m-Functions and Floquet Exponents
for Linear Differential Systems (*).

RusseLn A. JOHNSON

Sunte. — Si definisce un esponente di Floquei per certe equaszioni differenziali lineari mnon-
periodiche, la parte immaginaria del quale rappresenta una « rotagione» delle soluzioni di
dette equazioni. Inoltre si discute la velazione fra Uesponente di Floquet ¢ le funzwm m di
Weyl-Kodaira, ¢ fra la rotazione e cerit problemi spetirali.

1. - Introduction.
The Floquet exponents of a periodic linear system
(1) o=ytle 2cC*

with, say, y(t + T) = y(t), are obtained by taking logarithms of the eigenvalues of
the period matrix D(T). One obtains a set of complex numbers wy, ..., wy, w;=
= f; -+ ia;, such that the real parts §; measure exponential growth of certain solu-
tions of (1), and the imaginary parts measure «rotation» (in some not-too-well
defined sense) of those solutions.

It is an interesting problem to define Floguet expenents when y(¢) is not periodic.
We are going to consider this question when y(f) is « stationary ergodic » (see below)
and satisfies a symmetry condition, i.e., belongs to an appropriate Lie algebra g.
In this paper, g will always be the Lie algebra of a Lie group § which preserves a
non-degenerate, indefinite Hermitean form w on CG*: w(x, y) = <, Jy>, where {,>
is the Euclidean inner product on C* and the non-singular matrix satisfies J* = — J.

0—1,\ . . . . .
For example, J might be ( 1 0) with 1, = nXn identity matrix, and g might

be sp (n, R) = {4: R* - R*|A*J 4 JA = 0} = algebra of real 2nx2n infinites-
imally symplectic matrices. ,

We will be led to study the Weyl-Kodaira m-functions [46, 32] m_ (1), m_(A)
of the family of differential equations

(2): (fllt J\i))m = Atz wxeCr, JeC,

(*) Entrata in Redazione 1’8 novembre 1985.
Indirizzo dell’A.: University of Southern California, Department of Mathematics, Los
Angeles, California 90007, U.8.A.
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where y*{#) = y(t) = 0 [3, Chpt. 9]. Using the m-functions, we will define a func-

tion w = w(4) (Im 4 = 0) which has properties related to those of the usual Floquet

exponents. This function w in turn can be used to study the spectral problem (2),.
Some observations are in order.

{i) We obtain one (not k) Floquet exponents w for equation (1). Our methods
indicate how one might define others; however, there is as yet no general technique
for doing so.

(ii) The appearance of the parameter A is not an accident. The significance
and utility of w only become apparent when A is introduced. In general, it is a good
idea to study (1) from this point of view: embed it in & one {(or more)-parameter
family (2),, and consider quantities related to this family.

(iii) In the body of the paper, we will let ¢ = u(p, q) (p = ¢), the Lie algebra
of the Lie group U(p, q) of matrices preserving the skew-form w,{(m,, ;) = {y, Jy@s>
with ;= z( 31’1(1
Bxplieitly, u(p, q) = {4: C*— C*k = p + ¢, A*J,+ Jo A = 0}. As is well-known,
any spectral problem (2), may be transformed into one with J = J, by a constant
charge of variables # = Bz (the proof is repeated below). This holds in particular

). Here 1, resp. 1, is the pxp resp. ¢xg¢ identity matrix.

it J= (2 —3") and y{?) is infinitesimally symplectic.

(iv) Finally, we will find it very convenient that w(p, ¢) (or rather the semi-
simple algebra su (p, ¢) = {4 € u(p, q): trace 4 = 0} is the Lie algebra of the iso-
metry group of a bounded (Cartan) symmetric domain D. In fact, the m-functions
m,. take values in such a domain. However, the presence of D is not crucial, and it
will be clear that one can define analogues of the m-functions in more general
circumstances.

Before discussing our results in more detail, it seems appropriate to oufline pre-
vious work on m-functions and Floquet exponents, and to put the present paper in
perspective.

First a quick review of the long history of the Weyl-Kodaira functions; we
apologize for its sketchy and superficial nature. H. Weyl introduced his m-functions
for the Sturm-Liouville operator

3) (p¢)+9=12p p,qreal, leC

in 1909 [46]; his paper retains a fresh and original quality to this day. TrrcH-
MARSH [43] mode a systematic application of the m-functions and their function
theory to the spectral problem (3). KoDarrA [32] defined quantities closely related
to the m-functions for higher-dimensional symmetric differential operators; he
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adopted a geometric point of view. Later authors, including ATKINSON {3}, EVERITT
and EVERITT-KUMAR [17, 18] and HinTON-SHAW [23, 24], refined and extended Ko-
daira’s work, using analytical methods. They used the m-functions and the closely
related « characteristic function» to study self-adjoint boundary value problems
corresponding to (2),. :

In this paper (§ 3), we construet ab initio the m-functions for (2), when y(¢)
is stationary ergodic. We have tried to combine the geometric insights of Kodaira
with the analytical convenience aimed at by later authors. To this end, we rely
heavily on the theory of exponential dichotomy (CoPPEL [9], SACKER-SELL [39, 401,
SELGRADE [42]). We will show that a stationary ergodic y(f) is in the limit-point
case at £ = 4 oo, and will identify the quantities m_ as elements of a bounded sym-
metric domain. The domain «collapses» to the m-function [32, 3, 18].

Floquet exponents in the sense of this paper have only been considered in the last
few years. Affer anticipatory papers by PAsTUR [37] and THOULESS [44], JOHENSON-
MosER [29] introduced and studied the funetion w(A) for the almost periodic Schro-
dinger equation . :

— '
(4) (E—t—z——k q(t))«p =Ap qreal, leC."

In fact the present paper grew out of an attempt to understand the « complex rota-
tion » considered in [29]. Avron-Simon [4] considered the Floquet exponent for the
difference analogue of (4):

(5) Lint1 + Bn—1 + V(m)mm = lwm .

GIACHETTI-JOHNSON [20] treated w(A) for the AKNS operator [1]:
0 —1\[d
(1 0) [é}‘y(i)] z =z, y(t) real, try(i) = 0;

in [20], they also considered the mnon-self-adjoint problem when ¥(¢)e sl (2, C).
Kotant [33] showed that w(4) determines the absolutely continuous spectrum of
the Schrodinger operator — d2/di? - (). Moser [34] used w in his book relating
the finite-band Schrédinger potentials ¢(f) to the classical Neumann problem. DE
Conoint and JoHNSON [12] used it in characterizing the finite-band AKNS po-
tentials y(2). ,

Finally, CrA1G-SimoN [11] studied the symplectic difference equation obtained
by letting V(m) in (5) be an n X n symmetric matrix. They consider a quantity com-
pletely analogous to the w(A) of the present paper. The contributions of the present
paper might be summarized as follows: (i) a more general framework; (ii) a detailed
study of the relation between w and the m-functions (§ 4); and (iii) a geometric
approach to the study of w, which complements the analytic style of [11]. In
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particalar we clarify the notion of rotation in higher dimensions (§ 2), and relate
it to the density of states (§ 5) and, for symplectic (Hamiltonian) systems, to the
Arnold-Maslov index ([2]; see § 2). We also prove a « gap-labelling » theorem [5, 27].

It is time to describe w(A) and the m-functions more precisely. Suppose for the

0 —1, . .
moment that J = ( 1 0 ) and that g = sp (n, R). Thus (%), is a Hamiltonian

spectral problem.

If A is real, the complex number w(4) = §(A) + te(A) is defined as follows. Let
D(t) = D,(t) be the fundamental matrix solution of (2), such that @(0) = I. Let-
ting A" denote the n-th wedge product [19], we define

B(J) = lim %-m A D(1)] .

Thus f(4) is & Lyapounov exponent. Ag for «(l), let £ be the set of Lagrange sub-
spaces of Ry thus lef <> 1cR*™ is an n-dimensional subspace such that
oy, Jugy = 0 for all o, xel. Fix e L, say ly= [e, ..., ¢,], the subspace span-
ned by the first # unit vectors. Let ¢ be the Maslov cycle: 0 = {le L: 1N, = 1}.
Then O c £ has codimension one. Now if [ £, then so is @(t)], since D() is sym-
plectic. Consider the number n(¢) of oriented intersections of the curve s — @(s)/
with ¢ for 0 < s<t. Then ‘
w(l) = tim MY

{—> 00

Thus «{A) is a rotation number. It is clearly related to the Arnold-Maslov index
(Bott [6], ARNOLD [2], DUISTERMAAT [13]).

An obvious problem with these definitions is that, in general, the limits need not
exist. It is at this peint that we use the fact that y is stationary ergodie, i.e., is a
typical path of a stationary ergodic process. We use the Birkhoff ergodic theorem [35]
to show that the limits exist for almost all y.

A remarkable and useful property of w(2) is that it admits a holomorphic exten-
sion (also called w(4)) into the upper half-plane Im 4> 0. We will see that this ex-
tension is intimately related to the Weyl-Kodaira funections m,(4), which we now
describe. Let M° be the set of symmetric, nxXn complex matrices. Let H, =
= {me M:: Imm> 0}; thus H, is the Siegel upper half-plane [43], and is one of
the Cartan bounded symmetric domains. Observe that M| parametrizes an open
dense subset U of the set L° of compler Lagrange planes in C?*, In fact, le U<=-1

: 1,
has a basis of column vectors of the form (m)’ where me M.

Relying heavily on results of SACKER-SELL ([39, 40]; see also SELGRADE [42]),
we will show that, if Tm 4540, then equation (2) has exponential dichotomy (ED
for short). This means that C*»= V¢4 V¥, where solutions of (2), with initial
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conditions in Vs(V*) tend to zero esponentially as { - oo (f —— oo0). We will see

n

m., (%)
m(A) € H,; the map A —>m_(4) is one of the Weyl-Kodaira functions.

that Vs lies in U if Im 4> 0; let ( ) be its representation. It turns out that

. . b
The connection of w(d) with m, is the following. Write AJ-1y + y = (j d);
then m e M? satisfies the Riccati equation

(6) ) m' = — mbm - dm — ma + ¢ .

Linearize this equation around 7, (t) = ®(t)-m, (A) = solution of (6) with initial
condition m_(A):

(M (dm) = f, (P (t)) Om .

Then

i

w(l) = liml . 1‘[‘131‘]‘_1_(7?&_'_(8)) ds , tr = trace .
f—>oc0 2n 1
0

Thus by Liouvilles formula, w(4) is the average of the logarithm of the determinant
of the fundamentfal matrix solution of (7).
There is a similar formula relating w(A) and m_(4). The starting point is the ob-

m_(4)

n

servaftion that V* has a parametrization ( ) where m_(1) € 8.

We finish this introduction by discussing terminology and some basic results.
First let gl (k, C) be the Lie algebra of all %k x% complex matrices. Let gc gl (k, C)

t+1
be a real Lie subalgebra, and let ng{y: R — g[sup f [y(s)) ds < oo}, where || is
120
the Eueclidean norm on g. We give &, the distribution topology: v,y in &, iff
fyntp ds —>fycp ds for all g€ C7(R) = set of C” real functions on R with compact

support. Let v: & XR — & be the translation flow defined by z(y, t)(s) = y(t + s).
We usually write 7,(y) for v(y,{). For any bounded subset Bc & , (i.e., there exists
t+1
K > 0 such that supf[y(s)lds < K for all ye B), the restriction 7: BXR — B is
[ 21
jointly continuous.
Next let ¥ c £, be a bounded translation-invariant subset (i.e., 7,(Y)c Y for all
te R). Suppose further that
ite
(8) lim supf]y(s)]ds =0 uniformly in ye Y.
&0 ¢

¢
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This condition holds if, for instance, ess, sup [y($)| S K < oo for all ye Y. Then ¥
is compact metric in the distribution topology. Finally, let 4 be an ergodic measure
on Y [35] such that u(W)> 0 for each open Wc Y. (Recall that a Radon pro-
bability measure on Y is ergodic if (i) ,u(rt(B)) = u(B) for each Borel set Bc Y;
i.e., p is invariant; (ii) u(v,(B)4B) = 0 (¢ € R) implies either u(B) = 0 or u(B) = 1).

1.1 DEFINITION. — A triple (Y, 7, ) as just described is (in this paper) a statéonary
ergodic process.

We will need two lemmas, the first of which is a simple consequence of ergodicity
of u and the Birkhoff ergodic theorem [35].

1.2 LEMMA. - For y-a.a.y, {t.¥): (t>0)} and {r.y):t<0} are dense in Y.

The second lemma produces an «evaluation function» e: Y —g¢:y — y(0).
Since £, consists of equivalence classes of functions, it is not clear how e should be
defined. Nevertheless,

1.3 LemwmaA. — There exists ee LYY, g, u) such that, for y-a.a. ye Y:

(i) the function ¢ — e(7.(y)) is defined and equals y(i) for a.a. te R;

t t
_ 1
(if) %fy(s)dg = t—fe(rsf.y))ds %f@(y)dﬂ(y) as t —> £ oo.
[ 0 Y

Proor. — Though the proof is standard, we give the details. Note first that (ii)

follows from (i) and the Birkhoff ergodic theorem, so it suffices to prove (i).
t+1/n

Define f,: RxY - R:(t,y) -—>nf y(s)ds. Then f, is continuous. Using Fubini’s
t

theorem, we see that f(¢, ) d—if}g%o fa(t, y) exists for m Xy - a.a. (, y) (m = Lebesgue
meagure on R). Thus we can find #, € R such that f(— ¢, y) is defined x - a.e. and is
u-measurable. Sinece v is continuous and g is invariant, the function

i/n

e{y) = f(“ to, Tu(?/)) = hmnfy(s) ds

g
t+1/n
is defined yx -a.e. and is p-measurable. Clearly e(z.(y)) = }11_1’)%0 nfy(s)ds == y(¢t) for
m - a.2.5, v ¢
To prove that |e| e LYY, u), note that for u-a.a.y,

s+1/n

EJ le(T,(y)|ds = + fdshmnf‘y w)| du = - f[y\sfds<K< oo,

n—> o0

s
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independent of ye Y. Let B,= {yeY:n< |e(y)<mn -1} (n=0). Then |e¢|e

e LYY, p) iff znpa )<< oo, Given &> 0 and an integer N > 1, choose T so large
that "=

0

Here y, is the characteristic function of B,. Such a T = T(y) can be found for
u - a.a. y € H, by the Birkhoff theorem. Then for i = 7':

|3

Kz%fleo( Masz 307 [ ) asz 3w

This completes the proof.

1.4 NOTATION. — We will write ftryd,u(y) =ftr e(y) duly).
Y Y

Now let <, > be the Euclidean inner product on C%, and let J be a non-singular
kX k matrix such that J*= — J.

1.5 LemMMA. — There is a non-singular matrix B such that B*JB = J,=

- ( 07'11’ z(l).,) where K = p + g¢.

Proor. ~ First diagonalize J by means of a unitary matrix u,, then permute the
basis elements of C* with an appropriate u,, finally cheose an appropriate diagonal
matrix d with positive diagonal entries and let B = wu,u,d.

Next let g, = {Aegl (K, C): A*J = — JA}. Then g, is a real Lie subalgebra
of gl (K, C). There is a 1 — 1 correspondence between elements of ¢, and Hermitean
matrices A,: namely A4, is Hermitean iff J-'4,eg,.

Let Y be a stationary ergodic process with values in g,. Consider the following
family of ordinary differential equations:

(2)y,2 o' = [My ) +yB)lw 2eC, leC, ye¥.
We make the following

1.6 ASSUMPTIONS. - (i) ¢J has at least one positive and one negative eigenvalue;

(ii) there is a continuous function y: ¥ — gl (K, C) such that y*(y) = p(y)
and y(y) = 0 (ye Y), and y,(f) = p(7:(y)) (ye Y, te R);

(ii) given y € Y and AeC with Tm 4 0, there exists a constant ¢ = C(y, 4)
such that, if (f) is a non-zero solution of (2),,, then

f<x >dt<0f<y n(t)> dt
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Note that the last condition strengthens somewhat the one imposed by At-
kinson. [3, Chapt. 9].

Most any spectral problem defined by an ordinary differential operator can be put
in the form (2),,. For example, let Ly = — ¢"+ q(t)p = Ap where ¢e C* and

g(#) is real mXn and symmetrie. Letting y,(?) :(10" g): y(t) = (q?t) ](')”), J =

0 -1, ) ) _
= (1 0 ), we see that Ly = Ay is equivalent to (2)1,, , with # = (z') For another

—% 0 ab . 10
example, let J:( 0 %) , Ylt) = (b a) with Rea = 0, () = (O 1): We ob-
tain the (two-dimensional) AKNS spectral problem [1].
Now make the change of variables « = Bz, where B is as in Lemma 1.5. We obtain

7 = [M*(B*y,(t)B) + B-1y({)B]z.

Furthermore, replacing ¢ by — ¢ if necessary, we can assume that p < ¢. With these
remarks in mind, we make the

1.7 ConvENTION. ~ TUnless otherwise specified, we assume that J = J,=

.- Hence, unless otherwise specified,

_ (— i1, _0) with p < ¢ in equations (2)
0 1,

g=yg,={Adegl (K, C): A*J,+ J, 4 = 0} = u(p, q).

1.8 REMARK. — Observe that sp (n, R) can be embedded in su (n, n) C u(n, #n)
i1, i1,

via the map A — u;, Au7’, where u, = ( 11

). See, e.g. [43, p. 124].

1.9 TErMINOLOGY. — We collect here some standard terms from topological
dynamics. Let X be a space. A flow on X is a continuous map 7: X xR - X:
(@, 1) — T,{x) such that: (i) 7(w) = @; (i) T07,= T,z X, t,seR). If ve X,
then the orbit through # is {r,(x):te R}. The w-limit set w(wr) ={s"c =l 7, ()
for a sequence ¢, — cor. The «-limii set ofx) is defined similarly, except f,— co
becomes ¢, —— co. Both w(z) and «(z) are invariant, i.e., T, (w(®)) C w(@), 7)) C
C afw) for all te R. If X ig compact, then X is minimal if every orbit is dense in X,
Let G be a topological group. A continuwous map @: X xR —G is a cocycle if

() ®(z, 0) = idy;
(i) @, t+ ) = B(vw), 5) Pz, t) (re X;t,seR),
See EvLis [16].

We end this introduction by recalling the definition of exponential dicho-
tomy [9, 39]. Fix A< C. Let @,(t) be the fundamental matrix solution of (2),, such



RUSSELL A. JOHNSON: m-functions and Floguet exponenis, ete. 219

that @,(0)=1. It is easy to see that &: YXR — U(p, q) = {Be GL(n,C):
(By, JoBwy) = {my, Jy@,> for all a;, z, € C¥} is a cocyele in the sense of 1.9. Also
the map #: ¥ xC*XR — Y X C*: (y, w, t) — (7,(y), D,(t)2) defines a fiow on ¥ x C*.

1.10 DEFINITION. - Fix 1€ C. We say that equations (2),, have exponential
dichotomy (ED) if there are continuous vector subbundles Vs, V*c ¥ x C* such that:

(i) V@ Ve= Y x C¥;
(il) Vs, V+ are invariant (with respect to %);
(iii) there are constants K > 0, « > 0 such that, if (y, %) € Vs, then |@,(t)a,| <

< Ke™¥m| (t>0), and if (y,a) € V¥, then [@,(f)m| < Ke*lla,| (< 0).
Here |-] is the Buelidean norm on C=.

2. — w(4) for real A.

In this section we define the Floquet exponent w(1) when 1 is real. We write
w(l) = B(A) - tx(A), and consider § and o separately. Following 1.7, we let J =

—31, 0
———Jo:( @0” 1.1), g = u(p, q), and we suppose 0 <p=<g<<p-+ q=F.

2.1 DEFINITION. — Let &, (f) be the fundamental matrix solution of (2),, with
®,(0) = I. Define

B = B() = lim < In |42, (1)|

>0

It is not immediately clear that §(4) is well-defined; however, by the theorem of
Oseledec [36]:

2.2 THEOREM. — For each 1€ R, the limit in 2.1 exists and is independent of y
for y-a.a. ye¥.

2.3 REMARK. — We can also write §(1) = lim (1/¢) In |42®,(t)|. The reason is as
follows. Let f; = ...= f, be the Lyapounov numbers of (2),,5, counted with multi-

a
plicities [36]. Then B(4) = > B, for p-a.a.y. Now Him (1/t) In [A7 @D, (t)] equals
k i=1
— > B: However, @.(t)e U(p, q) =| det @, ()| = 1. Using Liouvilles formula and

. Y
i=g+1 ¢

3
the regularity [7, 36] of (2),, for u - a.a.y, we see that 2 Phi=—2 B

i=1 t=g+1
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We turn to the rotation number «. Though one can give a purely geometric defi-
nition of this quantity, it is convenient to choose another starting point and then
derive its geometric properties.

We introduce the space M,, of ¢ X p complex matrices m. This space parametrizes
an open dense subset of the manifold &, of complex p-dimensional subspaces of C*.

In fact, M,, parametrizes those [ € &, which have a bagsis of the form( el) y ey (;:) ,
1 D,

where {e,, ..., &,} is the standard basis in € and m;, ..., m, € C°. Tf such a basis for
exists, then m = (m,, ..., m,) is the corresponding element of M,, The components
of m are the « Plicker coordinates » of I

In M,, consider the set D = {me M,,: 1,— m*m > 0, i.e., is positive definite}.
This set is an analogue of the unit dise, and reduces to it if p = ¢ = 1. Its boundary
0D consists of points m for which 1, —m?m is positive semi-definite. The set D
is a Cartan symmetric domain [21]:

Let U(p, q) be the (real) Lie group of complex % X k matrices preserving the form
oy, %) = {thy, Jo%yp; thus U(p, ¢) has Lie algebra u(p, q). Note that U(p, q) acts

B
on M, in the following way: if (2’1 D) e U(p, q), then the action is m —
— (€ + Dm)(A + Bm)-1. This action is induced by the linear action of U(p, ¢) on &,:

A B\(L) _ A+ Bm N 1 )
(0 D) (m) - (0 + Dm) ((0 -+ Dm)(A - Bm))”

Observe that U(p,q) preserves D and oD [21]. In particular, if me D, then
{A 4+ Bm)* exists.

Next we introduce a decomposition (Iwasawa decomposition) of u(p, g). Define
Lie subalgebras f,, a,, % € u(p, g) as follows:

H
ly = {(g fl) acu(p), deulg) (thus a* = —a, d* = —d)} ,

. 0 |
( ) 0 o 1
A \

ag = \HcHlo=} 0 04— O sy, ey € O,
t, 0O
0 ol ™.
0 i,
{ d, « f

ny={HeH|lo=|0 0 v,
0 0 —dat
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where d; is p X p upper tria,ngulaf with zero diagonal, and «, §, ¢ are arbitrary com-
plex matrices of appropriate sizes. Here the matrix H is defined by

L, 0 1,
(9) H= 0 1., ©
-1, 0 1,

The algebras %y, a,, n, are compact, abelian, and nilpotent respectively.

There is a corresponding decomposition U(p, q) = K,4,N,; K,, 4y, N, are the
Lie subgroups of U(p, q) corresponding to i, a,, n, respectively. (In the case at
hand, K= expl,, 4,= expa,, N,= expun,). That is, each ve U(p, q) decomposes
uniquely in the form v = uan (we K,, a€ A,, neN,), and the decomposition
defines a O diffeomorphism of K,4,N, onto U(p, q). Let 8;= A,N,. Then 8§, is
a closed subgroup of U(p, q), and each v € U(p, q) decomposes uniquely in the form
v=us (u€ HK,, s€8). This decomposition (which is the one we will see later)
defines a O diffeomorphism of K,8, onto U(p, ¢). See [21, Chpt. 6].

The decomposition U(p, q) = K,A4,N, is the Iwasawa decomposition of
U(p, q) [25, 21]. It is the analogue for U(p, g) of the Gram-Schmidt decomposition
of GL(n, R), used in [30] to prove the Oseledec theorem.

2.4 REMARKS. — (i) Observe that the point m* = (O‘;"’”) is preserved by each
»
s€ 8, smy = my. This is easily seen by noting that H—1(11)= (10”) and using
the deseription of a, and n,. "

(ii) The action of K, on M,, is linear: if w =(?; 3)61{0’ then “(qqu)z
2

Uy

0 mt
algebras. Set p,= {(m 73) m e Mm} Cu(p, q). Then u(p, q) = t,- p, is a Cartan

decomposition [21]. The map m — u-m coincides with the adjoint map Ad:
Po—>Po: P — upu~t. See [21, Chpt. VIII].

With these preliminaries out of the way, we can define «. The idea is that «
should be the average «rotation » due to the action of D,01) on M,,. We expect
that, if @,(f) = u,T, with u,e K,, T;e 8,, then « should depend only on w,.

For ie R and my€ M,,, let d, @,(t) be the Frechet derivative at m, of the

map m — D,(t)ym. Then (for small ¢) dn,P,(t) is a non-singular linear map of
M, to itself.

= ( u;n) , hence u-m = w,muy’. This is a special case of a general fact about Lie

2.5 DEFINITION. — Let m,c D. Define

o = (i) = lim 1

lim —— —tIm In det d,,,D,(1),
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where we take any continuous branch of the logarithm. (Note that, since @,(t)
preserves D, d, @,(t) is defined for all te R).

We must show that « is well-defined and depends only on ..

To begin, let u,c K,. We factor @,(t)u, = u,(¢) T(y, u,, 1), where u,(t) € K, and
T(y, 4, 1) € 8. We further write u,(f) = u,(8, %) = u(y, uo, #)4,: Using uniqueness
in the Iwasawa decomposition, it is easily shown that: (i) the map (¥, 4s, 1) — u, (%)
defines a flow on ¥ X K,; (ii) the maps u: Y XK, XR — Ky, and T: Y XK, xR -+ §,
are cocycles with respect to this flow (see 1.9 for definitions). In fact,

uy(t -+ ) T(y, g, ¥ + 8) = Dyt + 8)%p=
= B, (8) Uy (1) T (Y5 thoy 1) = U, )(8) T((Tu(Y); ©s(t)y 8) Ty, %o, t)
and statements (i) and (ii) follow.
Let u,€ K,, and write @,(f)u,= w,T; with T,= T(y, %,,?). Then d, ®,()u, =

= utdmnTt, where we use 2.5 (ii). We show now that dmoTi does not contribute
to the rotation number.

2.6 PROPOSITION. — Let my,c D. Then Im In det d,, T, is uniformly bounded,
where In is any continuous branch of the logarithm.
This proposition is a corollary of a stronger one.
2.7 PROPOSITION, — There is a continuous map o: 8, XD — C such that:
(i) expo(T, m,) = det d, T;
(il) Im o(T, m)| <mp(p + q) (T €8, meD);
(iii) m - o(T, m): D — C is holomorphic (I € §,).

One derives 2.6 from 2.7 by a limiting argument, letting m, — m, € D for m, e D.

Proor or 2.7. — Begin with the linear map H defined in (8). It induces &

map #: D — M,,. Explicitly, write m = (zl) where m, i (g — p)xXp and m, is
pXp; then 2

(mq) ( my(1, + my)t )
T\my) ~ N= 1+ ma(1, + ma

ml) € D. Then the derivative d,, n is given by

Let m,= (m

2

7y 1o — MLy 4 ma) ™\ (71
dnn| )= L+ ma)
5 0 2(1,+ my)t )\,
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The determinant is then easy to compute, and we find det d,, 1 = 27[det (1,4 m,)~*]rt7;
here (1,4 m,)~! is viewed as an operator on C».
Next recall that 1, — 7im, > 0, hence the eigenvalues of m,: C* - C? all lie
in the unit dise, hence all the eigenvalues of (1 -+ m,)~! lie in the right half-plane.
The domain D is simply eonnected, as is every Hermitean symmetric domain
[21, VIII. 4.6]. The map m — detd,n: D — C is holomorphic and non-zero.
my
2
distinet. Then 4, ..., 4, remain distinet in a neighborhood of m,. Using analytic
continuation (see [43, pp. 23-24]), define a holomorphic function ¢;: D — C such

Choose moz( )E_D such. that all the eigenvalues Ay, ..., 4, of (1 -+ m,)~1 are

D

that: (i) ¢* = det d,, (m € D); (ii) in a neighborhood of mq, o:(m) = (p + ¢) > In A,
where —n/2 << arg A, <m/2 (1<i<p). i=1

We claim that [Imoy(m)| <z/2p(p + ¢) for all meD. To see this, let
¢:[0,1] — D be a curve joining m, and m. Then ¢ is homotopic to a real analytic
curve ¢ joining m, and m. We can assume that ¢(0) = m,, ¢(1) = m, and that ¢ is
defined and analyfic on a complex neighborhood B of [0,1]c C. Write ¢(s) =
= (223) (s € B). By [31, Chpt. 2], the eigenvalues 1,(c,(s)), ..., 2,(¢y(s)) are branches

of algebraic functions, hence all 4, are distinet and holomorphic in s except at isolated
points in B. Perturbing ¢ slightly, we can assume that A,(cy(s)), ..., A,(cx(s)) are

k4

distinet for 0 < s < 1. Hence oy(c(s)) = (p + ¢) > In A,(ey(s)) for 0 < s <1, and by
i=1

continuity of the eigenvalues [31], this equation holds also for s = 1. We conclude

P
that [Im oy(m)] < (p + Q)Z1 larg 2,(e;(1))]| < (@/2)(p + ¢)p, as desired.
P

Let us write oy(m) = Indetd,n (me D). Letting F = n(D)cN,,, it is clear
that we can define a holomorphic branch of |{Im In det d,n~*| < (=/2)p(p + ¢) for
all ne B.

Now let T € 8,. Let ¢: D — D be the map induced by 7. Let { = jy#j;%, where j,
is induced on D by J, (thus jo(m)=— m). The mapping #iy—t: E — E has the
property that det d,(nfy~1) is real and positive for all ne K. This is true because
HJ,TJ;*H™ is a matrix of the form

d, 0 0
o 1 0
y &7

where d, is lower triangular with positive real diagonal; hence #iy~! has the form

= (™) (A5 + mds” Thus d,f h iti 1 determinant
“\n, B s 4 @ ingdst) » ¢ has positive real determinant.
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Let mye D, ny= n(m,) € . We have

detd, t = detd_, | = detd,p_, i det d,_, \ily)-debd_,, 5 .

N —my )

Making use of the branches of In defined earlier, we see that
o(Tymo) = Indet d g, o+ Indet d, (i) + Indetd_, y

is a function with properties (i)-(iii) of 2.7.
Proposition 2.6 shows that the limit in 2.5, if it exists, depends only on u,=—
= u(y, id, t). The existence of the limit is guaranteed for u -a.a.y by

2.8 THEOREM. — Consider the cocyele u(y, u,,%). There is a set ¥, c ¥ of full

p-meagure such that, if ye ¥, and w,cK,, then (p + q)ix(d) = },1}2 (1) In-
-det u(y, u,, ¥) exists and is independent of (y, u,) € Y, X K,.

Proor. ~ We basically just repeat the argument in [29, § 4]. First let g be an
invariant measure on Y X K, which projects to x under the map s: ¥ X K, — Y:
{y, wo) —y. Using [35], it is easily seen that such a measure exists. Next let

1Y, Uy) = ln det u(y, 1, t) 1
dt ]t o
Using smoothness of the Iwasawa decomposition, and arguing as in the proof of
Lemma 1.4, one shows that ge LYY X K,, ). Using the Birkhoff theorem, there
is & set Bc Y X K, of full g-measure such that, if (y, %,) € B, then
14
(10) Gy, )X lim iln det wly, uy, 1) = hmlt gz (y), wly, o, 8)%) ds
{00 {—>o0 ;

exists.

Let ¥, = n(B), so that ¥; has y-measure 1. Let y € ¥, and suppose (y, u,) € B.
Fix me D, and let u,c K,. Using 2.4 (ii) and 2.6, we have

— 1
lim —1n det (%Y, Uy, t) = lim = TmIn det d,, @, (1) s =

f> 00 {—> oo

= lim 1 Tm [1n det d,, D, () 4 -+ 1 det ug 4,] = lim ti— Imln det 4, D, {t) u, =
f—oco {—> 00
= 1imjln det uly, 4., 1) .
f—>c0

Hence a(y, 4} = &y ) exists and is independent of u, for all y € ¥,. Clearly d(y) is
invariant: 8{z(y) )) = ) for all y € ¥,. By the Birkhoff theorem, & is independent
of y for u - a.a.y. Shrmkmg Y, by a set of measure zero, we obtain 2.8,
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2.9 BEMARK. — Combining 2.4 (ii), 2.6, and 2.8 shows that there is a set ¥, Cc Y
with w(¥,) =1 such that, if m,ec D, then

afA) = lim; —Imlndetd,, D, u, = lim —— —ln det u{y, u,, ?)

troo P+ 1 t—>oop+q

exists and is independent of m, and of (y, u,) € ¥y X K,.
2.10 PROPOSITION. — A — a(4) is continuous (4 € R).

Proor. — If the function of Lemma 1.3 were continuous, we could apply the simple
ergodic-theoretic argument of [29]. In the present situation, another argument is
necessary.

Let 4,— A, € R. We use the index n = 0, 1, 2, ... to refer to cocycles, ete. having
to do with equations (2),, .

First note that, by the form of equations (2),, the continuity of the cocycles
D,(?), and smoothness of the Iwasawa decomposition, w,(y, @&, t) === uy(y, i, t)
uniformly on compact subsets of ¥ x K, xR.

Next we observe that, for n =0, 1, 2, ... and @,, @, € K,, [In det u,(y, %, ) —

— In det u,(y, 4,, t)| < 2x(p + q) uniformly in » and in te R. Here of course we
always choose that eonmnuouslbraneh of the logarithm such that In1=0. To
prove this assertion, let {v(s) 0 <s=<1} be a path joining @, and @, such that
sup |In det v(s) — In det v(0)| < 27(p + ¢). Such a path can always be found. Let
my € M, be as in 2.4 (i). Then

In det u,(y, v(s), t) = ¢ Im In det d,, D) v(s) =
= ¢ Im In det &, &p(t)u, + In det v(s)ur = In deb u,(y, u,, t) + In det v(s)u;™ ,

and the assertion follows. We have used the fact that, if TeS,, then det d, T
is real.

Now choose y € ¥ such that the limit in (10) exists for all » and all u, € K,.
Let ¢ > 0 be small, and choose 7' > 0 8o that 2z(p -- ¢)/T < . Then choose N so
large that n = N, (y, @) ¥ X K, = [In det u,(y, 4, t) — In det uo(y, @, t)] < e for all
fl=T. Forr=0,1,..,R—1, leb y, =7, (y), ' = u(y, id, #T) (n = 0, 1, ...). Then
using the cocycle identity (1.9):

1
BT [ln det uy(y, id, RT) —In det u,(y, id, RT)| <
1 R—1
R— [In deb u,( yr,u,,T;—lndetu.)(j“ur,’l’ )+
[In det wo(y,, vy, T) —In det w,(4,, ur, T)|< ¢ + ¢ = 2¢ .

2|
7T 5

This completes the proof of 2.10.
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2.11 REMARKS. - (i) If g is the only invariant measure on Y, then the limit
in (10) is defined for all (y, u,) € Y X K,, is everywhere constant, and is uniform in

(Y, o, 1) [29].

(ii) The argument used in proving 2.10 can eclearly be applied to much more
general perturbations of the coefficient matrix in (2), ;. One needs only the continuity
in the perturbation of wu(y, ¥, t) used above.

(iii) The proof of 2.10 is very similar to a proof of Ruelle [38]. The rotation
number o discussed here is presumably equal to that of Ruelle.

Let us now discuss the geometric significance of «. We consider only the case
. O - 1n . . . . .
g = sp(n, R), ie., J = (1 0) . One can interpret o in a similar way if g = u(p, q)
by using self-adjoint boundary conditions [3], but we do not do so here (the basic
idea is in BoTT [6]).
First of all, recall (1.8) that u;*-sp (n, R)-u, Csu (n, n) C u(n, n), where u, =

ing back to sp (n, R) via A — wu, Au7", we obtain the following statement.

1. i1, ‘ _
= ( bt ) . Then the rotation number « can be defined just as above. Translat-

2.12 ProOPOSITION. — Let K c Sp (n, R) = symplectic group be the maximal
A B\|

1)

=— A4, B*= B;. Let u: Y XK XR — K be the cocycle induced by equation (2),,

compact subgroup defined as follows: K = {( A,B are real mxn, A*=

(where now y(t) € sp (n, R)).
Then for u - a.2.%,

(11) — i lim ~ In det w(y, u, t) = a(l) = «

i—ca

oxists and is independent of u,e K.
We must explain the notation det. Recall that K is isomorphic to the unitary

group U(n) via the map( é i) — A -+ B, Let det be the usual determinant

of an » Xn complex matrix. The relation between det and the determinant det of
the induced mayp on M, is simply det = ((iEt)z“. Hence there is no factor 1/(p + ¢) =
= 1/2n in (11).

Now let £ be the set of Lagrange subspaces I c R?* defined in § 1. As in § 1, let
lo=[es, ..., ¢,] € £ be the plane spanned by the unit vectors e;,..,¢,. Let (=
= {lef: dimlN =1}, the Maslov cycle. Then one can use ¢ to define a gen-
erator of the first cohomology group HY(L, Z) = Z as follows. Let ¢:[0,1] —£
be a closed eurve; then h(e) = number of oriented intersections of ¢ with €. See
Duistermaat [13].
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Next recall (Arnold [2]) that h can be expressed in another way. Let O(n) =
= {u € K: uly= 1} ; then O(n) is isomorphic to the real rotation group of dimension n,
and £ = K/O(r). The map det: K — C induces a function det?: £ — C via det? (I) =
= (det u)? where #l,=1[. Arnocld shows that h(¢) equals the winding number of
the map det?e: [0,1] = C. ‘

The relation of « to h is now easily described. The complement of € in £ is simply
connected [2]. Choose lef, and consider the curve &:¢ — @)1 (01 1),
If 7 andjor @,(T)le O, we perturb ¢ slightly so as to make the intersection trans-
versal. Then we deform ¢ to a closed curve ¢ by sliding the endpoint @,(f)1 to I
through ¢\ C. Let n(T) = h(¢). Using 2.8, the limit

% 1im "5

T fsoo
is independent of the construction and exists for all e £, for y-a.a.yec Y. Thus
o/n measures average rotation in the sense of «average number of oriented inter-
sections with the Maslov cycle ».

2.13 REMARKS. — (i) Consider a difference equation #,4, = V(n)#, where V(n) e
€ U(p, q) or 8p (n, R). One can define a rotation number for such an equation by
first suspending it [16] and then applying the methods discussed above. See [27].

(ii) There are other Lie algebras g for which one can define a rotation number
analogous to the one discussed above. This is true in particular if ¢ is the Lie algebra
of the isometry group § of a bounded symmetric domain. In addition to su (p, q)
and sp (n, R), these algebras are g = SO* (2n), s0 (2, q) (¢ = 2), eIIl, and eVII [21].
The basic reason is that a maximal eompact subgroup K c G has center isomorphic
to the circle group 7.

3. — The m-functions.

In this section we define and study the Weyl-Kodaira m-functions for the equations

a
(20 S = DI +yle o€, k=p g,

—il, ©

0 i1,
tions (ii), (iii) of 1.6. Thus y,(f) = y(7,(y)) is symmetric and positive semi-definite.
Moreover, given ye ¥, Ae C, and a solution z(f) of (2),,1, there is a constant ¢
such that

where JO:( ), O0<p=qg<k, and y{t)cu(p,q). We impose the condi-

[<@lo), a6)> s = €[t ats), as)> ds

This condition is practically always satisfied.
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In § 3, the ergodic measure yx plays no role. Hence we assume only that Y is
a bounded translation invariant subset of &, which satisfies (8).
A Dbasic result is

3.1 THEOREM. — Suppose Im 4 0. Then equations (2),, have exponential di-
chotomy (ED). Moreover the gtable and unstable bundles Vs(1), V*(1) (see 1.10)
satisfy dim V¥(A) = p, dim V*(1) = ¢ if Im 4> 0; dim V(1) = ¢, dim V(i) = p if
Im1<0.

Proo¥. — We first assume that the base space Y is chain recurrent (e.g., [8];
we do not use the definition directly, hence do not repeat it). In this case, equa-
tions (2), , have ED iff no equation (2), ; admits a nonzero bounded solution [39, 42].

Suppose that #,() is & non-zero bounded solution of some equation (2), ,. We use
Greew’s identity: writing L, = Jy(d/dt — y(t)) — iy,, we have

4

b
(12) [ 14, B> — <L, 1@ = <f, Jog 2 -+ 2 Tm 4 [, g d

&

where a < be R and §, g: R — C* are absolutely continuous with integrable deriva-
tives. Letting f = ¢ = #,, we find that the left-hand side is zero, and that the first
term on the right is uniformly bounded in a, b. So if Im 4340, the condition 1.6

(iii) implies that f {o(8), To(8)) ds < co. Hence there are sequences a,—>— oo,
b, — oo such that Lijgo%(%) == = ;Ll_r}go Xo(b,). Using (12) again, this implies that
[<yumo, @ ds = 0, which by 1.6 (i) implies that z,(t) = 0.

We have arrived at a contradiction. Thus if Y is chain recurrent and Ym A4 0
then equations (2),, have ED.

To find the dimensions of the bundles Vs(4), V¥(1), we use a « principle of infec-
tion » based on the perturbation theorem of Sacker and Sell [40]. Consider the two-
parameter family of differential systems

aw

(13)s,, = (L= ) W3t A5 p0) + 90w,

where 0 < ¢ < 1. If ¢ =1, we obtain equations (2), ,. Write 1= |A]€® and suppose,

e.g. Im 3> 0, i.e, 0< <z Make the change of variables s = |Aff, and write
Z(s) = w((l/l/l[) s). Then we have

= [{1 — &) 0 ee Iy, (}—%) + l_}l Y (]—j—))] &s) .

Fix 0 ¢ (0, z). Let &, be the space of § 1 with g = u(p, ¢), and let N be a neigh-
borhood of the constant function e“’J;l. Using property (8) in §1, we see that,

=&
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for small ¢ and large |A|, the coefficient of (14),, lies in . The constant system
d#|ds = ¢"°J;*& clearly has ED, and the stable resp. unstable bundles have dimen-
sions p resp. g. Now the Sacker-Sell result [40] implies that, for small ¢ and large |4],
equations (14),, have ED as well, and the dimensions of the bundles remain p
and ¢. Returning to the original variable {, we see that equations (13),,, have ED.

Now the first part of the proof shows that equations (13),, have ED for all
0<e=<1and Im A> 0. Since the bundles V**(4, ¢) vary continuously (CoppEL [9],
SACKER-SELL [40]), we see by a connectedness argument that dim V(1) = p,
dim V(1) = ¢ if Im 1> 0.

If ITm A < 0, similar arguments show that dim V(1) = ¢, dim V%) = p. This
completes the proof of 3.1 if ¥ is chain recurrent.

To prove 3.1 in full generality, we use another theorem of SBacker and Sell [40].
Let Y,c Y be any minimal subsef. Then Y, is chain-recurrent, so if Im A > 0,
then dim V*(1) = p and dim V(1) = ¢q over Y,. By [40], equations (2),, have ED
over all of ¥, and the dimensions of Vs*(1) are p, ¢ if Im 1> 0. One argues anal-
ogously if Im 4 < 0. This completes the proof of 3.1.

Now we consider the location of the bundles Vs, V. We will show that, if
Im 2> 0, then Vi(A) 35 V() N ({y} x C*) has a basis of column vectors (;;: )
with m, e Dc M . Similarly, letting 3  be the set of p X g complex matrices, and
letting D' = {me M,,: 1,— m*m > 0}, the fiber V(1) = V¥(1) N ({y{xC*) has a
basis of eolumn vectors of the form (?“) with m_ e D’. These relations define the

a

Weyl-Kodaira funetions m, = m_(y, 4) if Im A > 0. If Im 2 < 0, we will find that
(with analogous notation) m_ (y, A) e D' and m_(y, 1) € D.

To begin, recall that, if A e U(p, q), then A(D)c D. Since 4: &, &, is a
diffeomorphism, and since D defines a subset of &,, we see that A: D —D is a
homeomorphism. (Recall &,= set of complex p-planes in Ck).

Ag always, let @,(t) be the fundamental matrix solution of (2),,, with @,(0) = 1.
Fix 1 with Im 4> 0, and let ¢ < 0. Then @,(t) ¢ U(p, ¢). Nevertheless it induces
a diffeomorphism ¢, of &, onto itself. We claim that ¢, maps D strietly into D.

Intuitively, this is easy to see. Consider the Riceati equation satisfied by m ¢ M,,:

writing AJoty, -+ ¥y = (Z Z) , we have
(15) m' = — mbm + dm — ma + ¢.

Write A= 4, id;. If mye D and if A,= 0, then the tangent vector m' at m,
points « parallel to 0D », since @,(t) preserves ¢D if Im A = 0. If 1, > 0, then — m’
has an extra component which points into D. Since «the stable bundle attracts
solutions ag ¢ — — oo, we must have V(i) e D(y e Y).

A formal proof, though somewhat tedious, is not hard. We must gidestep the



230 RUSSELL A. JOENSON: m-functions and Floquet exponents, elc.

problem that 9D is not a manifold (it is a stratified manifold). Consider the equations

(16)1,6 . O e ZUE OIS

Fix t<0, ye ¥, A= 4+ ily with 4,> 0, and let 4,: &, - &, be the diffeomor-
phism induced by the fundamental matrix solution @;(f) of (16), ,.

3.2 LeumaA. - (D) c D.

Proor. ~ Let mye 6D. The matrix 1, — mim, is Hermitean and positive semi-
definite. Let m(s) be the solution of the Riccati equation (15) corresponding to (16), ,
which satisfies m(0) = m,.

Let z, € C° be a vector of norm 1 such that {myz,, mez,> = 1. Suppose for con-
tradiction that there is a sequence 0 > s,10 such that (m(s,)e,, m{s,)2,» = 1. Choos-
ing a subsequence and replacing 2, if necessary, we can assume that z,— 2.

Agsume for the time being that y(f) is continuous. Let

p(s) = <(111_ m(s)fm(s))zo, %) .
Computing the derivative at s = 0, we find
@'(0) = — 24,6{My20, Mooy —+ I(20) = — 2458 + h(z) ,

where h(z,) is the contribution to ¢'(0) from the terms other than eAJ* in (16), ..

We claim that h(z,) < 0. To see this, write h{2) = (%) -+ Ra(2y), Where hy(z,)
is the contribution to ¢'(0) from A, J'y,+ ¥y, and hy(z) is that from ZA,J5%y,.
Then hy(2,) < 0 because if A R, then the fundamental matrix solution of (16),
preserves D. Also hy(z,) < 0 (this is most easily seen by diagonalizing y,(0)).

We conclude that ¢'(0) < — 24,e. Replacing 2, by #,, and calling the resulting
curves ¢,(s), we get (p;(()) < — Ae for large #. This implies that, if » is large, then
®a(8n) > 0, a contradiction. Thus m(s) € D for small s < 0. "An elementary argument
which we omit shows that 5,(D) c D for all ¢ > 0. This proves 3.2 if y is continuous.

To remove the continuity assumption, approximate y(¢) by continuous functions
y.(t) in such a way that the fundamental matrix solutions @,(¢; 1) converge to
@,(t; 4) in U(p, q), uniformly for ({, 1) in compact subsets of RxC. Here @,(, 1),
@, (t, 1) have the obvious meaning. Let H, be a domain in € whose closure is compact
in H+= {1e C: Im 2> 0}. Then there exist ¢ >0 and a domain D,c M, such
that D c D, and such that the induced mapm — @,(¢; A)m maps D, entirely into
M, for all — ¢ << 0 and all /¢ csH,. For sufficiently large n, the same holds for
D,(¢ 2). Moreover @, — @, uniformly on compact subsets of Dy, and this conv-

vergence is itself uniform on H,.
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Now let mye D. Then @,(t; Amee D for all t< 0 and all Ae Ht. Hence
&,(t; Nymye D(— e = t=< 0, 1€ H,). Suppose for contradiction that there exists
Jo€ H, such that g(l,)c oD, where g(A) % @,(t; 2)m, for fixed t€[— o,). Let
z,€ C? be a vector of norm 1 such that {g{4,)2, g9(4)%,» = 1. Consider the holo-
morphie function A — {g(4)%y, 9(/) Ae>. Thereal part of the Jogarithm of this function
has no interior maximum in H,, hence there exists 1e H, such that In [{g(1)z,,
g(Ao)%y| > 0. Hence for large n, [KD.(t; )Moz, g(Ao)2>| > 1. Since g(4)z, has
norm 1, the norm of @D,(f; A)me2, must be >1, a contradiction. Hence g(i)e D

for all 2 ¢ H,, and hence @,(t, )m,c D for small negative ¢. This implies 3.2 in
complete generality.

Now let Ve(l,&) be the stable and unstable bundles for equations (16),:
(Im 7> 0,e>0). If ¢ = 0 we regain the bundles Vs*(1) defined by equations (2)y,3-

3.3 LeMMA. ~ Let e>0. The p-plane Vi(i,¢&) = Ve(4, &) N ({y} xC*) has a
1 .
basis of column vectors of the form (m“’) where mye D (yeY). We say (with
+
slight imprecision) that V;(1,¢) € D.

Proor. - Fix je¢ Y, and let [ = V;(ﬂ, g). Then [, is a g-plane in C*. Let
Ic C* be a p-plane such that N7, = {0}. Then any non-zero solution of (16);,5.
with initial condition in ! grows exponentially as ¢ —> — co; moreover @;(f; 4, &)1
approaches {Vi(l,¢):y¢€ Y} c¥Yx@, as t —>— oco. These statements follows easily
from the definition of ED (1.10).

Now choose €D such that 1N = {0}. Simple dimensional considerations
show that this can be done. From 3.2 and the preceding paragraph, we see that
Vi(4, &) € D for all points y in the «-limit set of § (1.9).

' Next let Y, be the w-limit set of i (1.9). Since Y, is invariant, we can find y, € ¥
which is in the «-limit set of some other point y, € ¥ . By the argument just given,
V:(%,¢) € D. Now, y — V; is continuous, hence there exists a positive ¢ such that
Vi(4 €) € D. Since Y XD is negatively invariant (3.2), we see that Vi(i,¢)e D,
a8 desired. The proof of 3.3 is complete.

We now remove the assumption > 0. Fix ye Y, and write my(4, &), m4(4)
for the parameters corresponding to V:(4,e), V;(A). Since the bundles Vo vary
continuously in (4, &) [9], we have mi(4, &) = m+(1) as & ->0+. Hence m.(l)eD
(Im 4> 0). Since A — m4(A) is holomorphic [26], we can apply the argument in the
last part of the proof of 3.2 to conclude that m, (4)e D.

All of the above arguments apply with trivial modifications to V#(1), V(1) for
all Im 2 5£0. Summarizing:

3.4 THEOREM. — Let Dc M,,, D' c M,, be as defined above. If Im A > 0, then

. : 1, . . (m-(y, 2)
V:(4) has a basis (m+(y, 1)) where m.(y, 1) € D. Also V(1) has a basis ( 1,
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with m4(y, A) € D'. If Im 4 < 0, then V:(2) has a basis (m+(;/, 2)) with my(y, A)e D',

. . 1, .
and Vi(A) has a basis (m , A)) with m-(y, A) € D.

We have the following

3.5. COROLLARY. — lim @,,,\(— t)m, = m<(y, ) uniformly in ye ¥, mye D, and
In 2e ¢ for any compaet O c H*. Also }im D, (,y(— t)my=m_(y, ) uniformly in
yeX, msl' and in Ae (. E_‘hgre are analogous results for Im 1 < 0.

It is this « collapsing in » of D, D' that is characteristic of limit-point systems (2)

u,A°

ProoF. — Consider only the first statement. In view of the ED for Im i > 0,

My
(see the proof of 3.3). However this follows from m-(y, 1) € D': if there were a non-
zero vector in 1N V,(A), then m,-m-(y,1) would have 1 as an eigenvalue, which
1s impossible.
For the ILie algebra sp (n, K), more can be said about the location of the
m-functions. As usual, embed sp (n, R) in su (n, ») via 4 — w7 Au,, where u, =

it suffices to show that, if 1¢ &, has basis (1‘”) with m, €D, then I N Vi) = {0}

i1, i1,). . .
:(jl @1) By [43, p. 125], the fundamental matrix solution ®,(¢) of (2),,

preserves the Siegel unit disc D == {me M,,: m*=m} N D if 1 is real. It is then
eagy to see that m (y, A)e D, if Im 2s£0. In fack, one can use the trick already
used in proving 3.3 and 3.5. Namely, if, say, we want to show that m.(y, ) € D,

we look for m e D_ such that the corresponding n-plane (i’:) intersects V,(4) in {0}.

This is true for any w-plane ! = u,l, where I, R?* i3 a real Lagrange plane: it
follows from Green’s identity (12) that solutions (¢) of (2),, with 0 = »(0) € u,l,
are unbounded both as ¢ — co and as § — — oo.

Translating back to sp (», R) via B — u,Bu7', and recalling [43] that w,-D, is
the ZSiegel upper half-space H,= {m e M,,: m*=m, Imm > 0}, we see that
m(y, e H, (ye Y, Im i £0).

The, Lie algebra so*(2n) = {( b)% a, b mXn complex, at=— a, b*= b} admits a

a
- ]|
similar discussion. Replacing so*(2n) by u;* s0*(2n)u;, we find that @, () pre-
serves D N {me M,,: m'= — m} = D,. Hence m € u, D,. See [21, p. 527].

For the Lie algebras g = so(2, ¢), eIlI, e¢VII, one can find « m-functions » in the
corresponding symmetric domain by introducing a certain operator J, [21, Corol-
lary 7.13], and viewing @, (t) as an element of the adjoint group of g.

4. — w(2) for complex 1.

We return to the quantity w(d) = §(4) 4+ i«(4) defined for real 1 in § 2. We will
show that there is a funetion (also called w) holomorphic in the upper half-plane H+
such that Hmw(ld 4 i) = B(A) -+ ia(A).
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The definition of w is motivated by that of the rotation number « in § 2. We
can interpret what was done there as follows. Consider the Riccati equation for

a b
m € My,: with A3y, +y = (c d)’
(15) m' = —mbm + dm —ma + ¢ .
Linearize if, obtaining
17) ' (8m) = f+(m)dm .
Then

-
i

t
i 1
o = lim ZImJ‘tr fo(m(s))ds, tr= trace,
0

i—oo P + q

where m(s) is a solution of (15) with m(0) € D. We can write « in this way because of
Liouville’s formula and the fact that d, ®,() is the fundamental matrix solution
of (17).

We are led to the following

4.1. DEFINITION. — Let A€ H*, and let m.(y, 1) be the m-function defined by V3(A).
For me M,,, let fi(m) be the linear opeator on M , obtained by linearizing (15);
explicitly

(18) fr(m)r = — mbr — rbm - dr — ra .

We do not indicate the depéndence of f on y € Y. Define

, 1
(19) w(A) :mljtr f+(m+(?/7 Z-)) du(y) .

By the Birkhoff ergodic theorem, for u - a.a.y:

t

. 1 1

20 WA} = lim - ; } 2))ds .

(20) W) = gy tr . m. (z(v), 1)) ds
0

We see that Re w(A) measures the average rate of change of volume determined
by the motion of vectors tangent to mi(y, 1), and that Im w(4) measures average
rotation «around» m,(y, A). ’

Since the bundles V(1) vary holomorphically in A [26], we see without difficulty
that w is holomorphic in H+.
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We now derive two other formulas for w(4), which will also be used in § 5. Define

t
jory = | tr T3y (y) duly) = lim—ti—J tr ity (s)ds - ae.,
e e 0
(21) ;
Yo :ftryd‘u(y) = Iim%ftr y{(s)ds - ae. .
f—co
Y o}

For the nofation in these formulas, see 1.4 and 1.6 (ii). Here tr means the usual
trace of a kx %k matrix. Then o, 9,6 R.

Consider the mapping #,: v —dr— ra of M, to itself. Then try,=ptrd—
— gtra. In addition, f (tr @ -+ tr d) duly) == i(Axy + %,). Hence {noting that #, de-

pends on y through the coefficient matrix (Z Z) :

[t duty) =~ 0 + @)ftr ) ) + ipGaa+ o)
Y

v
Similarly, let 7,(r) = — mbr — vbm for m e M,,. Then setting m = m_(y, 1):
[tra(y) duty) = — (0 + 0| trd(@)m, (v, D dpuly) -

v Y

Combining these two formulas, we get
ip
P+9q

(22) w(h) = — f v (@ -+ b, dply) + —2— (e + 1) -
Y

The quantity —-ftr (o + bm,)du(y) may be interpreted as follows. For fixed
Y
ye Y and Ae Ht, let

110 m—(Tt(y), Z)
{(23) N@) =
m-{-(Tt(y)’ )") 142
and make the change of variable v = N()z in (2),,. Then
dz __ (@ + b 0 .
at 0 em_ -+ d) "’

%o

Let 2 = {zl) where z,€ C? and z,€ 0% Let Z,(t) be the fundamental matrix solu-
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tion of zi = (@ + bm )z satisfying Z,(0) =1,. Then by Liouville’s formula and
the Birkhoff theorem one has for y - a.a.y:

(24) hm ; Indet Z,(1 mf tr(a + bm.) d,u('y)
t—>ca
Thus w(4) measures the (exponential) growth and rotation of the matrix Z(t),
which, it should be noted, is induced by p linearly independent solutions of (2)y,2
with initial conditions in Vj(4). In fact, a basis for solutions of (2),,1 initiating in
o Z(t) )
V,(4) is given b .
1) 15 given by (m+(n(y), 2,0
The quantity f(cm_—l— d)du(y) can be treated similarly. In fact, a basis for
. L e o m—(T(y), A) Za(t)
solutions with initial conditions in V%(1) is given by 7Z(t) , Where
2
Z, = (cm_+ d)Z, and Z,(0) =1,. We have for y - a.a.y:

(25) hmtln det Z,(¢ —ftr (em_ - d)du(y) .

t—>oco

To get a formula for w(1), note that det N(¢) is bounded above and bounded away
from zero. This follows from a computation similar to and easier than one which
will be carried out in § 5, hence we omit details here. Hence for M- aay:

(Ao + Yo) zftr ay + tr d)du(y) = hm In det D,(t) =
t—-—>oo

Y

= hm In det Z,(t) Z —ftr (@ + bm.) du(y )+ftr (em_+ @) du(y) .

t—>c>o

Y

We emphasize that, in the last two integrals, tr means the (usunal) trace of a pXp
maitrix resp. a ¢ X¢ matrix. Combining (22) with the preceding equation yields

. \ g
(26 w(4 :ftr em_+d)d ——=— Aoty - ¥,) .
) (4) ( ) duly) p+q( o+ Yo)
Y
Now we can analyze the boundary behavior of w(d). We temporarily write
W(A) = B(J) -F i4(1) for the quantity introduced in § 2 (i.e., A€ R).
We consider first the real part § of w. It follows from (26) that B(2) = = lim (1/¢)-

‘In [A*®D,(#)| for u - a.a.y. In fact the Oseledec theory [36] tells us that, for “ - a.a.y,
tlim (1/t) In [A1D,(t)] is the sum Eﬁi of the ¢ largest Lyapounov exponents of (2)y,

i=1
By 3.1, equation (2), , has ¢ positive and p negative Lyapounov exponents, and more-
over the positive exponents are all defined by solutions with initial conditions in

V,(4). By (25) and [36] we have for u-a.a.y: lim (1/f) In [AD,(t)]| = Zqﬁ,-= B(A)
>0 P
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Next we borrow an idea from Herman [22] and Craig-Simon [10] and note
that the funection o(A) = Iim (1/t) In |4°D,(t; A)| is subharmonic in the entire com-
plex plane. We have B(1) = (1) (Ae H+), and () = o(4) (A< R). The function
o(A) has the following properties:

(i) 1im o(2) = o(h);

.. .1
{ii) o{hy) = lim - o{le+ ro)dA for all L, e C.
>0+
lel=1

Fix A, e, and let §(o) = lim o(4 + 7o) < o(4) for |o| < 1. Then
=0+

f 6(0)dA = o(4)

we have used Fubini’s theorem and the uniform boundedness of ¢ on eompact subsets
of C. We conclude that &(g) = o(4,) for almost all p, |o| < 1.

The last remark is applied as follows. Since f§ is positive and harmonic on H+,
it has non-tangential boundary values hm B2+ 7o) (o€ H*) for a.a. 4, e R. From
the preceding paragraph, we geb

(27) lim (2 + vo) = B(A) (o€ HY),

r—>0t

for a.a.4,€ R. This is the convergence result we wanted.

Let us turn to Im w(l) = a(4), and show that &(A) = lim (4, | rp) for ail
e R and all g H+. In fact « is continuous on els H+. o

First of all, for a.a. 4,eR, the limit 7(y) = lim m (4, 4 4 ro) e D exists for
4 - a.3.y and is y-measurable (and independent of ¢ € H+). This follows from Fubini’s
theorem and & standard result on boundary behavior of bounded holomorphic
functions [15].

Let 4, € R be such that #(y) is well-defined for u - a.a.y. Consider the y-integrable
funetions g¢,(y) = trf,(y, m+(y, 1) (Ae HY). If A -}, non-tangentially (A€ Ht),
then g,(y) —d(y) = trf, (y,M(y)) for u-a.a.y. Moreover we can apply Lebesgues
dominated convergence theorem (see (18) and 1.3): we get

fiingl;wm + 1) = 1irgifgza+m<y) duly) =f§(y) dpiy)
P> r~ K K
for all p € H+. By the Birkhoff theorem and Liouvilles formula, we havefor g - a.a.y:

fé(y) duly) = lim tl*ln det da ) Po(t)
{—co
Y
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and since 7 (y) e D we have by 2.9:

Im [§(y) du(y) = (p + D&() .
Y

Since & is continuous on R (2.10), we see that in fact « = Im w is continuous
on cls H+ with boundary value & [15].
Summing up:

4.2. THEOREM. — Let (1) = B(A) -+ i&(A) be the quantity defined in § 2. The
function w(A) is holomorphic on H+ with boundary value #%: that is, Re w(i) — B(4,)
non-tangentially for a.a.l, € R, and Im w(4) — &(4,) continuously for 1, ¢ R.

4.3 REMARK. — It is perhaps worth noting that one can prove (27) without appeal-
ing to subharmonicity, by introducing the (Iwasawa) decomposition SL(K, C) = K8,
where K,c K = U(p,q) and 8,cS. Let Im A> 0, and let u,e K be such that

UMy = M, (Y, 1) where my = (10) €0D. Writing @, (t)u, = u,(t) T(y, 4o, t), one finds

D,
that the individual Lyapounov exponents 0> g5 = ..= g, are obtained by

averaging certain elements of the matrix function (y, w,) — (d/dt) T(y, uy, )},_,-

One gefs (27) by a limiting argument, using the measurable section y -+ (y)
discussed above. One must show that u,(f) € K does not contribute to exponential
growth of solutions; one does so by using a metric on &, with respect to which each
# € K acts isometrically [21, Chapt. VIII]. See [30] for similar ideas and for various
techniques needed to rigorize this discussion.

5. — w(1) and spectral theory.

Our final project is to apply w(d) to the spectral theory of

() O = (17l + 9t .

We will use the following basie formula. Fix A e H*, and write o (1) = AJ 'y, (t) + y(¢).
Consider variations of the form do,(t) = or(7.(y)), where dr: ¥ — u(p, ¢) is con-
tinuous. Then

_ IAs K b J
(28) — 0w —Jtr (Qy—~21) 0r(y) du(y) +5 P ) tr dr(y) du(y) ,

where @,: C*— C* is the projection with range V;(4) and kernel V3i(1). Here
tr = trace of a k Xk matrix. Of course the first term in (28) is the interesting one.
See [29] for a special case of (28).
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It is worthwhile to state explicity the precise meaning of (28). Let

R = {91 ¥ —u(p, q)lr is continuous} with the uniform norm |-|, For fixed i€ H*,

w == w(l) defines a mapping from R into C via r —w(lJ;*+ y + r,), where

7,(t) = r{z{y)). We write r — w(r) for this mapping (see two paragraphs below for

aven more precision in its definition). Then (28) is to be interpreted as saying that w

is Frechet differentiable at r = 0, and dw % (d,_  w)(dr) = —ftr (Q,— 3I)6r(y)duly).
Y

The proof of (28) does not depend on the spectral theory of (2),,. Therefore we
first prove (28), then use it to obtain spectral information.

During the proof of (28), we fix A< H+* and drop it from the notation.

We begin with the promised comment on the definition of w(r). We take the
point of view that Y is a fixed compact metric space with flow {r,:te R} and
ergodic measure y such that Supp 4 = ¥. Writing y(t) = e(7,(y)) where e € LYY, ¢, pt)
(see 1.3), we have differential equations

(291, =[50 + elry) + (el

for y ¢ ¥ and r€ R {1is omitted from the subscript). Clearly (29), , coincides with (2), ;.
It is equally clear that we can carry out all steps of § 1-4 for equations (29), ., obtain-
ing m-functions m(y, #) and a Floquet exponent w(r).

We need a result on perturbation of the bundles Ve, V+ due to Coppel ([9];
also [28]). Write Vs(r), Vu(r) for the bundles defined by equations (29) (recall
J e Ht is fixed). Let @, (r) be the projection with range V;(r) and kernel Va(r). Then
Q,(0) corresponds to equation (2),, (y€ Y).

5.1 THEOREM. — (i) There is an open set BcC R containing r == 0 and a con-
stant C such that, if re B, then

sup IQ@"\V) ‘"Qy((’)] é OVEOM
v

where |- is the Euclidean norm on linear self-maps of G

(ii) The constants K, « of 1.10 can be chosen independent of r € B.

With Theorem 5.1 at hand, it is easily seen that » —@,(r): R — the Banach
space of continuous maps Y — gl (k, C) with the sup norm is Frechet differentiable
at r— 0. We outline the argument. Let O_.= {f: ¥ — M,, (plus sign) or M,,
(minus sign)|f continuous} with the sup norms. It is sufficient to show that the
functions ¢,: R — Cu: @ (r)(y) = m.(y, ) are Frechet differentiable at r == 0.

Fix y € Y, and write my(t) = m(7,(y), 0). Then m,(t) satisfies (With My, y=

()

(15) m' = — mbm + dn — ma - ¢.
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Write dr, = (gz §2> where or € R, and consider the eguation
(30) (6m)' = f,(mo(t)) Om = — my Obmy + Sdm, — myda + de = q(t) .

Let ¥(t) be the fundamental matrix of the homogeneous equation (dm) =
= f,.(my(t)) om such that ¥(0) = I. Sinece the homogeneous equation is uniformly
stable as ¢ — — oo (this follows from (22) and (24)), equation (30) has a unique

bounded solution dm(t) f![’ t)P~1(s)g(s)ds. One can show that dm(t) = 6/ (r.(y))

where df e C,. Using 5.1 ( ) and the fact that sup |g(t)| = O(|dr|), one can show
that m_(z.(y), r) — mr.y), 0) = ém(t) 4 o(|0r|..). The mapping dr — dm is bounded
(this again uses 5.1 (ii)), and hence is the Frechet derivative of ¢ at r = 0.

One can similarly show that ¢_ is Frechet differentiable at » = 0. In fact a little
more work shows that ¢, are (! funetions on Bc R.

Let us now turn to the proof of (28). Forre R and ye Y, let

( 1, m—(Tt(?/)a 7))
N.(t) =
m(7.(y), ) 1,

1, 0
Let @, be the constant projection with matrix (Op 0): The change of variables
@ = N,(f)z brings (29),, to diagonal form:

dz (e - bm, 0 -
(31) at ( 0 om_ - d)z = oz

With an eye to (22) and (26), consider
w(r) = 1 f [tr (@ - bm,) — tr (om— 1 d)]du(y) .
Y

For u-a.a.y we have:
i

wy(r) = lim— f[tr my)—tr(em_ 4 d_)]ds = hm ; tr (Q —%—I) o,.(8)ds .

ts00 20 t—>o0
Now, by the change of variable formula
o,(t) = N7*(o,(t) + r,()) N,— N'N_,
where g (t) = AJ," yy( ) + y(t). Hence for u-a.a.y:

-

(32) wy(r) — wy(0) = I, — I,
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where
3

; 1
11 = lim%ftr {(Qg’ - 51) (2\[;1 (Qy + 7"y)Nr_ _ZV;l QyiVo)} dS‘

{~> 00

[4

1
I, = lim'lZ br {(Q* —51) (NN — T;lNé)}d& .

t—co <«

Let us now show that f {tr (2Qx— I)N,;*N,} ds is uniformly jpounded. The

same argument will show that Jtr {(2Q«— I)N* N} ds is bounded, and it will fol-
low that I,= 0.

To begin, consider the pxp matrix function H(f) = 1,— m-(t)m(t), where
my(t) = my(7,(y), 0). Using [31, Chpt. 2], one can show that In det H () is uniformiy
bounded (the eigenvalues of H(f) lie in the right half-plane). Therefore, using
Liouvilles formula,

(33) f tr {(— m_m, — m_m.)(1,— m_m, )~} ds is bounded .
Similarly,
(34) f‘tr {(—mim_— m,m_)(1,—m,_m_)}ds is bounded .
.
Now,

1L, —m_ \j(d,—m_m. ) 0 i, 0
Nyt = and  2Q,— I = .
— 1, 0 (,— myom_) 0 —1,

Thus

tr {(2Q— I) NN} = tr (N, N,*(2Q,— I)} =

0 ml_ 119 0 13 !
= tr , Nt = —m_m (1, —m_m. )+ m m_(L,— m m_)*.
m, 0 0 —1,

O 7
In the next-to-last term, we can replace (m' q%") N7t by
+

1, —m\{0 ml\{(1,—m_m, ) 0 )
(——m; 1, m; 0 ( 0 (1g— m ym_)"* .

Doing so yields tr {(2Q,— I)N,* N;} = m_mf(lp— m_m )1+ m+m'_(1q—— myom_)"h
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Now add the two expressions for tr {(2Q,— I)N,*N,} and use (33) and (34).
We conclude that I,= 0, as desired.
Turning now to I,, we can write I, = I, I,, where

H
1
o= tim [ f{0u= L 1) 0 1) ¥ NP0 ) Bl s

t—o0

i1

1

I,— nm;‘i tr {(Q* —51) N;lv"yNo}ds .
f—co

We clain that I, = o(|r|,) if #&B. This follows easily from Frechet differentiability
of ¢, . For,

N, +r)N,— N o,+7)N,= N o, + 7)., — N)—
— NN, — N)N o, + 7,)Ny+ o(|N, — Fol,) -

Multiplying by Q.— %I, taking the trace, and permuting factors, we get I,=
= o(|N, — Nylo) = 0(|1]w)-
We conclude that, if » € B, then for u - a.a.y,

11
wy(r) — wy(0) = ling1 tr {(Q*—.]-;I) N{%No} ds + o(|r]w) =

t—o0
[

= 1imltftr {(;—%I) ;‘y} ds + o(|7|w) :ftr {(Qy——%—l) 7"(t)}d,u(y) + 0 (|#]oo) -

oo

We have used the fact that @, \= N (1)@« No(t) (ye Y,¢c R) and the Birkhoff
ergodic theorem. This completes the proof of (28).

5.2 REMARK. — If one leaves out the factor 2Q, — I in the computation showing
that I,= 0, one obtains that In det N((¢) is nniformly bounded. This fact was used
in proving (26).

Let us show how to apply (28) to spectral problems. We consider two examples.

0 —1, (1, 0 {0 1,
5.3 EXAMPLE. —~ Let J = (1n 0)’ y,(8) _.(0 0) , Y(t) = (q(t) 0) where ¢(f)

is mXn real and symmetric. Then (2),, is equivalent to the operator equation
dz
L, = (—@+ q(t))tp =lp, geC,
where o = (Zj,) We define L, to be the closure of the operator — d?/diz 4 ¢(%)

with domain C7 (R, C") and range L*(R, C*); then L is self-adjoint ([14]; by 3.1,
no boundary conditions at - oo are needed).
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. . 1, 0 ) .
Applying (28) with dr = 6AJ—1( N 0) and using analyticity of w, we have
1 (1. O
o et o
Define
D,(1)Q, Dy (s) t=s
36 S,(ty 85 1) = B
(36) S { — B, — Q) i) i<,
and note that
(37) Q,— 41 = %[lim ©,(0, 85 2) + 1im &,(0, s; A)] .
s—>0+ 50~

We clearly have

([l e (S misemen

Write
8, * 1, 0
= S, J 1.
0 0 0 0

Recall that, if 48,(2) = } [lim, &,(0, 5, 1) + lim. &,(0; 5, 2)], then

~ od
a Tm A8,(4) [ dPy()
(38) iy _J 7w (Im A >0},

where P, is the spectral matrix of L, (thus P,(-) is symmetric, P (t)— P, (s)= 0
if t> 8, a,nd the increase points of P, determine the spectrum of L,).
v (3B), (37), and (38), we have

(39) w——*ftrA@ (A duly) (Imi>0).

Arguing as in [20] or [29], we find that, if fe O(7R), then

(0) 2 f f9 o f (tr f fi) 2,0 ) (o)

or less prosaically

{(41) —% do :f (tr dP,)duly) .
Y
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Using ergodicity of u, one shows in a well-known way [4, 37] that the spectrum
of L, is independent of y for y - a.a.y. Hence — a is non-decreasing and increases
exactly on the spectrum of L, for u - a.a.y.

5.4 BXAMPLE. — We consider the AKNS operator ([1], also ZAKHAROV-
SHABAT [47]):
Ei‘—y

L,z = J0<d (t))ac =Ax wxeCm, J,= (_@1" 0 )

0 il,

where y(t) € U(n, n). The closure of J,(d/dt— y(f)) on CF(R, C*") is a self-adjoint
operator on LR, &) (note that this is not true if p s%g¢, becaunse then by 3.1
the deficiency indices [14] p and g of J,(d/dt — y(t)) are not equal).

Let &, (t, s; A) be as in (36). Define ’

8,=e,J:4, 48,4 =§[1im &,(0, 5, 1) + lim &,(0, s, z)] =(Qr~%1) .

s—>0+" §—>0~
Then

Im AS,(1) oodPy(t)
mi ) t—Ap

where P, (-) is the 2n X 2n spectral matrix of L, and

—%” :ftr A&, (Ayduly) (TmA>0),
Y

Lo~ f (tr dP,) dp(y) -
Y

As before, — « is non-decreasing, and increases exactly on the spectrum of L, for
- 2.9.9.

E 5.0 REMARK. — We can put these examples in a more general framework, as
follows. Consider the general equations (2), ,. Following Atkinson [3, Chpt. 9],1 et
a < 0 < b, and introduce self-adjoint boundary conditions ¥, M at «, b respectively.
Thus N, M are (p + ¢) X (p -+ ¢) matrices satisfying N*J, N = M*J, M, and Mz =
= No =0 = ¢ = 0. Consider (2), , on [a, b] with the boundary conditions x(a) = Nv,
#(b) = Mv for ve C* One obtains a spectral matrix P)¥(t) and a « characteristic
function » [3] F¥™(1) such that

Im FE) [ api)
Imi ) jt— A

(yeY;ImAi>0).
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Now let @ —— co, b — co. Using 3.1 and (37), one can show that FY¥(}) —
- (@,(4) — $I)J,* &L F (4) uniformly on compact subsets of H+, independent of
N, M. It follows that dPy™ converges weakly to a matrix-valued measure dP,,
which is also independent of N and M.

Using (28), we obtain

[

?

; A _
o :ftr {F 2y} duly) + Z+ ftr oy () duy)
v Y

[N

h3

b |

—=da =Jt1‘ {aP, y(y)} duly) + Z‘—%Jtr%"y(y)du(y)-

We finish the paper with a discussion of «gap-labelling» for equations (2), ;.
To avoid obscuring the simple ideas involved with technical complications, we
assume equations (2), ; take the form either of Example 5.3 or that of Example 5.4.
Thus (2),; is equivalent to L, @ = Ap resp. L o = Az where L, is as in 5.3 resp. 5.4.

We need a preliminary result which is of independent interest.

5.6 THEOREM. — Let Y c &, be a bounded translation invariant subset which
satisfies (8) of § 1 (hence is compact metric). Let 7 Y have dense orbit, and let L;
be the corresponding operator. Then Z, is in the resolvent of L; iff equations (2), ,
have ED.

The ergodic measure g plays a role neither in the statement nor in the proof of 5.6.

"“,PROOF. ~ The proof generalizes that given in [27] in the case k= p + ¢ = 2.

The «if » part of the theorem is easy: one uses the function & (3, s; 4,) of (36)
and the Riesz-Thorin interpolation theorem [48].

To prove the «only if » statement, we first show that no equation (2),, admits
a non-trivial bounded solution. For if z,(t) is a bounded solution of (1), ,, then it
can be used to construct a sequence {w};>,c L¥R, C» or C**) such that

[ ol
[ Loy — Ao, |5 < —8—”2(8 =1,2,..).

Hence 4, is in the spectrum of I, [14]. Now, there is an interval (i,— ¢, 4, + 9)
in the resolvent of L;. Since L; and L, have the same spectrum for all ¢ & R (they
are conjugate under translation by t), it follows that P, ;, is constant on (4, — 9,
Jo+ 6) for all e R. Next, the family of spectral measures {tr dP,ly € Y} is weakly

continuous in y, i.e., [f(t)trdP, () —[f() tr dP,(1) it y,—y, for all fe OF (R). This

follows from joint continuity of the characteristic funetion F,(1) = (@,(4) — $I)J;".
It follows from these statements and density of {7.(7): ¢ € R} that tr P,(f) = const. on
{(Ao— 0, 4o+ 0). This is a contradiction. Hence no equation (1),; has a bounded
solution.
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Next let ¥, Y be a minimal set. Then [39, 42] equations (2), ; have ED over Y.
Recall that the bundles Vs(1), V¥(1) are continuous in 1 [9]. Hence there is a disc D
centered at 1, such that equations (2), ; have ED and V*(1), V(1) have constant
dimension. By 3.1, these dimensions are both equal to » (in Example 5.3 and
Example 5.4). Since this is true for any minimal Y, c Y, the Sacker-Sell result [40]
implies that equations (2),, have ED.

5.7 REMARK. — The last paragraph of the proof shows that, if y(t) € U(p, q) and
A€ R, then equations (2),; can have ED only if p = q.

Now we prove gap labelling for the operators L,. The ergodic measure u plays
a crucial role in this result.

5.8 THEOREM. — There is a countable set 4, c R, depending only on the topological
- space Y, such that, if (4,, 4,)C R is in the resolvent of L, for u - a.a.y, then a(i)e 4,
for all A€ (A, Ao).

Proor. — This result is proved for b = p 4 ¢ = 2 in [27].

We first define 4,. Following Schwarzmann [41], let H(Y, T) be the set of
homotopy classes of continuous maps ¢ from ¥ to the unit circle 7 c C. Each such
class [¢] contains a map ¢ such that y — (d/dt)e(v:(y))|,_,= ¢'(¥) is continuous.

The map h:

?'(y)

le] _>le duly) = tl_iﬁ%arg p(Tdy)) p-ae.

defineds a homomorphism from H(Y, T) to the additive reals (the group structure
on H(Y, T) is defined by multiplication). In fact » induces a homomorphism from
HYY; Z) = group of real Cech 1l-cocyeles taking integer values on inmfeger Cech
cycles into R. Let A,= {}h([p])|l¢]c H(Y, T)}.

Next let 4, € (4, 4,), and let V#(3;) be the corresponding stable bundle. Let
My == 1,€ M,,, and let N, = cls{g-my: g U(n, n)}. By 2.4 (i), Ny= {g-my: g€ K},

0
where K,= {(Zl u) Uyy Uy € U(n)} . (We assume from now on that Example 5.3
2 1

( i1, i1,

has been conjugated into swu(m,n) via the usual matrix 11

N, is homeomorphic to K,/4, where

-

Let mye M,,. It is easily seen that there is an =, € N, such that the planes
ly, l,e @ parametrized by m,, n, satisfy [, I, = {0}. In fact, a non-zero element
of I, N1, is defined by a vector v € C* such that {n, — my)v = 0, so one need only
choose n, e U(n) for which no v 0 with this property exists.

) ) Obgerve that

|uy € U(n)} .
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Let y € Y. We show that, if m, € D parametrizes V3(,), then m, e N,. To see
this, let ¥ Y be as in Lemma 1.2. Choose n; € N, such that the corresponding
plane I, satisfies [, N Vi(4,) = {0}. Since the set ¥ x N, is invariant under the flow
(y, m) = (v:(y), Dy(t)ym), and since D,(t,)n, —m, if t,—~— oo and t, () -y (1.10),
we must have m, e N,.

Now let o == (gl u(:) = (3 uz(@)tfl)(zl 21)6 K,. Since det (m — w,mui*) =1, we
have debw = det u, det 47>, TLet det #; (¢ =1,2) be the usual determinant of the
nxn matrix u;. Then detwu,=— ((:‘{Et uw;)*. We see that (det u)Y» factors through

_‘ u1 0
=)
Using 2.9, we see that 2«() = h{pom,) where h is the Schwarzschild homo-

morphism. Hence (k) e 4,, as desired. We have written m,_ for the mapy —
—>m (Y, b): ¥ - N,. This completes the proof of Theorem 5.8.

U, € U(n)} and hence defines a continuous map¢: N, - 7.

5.8 REMARK. — As has been emphasized by BELLISSARD, Lima, and TESTARD [5],
gap labelling is closely related to properties of the trace on & certain crossed-product
(*-algebra.

The author would like to thank Dr. Richard CusuMAN for stimulating con-
versations on the subjects considered in this paper.
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