
m-Functions and Floquet Exponents 
for Linear Differential Systems (*). 

~[~USSELL A. ~Ott~SON 

S u n t o .  - Si de]inisce un esponente di Floquet per certe equazio,~i di]]erenziali lineari non- 
periodiche, la parte immaginaria del quale rappresent a u n a  ~( rotazione ~ del!e soluzioni di 
dette equazioni. Inolt~'e si discute la relazione ira l'esponente di Floquet e le ]unzioni ~ di 
Weyl-Kodaira, e #a  la rotazione e certi problemi spettrali. 

1 .  - I n t r o d u c t i o n .  

The Floquet  exponents of a periodic linear system 

(1) z '  = y(t)m m ~ C ~ 

with, say, y(t ~- T)  = y(t), are obtained by  taking logarithms of the eigenvMues of 
the period mat r ix  ~(T) .  One obtains a set of complex numbers wl, . . . ,w~, w j =  

= fit -~ i~j,  such tha t  the real parts  ~j measure exponential  growth of certain solu- 
tions of (1), and the imaginary parts  measure <~rotation ~> (in some not-too-well 
defined sense) of those solutions. 

I t  is an interesting problem to define Floqnet  exponents when y(t) is not  periodic. 
We are going to consider this question when y(t) is <~ s ta t ionary ergodie ,> (see below) 
and satisfies a symmet ry  condition, i.e., belongs to an appropria te  Lie algebra g. 
In  this paper,  g will always be the Lie algebra of a Lie group 9 which preserves a 
non-degenerate,  indefinite Hermi tean  form ~ on C~: ~o(x, y) ---- (x,  J y } ,  where ( ,  } 

is the  Eucl idean inner product  on C k and the non-singular mat r ix  satisfies J*  = --  J .  
"I ~ 

For  example,  J might  be 1~ 
k g 

be sp (n, R)  = {A : R ~ --~ R ~ [ A * J  ~- J A  = 0} ---- algebra of real 2n • 2n infinites- 
imally symplectic matrices. 

We will be led to s tudy the Weyl-Kodaira  m-functions [46, 32] m+(~), m_(~) 
of the family of differential equations 

(2)~ j ( d  y ( t ) ) x  = Ay(t)x x ~ C~ )~ ~ C 

(*) Entr~ta in Redazione 1'8 novembre 1985. 
Indirizzo dell'A.: University of Southern California, Department of Mathematics, Los 

Angeles, California 90007, U.S.A. 
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where y * ( t ) =  y ( t ) ~  0 [3, Chpt. 9]. Using the m-functions, we will define a func- 
tion w = w(2) (Ira 2 > 0) which has properties related to those of the usual Floquet 
exponents. This function w in turn can be used to study the spectral problem (2)~. 

Some observations are in order. 

(i) We obtain one (not k) Floquet exponents w for equation (1). Our methods 
indicate how one might define others; however, there is as yet no general ~eehnique 
for doing so. 

(if) The appearance of the parameter ~ is not an accident. The significance 
and utility of w only become apparent when ~ is introduced. In general~ it is a good 
idea to study (1) from this point of view: embed it in a one (or more)-parameter 
family (2)~, and consider quantities related to this family. 

(iii) In the body of the paper~ we will let g = u(p~ q) (p <= q), the Lie algebra 
of the Lie group U(p~ q) of matrices preserving the skew-form COo(X1, x~) = <xl, J0m~> 

with Jo----- \ 0 1J"  Here 1~ resp. 1~ is the p •  resp. q •  identity matrix. 

Explicitly, u(p, q) -= {A : C ~ ~ C~lk =- p ~- q, A*Jo ~ JoA = 0}. As is well-known~ 
any spectral problem (2)s may be transformed into one with J -- Jo by a constant 
charge of variables x = Bz (the proof is repeated below). This holds in particular 

(0 --10. ) and y ( t ) i s  infinitesimally sympleetie. if J =  1~ 

(iv) Finally, we will find it very convenient that  u(p, q) (or rather the semi- 
simple algebra su (p, q) = {A ~ u(p, q): trace A = 0} is the Lie algebra of the iso- 
metry group of a bounded (Caftan) symmetric domain D. In fact, the m-functions 
m• take values in such a domain, l:Iowever~ the presence of D is not crucial, and it 
will be clear that  one can define analogues of the m-functions in more general 

circumstances. 

Before discussing our results in more detail, it seems appropriate to outline pre- 
vious work on m-functions and Floque* exponents, and to put  the present paper in 

perspective. 
First a quick review of the long history of the XYeyl-Kodaira rune*ions; we 

apologize for its sketchy and superficial nature. It. Weyl introduced his m-functions 
for the Sturm-Liouville operator 

(3) (p~')'@ ~o = ,~q0 p, q real, A ~ C 

in 1909 [46]; his paper retains a fresh and original quality to this day. TI~CK- 
~AI~S~ [45] mode a systematic application of the m-functions and their function 
theory to the spectral problem (3). KODAI~A [32] defined quantities closely related 
to the m-functions for higher-dimensional symmetric differential operators; he 
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adopted a geometric point of view. Later authors, including ATKI~SO~ [3], EVEI~ITT 
and EVEI~IT~-KIJ~AIr [17, 18] and HI~T0~-SI~AW [23, 24], refined and extended Ko- 
daira's work, using analytical methods. They used the m-functions and the closely 
related (~ characteristic function )) to study self-adjoint boundary value problems 
corresponding to (2)~. 

In this paper (w 3), we construct ab initio the m-functions for (2)~ when y(t) 
is stationary ergodic. We have tried to combine the geometric insights of Kodaira 
with the analytical convenience aimed a t  by  later authors. To this end, we rely 
heavily on the theory of exponential dichotomy (CoPPEL [9], SheKElS-SELL [39, 40], 
SELGRADE [42]). We will show that a stationary ergodie y(t) is in the limit-point 
ease at t = =t= 0% and will identify the quantities m• as elements of a bounded sym- 
metric domain. The domain (( collapses ~) to the m-function [32, 3, 18]. 

Floquet exponents in the sense of this paper have only been considered in the last 
few years. After anticipatory papers by PASTVlr [37] and TH01mESS [44], JOHI~S0~- 
M0SEI~ [29] introduce4 and studied the function w(~) for the almost periodic SchrS- 
dinger equation 

_ g~ ) 
(4) ~ ~ q(t) q~ -= 2q) q real, ~ e C . � 9  

In fact the present paper grew out of an at tempt to understand the (( complex rota- 
tion )) considered in [29]. Avron-Simon [4] considered the Floquet exponent for the 
difference analogue of (4): 

(5) x~+l + x~-i -}- V(m)x.~-~ ~x~ . 

GIACItETTI-JoItl~SOI~ [20] treated w(~) for the AKlgS operator [1]: 

y(t) real,  tr  y(t) ~: 0 ; 

in [20], they also considered the non-self-adjoint problem when y ( t ) e  sl (2, C). 
KOTA%I [33] showed that w(~) determines the absolutely continuous spectrum of 
the SchrSdinger operator --d~/dt~2 c q(t). Moser [34] used w in his book relating 
the finite-band SchrSdinger potentials q(t) to the classical Neumann problem: DE 
Co~cI~I and JoI~NSO~ [12] u s e d  it in characterizing the finite-band AK!gS po- 
tentials y(t). 

Finally, CI~AIG-SDm~ [11] studied the symplectic difference equation obtained 
by letting V(m) in (5) be an n • n symmetric matrix. They consider a qnantity com- 
pletely analogous to ~he w(~) of the present paper. The contributions of the preselit 
paper might be summarized as follows: (i) a more general framework; (if) a detailed 
study of the  relation between w and them-funct ions (w 4); and (iii) a geometric 
approach to the study o f  w, which complements the analytic style of [11]. In 
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particular we clarify the notion of rota.tioll in higher dimensions (w 2), and relate 
it  to the density of states (w 5) and, for sympleetic (Hamiltonian) systems, to the 
Arnold-Maslov index ([2] ; see w 2). We also prove a ~( gap-labelling ~> theorem [5, 27]. 

I t  is t ime to describe w(~) and the m-functions more precisely. Suppose for the 
/ 
( 0  - - ~ 1 , ) a n d  t h a t  g : sp (n, R) .  T h u s  (*)~ is a I I~Jmi l ton ian  moment  tha t  J =  1, 
k / 

spectral problem. 
If  A is real~ the complex number  w(A) = fl(~) q- ia(,~) is defined as follows. Let  

~(t) = r be ~he fundamenta l  matr ix  solution of (2)~ such tha t  q~(0)= I .  Let- 
ring A ~ 4enote the n-th wedge product  [19], we define 

1 
/?(A) = lira ~-ln [A~Cb(t)]. 

Thus fl(~) is a Lyapo~nov exponent.  As for ~(A), let ~ be the set of L~grange sub- 
spaces of R~';  thus l ~  ~ r l c R  ~ is an n-dimensional subspace such tha t  
(x~, Jx~}-~  0 for all x~, x ~  1. Fix  lee L, say l0 = [e~, ..., e~], the  snbspace span- 
ned by  the first n uni t  vectors. Let  C be the Maslov cycle: C = {l ~ ~: 1 n l0 _--__ 1}. 
Then C c ~ has codimension one. Now if i e fi, then so is qs(t) i, since qS(t) is sym- 
plectic. Consider the number  n(t) of oriented intersections of the  curve s -> r 
wi~h C for 0 ~ s ~ t .  Then 

~(A) -=-- lira n(t) .  
t--~ oo t 

Thus ~(2~) is a rotat ion number.  I t  is clearly related to the Arnold-Maslov index 
(BOTT [6], AI~lV0LD [2], DUISTEIR~AAT [13]). 

An obvious problem with these definitions is tha t ,  in general, the limits need not  
exist. I t  is at  this point  tha t  we use the fact  t ha t  y is s tat ionary ergodic, i.e., is a 
typical  pa th  of a s ta t ionary ergodic process. We use the Birkhoff ergodic theorem [35] 
to show tha t  the limits exist for almost all y. 

A remarkable and useful property of w(A) is tha t  it  admits a holomorphic exten- 
sion (also called w(A)) into the upper half-plane Im  A > 0. We will see t ha t  this ex- 
tension is in t imate ly  related to the Weyl-Kodaira  functions m• which we now 
describe. Let  M:  be the set of symmetric,  n •  complex matrices. Le t  H~ ~- 
: (m ~ M ~.~. Im m > 0}; thus Hoe is the Siegel upper half-plane [43], and is one of 
the Caf tan  bounded symmetric  domains. Observe tha t  M:  parametrizes an open 
dense subset U of t h e  set L ~ of complex Lagrange planes in C 2~, In  fact, I e U<-~l 

n �9 

Relying heavily on results of SACKE~-SELL ([39, 40]; see also SELGI~A:DE [42]), 
we will show that ,  if Im  A ~-0, then  equation (2) has exponential diehotomy (ED 
for short). This means tha t  C 2 ~ -  V~q - V ~, where solutions of (2)~ with initial 
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conditions in V~(V ~) tend to zero esponentially as t --> oo (t -+ - -  oo). We will see 

( 1~ ) b e i t s r e p r e s e n t a t i o n .  I t t u r n s o u t ~ t h a t  tha t  V ~ lies in U if I M P > 0 ;  let m+(~) 

m+(2) e H~ ; the map ~ --> m+(2) is one of the Weyl-Kodaira  functions. 

then m ~ M~ satisfies the  l~iccati equation 

(6) m ' :  -- mbm -t- d m -  ma -F c. 

Linearize this equation around r ~ + ( t ) :  q~(t).m+(,~): solution of (6) with initial 
condition m+(2): 

(7) (am)' =/+(~+(t)) am. 

Then 
t 

0 

ds, t r  = t r ace .  

Thus by  Liouvilles formula, w(2) is the average of the logarithm of the  determinant  
of the  fundamenta l  matr ix solution of (7). 

There is a similar formula relating w(A) and m_(~). The starting point  is the ob- 

We finish this introduction by  discussing terminology and some basic results. 
First  let gl (/6 C) be the Lie algebra of all k • k complex matrices. Let  g c gl (k, C) 

t + l  

be a real Lie subalgebra, and let ~ g = { y :  R--.'-g]supfly(s))ds< oo}, where I'1 is 
t i 

the  Euclidean norm on g. We give ~g the distribution topology: y~ ~ y in ~: iff 
co co 

fy~wds -->fy~ds for all ~ ~ C•(R)= set of C ~ real functions on R with compae$ 

support.  Let  3: ~g •  -+ ~g be the translation ]low defined by  v(y, t)(s) : y(t q- s). 
We usually write vt(y) for v(y, t). For  any bounded subset  B c ~:g (i.e., there exists 

~-~- 1 

K >  0 such tha t  supf[y(s)lds<= g for all y ~ B ) ,  the restriction 3: B •  -->B is 
t t 

jointly continuous. 

Next  let Y c ~g be a bounded translation-invariant subset  (i.e., ~ ( Y ) c  Y for all 
t ~ R). Suppose further  tha t  

t + ~  

(8) lim~_.0 sup f iy(s)Ids : 0 uni formly in y e :Y. 
$ 
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This  cond i t ion  holds  if, for  ins tance ,  ess, sup  ly(t)l ~= K < c~ for  all  y e Y. T h e n  Y 

is c o m p a c t  m e t r i c  in t h e  d i s t r i bu t ion  t opo logy .  F ina l ly ,  let  ff be  an  ergodie measure 
on :Y [35] such  t h a t  i f ( W ) >  0 for  each  open  W c Y. (Recal l  t h a t  ~ R a d o n  pro-  

b a b i l i t y  m e a s u r e  on Y is ergodic  if (i) # ( r , (B) )  = if(B) for  each  Bore l  set  B c Y;  

i.e., ff is i n v a r i a n t ;  (ii) # ( ~ ( B ) 2 B )  -~ 0 (t e R) impl ies  e i ther  if(B) : 0 or  if(B) : 1). 

1.1 D E F I ~ T I O ~ .  - A t r ip le  (Y, v, #) as jus t  descr ibed  is (in th is  pape r )  a stationary 
ergodic process. 

W e  will  need  two  l o m m a s ,  t h e  first  of which  is a s imple  consequence  of e rgod ic i ty  
os # and  t h e  B i rkhof f  ergodic  t h e o r e m  [35]. 

1.2 I ~ E ~ A .  - F o r  # -  a .a .y ,  {re(y): (t > 0)} and  {r~(y): t < 0} are  dense  in Y. 
T h e  second l e m m a  p roduces  an  <~evaluation function~> e: Y - > g :  y - + y ( 0 ) .  

Since ~g consis ts  of equ iva l ence  classes of lunc t ions ,  i t  is no t  c lear  how e should  be  

defined.  Never theless~ 

1.3 LE~I~A. - The re  exis ts  e ~ Lx(Y,  g~ #) such t h a t ,  for  # - a.a.  y ~ :g: 

(i) t he  f unc t i on  t -+ e(vt(y)) is def ined and  equals  y(t)  for  a.a.  t ~ R ;  
~ t 

'f 4 (ii) ~ y(~')d.x = i  e(~(y))ds  e(y)dff(y) as t--~ • ~ .  
0 0 Y 

P ~ o o g .  - T h o u g h  t h e  p roof  is s t a n d a r d ,  we  g ive  t h e  detai ls .  N o t e  first  t h a t  (ii) 

fol lows f r o m  (i) a n d  the  Bi rkhof f  ergodic  t h e o r e m ,  so i t  suffices to  p r o v e  (i). 
t + l l n  

Define  ]~: R X Y --> R:  (t, y) -> nfy(s) ds, T h e n  /~ is con t inuous .  Us ing  F u b i n i ' s  
t 

theorem~ we see t h a t  ](t, y) de~ ~i l~c  ~ ] n ( t  ' y )  exis ts  for  m • y - a .a .  (t, y) (m = L e b e s g u e  

me~su re  on  R).  Thus  we  can  find to e R such t h a t  ] ( - -  to~ y) is def ined ff - a.e. a n d  is 

i f -measurab le .  Since z is con t inuous  a n d  # is i nva r i~n t ,  t he  f unc t i on  

1In 

e(y) = ] ( - -  to, r~0(y)) = l i m  n f y ( s )  ds 
0 

t + l /n  

is def ined # -  ~.e. and  is i f -measurab le .  Clear ly  e(~(y)) = time nfy(s)ds  -~ y(t) for  
m - a .a . t ,  t 

To  p r o v e  t h a t  lel ~ LI (Y ,  #)~ n o t e  t h a t  for  ff - a .a .  y, 

~ s § 1In t 

~ j  [e(v~(y))]ds<=t jdslimn,_~ ly(u)tdu_~ ly(s) lds< zc ,  
0 0 s 0 
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independent  of y e Y. Le t  B~ = {y e 17: n ~ [e(y)] < n -]- 1} (n => 0). Then lel e 
oo 

~ L~(Y, #) iff ~ n#(B~) < c~. Given s > 0 and an integer N > 1, choose !/' so large 

that ~ = I 

=> i f  - -  #(B.)  s t>:T [ z'~(~(Y))as < n - N '  n - 1 , 2 , . . . , ~ .  

0 

Here  Z, is the characteristic funct ion of B .  Such a T = T(y) can be found for 
# - a.a. y ~ H, by  the  Birkhoff theorem. Then for t __> T:  

g _-> v J leo(v~(y))[ as _-> ,=~ n.  y Z.(v~(y)) as >= ,=1 ~' n#(B~) --  
0 0 

This completes the  proof. 

1.r NOTATION. - We will write f t r  y a#(y) = f  tr e(y) a#(y). 
Y Y 

Now let <,  > be the  Euclidean inner product  on C ~, and let J be a non-singular 
k • k mat r ix  such tha t  J*  = -  J .  

1.5 LEMlVlA. - - T h e r e  is a non-singular mat r ix  B such tha t  B * J B - - - J o =  

PRoom - Firs t  diagonMize J by  means of a uni ta ry  mat r ix  u~, then  permute  the 
basis elements of C ~ with an appropriute u2, finMly choose an appropria te  diagonal 
mat r ix  a with positive diagonal entries und let B -= u~u~a. 

Next  let gj = (A e gl (K, C): A * J  = -- JA} .  Then gj is a real Lie subMgebra 
of gl (K, C). There is a 1 -- 1 correspondence between elements of gj and Hermi tean  
matrices A~: namely  A1 is Hermi tean  iff J - 1 A ~ g j .  

Let  17 be a s ta t ionary ergodic process with values in gj. Consider the  following 
family of ordinary differential equations:  

x' = [~J-lyg(t) + y(t)]x x e C ~ ,% ~ C ,  y ~ 17 

We make  the following 

1.6 Assumpt ions .  - (i) i J  has at least one positive and one negative eigenvMue; 

(ii) there  is a continuous function ~: Y - + g l  (K, C) such tha t  ~ * ( y ) =  ~(y) 
and r(Y) ----> 0 (y e 17), and y~(t) = y(~(y))  (y e Y,  t e R);  

(ii) given y e 17 and ~ e C with I m  ~ va 0, ~ there  exists a constant  C : C(y, 4) 
such that ,  ff x(t) is a non-zero solution of (2)~.~, then  

oo oo 

j <x(t), x(t)> at < cj x(t)> at .  
- -  ~ o  - - c o  
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Note  t ha t  the last condition strengthens somewhat  the  one imposed by  At- 
kinson [3, Ch~pt. 9]. 

Most any  spectral  problem defined by  an ordinary differential operator  can be pu t  
in the  form (2)~,~. For  example,  let L ~ - ~ -  ~p"+ q(t)q~ = ~q~ where 90~ C ~ and 

( oO) ( 0 o q(t) is real n •  and symmetric .  Let t ing  y ~ ( t )=  0 ,  q(t) ' J = 

= 1,  9 ' we see that/5~v = 2~ is equivalent  to (2)~,~ with x = , . For  another  

example,  let  J - ~  0 , y ( t ) ~  with Re a ~ 0, y~(t)-~ : We ob- 

ta in  the  (two-dimensional) AKiNS spectral  problem [1]. 

:Now make  the  change of variables x ~ Bz, where B is as in Lem m a  1.5. We obtain 

z~= [2Jo~(B*~(t)B) ~- B-~y( t )BJz .  

Fur thermore ,  replacing t by  -- t if necessary, we can assume th a t  p _ q. Wi th  these 
remarks in mind, we make  the 

1.7 CONVE~TIO~. - Unless otherwise specified, we assume tha~ J =  J 0 =  

_~ ~ ( - - i l ~  0 ) w i t h  p ~ q il~ equations (2)~,~. Hence,  unless otherwise specified, 
\ 

0 i l ~ /  = \ 

g = gj. = (A e gl (K, C): A*Jo ~- JoA -~ O} : u(p, q). 

1.8 REMARK. -- Observe tha t  sp (n, R) can be embedded iu su (n, n) c u(n, n) 

via the  map A--> u~Au~ ~, where u~ = \ _  1~ 1~]" See, e.g. [43, p. 124]. 

1.9 TE~INOLOGu -- We collect here some s tandard  terms from topological 
dynamics.  Le t  X be a space. A ]low on X is a continuous map ~: X •  
(x, t )--~vt(x)  such t ha t :  (i) To(x)----x; (ii) ~to~8---- ~t+~(xeX, t , s ~ R ) .  If  x ~ X ,  
then  the  orbit th rough x is (vt(x): t e R} .  The o~-limit set c~(x)= { 5 -~  1iu1~_~oo ~t.(x) 

for a sequence t.--~ c~}. The a-limit set ~(x) is defined similarly, except  t~-+ 
becomes tn --~ -- c~. Both  o)(x) and ~(x) arc invariant, i.e., ~t(w(x)) c co(x), zt(~(x)) c 
c g(x) for all t ~ R. If  X is compact,  then  X is minimal  if every  orbit  is dense in X. 
Le t  9 be a topological group. A continuous map qb: X •  is a cocycle if 

(i) r 0) = idy; 

(ii) ~)(x, t ~, s) -~ r s).qb(x, t) (x ~ X ;  t, s ~ R). 

See ELLIs [16]. 
We end this in t roduct ion by  recalling the  definition of exponential  dicho- 

t omy  [9, 39]. F ix  A ~ C. Le t  ~b(t) be the fundamenta l  mat r ix  solution of (2)~.~ such 
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tha t  r  I t  is easy to  see tha t  ~ : Y •  
(Bx~, JoBx~) =- (x l ,  Jox~} for all x~, x2 ~ C k} is a cocyele in the  sense of 1.9. Also 
the  map ~.: Y • 2 1 5  -+ Y • (y~ x, t) -~ (7:~(y), ~ ( t ) x )  defines a flow on : g •  ~. 

1.10 DEFINITIOn'. - F ix  2 C C. We say tha t  equations (2)v,z have exponential 
dichotomy (ED) if there  are continuous vector  subbundles V% V~c ~ • C ~ such tha t :  

(i) Y '@ V , =  ~YxC~; 

(ii) V ~, V ~ are invar iant  (with respect to f ) ;  

(iii) there  are constants K > 0, ~ > 0 such that ,  if (y, xo) e V ~, then  IqS~(t)xol <= 
< Ke-~*lXo [ (t > 0), and if (y, xo) e V ~, then  Ir < Ke~*lxo[ (t < 0). 
Here  I'l is the Eucl idean norm on C *. 

2.  - w(2 )  for  r e a l  2. 

In this section we define the Floquet  exponent  w(2) when 2 is real. We write 

w()d = fl(2)@ ie(2)~ and consider fl and e separately.  Following 1.7, we let J - ~  o) 
0 il~ ' g = u ( p ' q ) ~  and we suppose 0 < p _ < q < p @ q = k .  

2.1 DEFINITION. -- Let  ~b(t) be the fundamenta l  mat r ix  solution of (2)~,~ with 
r = I .  Define 

fi = fi(2) = l i m l l n  lA~(t)l. 
t - ~  t 

I t  is not  immediate ly  clear t ha t  fl(2) is well-defined; however~ by  the theorem of 
Oseledee [36]: 

2.2 THEOREM. -- For  each ~ ~ R~ the  limit in 2.1 exists and is independent  o i y  
for /~- a.a. y ~ Y. 

2.3 REl~ARK. -- We can also write fl(~) -= lira (l/t) In [A~):(t)l. The reason is as 
t--~ 

follows. Let  fll > ... > ill, be the Lyapounov  numbers of (2)~,~, counted with multi- 
q 

= lim ( l / t ) In  IApqS(t)l equals plicities [36]. Then fl(~) ~ f l t  for /~ - a . a . y .  Now t-*~ 
k i = 1  

- - ~ f l ~  However ,  ~bj(t)e U(p, q)=>] det ~b (t)l = 1. Using Liouvilles formula and 
i = q + l  q k 

the  regular i ty  [7, 36] of (2)~,a for /~ - a.a. y, we see tha t  ~ fit = -- ~ fit. 
i = l  i = q + l  
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We turn  to the rotat ion number ~. Though one can give a purely geometric defi- 
nition el this quant i ty ,  it is convenient to choose another start ing point and then  
derive its geometric properties. 

We introduce the space M ~  of q •  complex matrices m. This space parametrizes 
an open dense subset of the manifold | of complex p-dimensional subspaces of C 7~. 

(:) (%) ~176  ~ In  faet~ M ~  parametrizes those 1 ~ | which have a basis of the form ~ ' m~ 

where (e~, . . ,  %} is the s tandard basis in C" and m~,.. . ,  m~ ~ CL If such a basis for ~ 
exists, then  m = (ml, ...~ m~) is the corresponding element of M~q The components 
of m are the q Pifieker coordinates ~> of 1. 

In  M~q consider the set D = {m ~ M~:  1~--m~m > 01 i.e., is positive definite}. 
This set is an anMogue of the unit  disc, and reduces to it  if p = q = 1. I ts  boundary  
OD consists of points m for which 1~--m~m is positive semi-definite. The set D 
is a Cartan symmegr% domain [21]: 

Let  U(p, q) be the (real) Lie group of complex/~ • k matrices preserving the form 
~oo(x~ x2) = <xl, Jox~>; thus U(p, q) has Lie algebra u(p, q). Note t ha t  U(p, q) acts 

o n  M~. in the following way:  

-+ (C ~ Dm)(A -[- Bm)-L This action is induced by  the linear action of U(p, q) on ~ . :  

I~ B~n)-~) 

Observe t ha t  U(p, q) preserves D and ~D [21]. In particular, if m e ] ) ,  then  

(A + Bin) -1 exists. 

Next we introduce a decomposition (Iwasawa decomposition) of u(p, q). Define 
Lie subalgebras to, no, no ~ u(p, q) as follows: 

={(o 

~ 0  

n 0 

Og)laeu(p), d e u ( q ) ,  (thus a * :  - - a l  d * =  - - d ) } ,  

i 
I 

/(tl o t 
ko '}d 

0 

0 0 

Oq_~ 0 

. 

\o 

; t11..., ~ 01  

H-~aE]a = 
o - d *  
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where d~ is p •  upper  t r iangular  with zero diagonal, and 5, fi, y are arb i t rary  com- 
plex matrices of appropria te  sizes. Here  the matr ix  H is defined by  

(9) H : 0 lq_~ 

- -  1~ 0 1 ~ ]  

The algebras to, ao, no are compact,  abelian, and ni lpotent  respectively. 

There is a corresponding decomposition U(p, q) -~ KoAoNo; Ko, Ao, ~o are the 
Lie subgroups of U(p, q) corresponding to to, ao, no respectively. (In the  case at  

hand,  Ko--~ expto,  A o =  expao,  No---- expno). Tha t  is, each v e  U(p, q) decomposes 
uniquely in the form v = uan (u ~ Ko, a E Ao, n e ~Yo), and the  decomposit ion 
defines a C ~ diffeomorphism of KoAolVo onto U(p, q). Let  So---- Ao5~o. Then So is 
s closed subgroup of U(p, q), and each v ~ U(p, q) decomposes uniquely in the forIn 

v = us (u EKo, s e So). This decomposition (which is the one we will see later) 
defines a C * diffeomorphism of KoSo onto U(p, q). See [21, Chpt. 6]. 

The decomposition U(p, q)----KoAo-~o is the Iwasawa decomposition of 
U(p, q) [25, 21]. I t  is the analogue for U(p, q) of the  Gram-Schmidt  decomposition 
of GL(n, R), used in [30] to prove the Oseledec theorem. 

2.4 RE1VIAI~KS. - -  (i) Observe tha t  the point  m * =  0 ,~ is preserved by  each 

s ~ So: sin. = m . .  This is easily seen by  noting tha t  H -1 = and using 
the description of ao and no. 

(o, o) (ii) The action of Ko on Mq~ is linear: if u = ~Ko,  then u.  ---- 

= u~m ' hence u . m  = u~mu~ ~. This is a special case of a general fact  about  Lie 

} algebras. Set Po~-- 0 m ~ M ~  c u ( p , q ) .  Then u ( p , q ) = t o + p o  is a Caftan 

decomposition [21]. The map m--+u .m  coincides with the adjoint  map  Ad~: 
Po -> Po: P ~ upu -1. See [21, Chpt. VIII] .  

Wi th  these preliminaries out  of the way, we can define 5. The idea is that  5 
should be the average <( rota t ion ,> due to the  action of ~b~(t) on Mq~. We expect  

that ,  if O~( t )=  utT~ with u~eKo,  T~eSo,  then  5 should depend only on u~. 

For  t ~ R and mo c M~ ,  let d,~oq~(t) be the Frechet  derivat ive a t  me of the 
map m-+qS~(t)m. Then (for small t)d~o~)~(t) is a non-singular linear map o2 
Mq~ to i~self. 

2.5 DEFINITION. -- Le t  mo e D. Define 

1 1 
5 ---- l im t I m  In det  d~0 qs~(t), 

t-+~P -J- q 
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where we t~ke any  continuous branch of the logarithm. (~o te  tha t ,  since O~(t) 
preserves D, d,~ O~(t) is defined for all t ~ R ) .  

We must  show tha t  ~ is well-defined and depends only on ut.  
To begin, let  uo~ Ko. We factor  qh~(t)uo : u,(t)T(y, Uo, t)~ where u~(t) ~ Ko and 

T(y, Uo, t) ~ So. We fur ther  write u~(t) ~ u~(t, ~eo) = u(y, Uo, t)u0: Using uniqueness 
in the Iwas~wa decompositions, it  is easily shown tha t :  (i) the map (y, Uo, t) --> u~(t) 
defines a flow on Y x K o ;  (ii) the  m~ps u: Y X K o X R - - > K o  and T:  Y X K o X R - + S o  
are cocy~cles with respect to this flow (see 1.9 for definitions). In  fuct, 

u,(t ~- s)T(y, Uo, t ~ s) : r ~ s ) u o :  

---- O~(~)(s)u,(t):T(y, Uo, t) : u~(~)(s)T((~(y), u~(t), s)T(y,  uo, t) , 

and s ta tements  (i) ~nd (ii) follow. 

Le t  uoe Ko, and write ~b~(t)Uo: utT~ with T t =  T(y, Uo, t). Then d,~or : 
: utd~oTt, where we use 2.5 (ii). We show now tha t  d , ,T t  does not  contr ibute  

to  the  ro ta t ion  number .  

2.6 PROPOSITIO:N. - Le t  me ~ D. Then  Im  in det  d~ ~ 
where in is any continuous branch of the  logarithm. 

This proposit ion is a corollary of a stronger one. 

Tt is uniformly bounded.  

2.7 P~OP0SITIO~, - There  is a continuous map ~: ~ o •  --> C such t h a t :  

(i) exp a(T, m0) = det  d~,oT; 

(ii) lira a(T, m)! < ~/)(/) q- q) (T e So, m e D); 

(iii) m -~ a(T, m) : D -~ C is holomorphic (T e So). 

One derives 2.6 f rom 2.7 by  a limiting argument ,  le t t ing m.  -~ me ~ D for m~ e D. 

P~ooF oF 2.7. - Begin with the  linear map H defined in (8). I t  induces a 

map  ~ : D - ~ M q ~ o  Explici t ly,  write m =  where ml is ( q - - p ) •  and ms is 
/) x p ;  then  m~ 

Le t  me ~- (ml~ 
\m~/ 

ms ( -  1~ + ms)(l~ + ms)-V 

D. Then the  derivat ive d,~ovy is given b y  

(1 (lo ~ d~o~ : (1~ + m2) -1 . 
r2 2(1~ ~- ms) -1 ] rs 
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The determinant  is then easy to compute, and we find det d~o~ = 2~[det (1~ § m2)-1]~ § 
here (1~ ~ m2) -~ is viewed as an operator on C~. 

Next recall t ha t  1~- -N~mo> 0, hence the eigenvalues of m~: C~-+C all lie 
in the unit  disc, hence all the eigenvalues of (1 @ m2) -~ lie in the right half-plane. 

The domain D is simply connected, as is every Hermiteau symmetric  domain 
[21, VIII .  4.6]. The map m - + d e t d , ~ :  D -->C is holomorphie and non-zero. (o,) 
Choose m e =  e D  such tha t  all the eigenvalues ~ , . . . , 2 ~  of ( l@m~)  -~ are 

m s  

distinct. Then )~, ... ,A~ remain distinct in a neighborhood of m0. Using analytic 
continuation (see [43~ pp. 23-24]), define a holomorphie function a~: D - +  C such 

tha t :  (i) e~'('~)-= det d ~  (m e D) ; (if) in a neighborhood of m0, ai(m) = (p -t- q) ~ In ~ ,  
where --z/2 < arg 2~ < ~/2 (l~<i~<p). i=l 

We claim tha t  ] Im~(m)l<z/2p(p-~q)  for all reeD. To see this, let 
g: [0, 1] -> D be a curve joining me and m. Then g is homotopic to a real analytic 
curve e joining m, and m. We can assume tha t  c(0) = me, e(1) = m, and tha t  e is 
defined and analytic on a complex neighborhood B of [0, 1] c C. Write c(s)= 

= [c~(s)~ (s e B). By [31, Chpt. 2], the eigenvalues 2~(c2(s)), 2~(c~(s)) are branches " " '  

of algebraic functions, hence all 2~ are distinct and holomorphie in s except at  isolated 
points in B. Perturbing c slightly, we can assume tha t  2,(c~(s)), ..., A~(c~(s)) are 

distinct for 0 =< s < 1. Hence ~(c(s)) = (p -~ q) ~ ha 2~(cs(s)) for 0 < s < 1, and by 
i = l  

continuity of the eigenvalues [31], this equation holds also for s -= 1. We conclude 
P 

t ha t  ]Ime~(m)] __< (p + q) ~ larg 2~(c~(1)) l < (s~/2)(p + ~)p, as desired. 
i = 1  

Let  us write ~(m) = ha de td~]  (m e D). Let t ing E = ~(D) c 3r~, it  is clear 
t ha t  we can define a holomorphic branch of IIm In de td~-~[  < (z/2)p(p ~-q) for 
all n e E .  

Now let T e So. Let t: D -+ D be the map induced by T. Let ~ = j0 tie ~, where jo 
is induced on D by Jo (thus ~ 0 ( m ) = -  m). The mapping ~]~-~: E - ~ E  has the 
property tha t  det d ~ ( ~  -~) is real and positive for all n e E. This is true because 
HJoTJ-~H -~ is a matr ix  of the form 

:) 
y d*-i 

where dl is lower tr iangular with positive real diagonal; hence UZ~] -1 has the form 

n =  (nl) [~ ,p ~ / -]- 7n~d~ 1 ~n~dT~d*-In~d~ ~]~ " -+lod_~l Thus d,~ has positive real determinant.  
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Let  m~ ~ D, no ~- ~(mo) ~ E.  We  have  

det d~ot = det d_~o~ -~ det  d~f(_,~o)~-l.det d,~(_~o)(~-~) �9 det  d_,, ~/. 

Making use of the  branches  of In defined earlier~ we see t h a t  

a(T, me) = In det d,~(_~o)~ -~ ~- In det  d~(_,,~.)(~ -~) + In det d_,~o~ 

is a funct ion with  propert ies  (i)-(iii) of 2.7. 

Proposi t ion 2.6 shows t h a t  the  l imit  in 2.5, if i t  exists, depends only on u t =  

= u(y, id, t). The existence of the  l imit  is gua ran teed  f o r / ~ -  a . a . y  b y  

2.8 TI][E01~EI~. -- Consider the  eoeycle u(y, Uo, t). There is a set Y~ c Y of ful l  

# -measure  such tha t ,  if y e Y1 and  uo~Ko,  t hen  (p ~-q)ic~(A)= l i m ( 1 / t ) l n .  
t~" oo 

�9 det  u(y, uo, ~) exists and  is independent  of (y, Uo) ~ ~z~ • 

P~oo~.  - We basical ly jus t  repea t  the  a rgumen t  in [29, w 4]. F i rs t  let  t; be an 

invar ian t  measure  on IZxKo  which projects  to /t under  the m a p  ~: IZ• ~ :  
(y~ uo) --~ y. Using [35], i t  is easily seen t h a t  such a measure  exists. Nex t  let  

d l  I 
ig(y~ uo) ---- ~ ~ det u(y, uo~ ~) t=o" 

Using smoothness of the  Iwasawa  decomposit ion,  and  arguing as in the  proof  of 

L e m m a  1.4, one shows t h a t  g E L I ( Y •  fi). Using the  Birkhoff theorem,  there  
is a set B c 17 • Ko of fu l l /~-measure  such tha t ,  if (y, %) ~ B, then  

(10) 8(y, uo j~  l im - l n  det u(y, u0~ ~) = g(r~(y), u(y, Uo, S)Uo) ds 
t - , c o  t 

o 

exists. 
Le t  Ir~ = z(B),  so t h a t  Yx has  #-measure  1. Le t  y E Iz~, and suppose (y, Uo) E B. 

l~ix m ~ D, and  let  u~ ~ K0. Using 2.4 (if) and  2.6, we have  

l i m - - i l n d e t  u(y, Uo t) = l i m l  t-~o~ t ~ t~ co 7 i m  in det  d~ q)~(t) Uo = 

1 
= lira .-: I m  [ln 4et  d.~ ~. ( t )  u0 -~ 1~ det Uo ~ ul] = lira ~: I m  in det  d~ ~b~(t) u~ = 

t - + c o  $ ~ t - > c o  t 

- - i  t) -= l i m - - l a  det  u(y, u~ . 
t-- ,  oo t 

t~emce ~(y, %) = ~(y) exists att4 is independent  of uo for all y ~ 1zl. Clearly ~(y) is 
iuvar ian t :  ~(v~(y)) --= ~(y) for all y E Y1. B y  the  Birkhoff  theorem,  ~ is independent  

of y for /~  - aoa.y. Shrinking Y1 b y  a set of measure  zero, we obta in  2.8. 
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2.9 I%E~A~K. -- Combining 2.4 (if), 2.6, and 2.8 shows that  there  is ~ set Y~ c Y 
with # ( Y ~ ) =  1 such that,  if m o e / ) ,  then 

1 
a(1) = l i r a - -  �9 ~-Im In det  d,,~ = lira - -  ~ ln  det  ~(y, %, t) 

exists and is independent  of mo and of (y, Uo)e Y~ • K. .  

2.10 P~OPOSITm~. - A-+ ~(A) is continuous (1 e R). 

P~ooF. - If  the  funct ion of Lemma 1.3 were continuous, we could apply  the simple 
ergodic-theoretic argnmen~ of [29]. In  the present  situation, another  argument  is 
necessary. 

Le t  2. --> ,~o e R. We use the index n = 0, 1, 2, ... to refer to coeycles, etc. having 
to do with equations (2)~,~ . 

Firs t  note  that, by  the form of equations (2)v,x the cont inui ty  of  the cocycles 
~b~(t), and smoothness of the Iwasawa decomposition, u~(y, ~, t) ~ Uo(y, ~, t) 
uniformly on compact  subsets of :Y• •  

:Next we observe that ,  for n = O, 1, 2, ... and Uo, ~ c Ko, [ ln det u,(y, Uo, t) -- 
- - I n  det  u~(y~ ~ ,  t)[ < 2z(p ~- q) uniformly in n and in t ~ R. Here  of course we 
always choose tha t  cont inuous~branch of the logari thm such tha t  In 1 = 0. To 
prove this assertion, let {v(s): 0 _< s _< 1} be ~ pa th  joining ~o and ~ such tha t  
sup ] lndetv(s) - -  lnde tv(0) [  < 2z(p ~- q). Such a pa th  can always be found. Le~ 
m.  e M ~  be as i~ 2.4 (i). Then 

In det u~(y, v(s), t) = i Im In det  d~,. r = 

= i Im  in det d~. ~)~(t)u~ @ h det v(s)u; ~ = la det u~(y, Ul, t) ~- In 4et v(s)u[ ~ 

and the assertion follows. We have used the fact that ,  if T e So, then det d , . T  
is real. 

:Now choose y ~ Y such tha t  the limit in (1O) exists for all n and all u. ~ K. .  
Le t  e > 0  be small, and choose Z > 0  so tha t  2 z ( p @ q ) / T < s .  Then c h o o s e N  so 
large tha t  n ~ N, (y, (e) ~ Y • Ko ~ [In det  u~(y, (t, t) -- In dot uo(y, ~, t) I < s for all 
[t[ ~ T. For  r = 0, 1, ..., R - -  1, let y~ = ~ ( y ) ,  u~ = uJy ,  id, rT) (n = 0, 1, ...). Then 
using the cocycle ident i ty  (1.9): 

1 
R T  lln det  no(y, id, RT)  - -  In det u~(y, id, R I )  I <= 

< I ~ - I  
- -  O n = / ~ T  ~ Iln det u~ nr, T ) - - l n  det u0(yr, %,  T)I -[- 

~ / ~ - 1  

@ ~ I l n d e t u o ( y ~ , u ~ , T ) - - l n d e t u J y ~ , q ~ , T ) l < e @ e = 2 e .  
~ ' = 0  

This completes the proof of 2.10. 
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2.11 REHagKS. - (i) If  # is the only invar iant  measure on Y, then  the limit 
in (10) is defined for all (y, uo)~ Y •  is everywhere eonstant~ and is uniform in 
(y, u, ,  t) [29]. 

(ii) The argument  used in proving 2.10 can clearly be applied to much more 
general per turbat ions  of the coefficient mat r ix  in (2)~.:.. One needs only the cont inui ty  
in the per turba t ion  of u(y, Uo, t) used above. 

(iii) The proof of 2.10 is ve ry  similar to a proof of Ruelle [38]. The ro ta t ion  
number  e discussed here is presumably  equal to tha t  of Ruelle. 

Le t  us now discuss the geometric significance of ~.. We consider only the  case 

(0 10 ) g --  sp (n, R), i.e., J = 1~ 

by  using self-adjoint boundary  conditions [3], bu t  we do not  do so here (the basic 
idea is in Boom [6]). 

Fi rs t  of all, recall (1.8) t ha t  u-[~.sp (n, R).u~ c su (n, n) c u(n, n), where u~ = 
_ [  il~ i l ~  
- -  \ - - 1 ~  1~] " Then the  ro ta t ion  number  ~ can be defined just  as above. Translat-  

ing back to sp (n~ R) via A -+ u~AuT ~, we obtain the  following s ta tement .  

2.12 PlCOPOSImION. - Le t  K c Sp (n, R ) =  symplectie gToup be the maximal  

B* = B t.  Le t  u: ~g • K • R -~ K be the cocyele induced by  equat ion A~ (2)~,~ 
J 

(where now y(t) ~ sp (n, R)).  
Then for # -  a.a. y~ 

~lx) - - i  l i m •  det  u(y~ u0, t) e(A) 
t->c~ t 

exists and is independent  of Uo ~ K. 
We must  explain the nota t ion  det .  Recall t ha t  K is isomorphic to the un i ta ry  

group U(n) via the  map _ B -+ A @ iB. Let  det  be the usual de te rminant  

of an n • n complex matr ix .  The relat ion between det  and the de te rminant  det  of 

the  induced map on M,~ is simply det  = (det) 2~. Hence there  is no factor  1/(p ~- q) = 
= 1/2n in (11). 

Now let g be the  set of Lagrange subspaces l c R ~ defined in w 1. As in w 1, let  
lo = [el, ..., e.] ~ g be the plane spanned by  the unit  vectors el, . . . ,e~.  Let  C = 
- -  {1  e g :  dim 1 (h lo >_-- 1}, the  3gaslov cycle. Then one can use C to define a gen- 
erator  of the  first eohomology group Hi(g, Z ) =  Z as follows. Le t  c: [0, 1 ] - +  f. 
be a closed curve;  then  h ( c ) =  number  of oriented intersections of c with C. See 
Duis termaat  [13]. 
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Next  recall (Arnold [2]) tha t  h can be expressed in another  way. Le t  O(n)= 
= (u e K: ulo-~ 10} ; then  O(n) is isomorphic to the real ro ta t ion group of dimension n, 
and s ---- K/O(n). The map dot:  K -+ C induces a funct ion det~: s -+ C via dot 2 (1) ---- 

(det u) 2 where u/0----l. Arnold shows tha t  h(o) equals the winding number  of 
the  map dot ~ c: [0, 1] -+ C. 

The relat ion of ~ to h is now easily described. The complement  of C in s is simply 
connected [2]. Choose l~  s and consider the curve 6: t - +  r l (0_< t_< T). 
I f  l and/or  r IG C, we per turb  6 slightly so as to make the  intersection trans- 
versal. Then we deform 6 to a closed curve o b y  sliding the  endpoint  q~(t)l to l 
through s  Le t  n(T) -~ h(o). Using 2.87 the limit 

- = l im n(Y) 
7~ t ~  T 

is independent  of the construction and exists for all 1 ~ s f o r / ~ -  a.a.y G I(-. Thus 
~./~ measures average ro ta t ion in the  sense of (~ average number  of oriented inter- 
sections with the Maslov cycle ~. 

2.13 I~EZ~hRKS. - (i) Consider a difference equation x .+~= V(n)x. where V(n) 
U(p, q) or Sp (n, R). One can define a rota t ion number  for such an equat ion by  

first suspending it  [16] and then  applying the methods discussed above. See [27]. 

(ii) There are other  Lie algebras g for which one can define a rota t ion number  
analogous to the  one discussed above. This is t rue  in part icular  if g is the Lie algebra 
of the  isometry  group 9 of a bounded symmetr ic  domain. In  addit ion to su (p, q) 
and sp (n~ R)7 these algebras are g = SO* (2n)7 so (2, q) (q __> 2)7 e l I I  7 and e u  [21]. 
The basic re~son is t ha t  a maximal  compact  subgroup K c 9 has center isomorphic 
to the circle group T. 

3 .  - T h e  m-fmaetions. 

In  this section we define and s tudy the Weyl-Kodaira  m-functions for the equations 

d~v 
(~)~'~ dr- = [,~J~:~,~(t) + y ( t ) ] ~  x e C ~ , 71 = p + q ,  

o) 
where J o =  i1~ ' 0 < p N q < k ,  and y(t) Gu(p,q). We impose the condi- 

tions (ii)~ (iii) of 1.6. Thus y~(t) --= y(~(y)) is symmetric  and positive semi-definite. 
~oreover ,  given y G Y, 2 G C, and a solution x(t) of (2)~,~, there is a constant  C 
such tha t  

c o  c o  

f<x(d)7 x(~)> d~ __< ef<~,,(8).x(d)7 ~(8)> e~. 
- - o o  - - c o  

This condition is practically always satisfied. 
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I n  w 3, t he  ergodie  m e a s u r e  # p l ays  no role. H e n c e  we a s s u m e  on ly  thag  17 is 

a b o u n d e d  t r a n s l a t i o n  i n v a r i a n t  subse t  of ~ which  satisfies (8). 
A bas ic  resu l t  is 

3.1 TEE0.~EI~. -- Suppose  I m  A sa 0. T h e n  equa t ions  (2)~,~ h a v e  e x p o n e n t i a l  di- 
chogomy (ED).  ~ o r e o v e r  t h e  s t ab le  a n d  uns t ab l e  bund les  V*(2), V~(2) (see 1.10) 

sa t i s fy  d i m  V*(A) = p ,  d i m  V~(,t) = q if I m  ), > 0; d i m  V*(A) = q, d i m  V(,~) = p if 

I m A <  O. 

P~ooF .  - W e  first  a s s u m e  t h a t  the  base  space  l 7 is cha in  r e c u r r e n t  (e.g., [8]; 

we  do no t  use  t h e  def ini t ion d i rec t ly ,  hence  do n o t  r e p e a t  i t) .  I n  th is  case,  equa-  

t ions  (2)v,a h a v e  E D  iff no  e q u a t i o n  (2)~,~. a d m i %  a nonzero  b o u n d e d  so lu t ion  [39, 42]. 

Suppose  t h a t  xo(t) is a non-ze ro  b o u n d e d  so lu t ion  of some  e q u a t i o n  (2)~,~.. W e  use  

Green's identity: wr i t i ng  L~ = J o ( d / d t -  y(t)) -- ~},~, we h a v e  

5 b 

(12) f [<], r g> - <L f, = <f, § 2i Im k f < r J ,  g> t 
g a 

w h e r e  a < b ~ R a n d  ], g: R --> C k are  a b s o l u t e l y  con t inuous  w i th  in t eg rab le  de r iva -  

t ives .  L e t t i n g  ] = g = xo, we f ind t h a t  the  l e f t - h a n d  side is zero, a n d  t h a t  t h e  first  
t e r m  on t h e  r igh t  is u n i f o r m l y  b o u n d e d  in a, b. So if I m  2 =/= 0, t h e  cond i t ion  1.6 

c o  

~hat f(xo(s), 0s0(s)} ds < oo. H e n c e  t he r e  a re  sequences  a . - + -  (iii) impl ies  0 . O ,  

- - o o  

b,~ -> ~ such t h a t  lira xo(a~) = 0 = l i ra  xo(b~). Using  (12) aga in ,  th is  impl ies  t h a t  
n--.~, o o  ,gt.--+ o o  

f (yvxo,  xo}ds = O, wh ich  b y  1.6 (iii) impl ies  t h a t  x0(t) ~ O. 

W e  h a v e  a r r i v e d  a t  a con t rad ic t ion .  Thus  if I z is cha in  r e c u r r e n t  a n d  I m  i r 0 

t h e n  equa t ions  (2)~, z h a v e  E D .  
To  find the  d imens ions  of t h e  bund les  V~(~), V~(A), we  use  a ~ pr inc ip le  of infec-  

t ion  ~> b a s e d  on t h e  p e r t u r b a t i o n  t h e o r e m  of Sacke r  a n d  Sell [40]. Consider  t he  two-  

p a r a m e t e r  f a m i l y  of d i f ferent ia l  s y s t e m s  

dx 
'~ .q' - -  = [(1 - - e ) ~ J ~  ~ 4- ~)~J~*y~(t) 4- y(t)]x~ 

where  0 _< e _< 1. H e = 1, we  o b t a i n  equa t ions  (2 )m.  W r i t e  A -= [21 e ~~ a n d  suppose ,  

e.g. I m  2 > 0, i.e., 0 < 0 < ~. M a k e  the  change  of va r i ab l e s  s = [Alt, a n d  wr i t e  

= x ( ( 1 / I z l ) , ) .   hen w e  h a v e  

(:I 4)a,o d~ r - -  e) ei~ 4- ee Jo 7'~ y x is ) .  

F i x  0 ~ (0, ~). L e t  ~g be  t he  space  of w ! wi th  g u(p, q), and  let  h r be  a neigh-  

b o r h o o d  of t h e  c o n s t a n t  f unc t i on  e*OJU *. Using  p r o p e r t y  (8) in w 1, we see t h a t ,  
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for small e and large I~I, the coefficient of ( l Jh .  . lies in N. The constant  system 
ds -~ e~~ clearly has ED, and the stable resp. unstable bundles have  dimen- 
sions p resp. q. Now the Sacker-Sell result  [r implies that ,  for small s and large ]~[, 
equations (14h, . have  ED as well, and the dimensions of the  bundles remain p 
and q. t~eturning to the original variable t, we see tha t  equat ions (13h, . have  ED.  

Now the first par t  of the  proof shows tha t  equations (13h. . have ED for all 
0 ~_ e --< 1 and Im  ~ > 0. Since the bundles V','~(~, e) va ry  continuously (CoPPEr, [9], 
SACEEg-SnLL[40]), we see by  a connectedness argument  tha t  dim V ' ( J l ) = p ,  
d i m V ( 1 ) = q  if I m l > 0 .  

If  I m ) ,  < 0, similar arguments show tha t  dim V , ( t ) =  q, dim V ' ( f i ) =  p. This 
completes the  proof of 3.1 if Y is chain recurrent .  

To prove 3.1 in full generality, we use another  theorem of Sacker and Sell [40]. 
Let  I71 c Y be any  minimal subset. Then Y~ is chain-recurrent,  so if Im  ~t > 0, 
then  dim V'(~) ~-- p and dim V'(~) = q over :Y~. By  [40], equations (2)v,~ have ED  
over all of Y, and the dimensions of V*,"(),) are p, q if Im  1 > 0. One argues anal- 
ogously if Im  t < 0. This completes the proof of 3.1. 

Now we consider the location of the bundles V', V ". We will show tha t ,  if 

Im  4 > 0 ,  then  V , ( i ) , V ' ( , ) , ( ( y } •  a basis of column vectors ~1 ,~  
\ ] m+ 

with m+ E D c Mq .  Similarly, let t ing M~, be the set of p • q complex matrices, and 
let t ing D ' =  { m e M ~ :  l ~ - - m ~ m > 0 } ,  the fiber V~(~)= V~(Jl) n ( { y { •  k) has a 

o basis of column vectors of the form 1 with m ~ These relations define the  

Weyl-Kodai ra  functions m• ~ m• ~t) if Im i > 0. I f  Im 2 < 0, we will find t h a t  
(with analogous notat ion) m+(y, ~) e D'  and m_(y, ~) ~ D. 

To begin, recall that ,  if A ~ U ( p , q ) ,  then  A(D) c D .  Since A : ~ - + ~  is a 
diffeomorphism, and since D defines a subset of | we see tha t  A:  D - + / ~  is a 
homeomorphism. (Recall |  of complex p-planes in C~). 

As always, let  r be the fundamenta l  mat r ix  solution of (2)v,~ with 4~(0) = I .  
F ix  ~l with Im  ~ > 0, and let  t < 0. Then r ~ U(p, q). Nevertheless it  induces 
a diffeomorphism ?~ of |  onto itself. We claim tha t  Ft maps D str ict ly into D. 

Intui t ively ,  this is easy to see. Consider the Riccati  equation satisfied by  m e M~,: 

(z5) m ' =  -- mbm + d m - -  ma + c . 

Write  ) . - ~ 1 ~ i t ~ .  If  mob~D and if 2 ~ = 0 ,  then  the tangent  vector  m' a t  me 
points (~ parallel to 8D )), since qb,(t) preserves 8D if Im 1 = 0. If  ~, > 0, then  --  m'  

has an extra  component  which points into D. Since (( the stable bundle a t t racts  
solutions as t -+ -- c~ ~>, we must  have V~()~) ~ D(y ~ Y). 

A formal proof, though somewhat tedious, is not  hard. We must  sidestep the 
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problem tha~ ~D is not  a manifold (it is a stratified manifold). Consider the  equations 

Fix  t < 0, y e Y, 2 = L. @ i2~ with 2~> 0, and let ~ :  | -> | be the  diffeomor- 
phism induced by  the  fundamenta l  mat r ix  solution ~ ( t )  of (16)~,~. 

3.2 LEN-~A, -- ~?~(D) c 2). 

P~ooF. - Le t  mo ~ ~D. The mat r ix  ! ~ - - ~ m o  is Hermi tean  and positive semi- 
definite. Let  re(s) be the  solution of the  l~iceati equat ion (15) corresponding to  (16)~.,~ 

which satisfies m(0) --- too. 
Le t  zo e C ~ be a vector  of norm 1 such tha t  <moZo~ mozo> ----- 1. Suppose for con- 

t radic t ion tha~ there  is a sequence 0 > s ~ 0  such tha t  <m(s~)z~, m(s.)z=> >= 1. Choos- 
ing a subsequence and replacing Zo if necessary, we can assume tha t  z ~ z o .  

Assume for the  t ime being t h a t  y(t) is continuous. Le t  

9(8) = < ( l , -  m(8)'m(8))Zo, Zo>. 

Computing the  der ivat ive at  s = 0, we find 

9'(0) = - 22~<moZo, moZo> § h(Zo) = - 2),~8 § h(zo), 

where h(zo) is the contr ibut ion to 9r(0) f rom the te rms other  than e2,J~ 1 in (16)~,~. 
We claim tha t  h(zo) <= O. To see this, write h(Zo)= hl(zo) @ h2(zo), where h~(zo) 

is tho contr ibut ion to  9'(0) f rom 2 1 J ~ 7 ~  y, and h~(zo) is that f rom 2~Jo~y~. 
Then h~(zo)<= 0 because if A ~ R, then  the fundamenta l  mat r ix  solution of (16)~..~ 
preserves D. Also h~(zo) <= 0 (this is most  easily seen by  diagonalizing 7~(0)). 

We conclude tha t  9'(0) _<_ -- 22~s. Replacing zo by  z~, and calling the resulting 
curves 9~(s), we get 9~'(0) _<-- -- A~s for large n. This implies tha*, if n is large, then  
%(s,)  > 0, a contradict ion.  Thus m(s) ~ D for small s < 0. A n  e lementary  argument  
which we omit shows tha t  ~,(D) c D for all e > 0. This proves 3.2 if y is continuous.  

To remove the  cont inui ty  assumption,  approximate  y(t) by  continuous functions 
y~(t) in such a way tha t  the  fundamenta l  mat r ix  solutions r A) converge to 

#~(t; A) in U(p, q), uniformly for (t, A) in compact  subsets of R •  Here  r 2)~ 
~5~(t~ ,t) have  the obvious meaning. Le t  Ho be a domain in C whose closure is compact  
i n H  + =  { 2 ~ C : I m A > 0 } .  Then  there  exis+~ a > 0  and a doma/n D o c M ~  such 
t ha t  / ) c  Do and such t ha t  the induced map m - +  qS~(t; 2 ) m m a p s D o  entirely into 
M~, for all -- ~ _< t _< 0 and all A c CSHo. For  sufficiently large n, the  same holds for 
r 2). Moreover ~b~-> ~ uniformly on compact  subsets of D0~ and this conv- 

vergenee is itself uniform on H0. 
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Iqow let moeD.  Then ~b~(t; 4 )moeD for all t ~  0 and all 4 e l l  +. Hence 
r 4 )moeD(- -  a----- t_< O, 4eHo) .  Suppose for contradiction tha t  there exists 
4o~Ho such tha~ g(4o) c ~D, where g(4) ~ e ~ ( t ;  4)mo for fixed $e [-- a , ) .  Let  
z0e C~ be a vector of norm 1 such tha t  (g(4o)Zo, g(4o)zo)--1.  Consider the holo- 
morphic function 4 ~ (g(4) zo, g(4o)4o). The real part  of the logarithm of this function 
has no interior maximum in Ho, hence there exists 4 e H o  such tha t  In [(g(4)z0, 
g(4o)zo)[ > O. Hence for large n, [(~b~(t; 4)moZo, g(4o)Zo)[ > 1. Since g(4.)zo has 
norm 1, the norm of r 4)mozo must  be ~ 1, a contradiction. Hence g(4) e / )  

for all 4 ~ H o ,  and hence ~,(t,  )~)moeD for small negative ~. This implies 3.2 in 
complete generality. 

Now let V~.~(4, e) be the stable and unstable bundles for equations (16)~,~ 
(Im 4 > 0, e>0) .  I f  e : 0 we regain the bundles V~,~(,t) defined by equations (2)~,~. 

3.3 LEptA.  - Le t  e > 0 .  The p-plane V~(4, e)-~ V~(4, e) n ( { y } x C  7~) has a 

say (with 
\ ] m+ 

slight imprecision) tha t  ~/~(4~ e) E D. 

P~ooF. - Fix  ~ Y ,  and let 1 u =  V~(fi, s). Then l~ is a q-plane in C ~. Let  
I c C ~ be a p-plane such tha t  t n l = {0}. Then any non-zero solution of (16)~,~.~ 
with initial condition in l grows exponentially as t - > - -  ~ ;  moreover ~b~(t; ~, s). l  
approaches {V~()o, s) : y e ~} c Y x ~ ~s t -+ -- c~. These statements follows easily 
from the definition of ED (1.10). 

N-ow choose l E ~O such tha t  l n 1 = (0}. Simple dimensional considerations 
show tha t  this can be done. From 3.2 and the preceding paragraph, we see tha t  
V$(4, s) e D for all points y in the ~-limit set of y (1.9). 

Next let 2 "  be the ~o-limit set of ~ (1.9). Since Y~ is invariant,  we can find y~ e Y~ 
which is in the g-limit set of some other point y~ e Y~, By  the argument  just  given, 
V$~(2, s) e D. Now, y --~ V$ is continuous, hence there exists a positive t such tha t  
V$~(~)(~, s ) e D .  Since :YxD is negatively invari~nt (3.2), we see tha t  V$(4, s ) e  D, 
as desired. The proof of 3.3 is complete. 

We now remove the assumption s > 0. Fix y e 3(, and write m+(4, s), m+(4) 
7s  s for the parameters corresponding to ~ ~(4, s), V$()~). Since the bundles V ~,~ vary  

continuously in (4, s) [9], we have m+(4, ~) -> m+(4) as s -~ 0 +. Hence m+(4) e 
(Ira 4 > 0). Since 4 --> m+(4) is holomorphic [26], we can apply the argument  in the 
last part  of the proof of 3.2 to conclude tha t  m+(4)e D. 

All of the above arguments apply with trivial modifications to V~(4), V~(4) for 
all Im ~ :~ 0. Summarizing: 

3.4 THEOrEms. - Let  D c Mq~, D' c M~ be as defined above. If  Im  A > 0, then  

( ) co,, 1~ where m+(y, 2) e D .  Also V~(2) has a basis \ lq V~(4) has a basis m+(y ' 4) 
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withm+(y,  2 ) ~ D ' .  I f I m 2 < 0 ,  then  V$(2) hasabasis|m+~'/(~, i)]\ with m+(y, 2 ) ~ D', 
/ 

and V~(2) has a basis m...(y, A) with re-(y, 2) ~ 2). 

We have  the following 

3.5. Go~oLh~t~u - l im ~,(~)(-- t)mo = m+(y, 4) uniformly in y ~ Y, m0 ~/9,  and 

ia 2 e C for any compact  C o H +. Also lira ~0(~)(-- t)mo = m=(y, 2) uniformly in 

y ~ Y, me ~ ]) ' ,  and in 2 ~ C. There are analogous results for Im  2 < 0. 
I t  is Chis <~ collapsing in )> of 2), D '  t h s t  is characterist ic of l imit-point  systems (2)~,~. 

P z o o r .  - Consider only the first s ta tement .  In  view of the ED for Im A > O, 

i~ suffices to show tha t ,  if ~ h ~ s b ~ s i s ~ l ~ w i t h m o ~ D ,  thenlC'~V~(2)_-=(O} 
\ ] m0 

(see ~he proof of 3.3). However  this follows f rom m_(y, 2) ~ D': if there  were a non- 
zero vector  in l (~ V~(2), then  me're-(y, 2) would have  1 as an eigenvalue, which 
is impossible. 

For  the Lie algebra sp (n, R), more can be said about  the  location of the 
m-functions. As usual~ embed sp (n, R) in su (n, n) vi~ A --> u-~Au~, where u~ ---- 

- - \ - - 1 ~  1 , ]  By  [43, p. 125], the fundamenta l  mat r ix  solution q~,(t) of (2)v,~ 

preserves Che Siegel uni t  disc D~ ~ {m ~ M~,: m ~ = m} n D if 2 is r e a l  I~ is then  
easy to  see tha t  m+(y, 2 )~  D~ if Im  2 va 0. In  facS, one can use the  t r ick already 
used ia proving 3.3 snd 3.5. Eamely ,  if, say, we want  to show tha t  m+(y, 2) ~ D~, 

we Iook fo r  m e D ~  such tha t  the corresponding n-plane( t in ' ) in tersec ts  V~(2)in {0}. 

This is t rue  for any  n-plane l ----- u, lo where l0 c R ~ is a real  Lagrange plane:  it  
follows from Green's iden t i ty  (12) tha t  solutions x(t) of (2)~,~ with 0----x(0) ~ u,l. 
are unbounded  both  as t -> co and as t - - > -  c~. 

Translat ing back to sp (n, R) via B -~ u~Bu~ ~, and recalling [43] t h a t  u~.D~ is 
the fliegd upper hal/-space H~= {me M~:  m*= m, I m m >  0}, we see tha t  
m~:(y, 2) e H, (y ~ Y, Im  2 :~ 0). 

The2Lie algebra so*(2n) = _ f i  g a, b n • complex, a~---=- a,[b*= b admits  a 

similar discussion, l~eplacing so*(2n) b y  u~ -~ so*(2n)u~, we find tha t  ~ ( t )  pre- 
serves D ~ {m ~ M ~ :  m ~ -~ -- m} = Do. Hence m : ~  u~.D~. See [21, p. 527]. 

For  the Lie algebras g = so(2, q), eII I ,  eVII,  one can find , m-functions ~> in the  
corresponding symmetr ic  domain by  introducing a certain operator  J ,  [21, Corol- 
lary 7.13], and viewing ~ ( t )  as an element  of the adjoint  group of g. 

4.  - w(2) for complex A. 

We re turn  to the  quan t i ty  w(3~) : / 3 ( 4 )  ~ ic~(A) defined for real  2 in w 2. We will 
show tha t  there  is a funct ion (also called w) holomorphic in the upper  hall-plane H+ 

such tha t  lira w(;t 4- is) = fi(2) 7- i~(2). 
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The definition of w is mot iva ted  by  tha t  of the rota t ion number  ~ in w 2. We 
can interpret  what  was done there  as follows. Consider the Riceati  equat ion for 

(15) m ' :  ~ mbm ~- d m - - m a  + c.  

Linearize it, obtaining 

( 17 )  ( t in) '  = f+(m) t i n .  

Then 
t 

0 

, t r  = t r a c e ,  

where m(s) is a solution of (15) with m(0) ~ D. We can write ~ in this way because of 
Liouville's formula and the fact  t ha t  d~~162 is the fundamenta l  mat r ix  solution 
of (17). 

We are led to the following 

4.1. DEFI~T~.O~.- Le t  % e H +, and let m+(y, 2) be the m-function defined by  V~(2). 
For  m ~ M ~ ,  let ]+(m)be the  linear opeator  on M~ obtained by  linearizing (15); 
explicitly 

(18) ]+(m).r = -- m b r -  rbm + d r -  ra . 

We do not  indicate the  dependence of ]+ on y e Y. Define 

(19) = q f t r  f+(m+(y, 2)) 
Y 

B y the  Birkhoff ergodlc theorem, for # - a.a.y: 

t 

(20) w ( 2 ) -  ~ 1  - l i r a 1  rtrf~(m+(T~(y) ,2))ds 
p @ q ~ + o o t J  

0 

We see tha t  Re w(2) measures the average rate  of change of volume determined 
by  the  mot ion of vectors tangent  to m+(y, )~), and tha t  Im w(2) measures average 
ro ta t ion  <~ around >> m+(y, 2). 

Since the  bundles V,(~) va ry  holomorphieally in 2 [26], we see without  difficulty 
tha t  w is holomorphie in  H+. 
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(21) 

W e  now derive two o the r  fo rmulas  for  w(2), which  will also be used in w 5. Define 

t 

f i~o - -  t r  J~y(y )  d#(y) = lira 2 t r  J~y~(s) ds # - a . e . ,  

Y 0 

t 

iyo = f  tryd#(y)  = lira 1 ( t r  y(s)ds # -  a.e. . 
t ~ o t J  

Y O 

F o r  the. n o t a t i o n  in these  formulas ,  see 1.4 and  1.6 (ii). H e r e  t r  means  the  usual  

t r ace  of a k • k m~tr ix .  T h e n  ~o, YoE R.  

Consider  t he  m u p p i n g  U~: r --> dr -- ra of Mq~ to  itself. T h e n  t r  Ux = P t r  d - -  
/ 

- -  q t r  a. I n  addi t ion ,  f(tr a § t r  d) d~(y) = i(~o § yo). H e n c e  ~noting t h a t  U~ de- 
/ 

Y Y 

Similarly,  le~ u~(r) = --  mbr -- rbm for  m ~ M ~ .  Then se t t ing  m -- m+(y, 2) : 

.itr ~(y)d~(y)=- (p + ~)ftr b(y)~§ ~)dZ(y). 
Y Y 

Combin ing  these  two formulas ,  we ge t  

(22) =--ftr (a § bin+) d/z(y) 
Y 

ip ()~o + yo) +Pdq 

The q u a n t i t y - f t r  (a + bm+)d#(y) m a y  be  in t e rp re t ed  as follows. 
y 

y ~ 1 7  a n d  ~ H + ,  lot 

F o r  fixed 

(23) 
1~ m_(~,(y), 4)) 

N(t) = m+(zt(y),  ),) I~ 

and  m a k e  the  change  of var iab le  x = N(t)z in (2)v,z. Then  

(::) 
dz (a § bm+ O )  
d~--= 0 era_+ d z . 

Let  z = where  zl e C ~ and  z2~ C ~. Le t  Z~(t) be the  f u n d a m e n t a l  m a t r i x  solu- 
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! 
tion of z~ = (a § bm+)z~ satisfying Z~(0) = 1~. Then by  Liouville's formula and 
the Birkhoff theorem one has for # - a.a. y: 

(24) lira 1_ In dot Z~(t) = ( t r  (a § bin+) d#(y) 
t -+o~ t - -  

Y 

Thus w(2) measures the (exponential) growth and rotat ion of the matr ix Z~(t)~ 
which, it should be noted, is induced by  p linearly independent  solutions of (2)v,~ 
with initial conditions in V~(),). In  fact, a basis for solutions of (2)~,~ initiating in 

( ) V~(2) is given by  m+(~t(y), 2)Z~(t) " 

The quant i ty  f(em_§ d)d~(y) can be t rea ted similarly. In fact, a basis for 
Y 

solutions with initial conditions in V~(A) is given by  (m-(~t(y), ,~)Z~(t)~ where 
\ z (t) / '  

! 

Z2 = ( c m _ §  d)Z2 and Z~(0 )=  lq. We have for # -  a .a .y :  

Y 

To get a formula for w(A), note tha t  det N(t) is bounded above and bounded away 
from zero. This follows from a computat ion similar to and easier than one which 
will be carried out  in w 5, hence we omit details here. Hence for # - a.a.y: 

Y0) = ~ t r  a) + tr  d)d/x(y) = l i r a  11 i ( ~ o  + t-~ r 7 n dot q~(t) 
g l /  

Y ~ t  

Y Y 

We emphasize that ,  in the last two integrals, t r  means the (usual) trace of a ~o •  
matr ix  resp. a q X q matrix. Combining (22) with the preceding equation yields 

f (~o  + Yo) �9 
iq (26) ~v(;0 = t r  (era_ + d) @(y) p + q 

Y 

_Now we can analyze the boundary  behavior of w(),). We temporari ly write 
@(2) = f l (A)§ i~(~) for the quant i ty  introduced in w 2 (i.e., A e R). 

We consider first the  real par t  fi of w. I t  follows from (26) tha t  fl(A) ---- lira (l/t). 

�9 ln fA~q)~(t)[ for tt - a.a.y. In fact, the Oseledee theory [36] tells as that ,  for tt - a.a.y, 
q 

lira ( l / t ) in  ]A~qS~(t)[ is the sum ~ f l i  of the q largest Lyapounov  exponents of (2)~,~. 
~--> co 

i = 1  

B y  3.1, equation (2)~,~ has q positive and p negative Lyapounov  exponents,  and more- 
over the  positive exponents are all defined by  solutions with initial conditions in 

q 

V~(~). B y  (25) and [36] we have for re- a.a.y: lira(lit) in [Aqqb~(t)l = ~ f i t =  fl(~). 
t"-~ ~176  i = l  
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Next  we borrow an idea f rom H erm an  [22] and Craig-Simon [10] and note  
tha t  the funct ion a (~)=-~ im ( l / t ) In  [A%b~(t; 2)] is subharmonic in the  entire com- 

plex plane. We have  fl(~) = a()~) (2. ~ H+), and fi(,~) = a(~) (~ ~ R). The funct ion 
a(Z) has the following propert ies:  

(i) lira a()~) < a(,~o); 
.;t_~g ~ 

(if) a(),o) =lima- [ ~(}~o@r#)dA for all 2 o ~ C .  
r - c 0  + 2"g J 

I~1_~1 

Fix  ~o ~ C, ~nd let a(e) = lira a(~o-~ re) ~ a(),o) for le[ =< 1. 
~*---> 0 + 

a(,io) <= - ~ (q )d_4  < ~(,to) 
7~ 

le lg l  

Then 

we have used Fubini~s theorem and the uniform boundedness of a on compact  subsets 
of C. We conclude tha t  8(e) = a(~o) for almost all e, le[ <= 1. 

The last r emark  is applied as follows. Since fl is positive and harmonic on H +, 
it  has non-tangent ia l  boundary  values lira ~(~o -I- re) (e e H +) for a.a. ~o E R. F ro m  

~'--~0 § 
the preceding paragraph,  we get 

(27) lim~9(;~o+ ~'e) =/~(2o) (e e~+) ,  
r-->O + 

for a.a.Xo a R. This is ~he convergence result we wanted.  
Let us turn to I m w ( 2 ) =  ~(A), and show that ~(2~o)= lira ~(~o~ re) for at~ 

f--->0 + 
3~o~R and all ~ e H  +. In  fact  a is continuous on cls H +. 

Firs t  of all, for a.a. ~0 ~ R, the  limit ~ ( y ) :  !imo+m+(y , A + r e ) a  D exists for 

# - a.a. y and is #-measurable (and independent  of e ~ H+) �9 This follows from Fubini 's  
theorem and a s tandard  result  on boundary  behavior  of bounded holomorphic 
functions [15]. 

Let  2~o a R be such t ha t  #z(y) is well-defined for # - a.a.y. Consider the ,u-integrable 
functions ga(Y) = t r  ]+(y, m+(y, ~)) (2 ~ H+). I f  ~ -+ 2~o non-tangent ia l ly  (~ e H+), 
then  g~(y)-->~(y)= tr]+(y,~t(y)) for # - a . a . y .  Moreover we can apply  Lebesgues 

dominated  convergence theorem (see (18) and 1.3): we get 

f f ~ ,  r 
i im w().o @ re) = l im g~.+~(y) d#(y) = giy)d#~y) 
r--+D+ V--+O + 

Y Y 

for all e ~ H+. By  the Birkhoff theorem and Liouvilles formula,  we have for /z  - a.a. y:  

f~(y) d#(y) = lira ~ ln  det d~(~)r 
t ~  t 

Y 
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~nd since ~ ( y ) ~ / ~  we have by 2.9: 

ImfO(y) d/z(y) 
Y 

= (p § q)a(~o). 

Since ~ is continuous on R (2.10), we see tha t  in fact a ~ Im w is continuous 
on els H+ with boundary value ~ [15]. 

Summing up:  

4.2. T~EO~V,~. - Let  ~ ( ~ ) =  f l (~ )+  i~(~) be the quant i ty  defined in w 2. The 
function w(~) is holomorphic on H+ with boundary value @: tha t  is, t~e w(~) --> fl(~o) 
non-tangentiully for a.a.,~o ~ R, and Im w(~) -+ ~(~o) continuously for ~o e R. 

4.3 REbAIts. - I t  is perhaps worth noting tha t  one can prove (27) without  appeal- 
ing to snbharmonicity, by  introducing the (Iwasawa) decomposition ~L(K,  C) ~ KS, 
where K o c K =  U(p,q) and Sor  Let  I M P > 0 ,  and let u o ~ K  be such tha t  

0 
( ) ~ ~D. Writ ing qS~(t)uo = up(t)r(y, Uo, t), one uom, = m+(y, ~) where m, = 1~ finds 

tha t  the individual Lyapounov exponents 0 > f lq+~ ... ~ fl~+~ are obtained by 
averaging certain elemenr of the matr ix  function (y, uo) -~ (d/dt)T(y, Uo, t)lt= o. 

One gets (27) by a limiting argument,  using the measurable section y - ~ ( y )  
discussed above. One must  show tha t  u:(t)~ K does not  contribute to exponential 
growth of solutions; one does so by using a metric on ~ with respec~ to which each 
u E K acts isometrically [21, Chapt. VIII] .  See [30] for similar ideas and for various 
techniques needed to rigorize this discussion. 

5. - w(2) and spectral theory. 

Our final project is to apply w(2) to the spectral theory of 

dx 
(2)~,~ d-T = (~J~ y~(t) + y(t)) x .  

We will use the following basic formula. F ix  2 e H +, and write 0N(t) = ~Jol~(t) ~- y(t). 
Consider variations of the form 8~%(t) = 8r(~,(y)), where 8r: Y---> u(p, q) is con- 
tinuous. Then 

(28) i -q -----P ( t r  ~r(y) d/~(y) --(Sw = f  t r (Q~- - l I )~r (y )d# (y )  ~ 2 q ~ p.] 
Y Y 

where Q~: C ~  C ~ is the projection with range V~(~) and kernel V~(~). Here 
t r  : trace of a k • matrix.  Of course the first term in (28) is the interesting one. 
See [29] for a special case of (28). 
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I t  is worthwhile to s tate  explici ty the precise meaning of (28). Le t  
= {r: Y -> u(p, q)lr is continuous} with the  uniform norm I" [~ For  fixed Z aH+, 

w = w(2) defines a mapping f rom s into C via r - ~ w ( 2 J o ~ - ~  y - ~  r~), where 
r,(t) = r(zt(y)). We write r --~ w(r) for this mapping (see two paragraphs below for 
even more precision in its definition). Then (28) is to be in terpre ted as saying t h a t  w 

is Frechet  differentiable at  r =  0, and ~w de__f (d~=ew)(~r) _- - - - f t r  ( Q , -  �89 
Y 

The proo~ of (28) does not  depend on the spectral  theory  of (2)v,~. Therefore we 

first prove (28), then  use it  to obtain spectral information.  
During the  proof of (28)~ we fix ), ~_ H + and drop it f rom the notat ion.  
We begin with the  promised comment  on the definition oI w(r). We take the 

point  of view tha t  I7 is a fixed compact  metr ic  space with flow {~t: t ~ R} and 

ergodie measure # such t ha t  Supp # = ~.  Wri t ing y(t) = e(~t(y)) where e ~ L~( Y, q, #) 

(see 1.3), we have differentiaJ equations 

dx [2J jb~( t )  + e (~(y ) ) ]+  r ( ~ ( y ) ) ] x  (~9)~,~ a~ = 

for y ~ Y ~nd r ~ ~ (2 is omit ted  f rom the subscript). Clearly (29)~o coincides with (2)~,~. 
I t  is equally clear tha t  we can carry out  all steps of w 1-4 for equations (29)v.~, obtain- 

ing m-functions m:~(y, r) and a F loquet  exponent  w(r). 
We need a result  on per turba t ion  of the  bundles V ~, V ~ due to Coppel ([9]; 

also [28]). Wri te  V~(r)~ V~(r) for the  bundles defined by  equations (29) (recall 
~ H+ is fixed). Le t  Qv(r) be the  project ion with range V~(r) and kernel  V~(r). Then 

Q~(0) corresponds to equat ion (2)y,~ (y ~ Y). 

5.1 THEO~P,~. - (i) There is an open set B c ~ containing r ~ 0 and a con- 

s tant  C such that ,  if r ~ B, then  

sup IQ~,(r)- Q~(0)] =< Cirl~, 

where I" is the Eucl idean norm on linear self-maps of C ~. 

(if) The constants K, ~ of 1.10 can be chosen independent  of r ~ B. 

~Vith Theorem 5.1 at  hand, it  is easily seen tha t  r--~ Q~(r): : ~ -+  the Banaeh  
space of continuous maps I r -+ gl (k, C) with the sup norm is Freche t  differentiable 

at  r----0. We outline the  argument .  Let  C •  {/: Y - ~ M ~  (plus sign) or M ~  
(minus sign)I / continuous} with the  sup norms. I t  is sufficient to show th a t  the  
functions ~ :  ~ -~ C~: ~• -~ m.__(y, r) are Frechet  differentiable a t  r - -  0. 

/ 

Fix  y ~ Y, and write me(t) -~ m+(Tt(y), 0). Then me(t) sat isf ies /with Aj j lyv  ~_ y 
\ 

(15) m ' =  - -  mbm ~- d n - -  m a  + c . 
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(~a ~b) 
Write  8r~ ~ 8e (~d where (~r ~ St, and consider the equation 

(30) ((~m)' =/+(me(t ) )  (~m = - -  me (Sbmo + 6rime- me (~a + (5c _~ q(t) . 

Let  T(t) be the fundamenta l  mat r ix  of the homogeneous equat ion ((~m)'= 
]+(me(t)) (Sin such thu t  T'(0) = I.  Since the homogeneous equution is uniformly 

stable as t - + - -  c~ (this follows from (22) and (24:)), equat ion (30) has a unique 
t 

bounded solution (~m(t) = f T ( t )  T-~(s)q(s)ds. One can show tha t  &n(t) = (~m~ ~t(y)) 
- - o o  

where 8~  ~ C+. Using 5.1 (i) and the f~et t ha t  sup [q(t)] = O(](~r[~), one can show 
tha t  m+(~(y), ~) - ~.,(~,(y), o) = ~ ( t )  + o(l~rI~). ~he mapping ~ - ~ . ~  is bom~dcd 
(this again uses 5.1 (ii)), and hence is the Frechet  derivative of ~+ at  r = 0. 

One can similarly show tha t  ~_ is Freehet  differentiable at  r ---- 0. In  fact  s l i t t le 
more work shows tha t  ~j: are C 1 functions on B c St. 

Let  us now turn  to the proof of (28). For  r ~ St und y ~ Y, let 

1~ m_(~(y), r)) 
N,(t) -- m+(vt(y), r) 1~ 

 ro o  ioo :) 
x = N,,(t)z brings (29)~,, to diagonal form: 

: The change of variables 

(31) dz (a ~ bm+ O )  
d--t = 0 cm_ + d z =-- a,~(t)z. 

With an eye to (22) and (26), consider 

w l ( r )  = if[tr (a § bm+) - Cr (em_ + d)] d#(y) . 
Y 

For  t t -  a.a. y we have:  
t t 

v s ( r ) = l i m  1 2 t v ( [ t r ( a + b m + ) - t r ( e m  + d _ ) ] d s = l i m  t r  Q , - - ~ I  cr,.(s)ds. t--,~ o t-,~ 
0 0 

Now, by  the change of vsriable formula 

a~(t) = N 7 1 ( ~ ( t )  + r~ ( t ) )N  - -  N - ~ N  ' 

where ~%(t) ----- )~Jo ~ y~(t) ~ y(t). Hence for tt - a.a. y: 

(32) w l ( r )  - wl (O)  = L -  I~ , 
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where 
t 

Ii=liol f r[(Q, } 
0 

t 

t---~oot.] - - ~ !  (N-~IN;--NolNo) d8. 
0 

t 
- - 1  I Let  us now show tha t  f {tr (2Q, - I ) N  O No} ds is uniformly ibounded. The 

0 t 

same argument  will show tha t  ftr {(2Q,-I)NZ~N:} ds is bounded, and it will fol- 
low tha t  I~ = 0. o 

To begin, consider the p •  matr ix  funct ion H ( t ) ~  1~--m_(t)m+(t), where 

m• = m• 0). Using [31, Chpt. 2], one can show tha t  in det H(t) is uniformly 
bounded (the eigenvalues of H(t) lie in the right half-plane). Therefore,  using 
Liouvilles formula,  

t 

f , (33) t r  {(-- m~m+-- m m+)(l~-- re_m+) -~} ds is b o u n d ed .  
o 

Similarly, 

(34) f r t r  { ( -  m+ m - 

0 

! 1 m+m_)(l~-- m+m )- } ds is b o u n d e d .  

~ow~ 

( ) ( : )  1~ - -  ( 1 ~ - -  m _ m + )  -1 0 ~ 0 
N-~I= and 2 Q , -  I =  �9 

- m +  1 0 ( lq  - m + m _ )  -1  - lq 

Thus 

t r { ( 2 Q ,  1 , , - i  - Z ) N 7  No}  = tr (NON~ ( 2 Q , -  f ) }  = 

= tr  N~ ~ = -- mLm+(l~-- m_m+)-l+ m+m_(l~--  m+m_) -I . 
[ \m+ --  lq 

In  the next- to- last  term,  we can replace 0 N7 t by  
m +  

( ~ 0 ) 1~ . 

- -  m +  14 m +  0 ( l q - -  m + m _ )  -1  

I ) N ;  y o }  ,m ~ Doing so yields t r  { ( 2 Q , -  1 ' o = - m _ m + ( i ~ -  ra_m+)-l+ m + m _ ( l q -  m+m_)- . 
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1 t :Now add the two expressions for tr  { ( 2 Q . - I ) N  o No} 
We conclude %hat I2 : 0, as desired. 

Turning now to J[~, we can write I~ : I~ + I , ,  where 

and use (33) and (34). 

{( ) } I s = l i r a :  t r  Q , - - I I  [ N T ~ ( 9 ~ + r ~ ) N ~ - - N o I ( ~ + % ) N o  
t ~ t  

o 
t 

= 

0 

d8  , 

We clain t ha t  Is = o(]r[~) if r e B. This follows easily from Frcchet  differentiabili~y 
of ~ .  For, 

lv71(e~ + r ~ ) ~ , -  ~ o ~ ( e ~ +  r)~Vo = lV:~(e~ + r ~ ) ( ~ -  iV 0) - 

- N j ( N -  lVo)NJ(~ + r)iV o + o([1%- N0[~). 

Multiplying by Q , - 1 - 1 ,  taking the trace, and permuting factors, we get I 3 =  

= o(IN~-- ~Vo[~) = o(Irl~ ). 
We conclude that ,  if r ~ B, then for # - a.a.y, 

t 

t 0 

1 1 

0 

We have used the fact tha t  Q~(~): No~(t)Q, No(t) (y e Y, t c R) and the Birkhoff 
ergodic theorem. This completes the proof of (28). 

5.2 RElIAnt.  - If one leaves out the factor 2Q. - I in the computat ion showing 
tha t  Is---- 0, one obtains tha t  In det No(t) is uniformly bounded. This fact was used 
in proving (26). 

Let  us show how to apply (28) to spectral problems. We consider two examples. 

5.3 EXA~{PLE. - Let  J = ! ,  0 ' y v ( t ) =  , y ( t )=  q(t) 

is n •  real and symmetric. Then (2),,~ is equivalent to the operator equation 

L~v = ( - - ~ +  q(t))~v = 2~v q~EC ~ dt o ' , 

w h e r e x = ( ~ , ) .  We define L~ to be the closure of the operator--d~/dt~+ q(t) 

with domain C~(R, C ~) and range L2(R, C~); then L is self-adjoint ([14]; by  3.1, 
ao boundary conditions at  4- ~ are needed). 
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dw 
(35) d)~ 

Define 

(36) 

and note that  

(37) 

We clearly have 
00 

Write 

Y 

r r t >= s 
| s; 2) : _ r  qs_~(s) ~ < s ,  

Q~-- �89 = �89 [lim| s; 2) ~- lim ~,(0, s; 2)]. 
LS--> 0 + 8-->0- 

l%ecall that ,  if d ~ ( 2 )  ---- �89 [!i+mo+ ~ ( 0 ,  s, 2) + !ira o_ ~ ( 0 ,  s, 2)], then 

(38) ImlmA~)2 -- f [tdP~(t)-- 21 ~ (Ira 2 > O), 
--r 

where P~ is the spectral matrix of L~ (thus P~(') is symmetric, P~(t)--P~(s)~= 0 
if t & s, and the increase points of P~ determine the spectrum of L,). 

By (35), (37), and (38), we have 

aw ftrA&(z)a (y) ( Im2  > 0).  (39) d2 -- 
Y 

Arguing as in [20] or [29], we find that,  if ] ~ C(~~ then 

(4o) 

or less prosaically 

(41) 

/ )) 1 /(t) d~(~) = tr  t) dP~(t d#(y), 
7g 

- - 0 0  ~ - - o o  

1 dg f ( t r  dP+)d#(y). 
Yl 

Y 
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Using ergodicity of #, one shows in a well-known way [4, 37] tha t  the  spectrum 
of L~ is independent  of y for # - a.a.y. Hence -- ~ is non-decreasing and increases 

exact ly on the spectrum of L~ for /z - a .a .y .  

5.~ EXAMPLE. -- We consider the AKNS operator  ([1], also 

8~ABA~ [47]) : 

L ~ x = J o  --y(t)  x =  2x x E C  ~ Jo=  
' i1,~ 

ZAKHAROV- 

where y( t )~ U(n, n). The closure of Jo(d/dt--y(t)) on C~(R, C ~) is a self-adjoint 
operator  on L2(R, C ~) (note tha t  this is not  t rue if p ve q, because then  by  3.1 
the  deficiency indices [14] p and q of Jo(d/d t -  y(t)) are not  equal). 

Let  ~v(t, s; 2) be as in (36). Define 

1 [ l i m ~ ( O ,  s, 2) @ l i m ~ ( O ,  s, 2) = Q ~ - - ~ I  J ;  . ~ = ~ J ; ~ '  ~ ( ~ )  = g ~ o +  ~-~o- 

Then 
c o  

Im A@~(2) ( d P , ( t )  
Im 2 - 3 I~ -Tl '  

where P~(.) is the  2n X2n spectral mat r ix  of L~, and 

a2dw=f trA~(2ld~(y) (~mZ>o), 
Y 

---zl de = f (tr  dP~) d#(y) 

Y 

As before, -- a is non-decreasing, and increases exact ly  on the spectrum of Lv for 
# - a.a.y. 

f 5.5 REMAI~K. -- We can pu t  these examples in a more general framework, as ! 
follows. Consider the general equations (2),p. Following Atkinson [3, Chpt. 9],1 ot 
a < 0 < b, and introduce self-adjoint boundary  conditions N, M at  a, b respectively. 
Thus N, M are (p + q)•  (p -~- q) matrices satisfying N * J o N  = M*JoM, and M x =  
= 2r - -  0 -~ x = 0. Consider (2)v,~. on [a, b] with the boundary  conditions x(a) = s 
x(b) = Mv for v ~ C ~. One obtains a spectral mat r ix  Z~M Pv (t) and a t~ characterist ic 
function ~) [3] ~M .F~, (2) such that 

Im  2 It - -  21~ 
- - o o  

( y e  Y ; I m 2 > 0 ) .  
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Now let a -+ -- co, b -> c~. Using 3.1 and (37), one can show that ivy~(2) --> 

--> (Qv(2) - � 8 9  ~ ~f ~v(2) uniformly on compact  subsets of H +, independent  of 
dp~u~ N, M. I t  follows tha t  __v converges weakly to a matr ix-valued measure dP~, 

which is also independent  of _~V and M. 
Using (28), we obtain 

dA = tr {~()~).y(y)} d#(y) -~ ~ q ~_ p tr jo ly(y)  d#(y) , 
Y Y 

kl f 
Y 

2 q ~ p ~ q - -  p ftr Jo~(y )  d#(y) . 
Y 

We fimsh the  paper  with a discussion of (~ gap-labelling ~) for equations (2)v,z. 
To avoid obscuring the  simple ideas involved with technical complications, we 
assume equations (2),v,z take  the form either of Example  5.3 or t ha t  of Example  5.4. 
Thus (2)~,~. is equivalent  to L 9  = 29 resp. ~5x = )ox where L is as in 5.3 resp. 5.4. 

We need a prel iminary result  which is of independent  interest.  

5.6 T~EOREM. -- Le t  Y c ~g be a bounded translat ion invar iant  subset which 
satisfies (8) of w i (hence is compact  metric).  Le t  ~ ~ Y have dense orbit,  and let L~ 
be the  corresponding operator.  Then 20 is in the resolvent of L~ iff equations (2)~,4 
have ED. 

The ergodic measure/~ plays a role nei ther  in the s ta tement  nor in the  proof of 5.6. 

PROOF. - The proof generalizes tha t  given in [27] in the  case k : p - ~  q : 2. 
The <~ if ~> p~rt  of the  theorem is easy: one uses the funct ion ~ ( t ,  s; 2~o) of (86) 

and the Riesz-Thorin interpolat ion theorem [48]. 
To prove the <{ only if ~ s ta tement ,  we first show th a t  no equat ion (2)~,;. admits 

a non-tr ivial  bounded solution. For  if Xo(t) is a bmmded solution of (!)y,~, then  it  
can be used to construct  a sequence {x~}~~ C ~ or C ~n) such tha t  

~lL~-20x~ ~<-T-(s  =1, ...). 

HenCe Ao is in the spectrum of L~ [14]. Now~ there  is an interval  (2o-- 8, 20-~ 8) 
in the resolvent  of L~. Since L~ and L~,(~) have the same spectrum for all t ~ R (they 
are conjugate under  t ranslat ion by  t), it follows tha t  P~(;) is constant  on ( 2 o -  8, 
2o ~- 8) for nil t e R. Next ,  the family of spectral measures {tr gP~lY e I7} is weakly 

c ~  c o  

continuous in y~ i.e., fJ(t) t r  dP~j(t) --*]f(t) tr dP~(t) if yj -+ y~ for all ] e C~(R). This 
c o  c o  

follows from joint  cont inui ty  of the  characterist ic funct ion F~(2) = (Q~(2) -- � 8 9  
I t  follows from these s ta tements  ~nd density of {r,(~) : t ~= R} tha t  t r  P~(t) = const, on 
(20-- ~ Ao + 8). This is a contradict ion.  Hence no equabion (1)~,~~ has a bounded 
solution. 
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~ e x t  let :Y~ c Y be a minimal set. Then [39, 42] equations (2)~,~~ have ED over Y1. 
Recall tha t  the bundles V~(~), V~(,~) are continuous in ~ [9]. Hence there is a disc D 
centered at  ~o such tha t  equations (2)~,~ have ED and V~(~), V~(X) have constant  
dimension. By  3.1, these dimensions are both equal to n (in Example 5.3 and 
Example 5.4). Since ~his is true for any minimal Y~ c Xz, the Sacker-Sell result [40] 
implies tha t  equations (2)~.~. have ED. 

5.7 RE~ARK. -- The last paragraph of the proof shows that ,  if y(t) e U(p, q) and 
~ R, then  equations (2)~.~ can have ED only if p = q. 

Now we prove gap labelling for the operators L~. The ergodie measure g plays 
a crucial role in this result. 

5.8 THEOREM. -- There is a countable set Ao c R, depending only on the topological 
�9 space Y, such that ,  if (2~, 22) c R is in the resolvent of Z~ for ~u - a.a. y, then ~(~) e Ao 

for all Z e (~l,)~2). 

PROOF. - This result is proved for k = p + q ~ 2 in [27]. 
We first define Ao. Following Schwarzmann [41], let H ( Y , T )  be the set of 

homotopy classes of continuous maps ~ from Iz to the unit  circle T c C. Each such 
class [~] contains a map ~ such tha t  y -+  (d/dt)q~(v~(y))l~=o= q/(y) is continuous. 

The map h: 

~ ' ( Y )  

Y 

defineds a homomorphism from H(Y, T) to the additive reals (the group structure 
on t t (Y ,  T) is defined by multiplication). In fact h induces a homomorphism from 
H~(Y; Z ) ~  group of real Cech 1-cocycles taking integer values on integer Cech 
cycles into R. Let  Ao---- {�89 v] ~ H ( Y ,  T)}. 

Next let ,~o e (2~, ~),  and let V~(~o) be the corresponding stable bundle. Let  
m . =  l ~ e  M . . ,  and let N I =  cls {g.m,:  ge U(n, n)}. By 2.4 (i), ~Y~= {g.m.: ge  Ko}, 

-~ u~, u~ ~ U(n) . We assume from now on tha t  Example 5.3 

( i l ,  i l .~  t Observe t ha t  has been conjugated into su(n, n) via the usual matr ix \ _  1. 1,]  "] 
N~ is homeomorphic to Ko/A, where 

Let  mo ~ M,~. I t  is easily seen tha t  there is an n l e  ~YI such tha t  the planes 
lo, Ii~ ~ parametrized by too, n~ satisfy lo (3 l~ = {0}. In fact, a non-zero element 
of lo (3 l~ is defined by a vector v ~ C ~ such tha t  (nl-- mo)v = O, so one need only 
choose nl~ U(n) for which no v ~= 0 with this property exists. 
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L e t  y ~ Y. W e  show tha t ,  if m~ ~ D pa rame t r i ze s  V;().o), t h e n  m~ ~ 2g~. To see 

this,  let  ~ ~ Y be as it1 L e m m a  1.2. Choose n~ c N~ such t h a t  the  cor respond ing  

p lane  l~ satisfies l~ c~ V~(~0) = {0}. Since t he  set I7 • N~ is invar iar t t  u n d e r  the  flow 

(y, m)-> (~(y), cP~(t)m), a nd  since ~(t~)n~-->m~ if t ~ - > - -  oo and  t t . (~) - ->y (1.10), 

we m u s t  h a v e  m~ ~ N~. 

N ~  u : ( 0 ~  0)u~ : ( :  u~uO-~)~ (u~ : ) ~ K~ Sinee det (m -> ~ : 1 ,  we 

have  det  u = dot  u~ det  u~ ~. L e t  de t  u~ (i = 1, 2) be  the  usual  d e t e r m i n a n t  of the  

n •  m a t r i x  u~. T h e n  d e t u ~ =  ( d ~ t u 0  ~. W e  see t h a t  ( d e t u )  ~/~ fac tors  t h r o u g h  

} 
Using  2.9, we see t h a t  2e(2o)-= h(c~om+) where  h is  t he  Schwarzsehi ld  homo-  

m o r p h i s m .  H e n c e  ~(2o)e A0, as desired. W e  have  wr i t t en  m+ for  the  m a p  y - +  

--> m+(y, 20): Y--> 2g~. This comple tes  t he  p roof  of T h e o r e m  5.8. 

5.8 EE~[A-~. - As has been  emphas ized  b y  BELLISSARD, IJI~A~ and  TESTARD [5], 

gap labell ing is closely re la ted  to  proper t ies  of the  t r ace  on a cer ta in  c rossed-produc t  

C*-algebra.  

The  a u t h o r  wou ld  like to  t h a n k  Dr.  l~iehard C~Js~3~A~ for  s t imula t ing  con- 

versa t ions  on t he  subjects  considered in this paper .  
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