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N-pe r s on  N i m  and N-pe r son  Moore ' s  G a m e s  

By S.-Y.R. Li, Chicago 1 ) 

Abstract: We present one way of defining n-person perfect information games so that there is a 
reasonable outcome for every game. In particular, the theory of Nim and Moore's games is general- 
ized to n-person games. 

1. Background 

This article is on the generalization of the theory of 2-person perfect information 
games to n-person games. In a 2-person perfect information game two players alternate 
moves until one of them is unable to move at his turn and that player loses. There is 
no chance move or any probability involved. The goal of the game is to win or at least 
not to lose. Among the games of this type are checkers, tic-tac-toe, Nim, Hackenbush, 
etc. 

During the last few years, the theory of 2-person perfect information games has 
been promoted to an advanced level. Naturally it is of interest to generalize as much 
as possible of the theory to n-person games. Yet there has not been any general result 
of this kind. One reason is as follows. In 2-person perfect information games, one can 
always talk about what the outcome of the game shouM be, when each player plays it 
right, i.e., when each player adopts an optimal strategy. But when there are more than 
two players, it may not make sense to talk about the same thing. For instance, it may 
so happen that one of the players can help any of the others to win, but anyhow, he 
himself has to lose (this situation actually occurs in Chinese checkers). So the outcome 
of the game depends on how the group coalitions are formed among the players. This 
makes it too complicated to develop a general theory. In order to circumvent this 
difficulty one has to be very careful in defining the rules for ending the game and for 
deciding winners and losers. In section 2, we shall present one set of such rules under 
which it makes sense to talk about what the outcome of an n-person perfect informa- 
tion game should be. 

Moreover, with these rules we shall generalize Bouton's [1902] Nim Theory, to 
n-person games. Our results will also encompass a slightly wider class of games, called 
the Moore's games [Conway, p. 181 ]. 

One reason that Nim theory is of particular interest to be generalized to n-person 
games is because of its simple mathematical structure. In fact, Nim heaps are the only 
impartial games with monotonically decreasing Sprague-Grundy numbers [Sprague; 
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Grundy]. Secondly, the solution of Nim involves the expression of numbers in the 
basis of two and the addition of numbers in the scale of two without carry. This leads 
to the philosophical question of what is the intrinsic property of Nim that is connec- 
ted to the number two. The only obvious answer seems to be the number of players, 
although there is not enough evidence to support this answer. As it has turned out, the 
solution of n-person Nim depends on the addition of numbers in the scale of n, but 
still it involves the binary expressions of numbers. This accidentally coincides with 
the solution of Moore's game Nimn_ 1 . Thus the phenomenon that the binary expres- 
sion of numbers is essential to the solution of Nim does not originate from the num- 
ber of players in Nim. 

2. Introduction to Combinatorial Games 

Nim is played with a number of heaps of counters, and the move is to remove some 
counters from any one heap. Two players alternate moves until the counters are all 
gone; whoever removes the last counter wins the game. Every Nim game is either a 
mover-winning position or a mover-losing position. To determine the outcome of a Nim 
game, we first express the number of counters in each heap in the basis of two and then 
add these numbers in the scale of two without carry. The resulting binary number is 
called theNim-sum of these numbers. If this Nim-sum is not 0, then the first player 
to move can force a win. Otherwise, the second mover can win. 

The rules of the Moore's game Nim k are the same as those of Nim except that, at 
each move, the player is allowed to remove counters from any number of heaps up to 
k. Ordinary Nim is the particular case Niml. The strategy for Nim can be easily gene- 
ralized to Nora k. Again, we write the numbers of counters in the binary notation. But 
then add these numbers without carry, and in the scale of k + 1. The game is a mover- 
losing position if and only if the resulting "number" is zero. 

Two-person perfect information games ranging from simple ones like Nim and 
Nim k up to complex ones like chess and checkers are all called combinatorialgames. 
In general, a combinatorial game may be defined as a vertex in a finite edge-bicolored 
directed graph. Edges of one color represent legal moves for one player, the other color 
for the opponent. At each turn a player must move from one vertex to another along 
the direction of an edge of his color. When a player is unable to move at his turn, that 
player loses. The sum (disjunctive compound) of two games is defined to be the com- 
pound game in which a player may move in either component game. For instance, 
the sum of a 2-heap Nim game with a 3-heap Nim game is simply the Nim game consis- 
ting of all the 5 heaps. 

Both Nim and Nim k belong to a special class of combinatorial games, namely the 
short impartial games. A game is said to be short if any chain of moves (not necessarily 
alternating) must terminate; and a game is called impartial if, at any stage, the possible 
moves are independent of whose turn it is to move. The outcome of a short impartial 
game is either mover-winning or mover-losing and is completely determined by its 
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S p r a g u e / G r u n d y  number (for abbreviation, the S/G number), which is defined recursi- 
vely as the smallest non-negative integer that is not the S/G number of any of the 
positions into which the game can be moved. Thus the game is mover-losing if and 
only if its S/G number is 0. For example the S/G number of a Nim game is simply 
the Nim-sum of the heap sizes. The importance of the S/G number lies in its Nim- 
additivity, i.e., the S/G number of the sum of two games is the Nim-sum of the S/G 
numbers of the summand games. This enables us to describe the outcome and the 
optimum strategies for the sum of short impartial games in terms of information about 
the summand games. 

3. Defining the Rules for N-person Games 

It is natural to define an n-person game as a vertex in a finite directed graph such 
that the edges are in n colors, one color for each player. The players rotate turns 
moving from one vertex to another along directed edges. We need to define the rules 
for ending the game and for deciding the winners or losers and meanwhile, avoid the 
possibility of group coalition among players. 

We shall call the players P1,  P2 . . . . .  Pn according to the initial order of turns. As 
before, a game is ended when any player is unable to move at his turn; especially for 
impartial games this is the only reasonable definition for ending. Naturally we define 
the loser to be the player unable to move. If  that player isP m , say, we assign a differ- 
ent rank to each player, ranging from bottom to top in the order o f P m ,  

P r o + l ,  �9 �9 �9 ,Pn ,  P1 . . . . .  P m - l "  In particular, the last player able to move is the top 
winner. Under these rules the rank of any one player automatically determines the 
ranks for all. For this reason, it makes sense to say what the outcome of the game 
should be when each player adopts an optimal strategy toward his own highest possi- 
ble rank. Of course the optimality of a move is based on the assumption that the con- 
sequent moves by all the players shall be optimal. 

R e m a r k :  In fact, if a is any permutation on (1, 2 , . . . ,  n), we may also rank the 
players from bottom to top according to the order P a l m  ), P a (m + 1, " �9 �9 , 
. . . .  Pa(m-1); and there will still be a r e a s o n a b l e  outcome forevery game. So we have 
n! choices for the rule just as in the case of 2-person games the rule can be last-mover- 
win or last-mover-lose. Here we have chosen a to be the identity mapping not only be- 
cause it seems to be the natural choice, but also because it allows simple solutions to 
n-person Nim and n-person Moore's games. In fact if there were any permutation o 
that could lead to a generalization of the S p r a g u e / G r u n d y  function, we might find it an 
even more natural choice than the identity mapping. 

4. N-person Nim 

In n-person Nim the move is defined in the same way as in the ordinary Nim, and 
the rules for deciding winners and losers are as in the last section. If the m-th player to 
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move should be the biggest loser, the game will be called an (m - 1)- position. Since 
n-person Nim, as well as regular Nim, is impartial, this number m is independent of  
whose turn it is to move. The same terminology applies to all the n-person short impar- 
tial games. 

Thus for a player to achieve his highest possible rank, he should always try to move 
into a 0-position if possible. If  no 0-position is available, he should try to move into a 
1-position, and so on. We conclude this optimal strategy in the following. 

Theorem 1 : An n-person short impartial game is a 0-position if the only possible moves 
are all into (n - 1)-positions; and it is a q-position, n > q > 0, i fq  is the smallest 
number such that there is a move into a (q - 1)-position. 

Corollary 1 : An n-person short impartial game is a q-position, q > 0, i fq  is the 
smallest number such that the game can be moved into a 0-position within q moves; 
and it is a 0-position if the game can not be moved into another 0-position within less 
than n moves. 

The strategy described above is by far an efficient algorithm. In fact, a direct appli- 
cation would require a computational complexity which grows exponentially with re- 
spect to the number of  moves. A N i m  type game is always by definition a compound 
game with components of  trivial structures. For this kind of  games, it is most desira- 
ble if their outcomes and optimum strategies can be described in terms of information 
about the component games. This is the goal for the remainder of  this article. The next 
theorem provides an efficient criterion for determining whether an n-person Nim game 
is a 0-position. Because of Corollary 1, we need only to apply this theorem to all posi- 
tions within n - 2  moves from the initial position in order to determine the excat out- 
come of the game. 

Theorem 2: Consider the n-person Nim game of h heaps of sizes cx, c2 . . . . .  c h, re- 
specitively. Express the c's in binary notation and add them together without carry, 
and in the scale of  n. Then the resulting n-ary number is 0 if and only if the game is a 
0-position. 

Proof: Let the game under consideration be denoted as g. Let the resulting n-ary num- 
ber be A (g). If  A (g) ~ 0, let ~ (g) be the leftmost nonzero digit of  A (g). While if 
A (g) = 0, define 6 (g) = O. We need only to prove the following two statements. 

A) If 6 (g) = 0, then ~ (f) ~ 0 for any posit ion/ 'reachable within n - 1 moves 
from g. 

B) If 6 (g) * 0, then there exists a position f reachable within n - 1 moves from g such 
that ~ 00 = O. 

To prove A), we consider two general positions ] and k such that j can be moved 
into k. If 5 q) t 0, then clearly 6 (k) >~ 6 (/) -- 1. While if 6 (/) = 0, then 6 (k) = n - 1. 
These observations together with the induction prove A). The statement B) is a direct 
consequence of the following lemma. 
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L e m m a  1: Let n be a positive integer and ca,  e2 . . . .  , c h be non-negative integers. Take 
a sufficiently large number t and express c i in the binary notations as ci l  ciz  . . .  c i t  for 

h 
all i. Let s be the smallest index such that 2; Cis is not divisible by n. Assume that 

i=1 

Cis r  1 �9 " �9 t i t  = 1 1 . . .  1 is true if and only if i ~< k; here k is a non-negative integer 
not exceeding h. Then there exists non-negative integers d i ,  d2 . . . . .  d h satisfying the 
following conditions. 

1. d i <, r  for all i = 1 , . . . ,  h. h 
2. I f d i l  di2 . . .  d i t  is the binary expression o f d i ,  then 2 diu is divisible by n for 

i = i  
u = l , . . . , t .  

3. There exists a permutat ion ~r on (1 . . . . .  h} which fixes (1 . . . . .  k} such that 

dTr(i) = Gr(i) for all i ~> n. 

h 
Proo f :  The proof  is by induction on t - s. Let 6 be the remainder of  i=2;1 cis divided 

by n. Reordering e k +  1 . . . .  , c h if necessary, we may assume that Cis = 1 for i ~< 6. De- 
t - s  

fine Oi to be the number with the binary expression ci l  ci2 . . .  Ci,s_ 1 0 1 1 . . .  1 for 

i ~< 6. Let ci = ci for i > 6. Thus ( i  ~ Ci for all i. Also let Ji l  (i2 . .  �9 ( i t  be the binary 
h 

expression of  6 i for all i. If  2; gin is divisible by n for u = 1 . . . .  , t, then the lemma can 
i=1 

be proved by taking d i = ( i .  So we assume this is not the case and let gbe the smallest 
h 

index such that 2; ?is is not divisible by n. Clearly f > s. Also we know that 
i=1 

?ik-Ci,~+ 1 �9 �9 �9 C i t  = 1 1 . . .  1 for i ~< k. Reordering Ck+ 1, �9 ' �9 Ch if necessary, we 
may assume the existence of /~such that k > k and that c f f ? i , ( + l  . .  �9 Ji t  = 1 1 . . .  1 if 
and only if i ~< k-. The inequalities ?i <~ ci for all i and k ~< k, together with the induc- 
tion hypothesis on t - s imply the existence of  the numbers dx,  d2 . . . . .  d h as desired. 

The above lemma provides an algorithm for finding a 0-position within n - 1 moves 
from any given nonzero position. The following is an illustrative example. 

E x a m p l e :  Consider the 5-person Nim game of  nine heaps of  sizes 55, 31 ,60 ,  20, 9, 
55, 53, 53, and 4, respectively. We are to reduce the sizes of  four or fewer heaps in 
order to arrive at a 0-position. First we express these nine numbers in binary nota- 
tion and compute their n-ary sum without carry. The computat ion is done digit by 
digit, and from left to right until a nonzero digit, say 6, in the sum is arrived at. Place 
a vertical line to the left of  this digit (see the following table). Consider the nine binary 
numbers formed by those digits to the right of  the vertical line. Select 6 largest among 
them. Each selected number is then replaced by 01 . . .  11 +. Here 1 + means 1 as far as 
the addition is concerned, but should be regarded as infinitesimally greater when 
compared to 1. 

By iterating the above process, we eventually arrive at the 0-position with heap sizes 
53, 3, 34, 20, 2, 51 ,53 ,  53, and 4. 
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1 10111 
11111 

1!11100 
10111 

1001 
1 10111 
1 10101 
1 10101 

100 

0 2  . . . .  

11,0111 
0"t111 + 

10 1111" 
liOlO0 
;I001 

11i0111 
1110101 
11 0101 

100 

O0 3 . . .  

110 111 
O0 111 + 

100 111 + 
10 100 
0 111 + 

110 111 
110 101 
110 101 

100 

000 ..  

- -+  

- +  

.=+ 

-=+ 

11011 ~§ 
0001 

10001 1 + 
1010 0 
001 1 § 

11001 1 § 
11010 1 
11010 1 

10 0 

00000 2 

110111 
00011 + 

I00010 
I0100 
0010 

110011 + 

110101 
ii0101 

I00 

000000 

Using the same notations as in the proof  of  Theorem 2, we have 

Corollary 2: If  6 (g) = 0, then g is a 0-position. If  ~ (g) = n - 1, then g is an (n - 1)- 
position. If  1 ~< 6 (g) < n - 2, then g is a q-position for some q/>  6 (g) 

5. N-person Nim k 

In this section we generalize the results in the last section to Nim k. The rules for 
n-person Nim k are defined in the obvious way as an analogue of  n-person Nim. The 
following theorem parallels Theorm 2. 

Theorem 3: Consider the n-person Moore's game Nim k of  h heaps of  size c l ,  
c2 . . . . .  Ck, respectively. Express the c's in the binary notat ion and add them together 
without  carry, and in the scale of  nk - k + 1. Then the resulting number is 0 if  and 
only if the game is a 0-position. 

Proof: We shall use the same notat ions as in the proof  of  Theorem 2. Consider two 

general positions ] and k of  n-person Nim k such that ] can be moved into k. If  

6 6/) ~: 0, then 6 (k) >~ ~ (1") - k. While if 6 (]) = 0, then ~ (k) ~> (n - 2) k + 1. With 
these two observations, the proof  can proceed in exactly the same way as in the 
proof  of  Theorem 2. 
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