  ~nd geZ~(X): 

interior: u ~ H q ( Q )  (indeed, only D~u~.Ls(Q) was needed), 

boundary: u[zeH~ , 

we have obtaiaed improvements on the regularity of u expressed by Theorem 7.1 
and Theorem 7.16, according to the following scheme 

3 / l o -  q/z 
interior: u ~ H~(Q) . . . . . . . . . . . . .  ") u ~ H~/2+8/I~ 

Theorem 7.1 Theorem 7.16 

boundary: u i z e  H~ . . . . . . . . . . . . . . .  ) ulE e Hq-~'/5(~) 
q - 215 

Figure 7.1. First Step. 

We now repeat the step taking the regularity on the right column of Fig. 7.1 as 
new a-priori information. We obtain since 

3/lO q/2 + 3/10 = 3 / 1 0 - q / 4 :  
2 

q/2 + 3/lO 
3 / l o  - 

2 interior: u e Hq/~+3n~ . . . . . . . . . . . . . . .  > u e H(~/~+8/~~176 : -  H~I~+~176 

T 
Theorem 7.16 Theorem 7.1 

boundary: ulx e H'-~'I~(Z,) . . . . . . . . . . . . . .  ,) ulz  e H('/~+~I'~ : H~I~-'/'~ 
3110 - q/2 

Figure 7.2. Second Step. 
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Taking the regulari ty of the right column of Fig. 7.2 as new information we have 
at  the third step 

a / 4 o  - q/s 
interior: u e Hq/~+~I'~~ . . . . . . . . . . . . . .  ) 

boundary:  ulr e H~-o'-I/I~ . . . . . . . . . . . . . . .  .) u l r e  H(~/~+g/~~ = H~/'-I/~~ 
3 / 2 0  - 

Figure 7.3. Third Step. 

and so on. But  at  the outset  we know tha t  q = qo = 1/2. Hence the subsequent 
improvement  on the interior regularity are 

3 qo 1 3 qo 1 3 qo 1 
(7.139) 10 2 ~ 2-0 ; 20 4 ~ 4-O ; 40 8 = 8--0 ; e tc . .  

Thus since 

(7.140) 1 1 [1 1 . : 

1 1 1 1 1 3 
= 5 - } - 2 0 1 - - � 8 9  2r-1-'-0 = 5  

we can repeat the steps an arbi t rary number  of finitely many  times, we conclude 
tha t  the interior regularity of u is 

(7.141) u e H a/5- ~(Q), Ve > 0 

continuously in g e L2(2:), as desired. Similarly, start ing with q = q. = 1/2, the 
subsequent improvement  of the trace regularity are 

2 1 3 %__ 1 3 qo 1 
(7.142) q" 5 = 1-0 ; 1--0 --  ~ -- 2"-0 ; 20 4 = 4-O ; e tc . .  

'Thus, similarly, since 

(7.143) 
1 ~ 1 1 1 [  1 (~) 2 ] 

~-6@ @ @ . . . .  ~--6-~-~-6 1 @ 2 @  @ . . . .  

1 1 1 
= 1"-0 + 20 1 - 1  

1 1 1 
- i-6 + 1-6 - - g  
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we c o n c l u d e  ~hat  t h e  trace regularity of u is 

(7.1~4) u[~H~/~-~(X) ,  Ye> 0 .  

c o n t i n u o u s l y  in  g e L~(X). 

Conc lus ions  (7.141) a n d  (7.144) p r o v e  T h e o r e m  1.3. 
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