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Sharp Regularity Theory for Second Order Hyperbolic Equations
of Neumann Type (*).

Part 1. - L, Nonhomogeneous Data.

I. LAsiECKA - R. TRIGGIANI

Summary. — We consider the mixed problem for a general, time independent, second order
hyperbolic equation in the unknown w, with datum g € Ly(X) in the Neumann B.C., with
datum f € L,(Q) in the right hand side of the equation and, say, initial conditions uy = 4, = 0.
We obtain sharp regularity resulls for u in Q and 0|y in X, by a pseudo-differential approach
on the half-space.
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6. — Completion of the proof of Theorem 1.2: g = 0 and [ e L,(Q).
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7. — Completion of the proof of Theorem 1.3: f = 0 and g € L,(Q).

Orientation.

7.1.

-1
o

From the a-priori information Diu e L,(@) in the interior and u|r € L,(X) on the

boundary to the trace regularity wlr e Hr?5(Z). Theorem 7.1 for 1/2<¢<3/5.

7.1.1. A preliminary improvement in the interior regularity in « and y: D=lue
e H(Q), 1/2<q<1.

7.1.2. Regularity of the trace ySu|s: xSulr e H4(X). Theorem 7.10.

7.1.3. Regularity of the trace xBiujz: xBiulr e H-&N(X), 1/2<q<r/2. The-
orem 7.12.

7.1.4. Regularity of the trace yBruls: xBrujre Hr"M(Z), 1/2<g<r— 1. The-
orem 7.13.

7.1.5. Completion of the proof of Theorem 7.1: r = 8/5.

From trace regularity u|y € H*-2/5(2) back to the inferior regularity w e HU/2+319@).

Theorem 7.16: an improvement of [3/10 — g¢/2] over the a-priori information

w e HeQ).

1. -~ Regularity problem, preliminaries, and statement of main results.

Let @ >0 be a scalar positive variable, ¢t be a real variable, and ¥ = [¥1, -.vs ¥n_1]

be an (n— 1)-dimensional vector with real components. In symbols: x € BL:; t€ Ry;
ye Ryt Let
(1.1) Q=RLXR)T, I'sR"'=29|,_, dmQ=n>2.

be, respectively, an n-dimensional half-space @ with boundary I. On £ we con-
sider the second order differential operator

(1.2)

n—1 a1
P(@,y; D,y D,, D,) =~aDj + 3 ai; Dy Dy, + 2 > @n; Dy, D, + D;

i4=1 j=1

with space-dependent, but time-independent coefficients

(1.3)

a=a(®,y), o;=a,®xy); xylel;4j=1..,n—1
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satisfying the symmetricity condition @, =a,, %, j=1,..,n— 1. Here and
throughout we use the notation

1 ¢ 1 0

?
N —q ot D“:v_—l dx’ Y,

=T ete. .

th
On Iy the boundary of the half-space (2, we consider the first order operator
n—1
(1.4) B(y; D,, D,)=D,+ >b,D,, onz=0
j=1

with space-dependent, but time-independent coefficients
(L.3) b =bly), wyel.

The present paper investigates regularity properties of the solution wu(i, , y) of the
following second order hyperbolic mixed problem with Neumann boundary condi-
tions

(1.6a) P(z,y; D,y Dyy D)u= f(t,2z,y) on 2,¢>0,
(1.6b) B(y; Dy, Dy)u = g(t, y) on Pat>07
(1.6¢) UWimo=to; Deu|y_g= on 2,t=0,

at least for a few specific fundamental function spaces for f and g. Other classes
of functions spaces are examined in a subsequent paper [L-T.5]. Generally, we are
interested in the continuity of the map from the data (4, u, f, ¢) in preassigned
function spaces (possibly, subject to compatibility conditions) into the solution
Uy Uy ... and possibly its trace w|,, .. in suitable (optimal) function spaces.
Throughout the paper, problem (1.6) will be subject to the following assumptions:

(i) the coefficients a, a,;, a,; of P and b, of B are assumed real, time inde-
pendent, sufficiently smooth in the space variables, and constant outside a com-
pact set J,, of Rl XRI™'=Q;

(ii) the boundary I' (z = 0) is non-characteristic for P and P is «regularly
hyperbolic with respect to », i.e. the characteristic polynomial of P.

n—1 n—1
(L.7a)  plz,y;7, 6,9 =—ar® 4 zlaﬁmm + 2¢ z s + £,
X i=1

)=

n—1 . 2 n—1 n—1 2
(L.70)  p(@, 957, & n) =—ar* + [E+ .21“"”"7"] + X a“-mm——(zlam-m)

iyi=1

has two real and distinct roots in 7, for (v, y)e Q and (& %) on the unit sphere
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n—1
£ L jn|t =1, where [p|*= > n;. If we consider =0 and &= 1, this require-
ment yields the condition 7~!

{1.8) mina{z, y) >0 in £;

moreover, if we consider the points of the unit sphere in (&, ) which lie also on the
n—1

hyperplane & + 3 @,;m;, = 0, this requirement yields the necessary condition, which
=1

is plainly also sufficient, that the quadratic form in z

n-1

n—1 2
(1.9) A, y; 1) = a*(@, y) { 100“-(03, Y)N:1; -(21an,-<x, y)m) }
=

1,9 =
(independent of &) be positive definite
(1.10) d(@,y; ) >cln|> uniformly in (x,y)e2, ¢>0;

(iii) the first order operator D, defined by

n—1
(1.11) D,=D,+ 3 anslz, y) Dy,

=0
restricted on the boundary I, coincides with Bj i.e.
(1.12) B=D,|,_,; ie b =0,0,9),7i=1..,0—1.

The following results are known and provide the a-priori regularity needed in
the subsequent development.

Lumsia 1.1, — Let u, = u, = 0 in (1.6¢) and let 0 < T < oo,
a) Let ¢ =0 and fe L0, T; Ly(£)) in (1.6). Then
we O([0, T1; HX(Q)), wu,e O([0, T1; Ly(£2))
(a fortiori u € H([0, T] ><.Q)) continuously.
b) Let f =0 and g€ Ly(0, T; Ly(I")) in (1.6). Then
we O[0, TT; HVXQ)), wu.e C([0, T1; H-V3(2))

(a, fortiori « e H¥2([0, T ><.Q))

Lrons-MAGENES, vol. II, p. 120 provide only L,(0, T'; -); but this can be im-
proved to C([0, T1; ) with the same space regularity, as e.g. in [L-T.2], [L-T.4],
[L-T5].) O
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Trace theory applied to Lemma 1.1a) then gives

fe In(0, T'; Ly(£))
(1.13) g= —ulze CO([0, T1; HY*(I')) continnously .

Uy =y, = O
A main goal of the present paper si to show the following results when dim Q>2.

MAIN THEOREM 1.2. — Let g = 0 and u, =, = 0 and let fe Ly(Q,), @, = R/, x 2.
Then,

a) if X, = R} x T the trace u|z of the solution to (1.6) satisfies u|r € H¥5(2.)
continuously: there is a constant € > 0 independent of f such that

‘ (1.14) lulslgusz,y < Clfli,@n -

b) In the special cases where the coefficients a,, 4, j =1, .., n—1; @y,
j=1, .., w— 1 either do not depend on w, or else do nol depend on y, then u|X€
e H¥3(X,) continuously: there is a constant ¢ > 0 independent of f such that

(1.15) |zl gz < Ollflzas -

REMARKS 1.1.

(i) The general case (1.14) represents an improvement by «1/10» (1/2 +
4 1/10 = 3/5) in the space regularity of the trace over (1.13).

(ii) Let £ be a smooth open bounded domain in R*, dim £2>2. Then, The-
orem 1.2 provides regularity results for a general 2, Eq. (1.14), as well as for the
case where the coefficients of the spatial partial differential operator a, depend
near the boundary either only on the tangential direction, or else only on the direc-
tion normal to the boundary, Eq. (1.15). In addition to these the following results
for specialized geometries hold true, when the operator P in (1.6a) is Py = [lu =
= 4, — Au (i.e. the spatial differential operator on 2 is the Laplacian) and g = 0:
the map

{fy woy )} —ulz: Ly(Q) X HY Q) X Ly(2) = Y

is continuous, where
a) Y=H"*Z,), Ye>0, when Q = parallelopiped;
b) Y = H¥3(X,), when £ = sphere;

(while ¥ = H*5(X,) and Y = H¥32X) in the cases of Theorem 1.2 a); b), respec-
tively).



290 #. LASIECKA - R. TRIGGIANI: Sharp regularity theory, etc. - I

The proof of parts a), b) can be given by use of the same techniques (eigenfunc-
tion expansion for the solution followed by Fourier transform in time) which were
employed in [L-T.1] to obtain corresponding results for the interior regularity under
non homogeneous boundary conditions ge Ly(2,), i.e. the corresponding dual
problem. (These interior results will be stated explicitly in Remarks 1.2 (ii), (iii),
below.)

(ili) Addition of a first order differential operator to P does not affect the
results. O

A second main result of this paper is the following

Main TeHEOREM 1.3. — Let f=0, u, = 4, = 0, and ge L,(2,). Then, contin-
uwously for any &> 0:

@)
(1.16) weHY*"%Q,) (improvement by 1/10— ¢ over Lemma 1.15))
and

(1.1) uwlre HP5(Z,).

b) In the special cases where the coefficients a,, a,, i,j=1,..,2—1,
either do not depend on x, or else do not depend on y, then

(1.18) ue H¥¥ Q)
and
(1.19) ulz e HY¥ZX,) . O

REMARKS 1.2.

(i) For dim 2>2 and the Laplacian case, one can show that w ¢ H¥75(Q),
Ve > [L-T.3].

(ii) Result (1.17) is a regularity result. Trace theory applied to interior
regularity (1.16) gives only HP5—°"V2=1l0-c¢(y ) 3 result worse than (1.17) by
«1/10 ». Similarly, trace theory applied to (1.18) gives H*~12=8(3" ) o result
worse than (1.19) by «1/6 ».

(iii} The regularity in (1.18)-(1.19) coincides with that proved directly, by
eigenfunction expansions, for the Laplacian A on a sphere = £ [L-T.1].

(iv) Direct computations, by eigenfunction expansions, with the Laplacian
on a parallelepiped Q produced e H** ¢(Q.), u|se H¥*~%X,), ¢> 0 [L-T.1].
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(v) When £ is & smooth bounded domain in ", one obtains a fortiori from
(L17) that with f= 4, = u, = 0, the map ¢ — ulz is compact from L, (Z,) to
HY9(X ), for any fixed d > 0. The special case § = 1/5, i.e. compactness of said
map from L,(X,) into itself, plays an important role in the study of the quadratic
cost optimal control problem with eontrol function L,(X,) and with boundary « obser-
vation » u]s and related differential, operator—Riceati equation, see [L-T.6]. O

The proofs of Theorem 1.2 and 1.3 are very lengthy and technical and are given
in the subsequent sections.

- Acknowledgement. — We wish to thank J. L. LionNs for some correspondence
exchanged during May 1984 which included a proof by J. L. Lions and a different
proof by the authors of the trace result

f=w=u=0, g€ Ly(X) —» ulze Ly(2),

see Remark 7.1.

2. — Comparison with the case of compactly supported data.

The present article is a companion paper to our work [I.-T.3], which is chiefly
devoted to the important special case of problem (1.6) where, say g = 0, and where
in addition the data f, u,, u, are compactly supported away from the boundary I
This case was previously studied also in [S.3] by different methods. A study with
general data f, g—both smoother than, or less smooth than, L, in time and space—
is carried out in [L-T.5].

Let ¢4 =0 in (1.6b). Then, Theorem 1.2, complemented by Remarks 1.1 (ii),
points out the property that the regularity of the trace |- depends in general on
the geometry. (This is in contrast with the corresponding Dirichle problem, see
Remark 2.1 below). It is instructive to compare these results with those that one
obtains when the assumption is added that the data are compactly supported away
from the boundary. In this case it suffices to take Pu = [Ju = u,,— Au. By the
principle of superposition, we may consider the following two cages.

TuEoREM 2.1 [8.3], [L-T.3]. — Consider problem (1.6) with Py = [y = u,,— dwu,

Q as in (1.1) and u, = u, = 0. Assume that fe I,(Q), @ = £ x (0, T] and, more-
over, that

(2.1) f has compact support contained in 2.
Then, for any 0 < T < oo, the trace u|; of the solution w satisfies:

(2.2) wly = ul,. e H(Z) ; 2:]“><(_0, . |
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THEOREM 2.2 [S.3], [L-T.3]. —~ Consider problem (1.6) with Py = [ = u,,— Au,
2 as in (1.1) and f= 0. Assume that 4,€ H{Q) and w; € Ly,(2) and that, more-
over,

(2.3) 4, and u;, have compact support contained in Q.
Then, for any 0< T < oo, the trace u|, of the solution u satisfies
(2.4) g = ul,., e H(X). 0

REMARK 2.1 (Sharp trace regularity of the eorresponding hyperbolic problem of
Dirichlet type). — In an attempt to find, in addition to (1.13), a second limitation
for the trace u|; of the Neumann problem (1.6), this time from below, we next con-
sider the corresponding second order hyperbolic problem of Dirichlet type, which
consists Eqts. (1.6a)-(1.6¢) and of the homogeneous boundary condition

{2.5) u(w, 1) =0 on X=1Ix(0,17,

replacing (1.65) on a smooth bounded £2c R», dim £2>1. The Dirichlet problem
{1.6a), (1.6¢), (2.5) admits the following trace regularity result, which was established
recently (in fact, even in the case of sufficiently smooth time dependent coeffi-
cients of the spatial differential operator, see [L-2], [L-T.1], [L-T.2] and [1-L-T.1]):
the map

(2.6) {f %oy u’l} - % L,{@) XH\%(Q) X L(82) — Ly(L); @ = 2x(0, T]

is continuous. (Actuaﬂy, the space L,(0, T'; Ly(£2)) may replace the space L,(Q)
in (2.6)). In (2.6) we are considering the conormal derivative with respect to the
spatial differential operator A, which becomes the regular normal derivative 0/,
v being an outward unit vector to I, when A = — 4.

Since the interior regularity of the solution to the Dirichlet problem (1.6a),
(1.6¢), (2.5) is the same as for the Neumann problem (1.6a)-(1.6¢), i.e., is described by

(2.7) {05 1} € Ly(Q) X Hy(2) X Lp(82) — u e O([0, TT; Hy(2)),

with H! of Lemma 1.1 a) replaced by H, now, we see that (2.6) is an independent
regularity result, not obtainable by applying (formally) trace theory to the interior
optimal regularity (2.7). In fact, (2.6) shows that the Neumann trace of the solu-
tion of the hyperbolic problem of Dirichlet type (1.6a), (1.6¢), (2.5) behaves in the
space variable «1/2 better » (in Sobolev space order) than what one would obtain
by applying formally trace theory to the interior regularity (2.7). |
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REMARK 2.2 (A conjecture on the Neumann problem). — On the basis of Re-
mark 2.1, and by analogy with the more established elliptic and parabolic theory,
the following conjecture has been advanced that in the case of the Neumann
problem (1.6a)-(1.6¢), we may perhaps have

(2.8) {fy Uo y ul} —>ulz: Ly(Q) X HYQ) X Ly(2) — HY(ZX) .

As a reinforcement, one may notice that statement (2.8) is precisely the one that
one would obtain, if the Dirichlet trace %[, of the solution # to the Neumann problem
(1.6a)-(1.60) as in Lemma 1.1 @) would likewise behave «1/2 better » (as it is true
for the Dirichlet case (1.6a), (1.6¢), (2.5) described in Remark 2.1) than the regu-
larity that we would get by application of trace theory as in (1.13). O

Our studies reveal that conjecture (2.8) is false in general, except for the one
dimensional case, where for Pu = u,,— Au and £ = (0, + o), the half-space,
where the regularity (2.8) can be verified by direct computations as in section 3
of [I.-T.3]. In the general case dim £2>1, the situation is much more complex
and is described by Theorem 1.2 and Remark 1.1 (ii).

In contrast, Theorems 2.1 and 2.2 establish that under the additional assumption
that the data have compact support in £, conjecture (2.8) holds true. This latter
assumption is crucial for the validity of conjecture (2.8), as shown by

THEOREM 2.3 [L-T.3]. — Consider problem (1.6) with Py = u = u,, — Au and
£ as in (1.1). Then for any 0 < T < oo, the map

(2.9) {fy o, wa} —>uls: Ly(Q) X HY(Q) X Ly(Q) — HY4(X)
is continuous. Moreover, for dim 2>2
(2.10) uly g H4P (X)), Ye>0. O

We now let f =0 and ¢4 90 in problem (1.6). By duality or transposition, The-
orem 2.3 shows that, say with %, = %, = 0, and for any 0 < 7 << oo, we have in
general o

(2.11) ge HM (X)) > u¢ L,(Q), £>0.

A meore satisfactory statement for our purposes that the gain from boundary to
interior regularity, from g to u, cannot exceed 3/4 is obtained when g is in LX)
as in the following counterexample given by the authors in 1984, in response to the
proposed conjecture of Remark 2.2. This counterexample preceded [1-T.3] and in
fact it is easier than the one from f to w|; given by Eq. (2.10) of Theorem 2.3;
see [L.1].
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COUNTEREXAMPLE. — Consider the following two dimensional problem

(2120’) Uy = Uy T Uyy in Q+ = QX (09 OO) ’
{(2.12b) Wiwo=U_o=0 in 2,
{2.12¢) Uply_o=¢ in X =1I%(0, o),

where 2 = {(z, y) € B*: >0} and ['= {(z, y) € R*: = 0}. With reference to
problem (2.12) we shall prove that: given any ¢ > 0, there exists g,

(2.13) g. € Ly(X,) such that w¢ HY*"5Q,) ;

To the end we use the Fourier-Laplace transform, Laplace in time ¢ — 7 = y + 1o,
y >0, o€ R, Fourier in y — %, n € R, leaving x as a parameter

(2.14) T, @, 1) = (27)-2 f exp [— (y + i0)t] exp [— iynlu(t, z, y) dt dy

By

where we extend the initial and boundary data to vanish identically for ¢<:O.
We obtain

T2 == Uy, — 0?4 PYscayapery
(2.15) % or (T, &) = — b [\/T'?izn d (v, 1) .
L 4.7, 0, n) = §(z, 7) 247 o
Hence
7 A 9 fg(-r’ 77)'2
2.16 it @, ) Pde = —— L0 W
( ) Bf ] 7% 4 %2 Re\/rz—{—ﬁ
Since
(2.17) bt = (gt o) -+ 2iyo

then for fixed y > 0, we define the region J{j, say in the first quadrant of the (o, %)
plane, by

(2.18) Ry = {lo, ) € B%: 2y0=>1, 9> 0; [y* + *— o?|< 1}
comprised between the equilateral hyperbolas 92 - 52— o2 = -1, around the equi-
lateral hyperbola Re (72 -+ #?) = 2 4- 5*— ¢ == 0 for 0>1/2y. Note that in R,

where o~7, we have

(2.194) 2y <|vt 2| = {2+ 0~ 0% + 4o <2V 2 y0
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(which we shall re-write in short as [v2- #*|~ 0, as usual)

(2.19b) arg (1 + 79 > a5 0 -+ oo

(more precisely:
arg (2 + 2 )} mf2 a8 0 > 4 oo for 2+ 52— 02>0,
while

arg (12 -+ 7% | w2 a8 o —> -+ oo for ¥4 9*— 02<0),
so that in R} we have:

(2.20a) 72+ 2 ~a~n; Re\/12+,72~0-1/2~771/2

(2.20b)  epnPiLooti|rt 4+ 2 Re V7 + < Cryo®2< Oy as 0,7 — -+ oo

for 0 < ¢,, < C,, < co. Thus, by (2.20), we re-write (2.16) on R as

@21) [l @ n)do~ g g it~ o m ) on K.

0

Next, to prove Eq. (2.13), we notice that if it were true that «ge L,(2,) implies
we H* Q. ) », we would equivalently have

(2.22) (|7!3/4+€‘|‘ ’77[3/4+€)'12|€L2(Q+) , or f([7|3/4+e+ Ini3/4+e)2mlzdg< oo,
a* R

But the validity of (2.22) is contradicted by

: 3/2+2e
(2.23) f fln!s’““l’t‘t(r,w,n)!2dwd6dn~ L (e, )l dodn = oo

Rio R
which follows from (2.21) when given ¢ > 0, we choose § = §, defined by

1> in R,

2.24 Ly(Rgy) 3 §e =
(2.24) | 2(Bay) 3 Je(7, ) { 0 outside R .

Similarly, the integral for |of*2**|d[® is infinite over R} x(0, oc). This proves
(213). O : :
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We observe from (2.16) that in the «good » regions of, say, the quarter space
o, n > 0 where either o<¢7, 6, <<1; or else o>¢,%, ¢; > 1 which avoid the « bad »
region .‘K;L, we do have H* regularity for wu.

We observe from (2.21) that for any f]GLz(Rm}) we have

(2.25) J f(ﬁ’“r n*4)E (T, @, 1) dw do dn~f!é(r, )it do dn << oo .
R0 Ry

It can be seen that in this special case of problem (2.12) involving the Laplacian,
we actually have that .ﬁj is the «bad » region in the first quadrant. (Similar con-
siderations apply to other quadrants of the (o, %)-plane with the regions around
the hyperbola y® - n2— 02 = 0 being the « bad » regions outside which the solution
behaves « better ».) It can be proved in fact, that in this case of the special problem
{2.12), we have

(2.26) ge L¥X) - ue H¥(Q,)

see [L-T.37 by use of the same techniques of splitting the (o, n)-plane in «good » and
« bad » regions that will be employed in the general case in the subsequent sections.
(Albeit in a much simplified form by use of Fourier transform analysis plus Plan-
cherel-theorem rather than pseudo-differential operators analysis.) Indeed, problem
(2.12), in any dimension, worked initially as a testing ground of the fechniques
developed for the general case in the subsequent sections. For future purposes,
note that the role of y? -+ %?— o2 = 0 in identifying the « bad » regions, will be
played in the general case by dy(»,¥; 0, ) = 0 with d, defined in (3.13a), (3.11a)
below. Indeed in the case of the Laplacian we have d; = 0% — 5*— 2. The above
example is enlightening in that it shows what are the regions of the dual vari-
ables o,  which are crucial for the loss of regularity of , where a finer analysis is
needed. This will be carried out in the subsequent sections in the general non
constant coefficient case (in the space variable).

3. - Localized problem.

The auxiliary boundary value problem associated with (1.6) is

(3.1a) P(w,y; Dyy D,y D)u = ft,m,y) on 2, —oco<t<oo,
(3.10) B(y; D, D,)u = g{t, ¥) on Iy — co<<t<< o0,

where the original functions f and g are extended by zero for negative times.
Multiplying problem (3.1) by exp [— yt], ¥ > 0, and using identity

(3.2) exp [~ piDiu = (D,— iy)*lexp [—yilu), i=V=1,
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we re-write problem (3.1) as

(3.30) P(@,y; Dy— iy, Doy D)) uy = fyty 0, y)  on £, — co<i< o0,
(3.3b) B(y; D.y D,)uy = gy(t, ¥) on I', — co<<t< o0,

(8.3¢c)  wy=exp[—ytlu; fy=exp[—ytlf; gy=exp[—9tlg, »>0.
n—1

For y >0 (fixed), oe R, and with y-n= > yimi, We set

i=1
(3.40)  h(y + i, @, n) = [Fe,hlt, 2, W)y + io, 7, n) = hy(o, @, ) ,
(3.4b)  h(y +io, m,n) =[F uby(t, 2, 9)(o, @, 1) =

= (@) [exp[— (y + io)t] exp [— iy y]h(t, @, y) dt dy ,

B3,
where F,,= " is the Laplace-Fourier transform on & (or Fourier transform on
hy = exp [— yt]k). Thus, D;— 7 =0c— iy (or 0/t -y + i0), D;h = h, 15;3‘ — 5%,
N w . .
Db =n*h and h (o, @, n) = h(y -+ io, , ). Using the inversion formula

(3.5)  DIDih(ta,y) = @m) exp it + y m) ey hulo, @, m) dodn

) 7
Ry,

with § = 2 we obtain

(3.6) [P(w,y; Dy D,y D)uyl(t, @, y) =

= (2m)™" f exp [i(ot -~y n)Ip(®, ¥, T, Dy, n)iy(0, x, 1) do dny .

By
We shall next recall Hormander symbol class S5 [H.1], [T.1].

DEFINITION 3.1. — Let 2 and { be two k-dimensional variables and let v(z, {) be
a C>-function in 2 running in the open set O of RF and in ¢ running in all of R’g .
Let m, 0, 6 € B, with 0<p, d<1. Then, s(z, {) is said to belong to the symbol class
855(0), 8(z, L) € 855(0), in case: for any compact set K'e O, any multi-indeces «
and B, there exists a constant Uy , ; such that

(3.7 I_DfDé‘g(z’ C)|<0x,w,,3(1 + iCI)m—gla[Mlﬁl

for all ze K and all Z e R"
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Then, the pseudo-differential operator
(3.8) Viz)h(z) = (27r)"”'f@(z, £) exp [— 2= {1(F ,h)(C) d
-

is likewise said to be of class OPS;(0). 0

Thus, from (1.7¢) with 2= [t, z,y] and { = {0, & 5] and O an open set of
B XR)~*xR.., we have plainly '

()
(3.9) p(@,y; 0, &, 77)5812,0(0) H P(w,y; D,— iy, DmDy)EOPSio(O) .

In addition, the following symbols and corresponding operators, defined via (3.8),
will be frequently used in the sequel

n—-1
(3.10a) E@,y; & m) = &+ 3 ol y)1, € 8L o(BETI X B,0)
i=1
with corresponding operator
n-—1
(3.108) D,=D,+ 3 a(w, y) D, e OPS;
i=1

n—1

n—1 2
(311(]’) d(.l’, Y 77) = az(w, y){ Z aii(my ?/)771771 _ ( Z anj(x’ y)ﬂa)} & Sf,o(R$~1 XR;-*),
i=1

i,§=1

with corresponding operator

fn—1 n—1 2
(3-11b) D= a'g('rv y) { z a’i:’(‘x’a ?/) Dv,Dy,—(zla’m‘(m; y)Dv,) } s
i,d=1 j=
(3.12a) do@, y; 0) = a(@, y)o € 8] o(Ry, X B.)

with corresponding operator D,~ a(w, y)(D,+ i)

~ —

(3.12b) Dyh = (2m) f o, y; 0) exp [— iotlh(o) do, " =T,

E,

1 n
(3.13a)  di(, y; 0, 1) = al@, y)(o® —y*) — @ 7 d(@, y5 ) € S1o(Riy X Bgr)

, ¥)

with corresponding operator

(3.13) Db = (Zn)'“fdl(m, y; o, 1) exp [—ilot + y-nlhlo, n)dody, = Fy.

Rgﬂ
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Thus, from (1.7b), (3.10a), (3.12a), (3.13a) we obtain .

(8.14a) p,y; T=0—1iy, &) = Exw, y; & ) —
— [di(®, y; 0, m) — 2iydy(», ¥; o)]€ S?,O(‘Q XRtl) ’

with corresponding operator
(3.14b) P(@,y; Dy, D,y D,) = D2~ (Dy— 2iyDy) .

Finally, the symbol corresponding to the boundary operator B in (1.4) is
n—1

(3.15) by; & m) =&+ X b, -
i=1

In the sequel (sections 4, 5 and 6), we shall encounter the following modification
of the situation described in Definition 3.1-—where the symbol » depends on a
parameter—which we formalize in another definition.

DEFINITION 3.2. - Let »(x, ¥, 0, ) be a (*-function in all of its variables, @ being
a parameter. Let m, o, d € B with 0<g, d<1. We shall say that

(3.16a) v(@, y, 0, 7)€ Sy 5(By,), - uniformly in ze R}, ,

in cage: for any compact set K in R}~! and any multi-indeces o, 8, there exists a
constant Cp , , such that

(3.168)  |DEDz0(@, 9, 0, m)|< O, pllo] + yfyeil 98,
v 7
a8 lol, [g| = oo for all zeR., , ye K,

where the constant Oy, , does not depend on xe€ R... For the corresponding
pseudodifferential operator V, defined by v through the following corresponding
version of (3.8),

8160)  Vie, y)hit, y) = @m) [o(@, y, 0, 1) exp [ (ot + 0-9))F o h)(0, m) dor iy
B3,
we shall then write that
(3.16d) VeOPS] (R, , uniformly in zeR., . O
REMARK 3.1. ~ Actually, in our analysis below (sections 5, 6 and 7), we shall

encounter the even more specialized situation where the symbol v(w, y, 0, ) is
constant in the space variables x and y outside & compact set X, of RLXRI'=0Q,



300 I. LasieoxA - R. TRiGGIANI: Sharp vegularity theory, ete. - T

& consequence of the assumption (i) above (1.7a) in seetion 1. As a result, the
constant C . ; will then be independent of y € Ry~" as well, in which case we shall
simply write C, ; (uniformly in &, y € R, X R, = Q). O

Thus, returning to (3.11)-(3.14) we have that the symbols d(x, y; 0); du(2, ¥; 0, 5);
(@, y; 0,m); v, y; 7, & 1) and by, & u) are in their respective classes uniformly
in (y)eRLXRI™" = Q.

The following consequences of Definition 3.2-Remark 3.1 will be often invoked
in the sequel, and thus are stated only in the cases of interest.

Lemua 3.1. — Let the symbol v(x, y, o, n) € 8y 5(R},) uniformly in =€ R, (see
(3.16)) with 1>9> >0 and let v be, in addition, constant in # and ¥ outside a
compact set of . Then, if Q = 2 xR, as in section 1, and V is the corresponding
operator (defined via (3.16c)), we have for 0<m<1 and 0<s<1:

a) If m=0 and O0<s<1

(3.17a) V: eontinuous H*(Q) - H(Q).
b m=1
(3.17h) Vi continuous HYQ) — L,(Q) .

¢) HOo<m<1
(8.17¢) V: continuous HYQ) — L,(R..; H(R}.)) .
Proor. — Let first m = s = 0. The assumption on » then implies
(3.18a) V: continuous Ly(R}) — L,(;,), uniformly in zeR.. ;
i.e. if h(d, @, ¥) € Ly(Q), then
(3.18b) [(VR)(E, 2, 9) |2,z < OBt 2, 9| Locar,
with O independent of » € R.,. This is seen by applying the argument in the proof

of [T-1, Proposition 6.1, p. 49] under the additional assumption that v is constant
in # and y outgide a compact set of £2, whereby |D;v|<const, as required in that

)
proof. Integrating both sides of (3.18b) over R, yields the desired conclusion for
m = 8 = 0. The case m = 1 of part b) is similar.
Next, take m = 0, § = 1; then

(3.19a) V: continuous HY(R}) —~HYR;), uniformly in ze R},
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i.e. for h(t, z, y)€ HY(Q), @ = 2 xR}, we have

(3.19) 1D Vh|Lzey+ 2 1D, VAL < Ol ey
J

with C independent of # € R},. This again follows as in the proof of [T.1, Chapt. II,
§ 6] with the remark that the specification «loc» in [T.1] can be dispensed with
now, because of the assumption that v be constant in » and y outside a compact
set of Q. Integrating both sides of (3.19b) over R., yields D,Vh and D, Vhe L,(Q),
as desired. To show that D,Vh e Ly(Q) as well, we note that the symbol of the
operator D,V is precisely D(x,y, o,n) (via (3.16¢)). Then, the assumption (3.16b-
implies
(3:20a)  |D5D;D,v(@, y, 0, m)| < O(Jo| -+ Ipl)~ 1= W2 < O (Jo] - [yt Iole1fle
v 7
as |o|, [p] = oo umiformly in R..,

ie.

(3.200) D,V €OPS, (R;,), uniformly in 2€R. .
The case m = 1 of part b treated before applies and gives
(3.20¢) D,V : continuous HY(Q) — Ly(Q)

as desired. The case m = 0, § = 1 is complete. The other cases of part a) follow
by interpolation. The proof of part ¢) is similar. |

REMARK 3.2 (On neglecting «loc»). — In the sequel we shall often consider an
operator A € OPS;:(2) 0<d < o<1 with eorresponding symbol which is constant
in # and y outside a compact set of . As a consequence, we shall then conclude
from [T.1, Theorem 6.5, p. b1] that in such cases

A: H¥(2) - H+(Q)

where the qualification «loc » in [T.1] can now accordingly be discarded. If in addi-
tion the symbol of A is also time-independent—as it will be the case in the sequel—
then the above result holds true with £ replaced by @. This remark will be used
freely below. O o :

In the sequel the class of symbols—and corresponding pseudo-differential opera-
tors—singled out in Definition 3.2 and Remark 3.1 will cover, in particular, the
crucial class of so-called symbols of localization and corresponding operators of localiza-
tion (localizers). These will be quantitatively defined in sections 4-5. For now,
qualitatively, a symbol y(x, y, o,#) of localization will be a C“-function in all of
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its variables, constant in @ and y outside a compact set X,, of Q = Rl xRr!
(the same as the compact set for the coefficients of P and B, mentioned in assump-
tion (i) in section 1, above (1.7a)), such that, for given # and y, the symbol y is
identically one in a certain (z, y)-dependent region of Rj and decreases smoothly
to vanish identically in another (w, y)-dependent region of R} . Then yx will be the
corresponding localizer defined by

321wl »h= @0~ 1o,y 0, m) exp[ilot + 5-yIFwh)o, 7) dodn
R:'I
in agreement with (3.16¢).

Specific symbols of localization will be defined precisely in sections 4-5. Let,
for now, y(=,y, o, %) be any such symbol. Applying the operator exp [yt]y, with y
the corresponding localizer, on the auxiliary problem (3.3) and using (3.2) yields
the following localized problem

(3.22) P(@,y; Dy D,y D)(ywtt) =1, , in £, — co<i< o0,
(3.22b) Bly; Dy, D){(x»u) =¢,, nl,—co<t< oo,
(3.22¢) ty, = A+ [P, Yolu,

(3.22d) 9y = XvGlaco+ [By Xol¥lpg s

where [-, -] denotes the commutator operator and P and B in (3.22¢)-(3.22d) are
the operators at the left of (3.22a)-(3.22b), respectively, and where

(3.22¢) exp [yt] x (=, y) exp [— yt] = y»(®, ¥) .

REMABK 3.3. ~ The operators y(x, ¥) and Y (x, ¥) = exp [yt] x(x, ¥) exp [— 1]
belong to the same class. Thus, for simplicity, we shall accordingly drop the sub-
seript and work with ¥ henceforth. O

We close this section by noting a result essentially from [T.1, (4.7), p. 46],
although not explicitly stated there, which will be invoked repeatedly. We shall
use the notation of [T.1].

LemmaA 3.2. ~ Let p(x, D)e OPSy, and g(x, D)€ OPS ; be properly sup-
ported. Suppose 0<d8'< p<1, where

o=min {0’y ¢") and J=max(d,d).
Then for the commutator {p(z, D), q{z, D)] we have

symbol of [p(z, D), q(z, D)]e Sgﬁ:;#—ml , My =min[¢— &, o"— 6] O
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4. — Trace theorem and « energy » equalities for the localized problem (3.22).

The aim of the present section is to state and prove a trace theorem along with
some fundamental energy equalities (inequalities) for the localized problem (3.22).
Their version for the auxiliary problem (3.1) is need first. These results will be
erucially used in the sequel.

4.1. Btatement of trace theorem and energy equalities for auwiliary problem (3.1).

We recall the notation to be used throughout.

Q=R XR.XRl"'=R;xQ; X=R/XR, '=RxI,
(5 )y (5 )e: La(@), Ly(£2)-inner products with norms | |, |- [e,
oz oy Ly(Z), Lo(IM-inner products with norms ||z, | [r.
Any other norm will be specified by a self-explanatory subindex; thus [ [geq, =
= norm of space H'(Q)= H"*(Q)= L,(— oo, oo; H*(2)) N H(— o0, co; L4(2)) and
similarly for | |z ‘

Finally, to state the trace theorem, we shall need the operator A° =4}, de-
fined by

(41a)  A%h=@m)~[(*+ o*+ l*)"2 exp[— itto + y-m)1h(o, n) dody e

B3
€OPS] ((R; xR;™1),

We have [T.1, p. 51] for any se R and any 6e R
(4.10) A°: isomorphism H*(RE}) —H*"%(R}).
THEOREM 4.1 (Trace theorem).

a) For e HY{2), we have

(4.2a) [w]z, = 2 Im (D, u, u)e + i(u, wu)g ,
n—1
(4.2b) w@, y) = ZDvia’nj(‘v’ Y,
i=1
(4.2¢) [(u, wu)o| <const,[uly, const,=sup |w(z, y)|< co.
Q

b) For ve H*%Q), 0> 0

(4.3) [4)5239(2) =21Im (Aﬂﬁm v, A° ?})Q + O( "/0”1210(0)) .
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THEOREM 4.2. — The following identities hold for the operators P = P(x, y;
D,, D,, D,) and B = B(y; D,, D,) (see (3.10b), (3.12b), (3.13b) and (4.3))

a)
(4.40) 2 Im (Pu, D,u)g = |Buf% + (Diu, ups + 4y Re (Dyu, Do)+
+ i(wDyu, w)g— i(Dyu, wDyu) + i([Dey Diluy w)g + i(Dou, Fru)g

where we recall from assumption (1.12) that D,u = Bu on X, and where
n1
(4.4b) symbol of F, = jazl fi(=, y)n, €8} ((RL.), uniformly in », ye R, xR}~
f:{w, y) = smooth, depending on coefficients of P.
b)
(4.5) 2 Im (Pu, Dyu)o = [Buly + (Dyu, upz + O(]ul|Fq) - O

REMARK 4.1. — Note from (3.14a) that the operator D, has symbol

0
—Zg P,y T, &y . O

Nl*—‘

TeEOREM 4.3. — The following identities (inequalities) hold for P = P(, y;
D,, D,y D) and B = B(y; D., D,)

@)
(4.6a) (Pu, u)q = “D “H%- (Dyuy 4)q -+ (-Dmur wi)g + 2iy(Dytty U)o+ iKBU, uyz,
(4.60) Re (Pu, u)q = “D ul5— Re (Dyu, u)q+ Re (Dyu, wu)q— Im (Bu, uyz,

where from assumption (1.12) D,u = Bu on 2X;
(4.6¢) (1—- S) 1D, w3 <Re (Pu, u)g - Re (Dyu, u)g + Im (Bu, uyz + 2% O ]2
for any &> 0 small;
b) (variation of (4.6))
(4.7 1D,ull = O{Re (Pu, u)o-+ Re (Dyu, w)o -+ [ulg+ [Bulz}. O
REMARK 4.2. — Note that, unlike (4.6b), identity (inequality) (4.7) does not

require knowledge of » on X. (As we shall see in the proof below, (4.7) combines
both (4.6b) and (4.3) for 6 = 0.) a :
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The next result will be used only in seetion 7 when dealing with- the non-
homogeneous boundary case g+ 0 in (1.6b). To this end, we first introduce a new
pseudodifferential operator, denoted by 1(dP/0), and corresponding to the symbol
4(@p/07) = — av (from (1.7)), which is defined by

1 oP 10 . -
(5 E) h = (Qn)*"fg é—]vj {2, ¥, 0) exD [— i[ot + n-y]] [F 1 h]{0, =, n)dody

P,
in é.greement with (3.8).

THEOREM 4.4. — a) With }(0P/ov) defined above, and P = P(z,y; D,, D,, D,)
we have the following identity:

(4.8) —2Im (Pu,“i)ﬁ %Tf u) = 2 Re (D, u, Dyuds — 2y Im <D, u, auds +
ad Q

+ 2 Im (D, u, [wD, + Ky]u)o — (u, Syu)q + |
n 2 {IDuull + 12 D,ull + ylans + (3 2m4) |+
+ 2y Re (D,u, [wa + (D, a)]u)q

where on X: D,u = Bu =g from (1.12) and (1.6b), and where

(4.9a)  R,=[D,, D:]e OPS} (BL;"), uniformly in o, ye Rl xRr!,

tay
(4.96) - symbol of K, = k@, y)o, smooth Kz, y) ,
(410a) [wD,+ K;]€ OPS} (BL"), uniformly in @, ye R, xR,

tey

n—1
(4.100)  symbol of [wD,+ K,] — { [ D,,0ua, )] et@, 9) + kx, y)}a,
i=1 : 7

(411a) 8,€OPS; (R:'Y), uniformly in veR;,, 8= self-adjoint on IL,Q),

tya

w—1
(4115) symbol of §, = [2 84(w, y)n,-] o, smooth s,(z,¥),

i=1
8, is defined explicitly in (4.64) below.
b) There exist constants Coy 7, >0 such that for all y > y,, and for: all com-

Pact sets K e I, we have:

1 0P s '
(4.12a) —2Tm (Pu, 33 u)a> 2 Re D, u, Dyuds —

- —2y Im (D, u, auds + 0w
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for all u e Cg(K)x C*(RL+), where

P
%L D+ iapl.

(4.12b) .

b2} -

4.2, Application to localized problem (3.22).

We now collect the trace theorem and energy equalities in the form in which
they will be used in section 6; i.e. as they apply to the localized problem (3.22).

CoROLLARY 4.5. — The following identities hold for the localized problem (3.22):

a) (trace theorem, see (4.3))
(4.13) Ixwlfoz = 2 Im (A°D, yu, A° yu) + O] xu lze@)) »
b) (see (4.5))
(4.14) <Dy Yy xpz = — |g5|% + Im (fy, D, %o+ O(] X’“’”?P(Q)) ’
¢) (see (4.6))
(4.15) [[ﬁm xula = (Dy i, YU)o— (D, yu, wyw)o— 26p(Dy YUy KU)o—
— igzy Xz + (fas X®a»

d) (see (4.12)). There exist constants ¢, y, >0 such that for all y >y,

10P .
(4.16) —2Im (fx, 33, (xu))a>2 Re (g, Dyxu>z— 2y {gx, axu>z + yeol xw|in) -

4.3, Proofs.
We begin with an integration-by-part Lemma for the operator D, in (3.100).
LeMMa 4.6. — For u, ve HY{(Q)

(4.17) (D,u, v)g = i, V>r + (4, D)0+ (w, wv)g

where w is defined by (4.2b) and |(u, wv)e|<const, |ule||v]e, see (4.2¢).

ProoF. - We perform integration by parts in # and y, on the definition

-

1
(Dwur 0)a = (D4, v)a+ Z (a'niDv,'u'; 0)o
j=1

E)

and use that an element of H({) vanishes at # = oo and y; = 4 oo O
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Integrating (4.17) in ¢, we obtain
COROLLARY 4.7. — For u, v & HY(Q)
(418) (Do, v)g= i, 0yz + (4, Dy0)g+ (wy w0)q,  |(w, wo)o|<consty, [ufq[v]e-

Proor oF THEOREM 4.1. — @) Select v = v € HY() in (4.17). b) Integrate (4.24)
in ¢ after replacing # with A%u to get

(419)  |A°u}t = 2 Tm (D, A%, A°u)q+ i(A %, wA'u)q =
= 2 Im (A°D,u, A°u)q+ 2 Im ([D,, A% u, A%u)q -+ 4(A%u, wAu)q
and (4.3) of part b) follows from (4.19), since
[A% %]z = |u|goz (from (4.1b) with s =6),

and moreover, with 6> 0, the commutator in (4.19) is a fortiori € OP8;};°~*(Q) and
thus is continuous H%Q) — Ly(@): see [T.1, Thm. 6.5, p. 51] where the qualification
«loc» ean now be discarded since D, (and A°%) are constant in the variables « and y
outside a compact set in £ (Remark 3.2). O

Proor or THEOREM 4.2. — @) From (3.14b)
(4.20) (Pu, Dyu)o = (D2u, D,w)q— (Dyus, Dyu)g + 2ip(Dyu, Dow)g .
The first term on the right hand side of (4.20) is computed via (4.18)

(Diu, D,w)q = i|Dyult + (Dyu, Diu) + (Dyu, wD,u)q
and thus

(4.21) ; 2i Im (ﬁ:u, Do) =i|Dyult + (Dyu, wD,u)g .
Similarly for the seecond term on the right of (4.20); by (4.18)
(Douy Dyw)g = i {uy Dywids + (uy Dy Dyw)g + (u, wDyw)g
(4.22)  (Dyw, Dow)g = (D, Dyw)g= —i{Dyu, >z - (D, Dy, )g + (wDy 1, 4)g—
= — i (D, wyz + (D1 Dyu, w)g + ([D,, Di]u, u)q + (wDyu, u)q .

By using [T.1, Theorem 4.2, p. 45] on the operator D, with real symbol d, given
by (3.31a), one can readily show that

n—1
(4.234) ' [symbol of Df]=d,+ > f(»,4)n;.
j=1

H
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Thus reealling (4.45) we have
(4.23b) Df = D, F,.

Inserting
‘ (Dlﬁmuy u)Q: (-Dmu7 DIM)Q—E— (ﬁmu7 -FI/M’)O

into (4.22), we obtain
26 Im (Dyu, Dyw)g = (Dyw, Dyu)g— (Dyuty Dyw)g =
== i<-D1u7 uyz -+ (WD u, u)g -+ ([-Dm Dl:[“y M)Q + (f)xu, F1u)o .

Taking the imaginary part of identity (4.20) and using (4.21) and (4.24) yields
(4.4), as desired. '

b) We use part a) along with the estimates

(4.25) (D, wD,u) ] < const, |%] 7 »
(4.26) [(wDyw, u)ql = O([uzq) »
(4.27) (D, Dilu, w)ol = O(l3e)) 5
(4.28) (Do, Daw)el = O(lul ) »
(4.29) (Dptty Fru)o] = O( ][] fqy) -

Equation (4.25) follows from D,, D, : continuous HY({Q) — L,(2) [L-M.1, p. 85]. For
(4.28) we use, in addition, that DzeOPSiO(Q), see (3.12), and then Remark 3.2
implies D,: HYQ) —> L,(Q), because of the coefficients constants in x, y outside a
compact set of £2. As to (4.26) with D, e 87 ((Ry) uniformly in z € R.., see (3.13),
we write: (wD,u, u)g = (wJd—tDyu, Ju)e + lower order terms, where J is a self adjoint
isomorphism HY(R}) — L*Ry) (e.g. J has symbol (1 + 0%+ |17|2)1/2), J e 8] o(Rp).
Then J-1D, e 87 ;7%(R;,), uniformly in @€ R}. by the product theorem [T.1, p. 46]
and J, J-1D;: HY(Q) — Ly(Q), continuously by Remark 3.2 and Lemma 3.15), and
(4.26) follows. The proof is similar for (4.27) and (4.29). O

ProOF oF THEOREM 4.3. — (4.6) Again by (3.14b)

(Puy w)q = (D2u, u)q— (Dyuy u)q + 2ip(Dyu, u)q
and by (4.18)
(D2u, w)o = i<Dyu, wdz + |Dous+ (Duu, win)q .

These last two equations yield (4.6a). Then (4.6b) follows using the fact that D,
is self-adjoint in Z,(Q), see (4.37) below. Finally (4.6¢) is obtained from (4.6b) by
applying Schwarz inequality to the term (Dyu, wu)q.
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(4.7) We rewrite (4.6h) as
(4.30) | D,u]2 = Re (Pu, u)q + Re (Dyu, u)g — Re (D, u, wu)g + Im (Bu, u)r<
< Ro (Pu, we+ Re (Dy, wo + & [ Dl + o Culluly + o [Buls+ £ fult.
But recalling the trace theéry Ijesulf (4.3) for 6: 0, we obtain
[uls = 2 Im (Do, w)o + O([ulg) <elDouli+ Oo(|ul?)

which ingerted into the right hand side of (4.30) produces

(155 ) 1Dl <Re (P, who-+ Re (Duu, who -+ Oc{iul} + Bul)

choosing ¢ > 0 sufficiently small yields (4.7). |

Proor oF THEOREM 4.4. — First, from (1.7)

Ny

(4.31a) = —ala, y)1 = —a(, y)(o —iy) = —alz, y)o + ia(z, y)y

LD | -t

80 that the pseudo differential opérator $(0P/ot) defined above Theorem 4.4 is

(4.31b)

[ N2 o
SE

= —D, + iayl

from (4.31) and (3.12a), and (4.12b) is verified. We then compute from (3.145) and
(4.31) L

1 0P ~ '
(4.32) (Pu, 53 u) = (D3uw —Dyu + 2iyDyu, — Dyu - iayu)y =
2 e

= —(D3u, Dyu)o + (Dyuy Dyu)g + 2% Dy, Gu)g—
, — iy 2| Dyulg + (Diu, au)g — (Dyu, au)g} .
But from (4.18) of Corollary 4.7 we have: '

(4.33)  (Diu, Dyw)g = iKDyu, Dywyz + (Do, D, Dyu) -+ (Dyw, wDyu)g
(4.34) (Daz:ua )y = 7;<Dm“a auyr -+ (ﬁw% ﬁm(a'u))o -+ (Dm’ll/, WA)q ,
where, from (3.10b), D, (au) = (D,a)u -+ aD,u, and so

o~ ~

(435) (Dwua Dw(“u))a = (ﬁmu7 (-Dxa')u)Q + “a’l/zﬁacu”Q *
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Inserting first {4.35) into {4.34), and then the resulting (4.34) as well as (4.33) into
{4.32), we arrive at

. 10P PO
(4.36) (Pu, 350 u) = —1i{D,u, Dyu>z+ y(ﬁmu, aUyz —
“ Q

— (Dyu, D, Dyu)g — (Do, wDyu)g +
-+ (Dlua Dyu)g + 2)’2(1)2'“5 )y — 2"/7uDzui]g -+ iy(])luy au) —

— iy a2 D ulil — iy(f)wu, (D, a) U)o — iy(ﬁmu, w(au))q .

1

We now take the imaginary part of (4.36). We need the following results, to be
established at the end of this proof.

CramM 1. — D, is self-adjoint on L,(Q):

(437) D,=Df and (Dyu,au)q=real, Im (Dyu,au)=0. O
CramM 2. — With 8, given by (4.11), we have

(4.38) 2 Im (Dyu, Dyt)g = (4, Sott)g . O
Cram 3. — With K, given by (4.9), we have

(4.39) Im (D,u, D, Dyu)g = Im (D,u, K,u)q . O

Thus taking twice the imaginary part of (4.36) and using (4.37)-(4.39) yields
(4.40) —2Im (Pu, % -a;)az

=2 Re (D,u; Dyuyz — 2y Im Dy u, auyr 4 (1) + (2) + (3),
(4.41) (1) =2 Im (D4, [wD, + K;Ju)q— (1, Syu)q,
(4.42)  (2) = 2y Re (D,u, [wa -+ (D.a)lu)q,
(4;43) (3)

2p{2|| Dyu|g + H“’wﬁx“”g“‘ (Dythy at4)q} -

L

But from (3.13a) and (3.12a)

1 1
(4.44) Dy = Dy —ay— D
and thus

5 " ; 1
{4.45) —{(Dyu, au)e = — | Dyuf + ylaw|q -+ ((; D, u)g.
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Substituting (4.45) in (4.43) yields
[ o 1
wi0) @) =2y { Dl hor Dol + (Do, ) o 2.

Then (4.40), (4.41), (4.42) and (4.46) prove (4.8), once the three Claims above,
(4.37)-(4.39), are established (below).

b) We now estimate the terms (1), (2), (3). By Schwarz inequality
(4.47) (1)> — | Dewll— | [wDs -+ Kylulj— |(u, Spu)al 5

(4.48) )5 =70 |e1Douli+ 2 1ulg]

where C is a positive constant depending on the coefficients & and a,; (recall (4.2b)).
Thus we obtain from (4.46)-(4.48) ‘

(4.49) (1) + (2) + 3)>2¢[Dsule — D, + Kuls +
+y 2o Doulg—eC Dol — 1 Doulg+ 27 (5 Duy ) +
1
oy fertanti =2 olu — o, 8,001

Recalling now that both D, and wD, 4+ K, have symbols of the type: coeff (x, y)o,
see (3.12a) and (4.10b), we select &> 0 suitably small, and y suitably large in com-
parision with 1/e, and obtain from (4.49) ' '

430 )+ @+ @>2lalDoult+ (;9uu) +albal +
+yealuls —(w, Syl

for suitable ¢, ¢;, ¢; > 0 and suitably large y, say ¥ > som p, > 0. Consider now
the operator (recall D, = D} from (4.37))

(4.51) W = ¢, D} -}—%D
whose symbol is

(4.52) symbol of W = ¢,dj(z, y; o) + %bd(m, y;n).

We now recall the striet hyperbolicity condition (1.10) plus positivity of a in (1.8)
to claim that

1
(4.53) W@y >0t [n] large
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while from (3.12a), di(, y, 0)>¢lo|?, so thatb
(4.54) Re {symbol of W}>0{lo|*-+ [n|2, [ol, [n| large, uniformly in xe R...

We can then apply Garding’s inequality [T.1, Theorem 8.1 with ¢ = 0, p. 55] on
(4.54) and conclude: there are constants €, C,> 0 such that for any compact
set K in Ry and all ue OF(K)xC=(R..) we have

.. . ) s 1 ) -
(4.55) Re (Wu, u)g= 0| Dyuls+ (&‘D”, u) >02{HD£“H3 + | Dyug} — Cyluls-
e

But from (3.100)

<

1
Dou— 3 a,;Dyu .

i=1

(456)  |ulig = [Deuls+ [Doule+ |

<O{|Douls+ | Deule + [ Dyule) -

Thus using (4.55) and (4.56), we have that for all we 5 (K)x C*(R..)
=7 Yy i 1 | ' ! U ay !
(+.57) Dl + (5 D, w) -+ el Dol ealulioe — vl

where ¢, = min {0,, ¢,}/C. Using (4.57) into (4.50) we obtain for all » e U7 (K)X
X 0®(RL.)

(4.58) (1) + (2) + 3)>2pe) g+ (P e~ 2y) ex 3 — (8, Syw)of -
If now J is the self-adjoint isomorphism
Hi(BY) > Ly(R,)  with symbol (14 o2+l

we have from (4.11a) that J-18, € OPS; ((E}), uniformly in z€Rl, and Lemma 3.1b)
yields J-18,: continuous HYQ) — Ly(Q).

Thus by Schwarz inequality
(4.59) [ty Syw)a] = [Tty T3 0)a] < O] 2ncq) -
Finally, (4.58) and (4.59) imply for all we C7 (K)x C®(RL.)
(4.60) (1) (2) + 8)> 2ye— O)|[u]Zug + 0*Ca— 2p) &t u(a>yColu
for all y>suitably large y,> 0, where C, is a suitable constant. Then (4.40) and

(4.60) together prove (4.12), as desired.
Tt remains to prove Claims 1 through 3, (4.38)-(4.39).
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CrAmM 1. ~ (4.37) That Df = D, with
[symbol ofk D¥] = [symbol of D,] = a(x, ¥)o = real ,
follows from [T.1, Theorem 4.2, p. 45] since d;(w, y; o) in (3.124) is real.
CrammM 2. - (4.38). Recalling (4.23b) with F; as in (4.4b) we have

(4.61) (Dyhy Dyh)g = (4, -D;szu)Q = (th, Dy Dyu)e+ (u, 1 Dyt)g = o
= (4, Dy Dyth)q + ('ua [Hia -+ F1D2]u)07
(4.62) (by (4.37)) = (Dyu, Dyu)g + (4, S;u)q

where
(4.63) Ky, =Dy, Dy} = D, D,— D, D, ,

(4.64) 8, =K, F.D,.
From (4.62) we obtain the sought after (4.38)
2 Im (Dyu, Dyw)g = (uy S3u)q -

Moreover, from (4.63), using the product -theorem [T.1, Theorem 4.4, p. 46] we
readily compute

n—1
(465)  [symbol of Ky =[3 k(s y)n.] o

j=1

ki(z, y) = smboth, depending on coefficients of P.

Similarly from (4.16a), (4.16b) and‘(3.12ya) and the product theorem we readily
check '

n—1
(466)  [symbol of FyDl=[ 3 7,(a, y)n, |0 + @, )o
j=1 .

%,-(w, ¥) = smooth, depending on coefficients of P .

Then (4.64)-(4.66) prove the desired form (4.11b) for the symbol of S,. Also, (4.38)
shows that 8, is self-adjoint on IL,(Q).

Craim 3. — (4.39). Let

(4.67) K,=[D,, D, = D,D,— D,D,.

fil
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Then using {4.67) and D, = D,
(D,u, D, Dyu)g = (Dyu, Dy Dyu)g + (Dyu, Ryu)g = (DyDyu, Dyu) + (D, u, Byu),
(4.68) (by (4.67)) = (Do, D,Dyu)g + (D, u, Ryu)g— (Byu, Do), .
Thus (4.68) yields the desired (4.39)
2 Im (D,u, D, Dyu)g = 2 Tm (D,u, K,u)q .

Moreover {4.67) and [T.1, Theorem 4.4, p. 46] yield readily from (3.10¢) and (3.12a)
that the symbol of K, has the form as in (4.95).
The proof of Theorem 4.4 is now complete. a

5. — Operators of localization % and their properties.

5.1. Definitions and statemeni of properties.

We return to the symbol dy(x,y; o,%) of class 8} (Rp) uniformly in xe R].
defined by (3.134), where we consider y > 0 to be fixed. (If we wish, we may take
the symmetric positive definite quadratic form d(z, y; %) in (1.9)-(1.10), or (3.11a)

#—1

to be in canonical form d(z, y;9) = > @, y)n? without loss of generality; i.e.
=1

3
modulo a similarity transformation with an (x, y)-dependent orthogonal matrix).
We recall that as a-consequence of agsumption (i), section 1, above (1.7¢) on the
coefficients of P and B, all symbols d{w, v; %), di(x, ¥; o, %) ete. are constant in
and y outside a compact set X,, of 2 = R., XxR}™'. As the point (x, y) varies and
y > 0 is fixed, the equation

: o dx,y;n)
(5.0) dfz,y;0,m) =0, ie. by (3.13a): }—}-2-—_~__’?/’77 =1

a¥(x, y)y?

describes a family of hyperboloids in the space R! ng“l (which reduces to a fixed
hyperboloid for (z, y) outside X.,), all passing through the points ¢ = + y, n = 0.
Henceforth, becauge of the symmetry in ¢, we may restrict our analysis to the half-
gpace ¢ > 0. Setting

d(w, y; 1) d(w, y; n)
5.1 =2V = p?y osup ——— = M2
(6-1) e ®NT, YY) ’ wn? as(x, ¥)
[n)=1 Inf=1

we have m > 0 and M <-- co by (1.8), (1.10) and assumption (i), seetion 1. Then,
from (5.0)-(5.1)

< | d@ ysm) _ .
2 2 2 . a2 IS 2 MZ 2\2M2 2
(5.2) minlt <ot =yt + oy <y <2 M|

for all # outside the x-sphere of radius y/M centered at the origin.
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Thus, for o> 0, all points of the family of hyperboloids with [y|>y/M, lie
between two equilateral cones: ¢ = mly| and o = V2 Mly|, uniformly in (=, y).
With this observation at hand, we now introduce a few mutually disjoint sub-
regions (cones), which will exhaust all of R2s(-) »:—R;+><R;"‘1><R},+><Rg"l. They
are (see Fig. 5.1): -

(5.3) Bz, y; a,m) E{(m,y; o,n) € B (+): 'Z;n“l’?l<cr=<2Ml’7|}
(5.4) 8@, y; 0,9) = {(m,f s 0ym) eRM(4): 2Mn|< 6<ngnl}
(5.5) 8" (»,y; 0, 1) ={(w,y; o,7) € B*(+): ngn!< G}

(5.6) S, y3 0,1) = {(w 0, m) e Rin(4): = Iy <o < »gffn!}
(5.7) Gz, y; 0,7) ={(w,y; a,m) € R¥(+): 0<o < ?lnl}

M) =Bus,ususiyust

(S stands for « good » region, B for «bad » region, with respect to the symbol dy,
see (5.0); the subscript «tr» stands for «transition », as the definition of the local-
izing symbols below makes it transparent).

c b

di(z, y; 0,7) =0

Il

Figure 5.1. Regions $ and gI, ..., GH,
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For future use, we note the following two claims.

Cramm 1. — In §'UGL, where o> 2M|y|, we have

max a(x, y)
L >0 9 ___~._._Z___
(1 T, Y0 1[6 /'7] ]7 for o >Y 1 mlna(w, fl/)

M .
O] = mm 7}] min a{z, y) .

o
(5.8) é

Crama 2. ~ In 8" U S, where o< (m/2)y|, we have

(5.9)  —dila, y; 0,7) > Ci[c* + Ipl], <£::mnanynwnm{§m%§}.

PROOF OF CrLAmM 1. — By (3.13a) and (5.1) (also (1.8))

dy(®, y; 0, ) > 0w, y)o*— al@, y)y*— alw, y) M2 [n*>

>a(@, Y)[1 — tlo*— a(z, y)y* >} [min a(z, y)]o*,
dy(@, y; 0, ) > M*[min a(@, y)1n]* .
Summing up the last two inequalities yields (5.8). ]

Proor oF Craim 2. ~ By (3.13a) and (5.1)

az, y; m)

2, 9) —a(x,y)o® -+ alx, y)y* >

—di{x, y; 0, n) =
m? )
> mrae, Y)in|* — — ale, Y|+ alz, 9)y* >

3
(by (1.8)) >3 [#12m? min a(x, y)
> 30

— dy(@, y; 0,7) > 30* mina(, y) .

Summing up the last two inequalities yieldé (5.9). O
We now introduce symbols of localization of the above regions. Let y{w, y; o, %)

—distinguished by an appropriate superscript—be C“-functions in all variables,
monotone, such that

i1 on S,

(5.10) 1w, y; 0,m) =
T o on UGE,
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(5.11) @,y 0,m) = { b
: 0 on BUSFuUGT,
(5.12) 1@, 5 0y ) =l toon S
0 on BUSL UG,
and. :

(5.13a)  ¥B@,y; 0,m) + g @ y; o)+ @, y; 0,m) =1 in Ra(4),
(3.136) %=+ 2"

Moreover, X“B and y' are defined by homogeneity of order zero in the transition
region Gy, (they are first defined on the unit sphere of E}XxRp~! for fixed (z,y)
and then extended by homogeneity of order zero, i.e. by constancy on each ray
in B? ). Likewise, x> and " are defined by homogeneity of order zero in the tran-
sition region GY. Thus [T.1, p. 37]

(5.14)  #®, 4% x are homogeneous symbols of order zero in (g, 7), i.e. of class
So(Rptt) €8] o(Rp+") uniformly in @€ R,.

Finally, we need to divide further the region % into three mutually digjoint
subregions, which will exhaust all of $. Let r be a number which for the time
being we take to be strictly between 1 and 2: 1 < ¢ < 2 (r will be identified in sec-
tion 6 to be r = 8/5) (*). Define

(5.15) 35:-(97} y;o,n) = {(ma Y, 0, m) € RB: 20'T<7‘_11(?’7 Y; 0 77)} y
(6.16) \(BT—(W, Y;0,m) = {(my Y, 0, € B: dy(w, y; 0, "7)<0‘T} » _
(5.17) $tr,r(m7 y; o,m) = {(wy Y, 0,m) €B: om<du(®, y; 0,1) <207} .

Then, B =By U B U B, , (tr = « transition »). Let ylw, y; o, n)—distinguished by
an appropriate superseript—be C*-functions in all variables, monotone, non-homo-
geneous such that (they will be precisely defined in the proof of Lemma 5.1 below):

1 on &},
(518)  yM(@y;0m={0 on BruSTuUGIUG,
> on Gf, (homogeneous of order zero in o, 7))y
1 on &,
(5.19) 1B (@, y; 00m) =] 0 on BruBLugugt,
%® on G (homogeneous of order zero in o, 7) ,

(1) The subsequent reading is simplified if one thinks of r as r = 8/5.
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and, moreover,
(5.20a) @ yson) + P w5 0m) =32, y500m)  on B
Thus, by (5.13)

™+ 1%+ ey o =1 in R(4).

The symbols of localization defined in (5.11), (5.12), (5.18), (5.19) are those for
which we shall congider the corresponding localized problem defined by (3.22). As
seen in (3.22), crucial to the analysis of (3.22) will be the determination of the
character or action of the commutator operators [P, %] and [B, %], where y is the
pseudo-differential operator defined by (3.21) with the symbol y there being now
any of the symbols in (5.11), (5.12), (5.18), (5.19). The analysis is simplest for
g = x' and x = y" since these symbols are homogeneous (of order zero) i.e. of class
(@) c 87 ((@). The differential operators P and B have also, of course, homo-
geneous symbols of order 2 and 1, respectively.

o o= 2My|
I

ye=1
o = (5/2)M|n|
/ 2Br=1 3
Y k=2
patfe ol \7‘
4
g&r /’ D
\ §h e
/ B / q,é k=1
r VN/
4° \ \\
B
7 Vi te,r
w8 #
o N\ \
/ \‘z\\"‘\
v o _ e
/ ¢ &7 6%
g o
+ 2
root of n” o g
agt — kot — ayt =0 s _
— T i
— ] == k
/ — - -
- p— gn - xn =1
o e - *

>
il

Figure 5.2. Regions B, By, , and HB;.
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LEMMA 5.0. ~ With P = P(z, y; Dy, D,y D,) € OPB2(Q), Bl,_, € OPSL (), and
x € 804(@), i =1, II we have:

(5.21a) [P, %1€ OPS},O(Q) )

(5.22a) [B, X1l:=0€ OPS] o(2) ,

Hence

(5.21b) [P, %1 continuous H*(Q) — H*Y(Q),
(5.22b) [B, '1|,_,: continuous H*(X)—>HYZ),
(5.22¢) moreover y': continuous H(Q) —H(Q) .

ProoF. — Conclusions (5.21a), (5.22a) on commutator in the homogeneous case
are standard (or apply Lemma 3.2). Then BEqts. (5.215)-(5.22b) follow via [T.1,
Thm. 6.5, p. 51] as in Remark 3.2, since P, B, y' are constant in (z, y) outside a
compact set J,, of . (m}

However, the symbols x®7 are non-homogeneous (and of order zero) and the
question regarding the character or action of the corresponding commutators with
P and B hecomes much more delicate.  In this respect, the following lemma is
fundamental.

LEMmA 5.1. - In the notation of (5.15)-(5.19) with 1 < » <2, and recalling
Definition 3.2 below (3.15) and Remark 3.1, we can define—in fact, constructively
in the proof below—symbols of localization %7 and y%: so that

(5.23) |DLD; 3% (@, y; 0, m) < C,p(l0] - [y]) 1D HIBlE=n
v o7
(@9, 0ym)€ 33u,,- as o]~ 7| = o0,

where C, ; is independent of x, y € R}, xR}~'. Recalling from (5.18)-(5.19) that

%®7 are homogeneous of order zero in G. or S, respectively, and identically zero

or one elsewhere, we conclude from (5.23) that

1@, 95 0, €8, , (RitY), uniformly in e L,

tv

tye

(5.24) .
1P e 0P8, ,_(BitY, uniformly in ze EL, .

COROLLARY 5.2. — For 3/2 < r <2, we have

(5.25a) x5 continuous H*(Q) — H*Q), 0<s<1,
(5.25b) 1 P37, _o: continuous H'(X) - HY(Z), 0<s<1.
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Proor or CorROLLARY 5.2, — Use (5.24) and apply Lemma 3.1 with
Pp—1>2—7r, |
5.2, Proof of Lemma b.1.

We shall write the proof for the symbol ®#7 which, for simplicity, will be indi-
cated as y'. The proof for x%- is similar.

SteP 1. — Definitions (5.15) and (5.17) suggest introducing a family of smooth
surfaces §, in the «tube» By, ,, which will be parametrized by a real parameter k,
1<k<2. These surfaces are defined by (see (3.13a))

d .
(5.26) S, o,y oum) =hor, ot als, y)o? —yY) —lor = Do i)

a?(x, y)
Conversely, for any point (x,¥, o, 7)€ B, ,, there is only one surfaces §, passing
through it, namely the surface corresponding to the parameter (comprised between
1 and 2)

a(x, y)(o® — ) —d(w, y; n)]e(z, y) .

(5-27) k(w, Y, 0777) = o

Thus B,r = U 8, 1<k<2.
k

CONSTRUCTIVE DEFINITION OF y" == y%/(z, y; o, n) IN E*(-+). - See Fig. 5.3.
With %, being the first coordinate of #, we first fix a reference point (x,, y,) and
select a sufficiently large o, > 0 so that the reference level hyperplane ¢ = o, inter-
sects on the reference coordinate plane (o, 7,) both curves

(5.28) 0 = dy(%, Yo; 0y 9 = 11, 0, ..., 0]) — ko” = (by (5.26) and (1.19))
= a(%o, Yo)(0?— p?) — ko"— {“u(wo; Yo) — Gy (o, ?/o)}"ﬁ 3

for k=1 and k = 2, in two points #, ;, = 1, o aNA 7y , = 1y g The segment
on ¢ = 6y, § = [, 0 ... 0] comprised between these two intersection points is

(5.29a) 11,1 <Mulky oy Yo, 00)<7y ,, 1<k<2,
(5.290) N, =k =2y oy Yoy 00) 5 My, = Tk =1, To, Yo, G0) 4

when % runs over 1<k<2, where by (5.28)

(%o ?/0)(0'5 —y?) —kag
@12(%g  Yo) — afu(wo; Yo) ’

(5.30) N1(ky 2oy Yo, Go) =
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ch

:]_

0o

root of
<ac? — ko” — ay? = 0 — 4

Figure 5.3. Definition of y" = yB;.

Let now F,(s) be a C*-function of the real scalar variable s defined so that

1 <0,
(5.31) Fis) =
0 s=h>0,

and monotonically decreasing on 0<s<h. With F,(s) at hand, we now define the
symbol y'(z,y; o,n) over all of B, , through the following steps:

(i) First define 4 on the reference segment (5.29)

(5.32) {(@05 Yo3 00y 1= (M1, 0y o0y O1)y 1y, <<y .}

by «transplanting » the decreasing part of the graph of ¥,(s) suitably « dilated or
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compressed » so that the point s = 0 of the graph falls on the point (x,, yo, 0o, =
= [ny,;, 0, ..., 0]), while the point s =k of the graph falls on the point (w,, ¥,
oy ) == [#; 1y 0, ..., 0]). This means that we set

x’(%; Yo3 Ooy ] = [M1, 0y .0y 0]) EFn(ﬂl_nl,z) y o Ma<m<%,

where in {5.33) we have by (5.29b)

(5.34) h=mn —n ;= mk=21,2, Yo, 60) — Mk = 2, &y, Yo, 00) -

(ii) Next, we extend the definition of y = %' over the entire «tube»

= |J §, by parametrization, as follows: we impose that the symbol x
1<k<2
agsumes the same econstant value on each surface §,, for each fixed k, 1<k<2

(such value is therefore equal to the value that y takes on at the intersection point
of S, with the reference segment (5.29)). Analytically this means the following:
given any point (2, ¥, o, n)€ By, ,, we first determine via (5.27) the particular
value of the parameter k(x, v, o, 1) (between 1 and 2), whose corresponding
surface 8, ., . passes through it. Next, we consider via (5.30) the coordinate
na(k(@, ¥, 0y ), Toy Yo, 0o) ON the reference segment (5.29), which has the same param-
eter as the original point (#, y, o, ) and finally set

i)

tr,r

(5.35a)  x"(@,y,0ym) = XT(%; Yo, Oo [ (5@, Yy 0y 1); @ay Yoy o)y Oy vy 0]) s

(5.35b) (by (5-33)) = Fh(’?l(k(ma Yy Gy 1)y Toy Yo, 60) - 7]1,1) y @y, o€ ‘(Btr,r y

where h is given by (5.34). Equation (5.35) defines y* in 3B, ..
From (5.18) we have, moreover, that

X 1 on B,
(5.36) yr= % =
0 on Brugiughtug.

As to the definition of y~ over G, we proceed in agreement with (5.18) and the
paragraph preceding (5.14); i.e. by homogeneity of order zero in g, n: we first
define y~ smoothly decreasing from the value one on the cone (&, y, o = 2M|z|, 7)
—for (», y) fixed—to the value zero on the cone (w, y, o = §M|n|, n) along, say, a
unit sphere and then extend to all of G, by homogeneity or order zero (constancy)
in o, 9.

The definition of y7 = %7 on all of R*(--) is complete, as an C*-function on all
of its variables.
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STEP 2. — We now prove (5.23) in the case § = 0, x| = 1; i.e. we must estimate
Ox’/on; and 0y7[0c on By, ., where o~ [y|. From (5.35b), by chain rule

oyr dF\ o

(from (5.30) with ¥ = k(z, ¥, 0, 1))

(3.37) —dF"[ =% ]i]-g-(xya ) =

2  ds 211k, oy Yoy Go)[@rs(o, ?/o)“‘afil(woy?/o)] on; AR
ok

(5.38) =0 (51—7— (@ 9, 5, n))

with O denoting as usual an upper bound for the absolute value with a constant
independent of z, y€ Q. From (5.27) and (1.9)

1 1 od

o 79 517—]_(%?/;77)2

) o
(5.39) py (@, 4, 0,7) =
1 n—1 n—1
= [z @ii?; + 20,;1; —2(2 anﬁ?i)“ni] =
a1 iTh i=1
i#d
1
:;O("’}I) = O{o) z, Y € 82; (z, ¥, Uﬂ?)Eﬂﬁr,r

the constant on O being independent of », y e Q (by assamption (i), section 1),
since in the region B,,,, we have o~ |y|. Returning to (5.38), we conclude

ox’ :
(5.40) 5 (@45 00m) = O(0*");  (2,9,0,) € By,r; 1,y€ 2

which is (5.23) in the present case. In the same way, we compute

ox’ ;

- o
A 52 e, o) = 05 (0,1, 0,m)) =
(from (5.27)) == ((2 —ryevra{x, y) [a(m, Yy CM] af”ﬂ’) =
. a*(x, y)
=0{¢'") for (@,¥,0,n) € By, 01, v,y

which is (5.23) in the present case. The case = 0, |x| = 1 is settled.

STEP 3. — We now analyze the case « = 0, || = 1 by estimating oyxr/ox and
0yx'/0y;. From (5.35b) and (5.30) with k = k(z, ¥, 0, ), we obtain as before



324 1. LasiECKA - R. TRIGGIANI: Sharp regularity theory, ete. - I

(see (5.38))

oy’ dF, oy ok
50’0’ = “d’éll ‘g;c‘l (]‘(% Yy Oy 1)s %oy Yo, 0'0) =0 (a_a“; (@, ¥, 03 "7)) =

(from (5.27)) = O(¢*")+ 0 (1-) + o(l o M) -

o o 0w a*(@, y)
1 1
(from (1.8)) = 0(c*") + O (a;) + 0 (‘(;; [7712) .

Thus, using o~ |p| in By, ,, and ¢>1 we obtain as o~ || - oo

QD

L@,y

(5.42) = 0>, (29,0, € By, (1,y)€L

9]
5"—?/_ X’r('% Y, o, 77)

3

which is (5.23) in the present case.
Similarly, one can check the general case. O

5.3. The commutator [P, x571.

The goal of the present subsection is to prove the following result, which will be
fundamental in the analysis in section 6. Here P = P(w, y; D,, D,, D,) as in (1.2).

THEOREM 5.3. — Let (3) 3/2 <r < 2. Then
a)

(5.43) [P, xB*]1D;~2 continuous HY(Q) — Ly(Q) ,
b) (recall 4 = A, , from (4.1a))
(5.44) [P, x®7]A"~2% continuous HYQ) — L,(Q) .

Proor. - We prove first part a).

STEP 1. — Writing %" for %% throughout and recalling (3.14b) and (3.108), we
have

(5.45) [P, x'1=[D%, %71+ [@jaml’w)]}w x|+ [D(-f-f aDy) x| +

+ [Cg_:an,-l)yj)z, xr] — [D,— 2iyD,, %71.

(?) As alread pointed out, » will be identified in section 6 as r == 8/5, so that r — 2 = — 2/5.
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Step 2 (Analysis of [DZ, x']: statements). — We compute by chain rule
(5.46) (D%, x"]u = Dj(x w)— %" (Du) = (D} x")u + 2(D, x" N Dos) -
Hence, since D;—* commutes with D,

(5.47) (D%, /1D ~%u = (D2 %) D}~2u + 2(D, x") D~ *(D,u) .

With « € HYQ), we have D,u e L,(Q) in (5.47). The following two lemmas are then
seen to be needed.

Lemma 5.4. — Let 3/2 <7< 2. Then, with reference to Definition 3.2, below
(3.15) we have - ’

(5.48) (Dix) D€ 0P8~ ,_,(R:*'), uniformly in weRL, .

LemmA 5.5. — Let 3/2 <r < 2. Then, with reference to Definition 3.2, we have

(5.49) (D, %) D"*e 0PS"

1.2 Bit?), uniformly in zeRL .

tyw
COROLLARY 5.6 (to Lemma 5.4). — Let 3/2 < # < 2. Then

(5.50) (D7 x")D;~*: continuous H'(Q) - L,(R,; H'"XRL)) . O
CoroLLARY 5.7 (to Lemma 5.5). — Let 3/2 <r< 2. Then

(5.51) D, ") D72 continuous L,(Q) - L,(Q) . O
COROLLARY 58 - Let 3/2<r< 2. Then

(5.52) [Di,xr]D;‘g; contipuous HYQ) —>7L2(Q) . O
StEP 3. - Analysis of [DZ, x']: proofs.
Proor orF LEMMA 5.4. - From (3.21) taking y = 0 w.lo.g.

(5.53) symbol of (D2y") == D%y"; symbol of DI"2=¢"2,

The essence of the proof is that:

r—1,2—r tyx

(5.54) DIy eS80 (RiEY),  uniformly in e R,

(5.55) o re 8T A(RY), uniformly in ze R., .
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Then, D?y" having compact support in £ (by assumption (i), section 1), the product
theorem ag in [T.1, Thm. 4.4, p. 46] applies and gives the desired conclusion (5.48)
since: 22— #)+r—2=2—r,min{r—1,1}=r—1, max{2—1r, 0} =2—r. To
see (5.54), it suffices to consider D?y" in the region B, , where (5.23) of Lemma 5.1
holds, 3" = x% (for 4% is either homogeneous of order zero in Gl or G, respec-
tively, or identically zero or one elsewhere). Then, by replacing |§| with |8| 4 2

in (5.23), it follows that
(5.86)  |DIDIDIY (3, y, 0y )< Oy p(lo] 4 [pl)Pe0-Pie-n#iflC=,

o @ 4,0, € By, o~y = oo,
with C, ; independent of (z, y) € £; i.e. (5.54) is obtained, via Definition 3.2, Re-
mark 3.1, below (3.15).

(Instead if appealing to the product theorem, one can use
(6.57) symbol of {(D2x") D, % = (Dly)e"*
which follows from the asymptotic expansion [T.1, (4.3), p. 46]). (|
Proor oF LeMMA 5.5. — It is similar to that of Lemma 5.4. Now
(5.58) symbol of (D,y") = D.x’

so that, from (5.23) with |8| replaced by || + 1, we obtain

.59 DIDID, {0,y 0, 1)]< O pllol + il
v o7
(2, ¥, oy 77)533@;,7 y O~ 117[ —> 00,

with C, ; independent of (v, y) € £2. This means
(5.60) D,y e8], (B, uniformly in zeR..

Then, (5.60) and (5.55) imply the desired conclusion (5.49) via the product theorem
[T.1, Thm. 4.4] since 2—» +r— 2 = 0. O

ProoF oF COROLLARY 5.6. — Apply Lemma 5.4 and Lemma 3.1, Eq. (3.17¢). O

Proor or COROLLARY 5.7. — Apply Lemma 5.5 and Lemma 3.1, Eq. (3.17a)
with 8 = 0. O

ProoF oF COROLLARY 5.8. — Use identity (5.47), Corollary 5.6 and Corollary 5.7.
O
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StEP 4. — Analysis of [a,; D, D,, %']: statements. By direct computations

(5.61) [a'm'Dijm Xr]u = a’m'Dijo:(xru)— Xra'njDv,-Dx'u =
= a’M(Dv,-Dmxr)u + am‘(Dac xr)(ij/u’) 'I_ a’nl(va xr)(Dxu) +
~+ @n; XDy, (Do) — Xraniva(Dmu) .

Thus, since D;~2 commutes with both D, and D,

(5.62) [@n; Dy, Dyy X104 = 605(Dy, Dy X7) D72t + @ ( D, X" D7Dy, u) +
+ a’nj(Dujxr)D:—z(-Dwu) + [“m" Xr]-vaD;—z(Dmu) .

With u € HY(Q), the following lemmas are then needed for the terms in (5.62).

LemmA 5.9, - Let 3/2 <7< 2. Then

(5.63) @) a,(D, D,x")D;"*: continuous HY(Q) — Ly(@Q),
(5.64) b) an(D,y) D2 continuous Ly(Q) — L,(Q),
(5.65) 6) @, (D, %) D] continuous L,(Q) — Ly(Q) . O

LemMmA 5.10. — Let 3/2 <r < 2. Then
(5.66) [@n;y X'1D,,D;7%:  continuous Ly(Q) — Ly(Q) . O
CoROLLARY 5.11 (to Lemmas 5.9 and 5.10). — Let 3/2 << 2. Then
(5.67) [@;D,,D,, x'1D;~%:  continuous HY(Q) — Ly(Q) . O
StEP 5. — Analysis of [a.;D, D,, %']: proofs.

Proor oF LEMMA 5.9. — Assertion (5.63) follows as in the arguments leé,dinﬁ
to Corollary 5.6 for (D2y")D;=2. Also, assertions (5.64)-(5.65) follow as in the
arguments leading to Corollary 5.7 for (D, ") D}~ 2 O

ProoF oF LEMMA 5.10. ~ The essence of the proof is the following argument.
Since

(5.68) a, €8 (Ry) and y'e 8o (BpiY), uniformly in we R,

the second statement in (5.68) being Lemma 5.1, then (the commutator) Lemma 3.2
implies that

(5.69) [a,,, 1€ OPS;Z] , (Rit'), uniformly in weRL, .

tyx
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This is so since in this case (in the notation of Lemma 3.2), we have
—0=1-2-r=r—1, o —d=r—1—-0=r—1,

80 that m; = r— 1 and the order is 0 40— m; =1 — . (Assumption ¢'=2—
— o<min {1, r— 1} holds for 3/2 <r<2). But in the crucial region B, , where
o~ |n|, the two operators D, and D, have «the same behavior » in the variables
t and y. This means that

(5.70) D, D;"*eOPS; M (R;,t"), uniformly in zeR.,.

{273

Finally, from (5.69), (5.70), the product theorem [T.1, Thm 4.4, p. 46] gives
(5.71) la,, 1D, D;"2€OPS)_, , (Rpt'), uniformly in zeR.,

since L —r-F7r—1=0, min{r— 1,1} =r—1, max[2—r,0]=2—7r. Once (5.71)
is proved, then the desired conclusion (5.66) follows by applying Lemma 3.1,
BEq. (3.17) with s == 0.

The detailed proof of (5.71) is based on noticing that the asymptotic expansion
for the symbol of a product gives [T.1, (4.5), p. 46]

(5.72) symbol of {a, x'D, Di™* = a,;x'n,0""%,
il
(5.73) symbol of {x @, D, D}~ 3 3“_, (D% D3 s} s 072
azQ Ko & x

so that in the region B, , where o~ ||, we have:

tr,r

]
(5.74)  symbol of {[ay;,x 1Dy, D%~ 3 @-“_, (D3} (D2 @y} ot — (Dhyrh o7
=1 .

=

From (5.74), using Lemma 5.1, one obtains by cdnsidering the Eorst case oo = 1
(5.75) inij;’{symbol of {[a,,, xr]DwD’t"Z}}}<Oa,,ﬁ([g] 4 )Tl Dl
i o
(2,9, o, 1’])633“,7. y 0~ gl = oo,

0, ; independent of (»,y)e 2, and (5.71) follows. [

ProoF oF COoROLLARY 5.11. — Use identity (5.62) and Lemmas 5.9 and 5.10. O

- STEP 6. — Analysis of [Dyla,;D,,), x’]. We reduce this term to the term consid-
ered in Step 4, modulo a first order (lower order) commutator in all variables

(576) Dw(a'nj-DyJ) = (a‘ﬂjD'y,)Dm -+ [D:H a'm'va] .
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Thus, by Corollary 5.11, we have

LEMMA 5.12. — Let 3/2 << 2. Then
(8.77) [Du(@n;Dy), x71D;7%:  continuous HYQ) — Ly(@) .

STEP 7. ~ Analysis of remaining terms [(@n;Dy;)(@n Dy), %71, [Dy,y 371, and [Dy, %71
Recalling identity (5.45), Corollary 5.8, Corollary 5.11 and Lemma 5.12, we see that

the proof of part a) of Theorem 5.3 is complete, as soon as we establish the following
lemmas »

LeMuMA 5.13. — Let 3/2 <r< 2. Then

s Dy ) (0ns Dy )y 471D} %
(3.78) T leoPs,, (EpY),  uniformly in weRL .
(D, %7107

Hence, by Lemma 3.1, Eq. (3.17b)

([@w; Dy )@ D, ), ¢ 1 D72

H i

(3.79)
[D,, X107

}: continuous HYQ) — L,(Q) . i}

LEMMA 5.14. — Let 3/2 <7< 2. Then
(5.80) [D,, X'1D;"*e OPS)_, , ,(R.*"), uniformly in we RL, .
Hence, by Lemma 3.1, Eq. (3.174) with s =1

(5.81) [Dyy, x71D;7%:  continuous HYQ) — HYQ) . O

Proor or LemMMA 5.13. — Recalling Lemma 5.1 and (3.13a), we have

(a’m'Dy,)(ani-Dv,) .
(5.82) > : €OPS; (R.YY), uniformly in weRL,,
1
X eS|, (BT, ' uniformly in we R, .

Thus, (the commutator) Lemma 3.2 implies

(5.83) €0PS}~ , (Rp+'), uniformly in zeRL

r—1,2—r\""yx

[((bnij,)(amD?‘)y Xr]- }
[Dy, %]
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sinee, in the notation of Lemma 3.2, we have
0= =1-2—r)=r—1, o—8=r—1-0,

i.e. m; =r— 1, and the order is then 2 40— m;, =3 —r. (The assumption
"= 2—r<g=r—1holds for 3/2 <r < 2). The product theorem [T.1, Thm. 4.4
p. 46] between the operators in (3.83) and D;~?e OPS*(R;:'), uniformly in
#€ RL, yields (5.78), as desired. O

ProoF oF LEMMA 5.14. - Similarly, since D,e OPS] (Ry,,), uniformly in ze R,
(see (3.12a)), the commutator Lemma 3.2 implies

(5.84) [(D,, x'1€ OPS—r D (R | uniformly in ze R,
21 X v

r—1,%—-7r tyz

since m; = ¢'— ¢’ = p’— &'=r— 1 and the product theorem yields (5.80). O

Part a) of Theorem 5.3 is proved. Part b) then is an immediate consequence
of part @), in view of the definition (4.1a) of A,, (in the crucial region B, ,, we
have that D=2 and D} ® behave likewise, o ~ [n}). O

5.4. The commutator [B, x5r].
Let B = B(y; D,, D,) as in (1.4). The object of this subsection is to prove
THEOREM 5.15. — Let 1 <r< 2. Then
@)
(5.85) (B, %31 .-0 € OPS;T] 5 _(2)
b) more generally, for any real k
(5.86) (B, x®71],-0 Dy € OBS;ZIN (2,
¢) let 3/2<r<2 (so that r—1>2 7). Then, with 4 =4,, as in (4.1a)

(5.87a) A*[B, x%7) oz )
’ )f ® 1. continuous HY(Z) —» H~@r+0(x) O
(5.876)  [B, x® 1|, D}

PrOOF. — The essence of the proof is that B|,_,€ OPS! (X) and x®|,_,€
€OP8)_, , ,(X) by Lemma 5.1. Then, (the commutator) Lemma 3.2 implies at
once (5.85), since in the notation of Lemma 3.2, the order is 1 + 0 —m, = 1—
—(r—1)=2~—r, for my=o—08'=1—(2—7r)=¢—d=r—1 The product
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theorem [T.1, Thm. 4.4, p. 46] with DfeOPS{"’O(Z) then yields (5.86). (Note that
the operator in (5.85) is eonstant in y outside a compact set). Lemma 3.1, Eq. (3.17¢)
—applied this time on X—iyields (5.87) from (5.86). About A* we recall that A*
and D! belong to the same class in $ where o~ |r].

A detailed computation, based on asymptotic expansions of symbols, [T.1, (4.5),
p. 46] can be given to show (5.86) explicitly. One has, writing x* = %"

(5.88)  {symbol of By'|,_o} = by -+ L-Diyr+ (DI=b)(D*1=1yr) at =0,
(5.89)  {symbol of y"B|.—} ~
~ b 4 (DiF=1b) (D=1 yr) + Z {D 13D} at =0
-1
where D} b= b,(y) and D;b= Y (D;b;(y))n; from (3.15). After subtracting (5.89)

i=1
from (5.88) one obtains an explicit expansion

(5.90) DD {symbol of {[B, X"l D} ~
z &

v 7 i
~{D5 DD y7) o* + (D] DPP1=15)(Di*1=1 D" y7) o* 4~ (DI#1=15)(Df D=1 D" y7) o* -
P 3 v ; 2 v
il ! St &l Ty 2]
+o* 3 — ] {(Dﬂ‘Da DZX)(Z (DZba-(y))m)—HD; D3 x7) (z (Dt_D )77,)-}-
*>1 =1
v 9 7

+ (DF D3 DY (”S ( "‘b(y))m)Jr(Df{xT)( " (DfD?,bj(’y))m)} at @ — 0.

=1 & i=1 x
!I '7 7 v

Using (5.23) in Lemma 5.1 on the terms of (5.90) yields the upperbound

Oo/,ﬁ(a + ]n')(z—r+k)_I“’!(T—l)ﬂﬁl(z”” for (#=0,y,0,m)eB

tr,r

o~ || = oo as desired, and (5.86) follows. O

5.5. The operator D,y%:.

The goal of the present subsection is to prove the following result.

THEOREM 5.16. — Let 3/2 < r < 2. With reference to (3.13) and (5.16), (5.19),
we have

a)

(5.91a) D, 3 eOPS8_, ,_ (Ri:'), uniformly in ze R,

tyx
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Hence

(5.91b) D, y%: continuous HY(Q) - L,(RL; H"(R")).

b) With reference to {4.1a); we have for «>0

(5.92a) A*D x® e OPS;T; , (RitY), uniformly in ze R, .
Hence
(5.92b) A*Dx®::  continuous HY(Q) — L,(RL; H™""*(R})) .

Proor. — It suffices to prove (5.91¢) and then invoke the produet theorem
[T.1, Thro. 4.4, p. 46] with 0"=2 —r<min{l,r— 1} =r—1 for (5.92a); and

Lemma 3.1 ¢) with r— 1> 2 — r for (5.91b)-(5.92b).

Proor or (5.91a). — The asymptotic expansion for the symbol of D,x®: is

[T.1, (4.5), p. 48]

i il o
(5.93) {symbol of (Dle‘ﬁr)} ~‘ ]ZNE (D7 dulz, y, o, )} {Dy 4B (2, y, 0,7)} =

, 1
= dyy B 4 i {Dy di} {Dy 3B} — 55 {07 i} {027}

since d, is a second order symbol in % ((3.13), (3.11)). Recalling from (5.19) that
4% vanishes on B} and recalling from (5.17)-(5.18) that the growth of d, is 9(o")
on B U B, ., we obtain the first of the estimates below, while the other two

estimates follow from (5.23) of Lemma 5.1 along with %7 =1 on B :

dyy 7 = 0(o7)
{D’};jdl}{’D’ll'J X‘%;} = O(l"ﬂ inlz“’) in $ where g~ [fr]l — 4 oo,
{07, D5, 17} = O(Inf**=")

Moreover, for 3/2 <r <2, we have 3 —r <<y, and 2(2 — ¢) <r. Thus
{symbol of (D,%x%7)} =0(lyl) in B.
From (5.93) applying D/ D}’ we obtain similarly
DS D7 {symbol of (D, xH7)} = Oy ~I¥Ie-D+AE=D)  in g

and (5.91a) follows. m]
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6. — Completion of the proof of Theorem 1.2.
We return to the partition of unity reiation (5.200)
6.1 2™ y;on) + 1% @y 00 + 2@y 0m) + 1@y 0m) =1
(@, 9, 0, m) € B*(+),
so that after multiplying (6.1) by (o, @, %) and applying (3.8) with v = %, we obtain
(6.2)  ultymy) = xBrult, 5, y) + xF ult, 2, y) + x'ult, z, y) + x ult, 2, ) .

We shall then seek the desired estimate (in the desired norm based on 2') of each
term on the right hand side of (6.2) separately, by analyzing each localized problem
(3.22), with x there being each of the operators in (6.2). .

6.1. Regularity of y'u, ¢=1, 1L
An estimate of the last two terms in (6.2), involving the « good » regions §' and

G" is readily obtained—in a norm, in fact, higher than our final result. This is
contained in the following:

THEOREM 6.1. — Let 3/2 < v << 2. With reference to the localized problem (3.22)
with g =0, we have y'u and x™ue HY{X); more precisely '

(6.3) (X w2z + X sy = O(IF)E o)) -

ProoF. — We use Corollary 4.5b), Eq. (4.14), with y = y¢, ¢ = I, II, where f,
and g, are given by (3.22¢)-(3.22d), and g = 0. We obtain

(6.4) V Dy, Yiuys = ‘
=— |[B, Xi]“,m=0'§'+ O(”Xiulllzil(a)) + Im (Xif + [P,y x]u, Dxxi %) -

By Lemma 5.0, Eq. (5.215) with s = 1 and the a-priori regularity of Lemma 1.1,
we have

(6.5) I [P, Xi]““m(o) = O(”“”H'(o)) = O(”f”L,(a)) .

Similarly, by Lemma 5.0, Eq. (5.22b) with s = 0, standard trace theory, and Lem-
ma 1.1 on a-priori regularity

(6.6) |[B, Xi]u,xﬂ'ﬁ,@ = O(‘u'w=0!L2(E)) = O(”“”H‘(Q)) = 0’( ”f”z,(o)) .
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Also, by Lemma 5.0, Eq. (5.22¢) and (3.10b), we have
|D. X ]z = O(Ifz.@)-
This, along with (6.3)-(6.5), yields
(6.7) Dy yiuy xiupe=0(|flg), i=I1I.

We now recall Claims 1 and 2 in (5.8), (5.9)

(6.8) d(@,y; 0,n)>C3[c*+ ] on § UG,
(6.9) — (@, y; 0y 1) > 0‘“; [o® -+ m*1 on SRRV gﬁf ’

outside a finite sphere of the half (z, y, o, 9)-space R**(-}-). By (6.8) we can then
define a real symbol d, ...(#,y; 0, 7) belonging to the same class 87, as the symbol
dy(2, ¥; 0,7) in {3.13), such that

(6.10“) d],ext(“”? y; G’ 'r]) = dl(‘/’v? y; 07 7]) on (31 U gzr b

(6.108)  d; (@, 95 0, 7)=clo® -+ nf*] outside a finite sphere of R2*(--).
Thus, Géarding’s inequality for symbols {T.1, Thm. 8.1, with s = 0, p. 55] gives

(6.11) <Dy ext X %, xuyz = Re Dy, ext x oy 3w > G, “XI'“’”?P(E)“— 011)(1“!12:2(2)

where D, . € OPS;, is the pseudo-differential operator corresponding to the symbol
d; o Via (3.8). But, from the product theorem [T.1, Eq. (4.5), p. 46] one sees that

(6.12) support of symbol of (D, .., x') C support of symbol of y' =
= support of y* =G U Gl .
Thus, the definition (3.8) and (6.10a) give
(6.13) D, o X'u=Diyu.
Using (6.13) in (6.11)
(6.14) KDy iy X udz|> Oonxi“”él(z)— Ol‘Xi“ﬁ,(m

for ¢ = 1. The validity of (6.14) for ¢ = II follows in a similar manner from (6.9).
Recalling (6.6) in (6.14)

(6.15) | Xi“ii?i'(z) = 0(“1’”%,(0)) + O(‘XI’“E;E(Z)) = O(|f] )12,,(0)
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where in the last step we have applied eq. (5.14), standard trace theory, and the
a-priori regularity of Lemma 1.1. Equation (6.15) gives (6.2). O

6.2. Regularity of %% u.
We next obtain an estimate of the term %« (see (5.15)) in (6.1).

THEOREM 6.2. — Let 3/2 < r < 2. With reference to the localized problem (3.22)
with g = 0, we have that %% 4 e H-Y(X); more precisely

(6.16) [% % wlgrazy = O(Iflz,000) -
ProOF. — We apply the operator D/*~! (where r/2 — 1 < 0, we shall eventually
identity r = 8/5, whereby then r/2 — 1 = — 2/5) to problem (3.22) with y = %%:.

Since D}*~! commutes with the time invariant coefficient operators P, B, y, [P, %],
[B, x1, (a property we shall use freely below), we obtain

(6.17a) Py D/*tu) = B D21 f + [P, 4B 1D/* 'y on @,
(6.170) B(x% Di*~u) = [B, x®1D;2 ul,_, on X.

Applying Corollary 4.5b), Eq. (4.14), with « replaced by Dj*~'4 to the solution
x®7 D*"*u of (6.17), we obtain (g, and f, are defined in (3.220)-(3.22d))

(618) <D, xB D> tu, x B D* Uy = — |[B, xB 1D Ml _ o2 oy +
+ Im ([P, x®71D;%u, D, x% u)q + Im (D}/2=" } 37, Dy*=1D, 3B u), +
+ o(| Dy ng':u”m(m) .

CrAIM. — We have
(6.19) Dy x® DYy x B D g = O( ) -
Proor orF CrAm. - We analyze the four terms on the right of (6.18).

First term. With » € HYQ) (a priori regularity of Lemma 1.1) we have %] _, €
€ HY*Z). Theorem 5.15¢, Eq. (5.87b), applies with s = } and ¥ = r/2 — 1, so that
1<s-+r2—1<}. Hence
(6.20) [[B, xB1D7* |, _olp. 2y = O(Il1,0) -

Second term. By Theorem 5.3 a), Eq. (5.43) and a-priori regularity (Lemma 1.1)

(6.21) 1 Iy x P 1D a0 = O(Ifl5,07)
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while by Corollary 5.2, (5.25a), and (3.10b),

(6.22) 1D, XP 0= O( @) -

Equations {6.20)-(6.22), combined with the obvious analysis of the last two terms
on the right of (6.18), produce the claim. |

We return to (6.19) and recall definitions (5.15), (5.17) for the real symbol d,:
(6.23) di(z, 4y 0,m)>0"  on B U B, ., where o~ [y].
Thus, we are in a situation similar to the one in (6.7), (6.8). Proceeding ag in going
from (6.8) to (6.14), we likewise apply Girding,s inequality for symbols [T.1, p. 46]
and obtain from (6.23)
(6.24) <Dy x B D1, x B D Uy 5> Col| 37 DYt gonimy— Oy |y ™ DY iy -
Thus, using (6.19) in (6.26) implies, since D}*~! commutes with %7
(6.25) [ D x B ulgne = O(IflZ.@) + O(D ! X ul},m) = O(Ifl7,@)
where in the last step we used r/2—1<0 and %7 u|,_,e HV*X) by Corollary 5.2,
Eq. (5.26b), and Lemma 1.1 (a-priori regularity). Moreover, since o~ || in the

region B, see (5.3), we have that the operators D>~*x%7 and D;*~?y%: belong
to the same symbol class. Thus from (6.25), we obtain likewise

(6.26) ]ID;Ijz_l X‘%:“HHTIZ():) = O(l|f|{Lg(Q)) .

Equations (6.25)-(6.26) together give the desired estimate
”D:_I X‘%:““iz(z) + HDL,_I X‘%:’“H%,(Z) = O( ”f”zzla(a))

i.e. (6.16). Lemma 6.2 is proved. O

6.3. Regularity of %% .

Finally, we estimate the term y®:u (see (5.16)) in (6.1). To this end, we col-
leet some preliminary results needed in the proof of the theorem below.

LeMuma 6.3. — Let 3/2 < # < 2. With reference to (4.1a), (3.10), (3.13) we have
for 0<l<1
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a)

(6.28a) [4°, D,]€OPS8? (BptY),  uniformly in weRL,
b)

(6.29a) [P, A°] € OPS] H(RByt'), uniformly in weRL,,
¢)

(6.30a) [D., A°]€ OPS{ M (RpEY),  uniformly in ze R, .

Hence:

(6.280) [4% D,] continuous H'(Q) — Ly(RL; H'°(Rp)),

(6.206) AP, A%: continuous HY(Q) — Ly(RL.; H*~C*V-9RrY), g<—9,

(6.300) AYD,, A%]:  continuous H(Q) — Ly(RL,; H‘“("“’“"(Rg,)) y g<—0.
Proor. — The proofs of cases a), b), ¢) are similar, and are based on the asymp-

totic expansions of symbols [T.1, (4.5), p. 46]. A main point in claiming uniformity

with respect to @ € R, is that the symbol of the commutator in each of the three
cases does not depend on £,

a)

~ 7n—1
(6.31) {symbol of (A0D,)} ~ (y2 -+ o* 4 |17|2)ﬂ/2(§ +3 a,,,.n,.) +

n—1
+l A2 al {D“ Pt ot f’?lz)"’z}{m(E + 2 am-w)},
77 Y

n—1
(6.52)  {symbol of D,4% = (£+ T a,n)(* + o* + 7)),

$0 that subtracting (6.32) from (6.31) and noticing that in (6.31) only the terms
corresponding to derivatives in 5 and y are active

(6.33) {symbol of [A9, D,]} ~ a, {D“ (y2+ o [17] 2jorz} {nil D3 %5)??5}
a]>1 J

and the symbol of the commutator is independent of £, From (6.33), one obtains
easily (6.28a), according to Definition 8.2. The proof of (6.29a), (6.30a) are similar.
Then, Lemma 3.1¢) applies and yields, respectively, (6.28b), (6.29b), (6.30b), the
last two after applying the product theorem [T.1, p. 46]. O

THEOREM 6.4. — Let 3/2 < r < 2. With reference to the localized problem (3.22)
with ¢ = 0, we have x%®-uec H'="4(X); more precisely

6.34) 1% wlgene = 0(Iflye) - O
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ProOF, — The proof makes use of both part a), Eq. (4.13), and part ¢), Eq. (4.15),
of Corollary 4.5, as they apply to problem (3.22) with y == %+ and g=0. In fact,
from the present version of eq. (4.13)

(6.35)  [xBrufhog =2 Im (A°D, B u, 4° xBu)g + O(| %P ul50q))
for now: 0<0<1

where u, hence %7 u, belong to HY(Q), (Lemma 1.1 and Corollary 5.2), we see that
we obtain

(6.36) X$;“€H0(2)7 indeed HX‘%;“HH“(ZI): O(”f”z,,(q))
provided we show that for such 6
(6.37) (A°D, %3 uy A° % u)g = O([flz,@)

with A° = A, defined in (4.1a). To this end (*), we first note that for 0 <«<1 and
ue HYQ), hence 37 ue HYQ), then by Lemma 6.3, Eq. (6.28),

(6.38a) (4% D) y3 uwe L(RL; H(R},)) € Ly(@) -
In fact
(6.38b) | 14% D, % ¥ ulp = O(Iflz.@) -

Next, we write

(6.39) A*D, %% u = D A* xS u + (4% D] xP u

{by (6.388)) =D, A*%B u + O(|fl, ) O<a<l.
Thus
(6.40) (A° D, 3P uy Ay Bru)y = f (A°D %37 uy A% D7 u)p, () dev

RL+
(by self-adjointness of A on Ly(E;))
=f(/120_1ﬁm x5 u, AxP7 ) g ap,) A
R;a-
(by (6.39)) = [(D, 42 3B, Ay any @+ O(11}, )

1
B+

(3) Instead of working with A% we could work only with Dg (which commutes with the
various operators !!), Then, we use that ngx&" and D% %7 belong to the same class symbol,
since o~ || in $;; this approach was followed in Theorem 6.2.
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since |AxB ], o= O(|fl;,q)- Thus, the desired equation (6.37) is established, as
soon as we prove that

(6.41) 10,4 y® = O(Ifl@) ,  3<O<1
since for 0<f<%, Eq. (6.37) is plainly true. To this end, we return to problem

(3.22) with y = 4% and apply A%°~! to it, in the interesting case 0 < 20— 1<1.
We thus obtain the following problem (P and B as in (3.22)) '

(6.42a) P(A* yu) = A1, + [P, AP ] yu in @,
(6.42b) B(A* "t yu) = A*~'g + [B, A% yu|,_, in X,
(6.420) f =2+ 1P, xlu,

(6.424) 9, = XGls=o+ By x]ul,—g

in the solution A*~'yu, y = x%7, where we are presently taking g= 0. We now
use Corollary 4.5 ¢), Eq. (5.15), as it applies to problem (6.42), in particular with
x4 in (4.15) replaced now by A*~1y% 4. We obtain

(6.43) D, 4% yBrulf o= (1) + @)+ )+ (),

(6.44) 1)= (Aze—lfxfls; + [P, A7 4B w, 4207 4B u)y = (la) + (1b) + (Le)

by (6.42¢),
(6.45a)  (la) = (A%~  xB7 f, A¥~1 By,
(6.450)  (10) = (A*~'[P, B Tu, A%~ xB7u),,
(6.450) (16} = ([P, A2~ 1] 4 ®7w, A2~y D7 u),,
(6.46)  — (2) = (2a) + 2iy(2b)
(6.47a)  (20) = (D, A2~ 1y B 4, wAP~ 3 B7y), (w as in (4.2b)),
(6.470)  (2D) = (D A** 1 y B, AP~y B7wi),
(6.48)  —i(3)=(3a) + (3D) (using [B, A*~*yB:]1=[B, A%~ %B7 + A*~1[B, xF7]),

(6.49a)  (3a) = (A*[B, xS ul,_,, A2 xBiu Loz s
(6.490)  (3b) = (B, A~ xHrul,_;, A1y B7| _>s,

(6.50)  (4) = (DA~ yBiu, 4201y Bryy),

We shall examine individually each of the terms on the right of (6.43).
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First term {1). From (6.45a), since A is self-adjoint on L,(R})

(6.51a) (1a) :f(xss; fy A2 B wp, ) doo = O([F]2 ) »
Rls

provided 40— 2<1, i.e. provided

(6.51b) §<3/4

by Corollary 5.2 with we HYQ).
Similarly, from (6.45b)

x , [ o - b4l - "y
(6.52)  (10) = | (AP, B Tw, ATy B ) oy do = O([]7,0)) 5
RL+

provided 2 —» + 40— 2<1, i.e. provided

(6.53) <=+

TNy
=1 =

by Theorem 5.3 b), Eq. (5.44), and Corollary 5.2 with » e HY@Q).
From (6.45¢)

(6.54) (10) :f(/lze-z[P, AP By AP ) mn 80 = O(If|Z,0) »
B
provided, by Lemma 6.3, Eq. (6.29b), we have
1—(260—1-+-1)—(26—2)=3—46>0, i.e. provided (6.51d) holds .

Combining (6.51), (6.52), (6.54) we have

6<3/4,
6.55 1) = O(|fi2 rovided
(6.55) 1) =90(flf @) P 6ttt ria.
Second term (2). From (6.47a)

~ ~
i
H

(2a) =] (Dx/lza— : X‘(B?u, wA?1 x B )L (RD) dw ::J (Aw‘zﬁm/lzeg IX'(B; uy wAy S W) 1y, 0
Ri+ B+

(using (6.39), (5.25a) with s =1, and (4.1b))

(6.56) — f (A4 D, %P7 w, wAXS w)g,mz) 4 -+ O([Z ) = O flZ.)

R+
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provided 40— 3<0, i.e. provided (6.51b) holds (both D,x®7u and wAx3: ue Ly(Q)).
Similarly, from (6.47b)

(6.57) (20) = (422D, 4% Y B a1, Ax 7w,y do = O (112 0)

1
R+

provided 26— 2 + 20— 1 -+ 1<1 (recall (3.12)), i.e. provided (6.51d) holds.
Combining (6.56)-(5.57), we obtain

(6.58) . (2) = O(|fl; @) provided 6<3/4.
Third term (3). From (6.49a), since A is self-adjoint on JLy(ZX)

(6.59) (Sa) — <A26-—1+29——3/2 [B’ xm:]u'm=0’ AI/Z X$;ulm=0> = O(Hf”_%,(a))
provided
(6.60) O<1/d+r/d.

This is so since, with ue HYQ), we have AY2y%7 4| _ e L,(X) by Corollary 5.2
and, moreover, [B, y®:lul,_,e€ H'*~@""(%) by Theorem 5.15, Bq. (5.87) with
8 = 1/2; thus, we must require for the left hand side term in the X-inner product
of (3a) to be in I,(X) that: 1/2— (2—7) - 40— 5/2>0, i.e. (6.60). Similarly from
(6.49b)

(6.61) ((3b) = <A*=¥2[B, A ]xBrul,_y, A2 xB7 |, _o>z = O(I1]3,@)
provided 6<3/4. This is so, since plainly [B, 4*°~']| _,€ OPS8¥ (X) so that ul,_,€
€ H'3(X) and [B, A%y u|,_,€ HY*~2-1(X) and the left hand side term in the

2-inner product of (3b) is in L,(X), provided 1/2 — (26— 1) — (20 — 3/2)>0, i.e. pro-
vided 6<3/4. Combining (6.59) and (6.61), we conclude that

) 0<3/4,
(6.62) (3) = O(lf|Z,) provided
: O<1/4 + r/4 .
Fourth term (4). From (6.50),
(6.53) (4) = f (202D, A0~y 57 0y Ay D7 ), azy A

4
R+

But
(6.64)  A*7ED APy By = A20-242-1 D §Bry 4 N20-2 [D,, A%~y By =
= /149—31)1 xfﬁ?u + O(”f”i(m)
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by applying Lemma 6.3, Eq. (6.30b), Corollary 5.2 and » ¢ HY(Q) (Lemma 1.1), pro-
vided 1 — (26 —1 4 1) — (20— 2)>0, i.e. 0 <3/4. Moreover, recalling Theorem 5.186,
Eq. (5.928), with « € HY@), we have

A46—3D1 Xﬂ};u e Lz(R;I;H Hl-r—(w—s))(R;,))

and we then require 1—r— (40— 3)>0, i.e.

(6.64) f<1— /4
to obtain
(6.65) 1A= Dy 3B )10y = O(1fl1ap) -

Putting together (6.63)-(6.65), we get

(6.66) 4) = O(|f|2 ided O<i-rit,
. o 3 T
( fHLi(Q)) proviee 0<3/4.

We can finally conclude. We return to (6.43) using (6.55), (6.58), (6.62), and (6.66).
We thus obtain

(6.67) 1D, 4% % ulp 0= O(If lz.@)
provided
0<3/4
(6.68) 0<1/4+7r/4 with 3)2<r<2.
f<1—r/4

But, for 3/2<r< 2, we have 1~ r/4<<1/4 4 r/4<<3[4. Thus we have
(6.69) 1D, 4% B w0y = O Flpry)  for all <1 —r/d.

Returning to (6.36)-(6.37) and the statement above (6.41), we conclude by virtue
of (6.69) that

(6.70) (6.36) holds for all B<l—r/4.

The highest regularity of % « is then obtained by choosing 6 = 1— r/4. Theorem 6.4
is proved. |

6.4. Final step in the proof of Theorem 1.2.

Theorems 6.1, 6.2, and 6.4 provide the regularity of the various components
of the partition of unity decomposition in (6.1). Intersecting the segments {1 — r/4,
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3/2<r<?2} and {r—1,3/2<r<2}, we obtain (as already announced)
r = 8/5

in which case r — 1 = 1 — r/4 = 3/5 is the optimal value which provides the highest
regularity to B u and P u on X simultaneously; i.e.

for r=28/5 = % u, xFuecH”Z).

The proof of Theorem 1.2 is complete!! O

7- — Completion of the proof of Theorem 1.3: f =0 and ge Ly(Q)

ORIENTATION. — The a-priori interior regularity result, Lemma 1.1b), claims that:
if wp =, = f = 0 and g € L,(2), then a-fortiori the solution % of the corresponding
non-homogeneous problem (1.6) satisfies v e HY*Q). Authorized by this, we shall
then assume as a-priori information the interior regularity e H(Q), 1/2<q<3/5
for the solution. (Actually, only we HYR}; Rf) or Diue L,(Q) will suffice). As a
consequence, we shall prove the following trace regularity, that u|re H* ¥5(X).
This is the content of Section 7.1. Next, in Section 7.2, such irace theory result
will then be used to improve the original interior regularity of the solution to read
that, in fact, the solution u satisfies ue HTGA0-9D(Q) — FU2+310Q) 1/2<q<3/5,
and this, in turn, induces a corresponding improvement of the #race regularity
expressed by u|ye HO ¥5+GM0-a2) 3y — ga2-1103)  Finally, in Section 7.3, we
shall then carry out the ensuing « boost-strap » argument, starting with ¢, = 1/2,
to conclude simultaneously that, in fact, e H*5~°(Q) = HY?*1%~5(@) and u|re
€ H'5~5(X), Ve > 0.

7.1. From the a-priori information Diu e L,(Q) in the interior and u|z € Ly(X) on the
boundary to the trace reqularity w|z € H5(X).

The main goal of the present section is to prove the following theorem.

THEOREM 7.1. — Assume that the corresponding solution of problem (1.6) with
Uy = Uy = [ = 0 gatisfies

g€ Ly,(2) — Diue L,(Q) continuously
(7.1) [or ue HY(R;; Ly(R;,))]
1/2<q<3/5

(a fact a fortiori true at least for ¢ = 1/2 at this stage, by Lemma 1.15).
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Then, |z e H™**(X); more precisely
]2 ma-ismy < Cl9ly

with constant C independent of ¢ (1/2<¢<3/5). A fortiori, the map ge L,(2) —
— u|r € L,(X) is compact. O

REMARK 7.1. — Throughout this entire section, we shall also explicitly use the
following a-priori information that - ”

{7.3) g€ Ly(2) — ul|z€ Ly(2)

for problem (1.6) with w4, = %, = f == 0. This result was apparently unknown until
1984. (It does mot follow by the known result of the time [L-M.1, Vol. II, p. 122] on
interior regularity: u e L,(0, T'; HV*(Q)) (improved to we C([0, T'T; HY*(£)) [L-T.2])
via trace theory. In May 1984, two independent proofs were given, one by J. L.
Lions [I.1] and one by the authors, during an exchange of correspondence.
J. L. Lions’ proof uses a Laplace transform technique. The authors’ proof is based
on the following three steps (with w#, = u, = f = 0):

{(a) re-proof of Myatake’s result [M.1]

g€ Ly(0, T; HV¥I")) = ue O([0, T1; HY(2))
(%) |} trace theory
ulz€ Ly(0, T; HY*(I)) ;

(b) (consequence of step (a) by transposition)
() ge Ly(0, T; H-V¥(I")) = ulz€ Ly(0, T; H-V¥(I")) ;
(¢} interpolation between (%) and (). O

Proor oF THEOREM 7.1. — As in Section 6, our approach is based on analyzing
separately the regularity of each component of the partition of unity decomposi-
tion (5.13) or (6.0), i.e., Xgu|)_~, x®B7ul> and x® ulz. This will be done in subsec-
tions 7.1.2, 7.1.3, and 7.1.4 respectively. First; however, in subsection 7.1.1 we need
2 preliminary result which claims that, under assumption (7.1), not only do we
have D,D? *ue L,(Q), but also D, D! and D, DI ue Ly(Q).
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7.1.1. A preliminary improvement in the interior regularity in x and y: D ue HY(Q),
1/2<q<1.

The main result of the present subsection is

PROPOSITION 7.2. — Under assumption (7.1) there exists a constant y, > 0 such
that for all k> y,, we have

(7.4) ' HD?'WHHI«;) < Oyl!]]z:
with constant C, depending on y but not on ¢, 1/2<¢<1.

PROOF OF PROPOSITION 7.2. — In addition to D,D!'u e IL¥(Q) which is true by
assumption, we must likewise prove that

(7.5) D, Ditue Ly(Q),

(7.6) D, Di tue Ly(Q),

xontinuously with respect to ge Ly(X). This will be done below by sphttmg % as
w=y%%u+ x®u. We begin with a preliminary lemma on D, Dt x P,

LeMma 7.3. - Under assumption (7.1) we have
(1.7) 1D, D~ P ulg<elgly
with constant ¢ independent of ¢, 1/2<_q<1.

PROOF OF LEMMA 7.3. — The idea is that the operators D, X and D x‘% belong
belong to the same class, since o~ || in B U G U ST = supp x® 5 supp [symbol
of Dij ], supp [symbol of D, 35] This can be checked as usual via [T.1, The-
orem 4.4, p. 46] and (5.14). For this reason we have

(7.8a) D,D; % e OPS? (R1+Y), uniformly in we Rl
and hence by Lemma 3.1 a)
(7.8b) D, D" x®: continuous HY(Q) — H*(Q)..

Then (7.7) follows from the assumption (7.1) and from (7.86) with s = 0. ]

The crucial part of Proposition 7.2 is given by the following result.
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ProrosiTION 7.4. — Under assumption (7.1) there exists a constant y, > 0 such
that for all y > v,, we have

(7.9a) 1D, D¢ xBu) o< 0, lglx
and hence
(7.95) |D, D %, < 0, lglx

where O, is a constant depending on y but independent of ¢, 1/2<g<1.

ProoF oF PROPOSITION 7.4. — Inequality (7.9b) follows easily form (7.9a) via
the definition (3.105) and inequality (7.7). To prove inequality (7.9a) we need the
following three lemmas.

LEMMA 7.5. — Under assumption (7.1), for any > 0 sufficiently small, we have

eC
1—eC

(7.10) 1D, D P uli< O lgls + o 1D xSl

with constants €, and O independent of ¢, 1/2<¢<1. To gain information on xgu
in the interior, we begin with its trace on X.

LemMa 7.6. ~ Under assumption (7.1), we have
(7.11) 1Dy Sl < OLl1% + | DF ' x5 Rgy + 108 ¥ P )}

with constant € independent of ¢, 1/2<¢<1.
We now obtain information on 5w in the interior.

LeMMa 7.7. ~ Under assumption (7.1}, there exists a constant y, > 0 such that
for all y > y, we have

EQD?_IXQ“HEKQ) <0Jlglz + | Di~? xPu (E

with constant C, depending on y but independent of ¢, 1/2<¢<1.

Assuming for the time being the validity of the above three lemmas, we may
now readily prove Proposition 7.4. In fact, if we insert (7.12) into the right of
(7.10) we obtain

eC

(7.13) 1D, D7 xPuls<Culglt + —

0, {912 + 1D P u o)
where

105 B Zag = 100 %P w2+ |1 D x®uld + 10,07 xPull + | D, DF* xPulf
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(by (7.1), (5.14), (3.10b), and (7.7))
(7.14) <Clgt + | D, D xBuli.

Hence, inserting (7.14) into the right side of (7.13), we obtain

0 1 2 2
(1.15) fi- 2% o hip. oy ui< oot

Selecting now ¢ suitably small with respect to y in (7.15), we obtain (7.9a¢) and
Proposition 7.4 is proved, as soon as we establish the above three Lemmas 7.5, 7.6,
and 7.7. However, before so, we draw some corollaries.

CorOoLLARY 7.8 (to Lemma 7.3 and Proposition 7.4). — Under assumption (7.1),
there exists a constant y, > 0 such that for all y > y,, we have

(7.16) 18 %P ) g0y < G, 9z
with constant C, depending on p but independent of ¢, 1/2<¢<1.
Proor oF COROLLARY 7.8. — Combine Lemma 7.3 and Proposition 7.4. a

COoROLLARY 7.9 (to Lemma 7.7 and Corollary 7.8). ~ Under assumption (7.1),
there exists a constant y, > 0 such that for all y > y, we have

(7.17) 10§ %% Uy < C, gl -
with constant O, depending on y but independent of ¢, 1/2<g<1.

Proor OF COROLLARY 7.9. — Combine Lemma 7.7 and Corollary 7.8. O

Continuing with the proof of (7.4) of Proposition 7.2, we see that u = x‘%u + xgu
combined with (7.16) of Corollary 7.8 and (7.17) of Corollary 7.9 provide the desired
conclusion. Thus Proposition 7.2 is proved as soon as we establish Lemmas 7.5,
7.6, and 7.7.

Proor oF LEMMA 7.5. We shall invoke inequality (4.7) (or else inequality (4.6¢))
of Theorem 4.3 for problem (1.6):

(7.18) |1D,u|% = O{Re (Pu, u), - Re (Dyu, u), + w2+ |BulZ} .

If now we apply D{™' to the localized problem (3.22) and use the property that D,
commutes with all other time-independent operators in (3.22), we then obtain
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P(D{ yu) =[P, 1 D{ tu, inQ, —co<t< o0,
B(DF ! yu) = DI gl,mo+ (B, XIDF 0,y 0 I, — co<t< oo,

which we shall use now for y = X‘(B. Applying the version of (7.18) which corresponds
to problem (7.19) in the solution D‘t’*lx‘%u (instead of ), we obtain:

(7.20) 1D, D¢t B = 0{(1) + (2) + B8) + (4)},

(7.21) (1) = Re ([P, "D 1w, Dy B ), ,

(7.22) (2) = Re (D, D" 'x®u, D yBu),,

(7.23) (3) = | D 'xPu|i<Clgz, C independent of ¢,
(7.24) (4) = [(4) + @) F<2{(4)IE + (%) 5}

(7.25) (4) = x*D{ gl

(7.26) (42) B, x®1DF M uyeg -

But the operators yx® and %°® (corresponding to the homogeneous symbols 1>
and 2% see (5.14)(, belong a fortiori to the class OPS) (Ry), uniformly in @ € RE,
30 that Lemma 3.1 a) with s = 0 applies. Moreover,

(7.27) [P, x*1, [P, x®1€ 0P8} (@) ,
(7.28) [B, x®1, [B, x®1€ OPS] ((2),

by the commutator Lemma 3.2 (which is standard for homogeneous symbols).

Term (1) Using (7.27) and % = x‘%u - xgu we have from (7.21) via Sehwarz
inequality

(7.29) ()] <20 Df ufm@ | D xPule<C {% | D x B uls + SHD?‘WHEW)} <
{by (7.1)) ;g[z+‘>eOHDH x®ulkno) + 260 DE ¥ u o) -
Term (2). We rewrite (7.22) as
(7.30) (2) = Re (D, D;2 x® Dtu, DI xPu), .

We now use that

(7.31) D, D2 y®cOPS(R:), uniformly in we R}
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by the product theorem [T.1, Theorem 4.4, p. 46], since
supp [symbol of D, D;*x®csup y® =Bugiugl,

a region where o~ |n|: Then (7.31) and Lemma 3.1 4) with s = 0 give, together
with (7.1)

(7.32) [(2)]<Olgl:, O independent of ¢, 1/2<g<1.
Term (3). Is handled by (7.23).
Term (4). Plé,inly from (7.25) and (5.14a) since ¢— 1 < 0.
(7.33a) |(42)|<Clgls, O independent of ¢, 1/2<g<1

while by using (7.28) and the boundary regularity (7.3) along with ¢ — 1<0, we
have from (7.26)

(7.33b) I(4,)|< Clgly, C independent of ¢, 1/2<¢<1.

Combining (7.20) with (7.29), (7.32), (7.23), (7.24), (7.33a)-(7.33b), we obtain -
1D, D8 x Pl < Culgls + Ol D x| Fgy + 6C1 D 38wy

(recalling (7.14))

(7.34) <O,lgl2+ 0D, D¢ xBul+ O D X%l -

Thus (7.34) gives

(7.35) (1~ e0)|D, Dy~ xPulg < C,lglt + 01 DF %P0,

from which (7.10) follows and Lemma 7.5 is profred. O

Proor oF LEMMA 7.6. — We shall invoke identity (4.5) of Theorem 4.2 for problem
(1.6), as applied to the localized problem (7.19) with % = %€ in the unknown
D*~ySu. We obtain

(7.36) Dy Df  x8u, DIt xS uyy = [1]+ [2] - [3],
(7.37) — [1]= (L] + [alF<2{[L1%+ I3},
(7.384) 11 =x%Digl,.y,

(7.38b) [1,] =I[B, x*1D{ ul,_,,

(7.39) [21 =Im ([P, x*1D¢ u, D, D" x5u),,

(7.40) [B] = 0D xfuldq) -
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Term [1]. Since ¢— 1<0, we plainly have from (7.384) and (5.14)
(7.41a) [L]lz<Clglz, C independent of ¢, 1/2<g<1,

while recalling (7.28) and the boundary regularity (7.3) we likewise obtain from
(7.38b)

(7.41b) [[1.)lz<Clglz, C independent of ¢, 1/2<g<1 .

Term (2], By (7.27) and u = x‘%’u + xg u, we obtain from (7.39) via Schwarz
inequality

(7.42) 21 < [-Df gy | Dpi~? XQ“HQ<‘%{ 1D w7 gy + 1D, Di* xS u|2 <
<IDF ¥ B ldg + 1D xS ulfe + 10,08 xSul}.

Recalling (3.10) we obtain from (7.42)

(7.43) 20 < 0D X Py + 105 xBul )

with ¢ independent of g, 1/2<g¢<1. Combining now (7.36) with (7.37), (7.41la)-
(7.41b), (7.43) and (7.40), we obtain

(T.44) <D D x5, DF y¥uys = O{jgz + 1DF xPwlfo + 107 X uli)

with constant in O independent of ¢q. Thus, we are in (7.44) in the same technical
situation encountered in (6.7), or (6.19). Proceeding as in going from (6.8) to (6.14)
we likewise find by use of Garding inequality [T.1, Theorem 8.1 with s = 0, p. 55]

(1.48) KDy DI~ xSu, Dt ySudg|> Of DEt xEufG sy~ O D xSuf2.

Using (7.45) in (7.44) along with ¢ — 1 < 0 and the boundary regularity (7.3) in
the last term on the right of (7.45), we obtain (7.11) as desired. Lemma 7.6 is
proved. O

Proor or LEMMA 7.7. — We shall invoke, and for the first time in fact, identity
(4.12a) (with D, = B on Z, by (1.4)) which for problem (1,6) with f = 0 we rewrite
as follows: there exist constants Oy, ¥, > 0 such that for all y >y, we have

(1.46)  yO,lulfe<—2Im (Pu, — Dyu + iayu)g—
— 2 Re {Bu, Dyuys -+ 2y Im {Bu, au)z,
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We shall now use the version of (7.46) which corresponds to the localized problem
(7.19) with % = x® in the solution D?"*x%u. We obtain

(7.47) YOI DF xS ulfug < (1) + (2) + (3) + (3) LW+ 6) ;

(7.48) (1) = 2 Im ([P, x®1D¢ u, D, D * x5 u), ,

(7.49) (2) = 2 Re ([P, x°1 D¢ u, ay D~ x5u), ,

(7.50) (3) =—2 Re{x® D *gl,_, D, i xS0z,

(7.51) (4) = —2 Re {[B, x°1D{ " ul,_q, D, DF " xS w0y,

(7.52) (5) = 2y Im <XS D{ 2 gl,_o + [B, X511 ul, o, aDi xS0 .

We next analyze the higher order terms (1), (3), (4) in (7.47).
Term (1). Using (7.27), u = x33u -+ xgu and (3.12a), we obtain from (7.48).

(7.53)  |()I<20DF | gugy 1DF* %E 2] ey <

<O D¢ ulney+ 10§ X uli} < OUIDF 2P0l + 108 %% e}
with O independent of ¢, 1/2<g<1.

Term (3). Using ¢— 1<0 and D,|,_ € OPS] ((Z) (from (3.12a)), we obtain from
(1.50)

|3)<2C1g]z 1DF xSl
and recalling (7.11) of Lemma 7.6
(7.54) I8)< Cflgl3+ | DT Xgungp(o)‘i‘ |Df1 X‘%“”?p(a)}
with € independent of ¢, 1/2<g<1.

Term (4). Similarly, recalling (7.28), ¢ — 1 < 0, the boundary regularity (7..3)
as well as (7.11) of Lemma 7.6, we have from (7.51)

(7.55)  |(4)|<20ul,_olz |D?~1Xg“|111(2)<0({{gl§+ “th_lxg“”gl(a)‘l“ ||D§‘1x33uﬂ§1(a)}

with O independent of ¢, 1/2<g<1.
We now handle the lower order terms (2) and (5) which, however, depend on y.
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From (7.49) we have using (7.27) and ¢— 1<0

(7.56) ()| <20D{ Uy | D xFu] o<
(by (7.1))  <20] D (x%u + x®u) ey Ylgle <
< C{HD}‘"‘(X% + X‘%“) H%ll(o)'f‘ Y0glE<
<20[ D8y ufgy+ 20| DF P u) g+ OF g2

Similarly from (7.52), recalling (7.28), the boundary regularity (7.3) and ¢— 1<0,
we obtain

(7.57) [(B) < Oyplglzlglz, O independent of gq.

Finally, combining (7.47) with (7.53)-(7.57), we obtain

(1.58)  yCol DI xS < O DI xS gy + CIDI X Pl + €L + 7 + 7)ol
with constant € independent of ¢, 1/2<g<1 and also independent of y.

Selecting y sufficiently large in (7.58) so that yC,— C >0, we finally obfain
from (7.38)

(7.59) 0= ONDF ¥ Uiy < 01D X P ullfgy + O + v + vl
from which (7.12) follows as desired. Lemma 7.7 is proved. O

Having established Lemmas 7.5, 7.6, and 7.7 we have completed the proof of
Proposition 7.2. O

7.1.2. Regularity of the trace ySu|z: %Su|z e HY(Z).

The following is the main result of the present subsection.

THEOREM 7.10. — Under assumption (7.1), there is a constant y, > 0 such that
if > p, we then have x°u|re H(Z): more precisely

(7.60) ]!Xgu‘ElHG(Z)<'O'yigi2
for a constant O, depending on y but independent of ¢, 1/2<q<1. 2

Proor or THEOREM 7.10. — We begin with a corollary to Lemma 7.6, Corol-
lary 7.8 and Corollary 7.9.
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COROLLARY 7.11. — Under assumption (7.1), there exists a constant y, > 0 such
that if y >y, then

'Dghl Xg“fﬂl(z‘)<~ Cylglz
with O, depending on y but independent of ¢, 1/2<g<1. 0

Proor oy COROLLARY 7.11. — We return to (7.11) of Lemma 7.6 and we use
(7.16) and (7.17) of Corollaries 7.8 and 7.9 respectively, thus obtaining (7.61). O

Continuing with the proof of Proposition 7.10, we see that (7.61) implies

D ySue L(Z) continuously .
(7.62) g€ Ly(Z) —~
D7D, ySue LX)
Hence
(7.63) ySue L,(Ri—1; HYR)))
continuously in ge L,(ZX),
(7.64) D, x%ue L(Ri1; HY(RY))

and by interpolation [L-M.1]

(1.65) 153 ySue L(R:Y H™OURY), 0<b<1

since g{1—0) - (g— 1)0 = ¢— 0. Choosing 0 = g<1 in (7.65) yields
{7.66) D xgueLz(Z) , continuously in ge L,(2) .

Combining (7.62) with (7.66), we obtain xgueH‘l(Z) continuously in ge ILy,(2);
i.e., (7.60). O

7.1.3. Regularity of the trace ¥t uly: ¢ ul,e H-E (), 1/2<g<r/2.

As in Section 6, we split x® into x%' and %% as in (5.20a) and analyze x%/
and y%- « separately. This subsection is devoted to x®7u. The main result of the
present subsection is

THEOREM 7.12. — Under assumption (7.1) for problem (1.6) with %, = u, =
= f =0, restricted to 1/2<q<r/2, 3/2 <r< 2, as in Section 5 (*), we have yPru|ze

(*) Asin Section 6, we shall identify r in subsection 7.1.5 to be » = 8/5, so that 3 < ¢ < 4/5;
see (7.110).
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€ H*®~7(X); more precisely
(7.67) [xB* W glge-e-nizy < 0,lgls
with constant C, independent of ¢, 1/2<q<r/2. O

Proor or THEOREM 7.12. ~ Motivated by Sections 5.3, 5.4 and 7.1.1, we apply
Di-tHrz=l — petniz=2 4o the localized problem (3.22) with y = % and obtain
for f=0:

P(D§+”2_2 XSS:’ w) = [P, XSS:]D?wlz—zu’ in Q, — o< t< oo,
(7.68) B(D;H-rlz—z Xﬂ&;’ “) — Xﬂ&jpg+r/2—2glx=0 + [B, X$;1D3+r/2—2u|mz0 ,

i in I' s co<lt< 0.
Problem (7.68) will be the bagic localized problem for this present subsection, as
problem (7.19) was the basic localized problem for Subsection 7.1.1. We apply to
(7.68) the corresponding version of identity (4.5) of Theorem 4.2 b) in the solution
Ditriz=2 457y, We obtain

(7.69) (D, DeHriz=2y B g, D2y Blyy = (1) + (2) + (3)
(7.70) (1) =2 Im ([P, x¥ 1D} 2u, D, D2y B ),
(7.71) —(2) = |(20) + @) F<2{@3 + @3} ,

(7.72a) (2 =B DI g,

(7.72b) (20) == [B, x® DI 2l

(7.73) @) = 0(IDF P P | fag) -

Term (1). We rewrite (7.70) as
(7.74) (1) = 2 Tm ([P, xB:]1 D=2 D¢ u, D, DI~ 4B w), .
We now invoke (5.43) of Theorem 5.3 as well as (7.4) of Proposition 7.2 on the
left hand side term of the inner product in (7.74); while we invoke (7.94) of Pro-
position 7.4 on the right hand side term. We obtain
(7.75) ()< Clglz, ¢ independent of q.

Term 2. From (7.72a) we obtain, recalling (5.25b) and ¢ + 7/2—2<0:

(7.76) I(2))z<Clglz, C independent of ¢.
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As to (7.72b) we rewrite it as
(1.77a) (22) = [B, x* 1D, * Dy "2,

and invoke (5.87) of Theorem 5.15 with k¥ = » — 2, s = 0, as well as the assumption
g<r/2 and (7.3). We obtain

(7.77b) [(2,)]z<C,lglz, O, independent of ¢, 1/2<q<r/2.
Hence, from (7.76), (7.77a)-(7.77b) and (7.71)
(7.78) [(2)]<C,lglz, O, independent of ¢, 1/2<g<r/2.
Term (3). We obtain from (7.73)
(7.19) (8) < O DY D5 x B ulfo gy < Clgl2
C independent of ¢, 1/2<g<r/2, by recalling »/2— 1< 0, (5.25a4) and (7,4) of
Proposition 7.2.
Combining now (7.69) with (7.75), (7.78) and (7.79) we obtain
(7.80) <D, D722y B, D22y Bruy| < O lgls -
Thus we are in (7.80) in the same technical situation encountered in (6.7), or in: (6.19),
or in (7.44). Starting from (7.80) and proceeding as in going from (6.23) to (6.25)

we likewise find by use of (6.23) and of Garding inequality that

(1.81) Gyl DE*"2=% B w2 ey < <D, DI 11272 g Bl gy DIF1122 g B gy |

+ O D xR ulp < O gl

where in the last step we have used (7.80) as well as (7.3), ¢ -+ 7/2— 2 <0 and (5.25b).
Equation (7.81) implies

(7.82) g LX) > D2 4Byl e L,(X) continuously .

But the operators D"~ ?x %7 and DZ'*~?%% belong to the same class, since o~ 5]
in B U B, ,U S, =supp y®. Thus we likewise obtain from (7.82)

(7.83) ge Ly(ZY — DI+ 2 4Byl e L(Z)  continuously .

Combining (7.82) and (7.83), we obtain (7.67) as desired. The proof of Theorem 7.12
is complete. O
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7.1.4. Regularity of the trace x5 uly: xB7 ulze H X)), 1/2<q<r— 1.
This subsection is devoted to %%7«. The main result of the present subsection is
TaEorEM 7.13. - Under assumption (7.1) for problem (1.6) with %, = u, = f = 0,

restricted to 1/2<g<r—1, 3/2<r<2 as in Section 5 (°), we have y®7 u|ze H"4(X);
more precisely

(7.84) %% Ulglgernz <Cl0ls
with constant ¢, independent of ¢, 1/2<q¢<r— 1. |

Proor or THEOREM 7.13. — The proof is divided in two steps.

In Step 1, we provide an interior regularity result for ﬁmxfﬁ? %, whieh is then
used in Step 2 in combination with the trace Theorem 4.1 to yield the desired trace
theory estimate given by (7.84).

SteP 1. — It is represented by the following

Lemma 7.14. ~ Under the assumption of Theorem 7.13 we have

lijg—1+(1—rlz)xfj};u — ﬁsztz—r/Z xﬂs;uELz(Q) :
more precisely
(7.85) 1D, D5 4B ul g < Olgly
with constant O, independent of ¢, 1/2<qg<r— 1. O
REMARK 7.2. — One should compare (7.85) involving %7« with (7.4) (or (7.9))
involving x‘%u; namely (7.85) provides a gain of 0 <1 — #/2 < 1/4 in ¢ of the reg-
ularity of D,x®7u over the regularity of D,x®» in (7.9). O S

Proor oF LEMMA 7.14. — To begin with, we consider the localized problem

i P(DE 2y BTy = [P, 4B 1 D, in Q, —co<t< oo,
(7.86) | By xBru) = B Dyl + [By x 1D,

inr,-—oo<t<00,

{5) Asin Section 6, we shall identify » in subscetion 7.1.5 to be » = 8/5, so that § <¢< 3/5;
see (7.110).
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which is obtained by applying D? "% to the localized problem (3.22) with f=
and x = y%-. Next, we write the version if inequality (4.6¢) of Theorem 4.3 for
problem (1.6) which corresponds to the localized problem (7.86) in the solution
D2y %7y, We obtain (compare with the proof of Lemma 7.5):

(1.87) (1—5) 1D, DB ufi < (1) + (2) + (3) + (4),
(7.88) (1) = Re ([P, x371 D", D=2y Biq),
(7.89) (2) = Re (Dll)g_”2 X‘%: U,y .D':—'lz X‘%; g s

(7.90) (3) = 5 CulDi"*x % w3,

(7.91) () = (4) + () ,

(7.92a) (4) = Im (B Di~"2g|,_o, DY By z
(7.92b) (4) = Im ([B, x %71 Di~""2y), _,, D72 3 B7

Term (1). We rewrite (7.88) as
(7.93) (1) = Re ([P, x®7]1D,"2 D¢ u, D}~ * D? 87 u), .

We now invoke (5.43) of Theorem 5.3 and (7.4) of Proposition 7.2 on the left hand
side term of the inner product in (7.93); while we invoke assumption (7.1), 3—2r<0
and (5.25a) on the right hand side term. We obtain '

(7.94) (1)< C,iglz, O, independentof ¢, 1/2<g<r—1.
Term (2). We rewrite (7.89) as

(7.95) (2) = Re (D; " D, % Dfu, D? %% u),

where recalling (5.91a) of Theorem 35.16, using D;" e OPST; [T.1, Proposition 1.3,
(1.7), p. 37] and the product theorem [T.1, Theorem 4.4, p. 46 with ¢ = min (¢’, ") =
=r—1, d = max (', §") = 2— ] we obtain that

(7.96a) D;"D, x% € OPS’_, , (R!), uniformly in xeR. .

Thus, from Lemma 3.1 @) with s = 0 we have

(7.96b) D™D x%r:  continuous L,(Q) — Ly(@Q) .
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Using now (7.96b), assumption (7.1) and (5.26¢) in (7.95), we conclude that
(7.97) (2)l<C,lgl2, O, independent of ¢, 1/2<g<r—1.

Term 3. By (5.25a) and assumption (7.1) we obtain
(7.98) i8)|<C,lglz, O, independent of ¢, 1/2<g<r—1.

Term 4. As to (7.92a) since g<r— 1 <#/2 by assumption, we obtain
(7.99) (4)]<C,lgls, C, independent of ¢
by use also of the trace regularity of (7.3). As to (7.92b) we rewrite it as
(7.100) (4s) = Im ([B, x B 1D}, gy DI B ul,_o> .

Invoking now (5.87) of Theorem 5.15 with s = 0 and ¥ = r— 2 on the left term
of the inner product in (7.100), along with ¢— » + 1<0 (by assumption) and the
trace regularity (7.3) on the right term, we conclude that

(7.101) I(4)|<C,lg|2, C, independent of ¢, 1/2<g<r—1.

Then (7.87) combined with (7.93), (7.95), (7.98), (7.91), (7.99) and (7.100) yields
the desired conelusion (7.85). Lemma 7.14 is proved. O

COROLLARY 7.15. — Under the assumption of Theorem 7.13 we have A¢~" 2P, xgﬁ?ue
€ In(Q); more precisely

(7.102) | A%~ D, %P g < C,lglx

with constant C, independent of ¢, 1/2<0<r—1, where the operator 4, =4 is
defined by (4.1a). O

Proor oF COROLLARY 7.15. — We use (7.85) of Lemma 7.14 along with the fact
that the operators D!D_ % and A°D_x%: belong to the same class with o~ || in

35;_ U ‘%tr,r U Qg ==
= supp %+ o supp [symbol of D!D_y3:], supp [symbol of A°D,x%7]. O

STEP 2. — We now use identity (4.3) of the trace Theorem 4.1 with v there
replaced by % % now. We obtain '

(7.108) % B 3oy = [1] + [21,
(7.104) [1]=2Im (A°D_yB7u, A° B u),,
(1.105) [2] = O([14° xB7u])3 -
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Sinece A is self-adjeint on L,(R}

n ), we rewrite (7.104) as

(7.106) [1]=2Im f (A°D, % uy A° x5 )y gy oo =
RL+
=2 Imf(/i“"ﬂ[)w X Brw, APy B gy B =
R;—x-

=2 Im’(/la—rlzﬁw X‘%:u, Ar/z,—2q+20/1ax35;u)0 .
Recalling now (7.102) of Corollary 7.15 and the left term of the.inner produect -in
in (7.106) and using A?y® ue L,(Q) (which follows from assumption (7.1) as in
the proof of Lemma 7.3), we obtain from (7.106):
(7.107a) Il1]]<C,lgl2, O, independent of ¢, 1/2<g<r—1
provided /2 — 2q + 20<0; i.e. provided

(7.107b) b<g—r/4.

Similarly, we obtain from (7.105) that

(7.108a) 2ll<Clglz, C, independent of ¢, 1/2<g<r—1
provided

(7.108b) 0<q.

We thus conclude from (7.103), (7.107a)-(107b) and (7.108a4)-(108b) that
(7.109) I #|gozy<C,lgly,  C, independent of ¢, 1/2<qg<r

provided 6<q—r[4. Selecting 0 = g— r/4 yields (7.84) as desired. The proof of
Theorem 7.13 is complete. O

7.1.5. Completion of the proof of Theorem 7.1.

Theorems 7.10, 7.12 and 7.13 provide the regularity of the various components
xSuls € Ho(Z); %P ulze HCI(T), 1)2<q<r/2; and xB ulze HY), 1/2<q<
<r— 1 of the partition of unity decomposition in (6.1) for the trace of the solution.
Intersecting the segments {g — (2 — 7), 3/2 < v < 2} (with 1/2<g<7/2) and {g— r/4,
32<r<2} (with 1/2<g<r—1), we obtain (as already announced)

(7.110) r— 85
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(as in Section 6 in the case fe Ly(@), ¢ = 0), in which case ¢ — (2 — 8/5) = qg— 8/5-
‘1/4 = ¢ — 2/5 is the optimal value which provides the highest regularity to

x3ulr, %P wulr, and yBulz

simultaneouly; i.e.
for v = 8/3 — Xgu{z, xﬂsjulz’ ng'?u}ze H (X)) .

The proof of Theorem 7.1 is complete. .|

7.2. From trace regularity w|z€ H *°(X) back to interior regularity we HY*+3'%(Q).
Theorem 7.16: an improvement of [3/10 — g/2] over the a-priori information
u e H(Q).

The main result of the present section is the following.

THEOREM 7.16. — As in the statement of Theorem 7.1, assume hypothesis (7.1)
for the corresponding solution of problem (1.6) with %, = %, = f = 0. Then, in
tact, u € HY>*¥1%Q); more preecisely
(7.11) Hu’“Hﬂf"”/“’(Q)< C‘g|£

with ¢ independent of ¢, 1/2<g<3/5. O

REMARK 7.3. — Coneclusion (7.111) represents as improvement of 3/10 — ¢/2 =
= (¢/2 + 3/10) — ¢ in all variables over the original a-priori information (7.1) (only
in the {-variable alone). This fact will give rise to a «boost-strap » argument in
Section 7.3. n

Proor or THEOREM 7.16.

STEP 1. - We begin by improving the regularity of « in the ¢ variable as needed
in (7.111).

LeEMMA 7.17. — Under the assumption (7.1) of Theorem 7.16 we have that
D2~ ¢ H'(Q); more precisely

(7.112) | D210 fpgy< Clgly,  independent of ¢, 1/2<q<3/5.

ProoOF oF LEMMA 7.17. — We shall invoke identity (4.12a) for problem (1.6) with
Py = f =0 (rewritten as (7.46) in the proof of Lemma 7.7) as it applies to the
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localized problem

P(Dlu)=0 in 2,
(7.13) _ -t <i<oo,
B(Dluw)y=Dlg in I,

where 6 is a negative real number, § < 0 to be determined below. The version of
(4.12a) or (7.46) which corresponds to problem (7.113) is

(7.114) YOl D] gy < (@) + (2)
(7.115) (1) =— 2 Re (D!g, D,D?uy,
(7.116) (2) = 2y Im (D%g, aDuyy .

We shall now exploit the new information on the trace u|; provided by (7.2) of
Theorem 7.1.

Term (1). We rewrite (7.115) as
(7.117) (1) = — 2 Re (g, D, Dt DX+1+25-api=2bys

By (3.12) and [T.1, Proposition 1.3, (1.7), p. 37, and Theorem 4.4, p. 46] we have
D,D;Y,_,€ OPS}, and hence

(7.118) D,D; Y _,: continuous H*(X) - H*(X).
Thus, by (7.118) with s = 0 and (7.2) of Theorem 7.1 appiied‘ oh (7.117) We obtain
(1119)  |U)|<Clglz, provided 20<q—1—2/5=q— 7[5
with C independent of ¢, 1/2<g<3/5.
Term (2). Similarly for the lower order term (7.116)
(1120)  [(2)|<2ylKg, aD}~ 2D uy | < Oylgl,  provided 20<g— 25,
Using (7.119)-(7.120) in (7.114) we obtain as desired
(7.121) Y0, | Di )70y <O + p*)gl3, provided 20<q— 7/5<0.

Choosing the best Valué 20 = ¢~ 1/6 <0 in (7.121) results in (7.112) as desired.
Lemma 7.17 is proved. O

STEP 2. ~ We next improve the regularity in the ¢ and y variables for x‘%u.
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CoROLLARY 7.18 (to Lemma 7.17). — Under the assumption of (7.1) of The-
orem 7.16 we have:

(1)
H Dg/zﬁmo XSS w HH‘(Q)

(7.122) e
Doy Sy

}<01952 ?

€ independent of ¢, 1/2<¢<3/5.
{ii) Moreover

(7.123) l\/l"/z"”l")(%ullga{o& Clgls
C independent of ¢, 1/2<g<3/5, where the operator A= A,,is defined by (4.1). 'O

Proor or COROLLARY 7.18. — Part (i) is a consequence of (7.112). As to part (ii),
we use as usual that D, x® and D, ¥® belong to the same operator elass since o~ I
in BUGLUSE = supp x®. O

STEP 3. - We now find the desired regularity for x‘%u.

LeMMA 7.19. — Under the assumption (7.1) of Theorem 7.16 we have x‘%ue
€ HY*"31%@Q); more precisely

(7.124) 1® @l gaissaioiey < Clglz -
C independent of g, 1/2<q<3/5.

Proor or LEMMA 7.19. — From (7.123) we obtain (for the same reason as in the
proof of Corollary 7.18)

(7.125) AAY2—"10 X“B“ — /¥z+3i10 xﬂsu eLy(Q),
(7.126) D, ATy By e L(Q),

continuously in ge L,(2). But (7.125)-(7.126) imply

(7.127) ¥Bue L,(RL; HY2¥R)) ,

{7.128) D, X‘%uELz(R}DH Hq/Z-—’//lo(RZ;l)) ,

continuously in ge I,(X) where to obtain (7.128) we use that the constant coeffi-
cient operator 4 commutes with D,. We next interpolate between (7.127) and
(7.128) to obtain [L-M.1]

(7.129) DeyBue Ly(RL; HUH0-RL)) | 0<p<l.
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If we now specialize to 0 << p == ¢/2 4 3/10 < 1, we obtain from (7.129)
(7.130) DTy By e L,(Q)

continuously in ge‘Lz(Z'), which along with (7.125) yields (7.124), as desired.
The proof of Lemma 7.19 is complete. O

STEP 4. — We now find the desired regularity for xgu.

LEMMA 7.20. — Under the assumption (7.1) of Theorem 7.16 we have xgue
€ HY**3119(Q); more precisely

(7.131) . D18 ] gapssiioy < Cl9z 5

C independent of ¢, 1/2<g<3/5.

Proor oF LuMMA 7.20. — From (7.122b) we have a fortiori:

(7.132) D, DY*=7110 ySy = D230 ySy e 1,(Q)
(7,133) D, D20 y8y = U110 D ySue L,(Q),
re-written as

(7.134) xS we Ly(RE,; HU2H(RL)),

(7.135) D, xSue Ly(Rn,; H* "R},

continuously in ¢ € Ly,(2). By interpolating between (7.134) and (7.135), we obtain
[L-M.1]:

(7.136) D! xSue Ly(R"

4. Hq/2+3/10—6(Rt1)) , O<6<1 :
If we now specialize to 0 << 8 = ¢/2 4 3/10 < 1, we obtain from (7.136)

(7.137) DY+30ySy e 1,(Q)

continuously in ge Ly(2).
A gimilar argument yields

(7.138) Dz+310ySy e T,(Q)
continuously in g € Ly(Z), if we replace (7.133) with
(7.139) D, D=0y = DE=T10]D ySy e L,(Q).

Thus, (7.132), (7.137) and (7.138) combined yield (7.131) as desired, and Lemma 7.20
is proved. O
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Finally, (7.124) of Lemma 7.19 and (7.131) of Lemma 7.20 together yield (7.111).
Theorem 7.16 is proved. [

7.3. Final step in the proof of Theorem 1.3: the « boost-sirap » argument.

Starting with the a-priori information on the regularity of problem (1.6) with
Uy = Uy == f =0 and ge Ly(X):

interior:  we HQ) (indeed, only Diue L,(Q) was needed),

" boundary: u|;eH(ZY),

we have obtained improvements on the regularity of » expressed by Theorem 7.1
and Theorem 7.16, according to the following scheme

3/10 — qf2 '
interior: e H*(Q) terss e s e s e e e u € Ho/2t3/19(0)

\ 1

boundary: ulz€ HYZ) +veree e 2/5 oD ulp€ H¥5(Z)
q —

Figure 7.1. First Step.

We now repeat the step taking the regularity on the right column of Fig. 7.1 as
new a-priori information. We obtain since

3/10~—ﬂ2—i9§/1—0= 3/10 —q/4:
2 4 3/10
3/10 — q_/_j__./_
interior: e He/2+%19(Q)) e e ‘2. N w € Ha/a+s10/23/10(Q) == Hals+9/20(Q)
Theorem 7.1 Theorem 7.16
boundary: uly € HE¥HI) covvreooseeaed ulpe HUMNO-2(T) — Fe/2-1/10(L)
3/10 —¢/2

Figure 7.2, Second Step.
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Taking the regularity of the right column of Fig. 7.2 as new information we have
at the third step

3/40 — g/8
interior: we HI/*/™(Q) .., ... .. oy € Halssols/io(Q) — Holsais(Q)
\

boundary: ulzeEq—a—lllo(Z) et e s es e s e ‘> 'II/‘ c Hitalats/200- 2/5(2) Hq/;-l/zo(Z‘)
3/20 — q/4 :

Figure 7.3. Third Step.

and so on. But at the oufset we know that ¢ = ¢, = 1/2. Hence the subsequent
improvement on the interior regularity are

3 q,,_l. 3 _qo_l. 3 Go 1
(7.139) 1072 =30 20 ¢ 10 08 g5 o
Thus since
11 1 1 1 1 1 12
o e I il = - —
AT BT T I 5T 0[ T3 (2 ]
1.1 1 1 3
“3t 301 —5+ia=5

we can repeat the steps an arbitrary number of finitely many times, we conclude
that the interior regularity of u is

(7.141) wue H¥5Q), Ve>0

continuously in ge LX), as desired. Similarly, starting with ¢ = g, = 1/2, the
subsequent improvement of the trace regularity are

7.142 2
(7. ) QO—gh
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we conclude that the frace regularity of v is

(7.144)

ulpe H¥5(Z), Ve>0.

ebntinuously in g'e Ly{(2). B
Conclusions (7.141) and (7.144) prove Theorem 1.3. O
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