Second Fundamental Form of a Map ().

TutrbseE NORE

Summary. — This paper is devoled fo the study of the 2, fundamental form of a map, which
generalizes this notion, well known for isometric immersions. We generalize results by Vilms,
Yano, omd Ishihara, and study in detail projective and umbilical maps.

The notion of 2nd fundamental form of a mapping between manifolds endowed
with connections, first constructed by J. EELLS ([Ee])—for the study of harmonic
mappings—, generalizes the 2nd fundamental form of a submanifold isometrieally
immersed in a Riemannian manifold, and has been used by J. ViLms [Vi] to study
totally geodesic mappings and Riemannian submersions. This author has proved
the following theorems:

THEOREM A. — Let f: M — M’ be a totally geodesic mapping between Riemannion
manifolds. Then:

1) 1 is the product of a totally geodesic Riemannian submersion, followed by o
totally geodesic immersion,

2) Ker f, has totally geodesic leaves.

THEOREM B. — Let f: M — M’ be a Riemannian submersion with 2nd fundamental
form o. Then:

1) If X and ¥ are in Ker fi, 6(X, Y) = 0,

2) Olgers, xxers, = 0 iff Ker fy has totally geodesic leaves,

3) Olxers, xxerst = 0 iff Kerfy is integrable.
Zvi HA®R’EL [Ha] has used a similar method in order to study projective mappings.
In a slightly different approach,—computation in local coordinates—YANO and

IsaraarA [Ya & Is] define relatively affine mappings, the 2nd fundamental form
of which is orthogonal to f(M), and prove:

(*) Entrata in Redazione il 10 dicembre 1985.
Indirizzo dell’A.: U.E.R. des Sciences de Limoges, Département de Mathématiques-Infor.
matique, 123 rue Albert Thomas, 87060 Limoges Cedex, France.
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THEOREM C. — Let f: M — M’ be a relatively affine mapping between Riemannion
manifolds.

Y If M 4s connected, then f is of constant rank,

2) Ker fy ts a parallel distribution.

A Third and fruitful use of the 2nd fundamental form, in the light of some of
its properties (nullity, umbilicity) is frequently made for the study of isometric
immersions between Riemannian manifolds (e.g. [Ch]). Therefore we have studied
mappings of constant rank by means of their 2nd fundamental form, from a more
general viewpoint than those of the above mentionned authors.

In gection I we introduce the various notions we shall need, about which more
details can be found in [Ee] and [Do], and remark that:

ProrosiTION 1.5.3. — Let f: M — M’ be o mapping of consiant rank between mani-
folds endowed with symmetric connections, and let ¢ be its 2nd fundamental form

Ker f, is parallel iff it is included in Kero.

~ ProrosirioN 1.5.1. — Ker f, is totally geodesic iff o is null on Ker f« X Ker fy and

ProprosiTioN 1.5.4. — Assume M is a Riemannian mamzfold Ker f;; s integrable
cmd totally_geodesic iff Olges, xxerst = 0.

In section IT, we factorize a map between Riemannian manifolds into the produet
of a diffeomorphism followed by a Riemannien submersion and by an isomefrie
immersion, which allows us to give the following results:

TuEOREM I1.3.1. — [Generalization of theorem C, 2)].

Let f: M —> M' be & map of constant rank between Riemannian manifolds, M’bd T
be the orthogonal projection of s 2nd fundamental form o onto the tangent spaoe of {M
Then Ker fy is parallel iff 4 is included in Ker 7.

THEOREM II 3.4. — Which supplements the results of theorem C.
Let : (M, g) — (M, g') be a relatively affine mapping. Assume M is connected,
simply connected and complete. Then

1) M is isometric to a direct product My X M,, where TM,= Kerf,, and M,
is locally diffeomorphic to (M),

2} if M, admits the de Rham de composition, M,= M’x .X M%, then, for a
fized <, the distribution f, TM defines a foliation of f(M), every leaf of which is
trreducible and homothetic to Mi. Moreover the ratio of this homotheey is independent
of the leaf so that all leaves are isometric,
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COROLLARY 11.3.2. — Assume f: (M, g) —~ (M, ¢') is « map of constant rank bei-
ween Riemannian manifolds. f(M) is o totally geodesic submanifold of M', iff the 2nd
fundamental form of f is tangent to f(M).

TuROREM I11.3.3. — Let (M, g) be a Riemannian manifold and f: M — M' be a C

mapping of constant rank. Then there exists a meiric g, on M w.r. to which
1) Ker fx is a totally geodesic plane field,
2) the integral foliation of Ker f, is Riemannian.

In section I1T, projective maps are investigated into: indeed we found that there
was an underlying confusion in the proof of Zvi HAR'EL [Ha]. We must distinguish
between projective—preserving piecewise geodesics—and strongly projective maps
—which map any geodesic either intc a geodesic, or a point—. As for geodesic
preserving maps, they are necessarily immersions. (For the terminology, we refer
to definitions I11.1.1 and I11.1.2.)

Strongly projective maps are the only ones which satisfy the following theorem,
generalizing the characteristic property of projective diffeomorphisms:

TaroreM IT1.2.2. — Let f: (M, V) — (M', V') be a mapping of constant rank bet-
ween manifolds endowed with torsionless linear connections. We denote by o its 2nd
fundamental form. Then f is strongly projective iff it satisfies the following property:

(%) There exists a 1-form w on M such that
VX, YeTM, oX,Y)=o0X)fY+ o(¥)fsX.
A counterexample shows that this theorem cannot be generalized for just any
projective map. '

Moreover for a strongly projective mapping f: M — M’, we have:

ProrositioN II1.2.1. — 1) The foliation defined by Ker f, is totally geodesic,
2) (M) is a totally geodesic submanifold of M'.

If besides f is a strongly projective map between Riemannian manifolds, then
we have: '

TurorREM II1.3. ~ 1) Ker f; is integrable and defines a totally umbilical foliation,

2) there exists a Riemannian meiric ¢, on M for which f is totally geodesic.

We give examples of projective maps whiech are not strongly projective, of
strongly projective maps which do not satisfy Ker 7, c Ker o—which disagrees with
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Zvi HAR'EL's assertions [Hal—and show that strongly projective maps between
euclidean spaces are necessarily affine.

In section IV we offer 4 definitions for the umbilicity of a mapping, which
generalize the notion of umbilicity for isometric immersions. We display some
examples, then we prove the results given in the following table:

M = connected, simply connected complete manifold
M'= space of constant curvature
f: M — M' mapping of constant rank.

Hypothesis Conclusions about

M f ()
f weakly : convex hyper-
g-umbilical immersion surface of a t.g.
of rank >2 submf, of M’

M irreducible

isometric to

| strongly a sphere homothecy sphere

g-umbilical ‘

f weakly M= M, x M, with parallel

¢’ -umbilical M, diffeomorphic kernel sphere
to a sphere

]

f strongly M= M,x M,

g-umbilical M, isometric homothecy sphere
to a sphere '

g denotes the metric of M, and ¢’ that of M’.

At last, starting from CHEN’s [Ch 1] definition of the extrinsic sphere, we define
spheric mappings—the image of which is an extrinsic sphere in the special case of
an isometric immersion—and we prove: ‘

THEOREM IV.4.2.1. — Let f: (M, g) — (M'®™, ¢') be a spheric map, into a Kihler
manifold of real dimension 2n'. Assume M is connected, simply. connected and complete,
and f is analytic of rank 2n'— 2. Then one of the irreducible components of (M, g) is
isometric to an even dimensional sphere.

Which we can compare to Chen’s following resulf:

THEOREM D. — Let M2" be a complete exinsic sphere in any Kdihler manifold Ifem,
If there ewists 2m — 2n mutually orthogonal parallel unit vector fields along M2*", then
M>zn is isomelric to sphere 827, the radius of which is the inverse of the length of the mean
curvature vector. )
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- In section V, also devoted to maps between Riemannian manifolds, we display
integral formulas relating the norms of the 2nd fundamental forms of f, (M), and
of the leaves of Kerf,, in the case when there exists a function ¢ sueh that for
every X orthogonal to Ker f, we have: '

Xl = ol X| .
In particular we obtain the:

- COROLLARY V.3. — Assume f is a mapping of constant rank from a compact Rieman-
nian manifold (M, g) into a Riemannian manifold (M', g'), which induces a Rieman-
nian submersion from M unto (f(M), g'). If the fibre F of | is compact, with the nota-
tions of 1.4, we have:

[1612> [1oalt + (vol 2o}

This work is a part of a « Doctorat de spécialité » defended at the university of
Limoges on february 5, 1982, and done under the guidance of Jean Marie Morvan,
to whom I wish to express my thanks here.

We shall omit any proofs that are simple computations, or that can be found
in the litterature.

1. — Second fundamental form of a map.

In this study, manifolds, mappings, vector fields, sections, and so on, will always
be supposed of class C™. '

f will be a mapping of constant rank, from a manifold M into 2 manifold M',
the respective dimensions of which we denote by » and «'. f(M) is an (immersed)
submanifold of M'. We denote by f, the differential of 7.

In the case when M (resp. M') is Riemannian, its metric is denoted by g (resp. ¢')
and connection V (resp. V') will be its Levi-Civita’s connection. The points of M
are denoted by m ... (resp. m’...).

1.1. Fiber bundles.

We denote by: T M the tangent bundle of M, with fiber T,,M over m.

FUTM') the f-induced bundle, with base-space M and fiber
TomyM' over m.
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—When (M', ¢’) is Riemannian,.g’ induces a metric on f~1(TM'), also denoted
by ¢'.—
T+ T M the image bundle, subbundle of f~1(TM') with fiber f, T, M
over m. ’

Ker f, the vertical distribution, integrable subbundle of T M with
fiber (Ker fy), over m.

The maximal integral submanifolds of Ker f, are called the leaves of the kernel.
In the case when (M, ¢) is Riemannian, we denote by:

Ker fi the horizontal distribution, subbundle of TM with fiber
(Ker f, )= over m.

m

In the case when (M', g') is Riemannian, we denote by:

f« TM* the subbundle of f~(TM'), with fiber (f4 T, M) —ortho-
gonal complement of 7,7, M for g'—over m.

1.2. Hields along f.

Sections of f~1(TM') are called (vector) fields along f. In particular every field X
on M induces a vector field f, X along 7, s.t. (fxX)n= fx)mnXmn.

Every field X' on M’ induces a vector field f* X' along f, s.t. (F*X')n= Xstm-
For clearness, we shall sometimes write X' instead of f*X'.

1.3. Linear connections.

Assume M and M’ are endowed with linear connections V and V. We have:

DEFINITION AND PROPOSITION I.3.1. — There exists one unique linear connection
V' on -1 (TM') such that:

(1) for every me M, every Xe T, M, and every field ¥' on M':
ﬁfx §= V';.x ¥ If(M)

where we have put &' = f*Y' and where | denotes the restriction. V' is called the
f-induced connection on f~(TM').

PROOF. —~ Let Xe T, M and %' be a field along f.

In a neighborhood U’ of f(m) we can find ' fields (e,) which form a basis of
T,. M at every point m'e U'.

Put U = -Y(TT’) and e, = f¥e,.
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We can write, on U:

! (9

n'== g%, Where p* are funections on U.

Then we must have:
Vin'= (X" e, + 9"V ¢, .

Moreover if (s;,) is another moving frame on U, we ean write e; = P! .9:9, P? being
functions on U'N TUj.
Then we have:

n'=vyle, where ¢f=(F*Plo* and g5=f*g

so that:

(Xg*)e, + " ¥V, g6, = (X*)(f* P e, + @*(f« X)(P)) &5+ 9*(1* PO)Vy xe =
= (Xp")es+ 9 Vyx ey

Thus, V' is well defined, not depending on the choice of the frame. One can easily
see that V' is a linear connection.

Exavpre 1.3.2. - Assume
I—e e M
y:
t >y

is a regular curve.
The y-induced connection on p~(TM) yields just what one denotes by V,,V

for every vector field V along y.
1.3.3. Properties of V.

For every X, Y, fields on M

Y/, field on M’

&y, fields along f, we have:

(1) if f is an immersion, V&f*Y——- V;‘Xf*Y
(2) if V' is torsion free: Vif ¥ — ViyfuX = f4lX, Y]

(3) VeVy & — VeV & — Vg pif' = K' (14X, 14 Y)&, where K’ donotes the cus-
vature tensor of V'
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(4) if XeKerfy, V¥ =0
(5) if M’ is Riemannian, if X € Ker fy, and if & is (f, TM)* valued: V& & (f T M)*
(6) if M’ is Riemannian and V' its Levi-Civita’s connection, V’g’: 0.

We omit proofs. (2), (3), (6) are proved in [Dol.

1.3.4. Important remark.

J+X = 0 does not imply, for every &, V&E’: 0, though this equality does hold
if &= f*Y'—Y being a field on M'—.

1.3.5. Conmection V denotes the direct sum of V- and V' on TM @ f-{(TM') and
it tensor algebra.

1.3.6. V'*, connection on f, T ML,

In the case where M’ is Riemannian, we have:

PROPOSITION AND DEFINITION 1.3.6. — For any field X on M and any section &'
of fx TM*, we put: -

V& = orthogonal projection of V&' on f TM*-.
Thus defined, V’f— is a linear conneetion on f,TM* such that V'ig = 0.
V'* is called connection associated to /.
The proof, similar to the eorresfonding one for isometric immersions, is omitted.

1.4. 2nd fundemental forms.

1.4.1. o, 2nd fundamental form of f.

THEOREM AND DEFINITION L.4.1.1. — For every fields X and Y on M, we ﬁaw:
(VX ¥) = Vifu ¥~ [, V. ¥ .
The bilinear mapping o: TMXTM —TM' defined by
o X, ¥) = Ve fhu ¥ — 4V, ¥

18 called the 2nd fundamental form of f.
If moreover V and V' are torsion free, o is symmetric.



THERESE NORE: Second fundamental form of a map 289

In the sequel, all connections are supposed symmetrie.
PROOF. — Apply the definition of Vf,.
1.4.2. oy, 2nd fundamental form of Ker f,.

DEFINITION 1.4.2. — Assume M is Riemannian. We denote by
0y, (Ker fy)m X (Ker f1)m — (Ker fy)m

the 2nd fundamental form of the leaf of the kernel at m.

1.4.3. ¢', 2nd fundamental form of f(M). — Is defined whenever M’ is a Rieman-
nian manifold, f(M) being an isometrically immersed subraanifold.

1.4.4. oy, 20d fundemental form of (Ker f,)*.

Rocall that if M is a Riemannian manifold, V its Levi-Civita’s connection, P a
plane field on M, and v the orthogonal projection on P+, then the 2nd fundamental
form 6 of P is defined by:

YmeM, VX, YeP,, OX,Y)=3vo(VeY + VyX)

—cf. [Rel—.
P is integrable iff (X, ¥) = ¢(Vz¥), and 6 is then the 2nd fundamental form
of the leaves of P.

DEFINITION 1.4.4.1. — We denote by o, the 2nd fundamental form of the distribution
Ker fz.

1.4.5. Composition of maps.

Assume M, M’', M" are 3 manifolds endowed with linear conneetions and f: M —
—~M', '+ M'— M" are mappings with respective 2nd fundamental forms ¢ and o',
' If ¢" denotes the 2nd fundamental form of f'of, we have:

VX, YeTM, o'(X,Y)=FoX,Y) +d{fX, 1:Y).
—cf. [Fe & Sa] e.g.—.

1.5, Geometrical interpretation of o.

We shall prove the following results:

ProrosiTioN 1.5.1. — Kerf, is totally geodesic iff o is null on Ker fo X Ker fy.
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PropPOSITION 1.5.2. — Assume M is a Riemannian manifold. If X and ¥ € (Ker fi)m,
we have:

o(X,Y) = — froX, ¥) .

PropostTioN 1.5.3. — Ker 7y 4s parallel iff it is included in Ker o.

ProposITION 1.5.4. — Assume M is o Riemannian manifold. Xer fi is integrable
and totally geodesic iff Olxers, xxerst = 0.

Those propositions generalize results by Virms [Vi]. The 3rd proposition then
implies:

THEOREM 1.5.5. — Assume (M, g) and (M',¢') are Riemannian manifolds and
f: M~ M is a C° map of constant rank, the 2nd fundamental form of which we denote
by o.

If Ker f,C Ker o.

Then M admits o local decomposition:

M=MxM,, where TM, =TFXerf, oand TM,=Kerf;.

This theorem is a generalization of Viem’s [Vi] result about totally geodesic
maps, and, as we shall see later on, of YANO and IsHIHARA's [Ya & Is] result about
relatively affine maps.

REMARK. — If M is connected, simply connected and complete, this theorem
is then global.

COROLLARY 1.5.6. — If M is locally irreducible, every mapping f: M — M’ of
constant non null rank, savisfying Ker f,C Ker ¢, is an immersion.

PROOF OF PROPOSITIONS. ~ It is based on:

LevMmA 1.5.7, - If Y€ (Ker fy)m, then (X, ¥p) = — 4 Vz ¥, for every X, €T, M
and every section Y of Ker fy taking the value Y., at m.

This lemma is an immediate consequence of the definition of ¢. It implies pro-
positions 1.5.1, 1.5.2 and 1.5.3.

To prove proposition I.5.4, we first note that Ker f is integrable and totally
geodesic iff for every Ker fi valued fields X, ¥ and for every Ker f, valued field U,

we have:

g(Vx Y, U)=0.

But, V being metric: ¢(Vz ¥, U) = — ¢g(VxU, ¥), so that Kerfi is integrable and
totally geodesic iff VU € Ker f,, that is, by lemma 1.5.7, o(X, U) = 0.
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2. — Decomposition of a map in the Riemannian case.
I1.1. Metrics on M, (M), and factorization of f.

11.1.1. (f(M),g') and o'

The metriec ¢’ of M’ induces & Riemannian structure on f(M), also denoted by ¢'.
The 2nd fundamental form ¢’ of f{M)~cf. I.4.3.—is then the 2nd fundamental form
of the canonical injection:

j: (f(M)yg,) (M, g).

11.1.2. Metries g, on M, oy and o;.
We now construct a new metric g, on M such that f;: (M, g,) — (f(M), g'), defined

by Ym e M, f.(m) = f(m) be a Riemannian submersion:
For X, YeT, M, we put
(@)X, ¥) =9.(X, ¥) if X, YeKerf,
(X, ¥)=0 if XeKerf, and YeXKerfi
WX, YY) =g« X, [+ ¥) if X, F¥eKerff

and we extend g; into a bilinear symmetric form on 7, M X T, M.

ProrosITioN I1.1.2. — Tensor field g, endows M with & Riemannian structure,
and f; is & Riemannian submersion.

Proor. — Omitted.
We shall denote by ¢ the identity diffeomorphism: (M, g) —~ (M, g,) and o, its
2nd fundamental form.

by o; the 2nd fundamental form of the Riemannian sub-
mersion f,.

11.1.3. Factorization.

We ecan regard f as the product f = jof;oi:

(M, 9) ——> (M, g")

(M, g) > ((M), ¢')

where j is an isometric immersion; f; is a Riemannian submersion; ¢ is a diffeomoy-
phism,
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I11.2. Tensors v and v.

DermviTION I1.2.1. — We define 2 tensor fields

1. TMXTM —{, TM
vi TMXTM ~ (f TM)*

by putting (X, ¥) = orthogonal projection of 'cr(X, Y) on fo T M; »(X, ¥) = orthogonal
projection of o(X,Y) on (fuTM)™*
Then we have:

ProrosiTioN I1.2.2. — vy = f*o’. And its immediate consequence.

CORQLLARY I1.2.3. - Ker fyc Kery
Ker f, N Ker br c Ker ¢ = Ker v N [} (Ker ¢') .
Proor. — Applying I1.4.5, we have for X, ¥e TM
oX, 1) = 01X, 1) + (X, T) + froou(X, ).
As o' (fo X, 1+ ¥) € (f*TM); and o3(X, ¥) - feoo(X, ¥) e[ TM we can see that
(X, ¥) = o'(fxX, [+ ),

that is proposition I1.2.2.

11.3. Geometrical viewpoint.

© 11.3.1. Study of M.

As Ker f,c Kery and ¢ = v - », one can reformulate propositions 1.5.1 to 1.5.4
and theorem I.5.5 by replacing ¢ by z. In particular we have:
TaREOREM I11.3.1. — Assume f: (M, g) — (M', g') is a C* map of constant rank bei-
ween Riemannian manifolds. The conditions:
(i) Kerf,c Kero
(ii) XerfocKert
are equivalent.

If they hold, then M admits a local decomposition M = M, X M,, where TM,=
= Ker fy, and TM,= Ker f;.
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11.3.2. Study of f(M).
Proposition I1.2.2 yields:

COROLLARY IL.3.2. — Assume f: (M, g) — (M', g') is a map of constant rank bet-
ween Riemannian manifolds. (M) is a totally geodesic submanifold of M' iff the 2nd
fundamental form of f is tangent to f(IM).

For applications, see also § IV: umbilical maps.
11.3.3. The integral foliation of Ker f, and the distribution Ker ff.

TaEoREM 11.3.3. — Let (M, g) be a Riemannion manifold and f: M — M’ be a C>
mapping of constant rank.
Then there exists & metric g, on M with respect to which

1) Kerfi is @ totally geodesic plane field,

2) the integral foliation of XKer fy is Riemannian.

PRrOOF. — It is based on lemma I.B.2 by CARRIERE [Ca] who gives the following
characterization of Riemannian foliations: a foliation F of a Riemannian manifold M
is Riemannian with respect to the metric of M iff for every unitary field & orihogonal
to F, V.& is orthogonal to § (V being the Levi-Civita connection of M).

This lemma implies that the orthogonal complement of a totally geodesic plane
field, whenever integrable, is Riemannian for the metric used.

Thus assertion 2) is an immediate consequence of 1). We shall now prove 1):
let ¢, be the metric defined in IL.1.2 and V! the associated Levi-Civita connection.

For X and ¥ Ker fi-valued vector fields on M, Z Ker f,-valued field on M, we
can compute ¢,(ViY, Z) and using properties (2) and (6) of V, we find:

20,(Vx Y, Z2) = ¢,([X, Y], Z) .
So we see that the 2nd fundamental form ¢, of Ker f;;, definedin I.4.4is null, q.e.d.

I1.3.4. Relatively affine maps: the case where 1 = 0.

A relatively affine map is a map between Riemsannian manifolds the 2nd fun-
damental form of which is orthogonal to f(M) (cf. [Ya & Is]), i.e. such that 7 = 0.
Yano and Ishihara have proved that every relatively affine map is of constant rank,

We supplement here the result obtained by these authors, proving:

THEOREM I1.3.4. — Assume f: (M, g) — (M, ¢') is a relatively affine map. Assume
moreover that M is connected, simply connected and complete. Then,

1) M ds isometric to a Riemannian product M, X M,, where TM,= Ker f, and
M, is locally diffeomorphic to f(M).
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2) If M, admits the de Rham decomposition M,= M;X...X M%, then for a
fiwed i, the distribution f, TM; defines a foliation of f(M), every leaf of which is
irveducible and homothetic to Mi. Moreover the ratio of this homothecy is independent
of the leaf so that all leaves are isometric.

Proor. — Assertion 1) is proved by [Ya & Is]. Here we just apply I1.3.1. Asser-
tion 2). f defines a local diffeomorphism from M, unto f(M)-—see [Di] e.g.—.So
we can define a metric g* = f,g on F(M) such that g*(f, X, 1, ¥) = g(X, ¥) for X,
YeTM,. The Levi-Civita connection associated to g* satisfies Viyf ¥ = f,V,Y.

On the other hand, by the definition of the 2nd fundamental form we have:

Vefs ¥ = (V2 Y + (X, ¥) = Vf.xf*y + o' (fo X, 1+ )
=V, xf+¥ Dby property (1) of V.

Thus, V# is the tangent component of V', Henece g’ and ¢ induce on f(M) the
same Levi-Civita’'s connection, and f maps parallel distributions on (M,, g) into
parallel distributions on (f(3), ¢').

¥ M,= MiX..X MiX...X M} is the de Rham decomposition of M, we see that
for a fixed 14, f, TM; defines a totally geodesic foliation of f(M), with irreducible
leaves. Let M, be a leaf of the integral foliation of TM} in M, and M = f(M,%)
its image by f. M, is a leaf of f, TM;.

M,* and M;* being totally geodesic—in f(M) and M respectively—, metrics g*
and ¢’ induce the same Levi-Civita’s connection on M, and by lemma 1 in [Ko &
Nol, p. 242, we see that ¢* and ¢’ are homothetic on M;*: there exists A’ > 0 s.t.

VXt YieTM;, g(Xi Y=g (R X%, XY.

We must now prove that A7 is constant (does not depend on the choice of the leaf
M;). Therefore for X TM we compute

Xg(X1) ¥¥) = (X9 (1 X¥) [ X7) + X Xg (f6 X, 15 X7)
= g(Vx-Xiy Yz) + g(Xi7 Vin) .
Making use of property (6) of V we find:
g(Vx X', ¥) + g(Xi, Vz ¥) =
= (XA (f+ X, fo X7) + 229" (Fx V= X% [ X)) + A1g' (4 X7, V2 X)

But TM} being parallel, VyX’e TM:.
Hence

MY (V2 X' 14 X) = g(Va X%, ¥1)  and A/ (f, X7 5 V2 X¥) = g(X%, V2 7).

Thus (X1) =0 q.e.d.
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3. — Projective maps.

II1.1. Definitions and remarks.

II1.1.1. Geodesics.

A C® map ti—>y() from an open interval Ic R into a manifcld M endowed
with a linear connection is said to be a geodesic if it satisfiés a) et b);

a) y is an twmersion (i.e. vy~ 0 for every 1);

T11.1.2. Piccewise geodesics.

A C® map t = p(t) from an open interval I c R into o manifold M endowed with
Iinear connection V is said to be a piecewise geodesic if it satisfies b).

II1.1.3. Projective maps.

A C® map f: (M, V) — (M', V') between manifolds endowed with linear connections
is said to be projective if for every piecewise geodesic y on M, foy is & piecewise geodesic
on M.

I11.1.4. Strongly projective maps.

A C®° map f: (M, V) — (M', V') between manifolds endowed with linear connec-
tions is said to be strongly projective if for every geodesic y on M, either foy is a geodesic
on M', or the image of foy is a point.

I11.1.5. Remark.

Mappings f that map every geodesic y into a geodesic are immersions because
they map regular curves into regular curves.

I11.1.6. Remark.

It f: (M, V) > (M', V') is a strongly projeetive map, a geodesic on M is either
tangent of transverse to Ker f, at every point.

IT1.2. Study of strongly projective maps and projective maps between manifolds endowed
with linear connections.

We omit the proof of the following.

ProposiTioN II1.2.1. — Assume f: (M, V) — (M', V') is a strongly projective map
of constant rank between manifolds endowed with linear connections. Then

1) the integral foliation of Ker f, is totally geodesic;
2) {(M) is a totally geodesic submanifold of M,
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And we can now state

FUNDAMENTAL THEOREM IIL.2.2. - Leét f: (M,V)— (M', V') be a mapping of
constant rank between manifolds endowed with torsionless linear connections. We denote
by o its 2nd fundamental form. Then f is strongly projective iff it satisfies the following

property:

(%) h There exists a 1-form w on M such that:
VX, YeITM, oX,Y) =oX)fY+ o(X)fX.

In the proof we shall use the following lemmas

- Levwma I11.2.3. — Assume f: (M, V) —(M', V') is a map of constant rank between
manifolds endowed with linear connections, y: 1— &, e[—> M is a regular curve on M,
and V is a field along y. Then

1) In the neighborhood of any t€]— g, &, V can be regarded as the restriction
along y of a field ¥ on M.

2) We have (V;,dtf* V), = (—V—:;f* Y),q for any tel—e, el

Lemma II1.2.4. — Assume f: (M, V) — (M', V') is a map of constant rank between
manifolds endowed with linear connections, and y: s —y(s) is a geodesic on M, with
affine parameter s—i.e. such that Vyzp = 0—.

Then we have: o(p, ) = VaasFi?-

ProOF or LEMMA III.2.3. — Assertion 1) follows from the fact that y is an im-
mersion.
For assertion 2), let (6;)a¢=1,.,.,n’ denote a frame of TM' in the neighborhood of

my = foy(ty).
We write f4 ¥ = g%, ¢* being functions on M.
At the point m = 9(t) we have:

Vois ¥ = p(g*) ¢, + 9"V} . 0,

and, as (f, V),= ‘P;(t)(e.;)f(m)

i d & ' o / ’
Vi f4V = Ei(‘?’ oy)e, + (p*oy) V,:\eoc .
' oy

The identities 7 = y,(d/dt) and foy = f,7 give the result 2).
LievmA IIT.2.4. — Is an immediate consequence of lemma I11.2.3.

PrOOF oF THE THEOREM. — A) The condition is necessary. The totally geodesic
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distribution Ker f, admits a (C*) supplementary autoparallel distribution, N,. We
shall now study the colinearity of o(Z, T) and f, T for TeTl, M. '

Let t — p(t) be the geodesic from m, s.t. p(0) = T, with affine p&rame’cer 1.

If T (Ker fy)u, by proposition IT1.2.1 and lemma IIL.2.4, o(p, p) = 0.)

If T¢ (Kerfym, foy is a geodesic on M', y is transverse to Kerf,, and by
lemma 111.2.4, a(y,y) is colinear to fup. So if T e N, there exists' a function
w: Ny =R st o(T, T) = 200,(T)f, T.

Using a proof by Zvi HAR’EL [Ha] we see that w, is 2 linear map. f, and o being
C®, 50 is o;. '

" Now for T ¢ Ker f, we write T = T, + T, with T,€ Ker f,, T,€ N, and we have:

o(T, T) = o(To, To) + 20(Ts, 1) + 204(T1)}5 T = 20(T, Th) +2w1(T1_)f*T
As o(T, T) is colinear to f, T, there exists a mapping w,: Ker f, X ¥;— R such that:
o(TLo, T1) = wolTy, T1)f4 T = wo(Lo, Ty)f5 11

As 1, T, is nowhere zero, o and f, being C?, we see that w, is C™,

Now, using the bilinearity of ¢ we can see that w, is linear w.r. to T, and does
not depend on T;.

Se we define w: Ker f, —R. By

o(To, Th) To)fsT

and this equality still holds when 7, = 0.
Putting o(T) = o(T,) + w{T,) we have:

oI, T) = 20(T)f: T

Hence o(X,Y)=§[o X + ¥, X+ Y)—oX - Y, X—-Y)] = 0(X)fu Y + 0(X)fu ¥
q.e.d.

B) The condition is sufficient. If (%) holds, for two Ker f,-valued fields X
and ¥ we have:

o(X, Y)=0= ‘.‘f*VxY

by lemma 1.5.7, so that Kerf, is totally geodesic.

Using lemma II11.2.4, it is easy to see that any geodesic in M is mapped either
into a geodesic on M', or into a point.

A piecewise geodesic y being a geodesic on the open set where p = 0, lemma [11.2.4
provides also the following characterization for projective maps:
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TaroREM II1.2.5. — Leét f: (M, V) - (M, V') be a mopping of constant rank bet-
ween manifolds endowed with torsionless linear connections, and denote by o its 2nd
fundamental form. Then | is projective iff for every X e T M, o(X, X) and f X are
colinear.

I11.3. - The Riemannian case.

By our definition I11.1.1, a geodesic is an immersion o: I = J—e, ¢[ — M such
that y(I) is a totally geodesic submanifold of M. Example 1.3.2 shows that the 2nd
fundamental form of y satisfies o (d/dt, d/dt) = Vg, 7, so that y is a totally geodesic
map (i.e. ¢,==0) iff ¢ is an affine parameter for y. One knows that every geodesic
admits affine parameters. In the case when rank f > 1 the notion of geodesic curve
is naturally extended into the notion of strongly projective mapping (with charac-
teristic property (x)). We shall show here that a change of metric can make any
strongly projeetive map into a totally geodesic one. We have:

THEOREM II1.3. — Assume f: (M, g) — (M', g') is a strongly projective mapping
between Riemannian manifolds. Then

1) Ker f; is integrable and defines a totally umbilical foliation, which is totally
geodesic iff Ker f,c Ker w.

2) There exists a metric g, on M for which f is fotally geodesic.

ProoF oF 1). — Assume X, Y are Ker fi; valued fields and Z is a Xer f, valued
field on M. We have:

(2) o(X, Z) = — [xVzZ = olZd)f+ X .
Hence ¢(V,Y, Z) = — g(¥,V,Z) = w(Z)g(X, Y¥) and by symmetry:
9(lX, ¥1,2) =0

so that Ker fi is integrable.
Moreover g(oy(X, Y), Z) = o(Z)g(X, Y), so that Ker f{ is umbilical—totally geo-
desie iff Ker f,c Ker o—.

PROOF OF 2). — Let g, be the metric defined in I1.1.2. We shall prove that Xer f,
is totally geodesic w.r. to g;.
Using the identity

20,(V}Y, Z) = Xg,(Y, Z) + Yg(X, Z) — Zg,(X, Y) +

+ 0([X, X1, Z) + 9:(12, X1, Y) + 9.(X, [2, Y)
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and the definition of g,, we find, for X and Y e Kerf,
20:(V3Y, Z) = 29(V, Y, Z) .

Ker f, being totally geodesic for g, taking Z in Ker f+ we see that Ker f, is totally
geodegie for g;.

Applying theorem 3.3 by J. VILMS [Vi] we see that the 2nd fundamental form o,
of fy: (M, g) — (f(M)7gl) is null.

The 2nd fundamental form of jof: (M, ¢;) — (M', g') being o, » is null. So f
is totally geodesic with respect to g¢;.

I1T.4. Hramples.

I11.4.1. First example of strongly projective map.
Let f: E2 — E2

(2, 2?) > (sin?x!, cos®a?)

f is of rank one whenever xis kn/2.
It maps E? into the totally geodesic submanifold:

4 wr=1
O<at<l.
We have 0(X, Y) = o(X) {4 ¥ 4+ o(Y)f X with
w(X) = X cotg 22"

so that f is strongly projective without being totally geodesic. Ker fi is a line so
that we have Ker f,c Ker o.

I1Y.4.2. Second example of sirongly projective map.

Consider the VRANCEANU [Vr] surface M?c E¢, the points of which satisfy:

I

7{U) COS % €O8 v

i

#{u) gin. 4 cos v

i

= r(u)
2% = ¢{u) eos % §in v
#% = 1(u)
= r(u)

r{#) sin % sin v

Il

Put M'= S™\{N, 8} parametrized by the latitude 0 € ]— #/2, #/2[, and the lon-
gitude ¢ € [0, 2a[. Define f: M — M' by f(u, v) = (0,v). We can see that f, X =
= X2(0/0p) and ¢(X,Y) = o(X)f ¥ + o(¥) {4 X with w(X) = — X'(f/r) so that f
is strongly projective and Ker f, ¢ Ker w.
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111.4.3. Ewample of projective, not strongly projective map.

Let p be the orthogonal projection from the sphere S™\{¥, 8} c E?* on its axis
1%, S[. Being R-valued, p is projective. Butl it maps a great circle (¢) on 82 into a.
twice covered segment: its image is.a totally geodesic submanifold of [N, §], but
poc is not an immersion. The leaves of Ker 7, are the horizontal circles (not totally
geodesic). On the other hand, a computation shows that the 2nd fundamental form
of p does not satisfy (x).

111.4.4. Exvample of strongly projective map satisfying Ker o = {0}.

/1\

Consider the map f: EN{0} — §2

where 7 =V (a1)?  (x2)2 + (23)2.
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Let D be a straight line in E2. If 0 € D, f(D) is the point DN 8% If 6 ¢ D, (D)
is ineluded in the intersection of the plane defined by (0, D) and §2: it is an open
subset of a great circle. Thus f is strongly projective.

The leaves of Kerf, are the straight lines through O (O being excluded). The
kernel of f, at a point m € E? is gencrated by the position vector . Being non
parallel, Ker f, is not-included in Ker o (proposition 1.5.3). In fact, using lemma 1.5.7
one can easily compute the 2nd fundamental form o of /. We have:

o X, Y) = o(X)/x Y + oY) X,

where w(m) = —1 and Ker o = Ker f.
Thus Ker o = {0}.

ProprogiTioN II1.4.5. Strongly projective maps of rank >2 between euclidean spaces
are affine.

IDEA OF THE PROOF. — We first establish that we need ounly investigate the case
of immersions, then we show strongly projective immersions map straight lines
into straight lines. '

1) Consider f: M = Er — M’'=E* and suppose f is strongly projective, of
congtant rank k.

The leaves of Ker f, (resp. Ker fx) are n — k planes (resp. k-planes). If I] is a
leaf of Kerfi and sz the orthogonal projection on I/—totally geodesic—consider
the following factorization of f:

ML

|7

n

where f/, restriction of f to II, i3 an immersion.
Being parallel, Ker f, is included in Ker ¢ (Prop. 1.5.3). Hence one can see that f
is strongly projective iff so is f/, and f is affine iff so is f'.

2) Suppose now moreover that f is an immersion of rank k>2. f(M) is a con-
nected open subset of a k-plane in M'. The image of a straight line by f is included
in a straight line.

Thus one ean eagily state that, if D’ is a straight line in M:
1) f~Y(D') is either @ or a straight line D in M;
2) we have f(D) = D';

3) f satisfies the hypothesis of the fundamental theorem of affine geometry,
and hence is affine.
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4. — Umbilical maps.

IV.1. Definitions.

The following 4 definitions can be regarded as natural extensions of the usual
notion of umbilicity for submanifolds.

Let f: (M, g) - (M', g') be a map of constani rank between Riemannian manifolds,
with 2nd fundamental form o.

IV.11. g-umbilicity.
f is said to be weakly g-umbilical if there exists
1) a field £ along f, nowhere 0, with values in Ker fz;
2) a field Z on M, such that for every X and Y in TM we have: g(X, ¥) =
= g(X, Y)(& + f+2). ’

If moreover o is orthogonal to f,TM (that is Z = 0) f is said to be strongly
g-umbilical.

IV.1.2. ¢’ -umbilicity.

f is said to be weakly ¢'-umbilical if there exists fields & and Z as in IV.1.1, such
that for every X and Y in TM we have: (X, Y) = ¢'(f1 X, [+ Y)(& + 4 Z). 1f
moreover ¢ is orthogonal to f,TM (Z = 0) f is said to be sirongly g'-umbilical.

REMAREK. — No Riemannian submersion can be umbilical because for such maps,
Olgor 1+ xger st = 0—¢f. [Vil—, which would imply & = 0 in the umbilical case.
IV.2. Ezxamples.

IV.21. g-umbilicity.

ProrosiTioN IV.2.1. — Let M be a convex hypersurface of the euclidean space Ertt,
We denote by g the metric in E*+1 and V the associated Levi-Civita connection.

1) There ewists one unique metric g, on M s.t. if f,: (M, ¢,) — (Ert1, g) denotes
the canonical injection, and v the orthogonal projeciion of its 2nd fundamental form
on TM+ we have:

VX, YeTM, »X,7Y)=qX V)&,

& being a unitary vector field orthogonal to M.
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2) 1, s weakly g,-umbilical iff there exists a field U on M such that the 2nd fun-
damental form o' of M isometrically immersed in E ' satisfy:

VX, Y, ZeTM, (V,o)(X,Y)=29(c"(X,Y),o(U,Z).

3) 1. is strongly g-umbilioal iff o’ is parallel (ﬁa’: 0).
PROOF. — Assertion 1) As M is convex, T M~ is orientable.” Let & be a unitary
field in TM+., Define 2 bilinear symmetric form ¢, on TM by:
91(-X, Y) = <U’(X: Y); §> .

M being convex, we can chose & such that g, be positive definite at every point.
Thus (M, ¢,) is a Riemannian manifold. Factorize f; as in I1.1.3.

(M, g) —2s (Evt1, g)

(M, 9)
By proposition I1.2.2 and by the definition of g; we have »(X, ¥) = ¢'(X, Y) =

= g,(X, Y)§&, and 1) ig satisfied. As any change of metric on M does not alter », g,
is the only suitable metric.

Assertion 2) The tangent component r of the 2nd fundamental form of f, is
(X, Y)=V, Y~ VLY.
We gseek for a condition that it satisfy

(i) ‘ I(Xy Y) = gl(X’ Y) U7

U being a field on M.

A computation, using the Codazzi equation for M immersed in E*+! yields:
- 29(‘7,(7(X7 Y), Z)’ ‘5) = g((.vzo")(X, Y), E) _ ’

o' being definite, we see that condition (i) is equivalent to (V,o')(X, Y) =
= 2¢(0'(X, Y), "(U, Z)).

Assertion 3) Is an immediate consequence of the definition of strong umbilieity.
IV.2.2. g'-umbilicity: Projection of S*XR into 8.
Oonsider the cylinder M = 8" xR and the map from M into Er+1

f: M — Ert2

(m, ) —>m.
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We can factorize f as follows:

M —L 5 Ert
\
S'n

where p: (m,2) »>m is the—totally geodesic—orthogonal projection on 87, and
where § is the-—~totally umbilical-—canonical isometric immersion.

Denoting by H the mean eurvature vector of 8" immersed in E"+!, using lem-
ma 1.5.7 and 1.4.5 we find:

o(X, Y) = {fiX, YO H

so that f is strongly g’-umbilical.

IV.3. Theorems.

IV.3.1. g-umbilical maps.

THEOREM IV.3.1.1. ~ Let f: (M, g) — (M', g') be a wealkly g-umbilical map. Then
1) f is an immersion.
2) If vank f =2 and if M’ is a space of constant curvature, f{M) is a convex hyper-

surface of a totally geodesic submanifold of M’.

THEOREM IV.3.1.2. — Assume f: (M, g) — (M', ¢') is a strongly g-umbilical map
from a simply connected irreducible manifold into a space of constant curvature. Then M
is isometric to a sphere.

PROOF. — 1st theorem. 1) If f is weakly g-umbilical we have Ker » = {0}. Hence f,
is injective by corollary II1.2.3 (Ker f,C Ker v).
2) Assume now that M’ is a space of constant curvature. Consider metric g,
as in I1.1.2: ¢,(X, Y) = ¢'(f« X, f+ ¥) and the factorization of II.1.3.

Using 1.4.5, we see that the 2nd fundamental form o, of the isomefric immersion
jof, satisfies:

0 X, Y) = o'(f X, 1+ Y) .
By proposition I1.2.2 ¢,(X, ¥) = »(X, ¥) = ¢g(X, Y)£ We ghall now prove, using
a method of GRIFONE and MORVAN [Gr & Mo], that £ is parallel in the normal bundle

f« TML. Let us write the Codazzi equation for jof;—cf. [Ch]e.g.—for X, Y,ZeTM:

Vi oY, Z) — Vo (X, Z) = 0,(V; Y, Z) — (V3 X, Z) + 0,(¥, Vi Z) — 6,(X, V3} Z)
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where V't is the connection induced by V' on f TM~*. That is

Xg(Y, Z)E - g(¥, Z)V'-E — g(VLY, Z)E — g(¥, VoZ)E —
= Yg(X, 2)¢é + g(X, Z)V& — g(Vi X, Z)é — g(X, VL Z)E .

If V'*+£is non zero on an open set, the projection of this equation on the distribu-
tion orthogonal to & in f,TM~ yields g(Y, Z)VE = g(X, Z)V,EE.

Defining L: TM —f, TM* by L(X) = Vyé&, one can easily see that L would be a
rank 1 linear map, satisfying moreover Ker L = Ker g, which is impossible. Hence
V& =0 and the distribution M’ generated by f,TM and £ is integrable and
totally geodesic. The 2nd fundamental form of M isometrically immersed in M”
is the definite form o,: VX £ 0, ¢,(X, X) £ 0. Thus M is a convex hypersurface
of M.

2nd theorem. — Being strongly g-umbilical, f is relatively affine and weakly
g-umbilical. Thus by theorem I1.3.4, f is an homotheey and one can easily see that
f(M) is a totally umbilical, closed submanifold of M', without boundary. Thus f(M)
is an hypersphere of a totally geodesic submanifold of M’ ([Ch]).

I1V.3.2. ¢'-umbilical maps.

THEOREM IV.3.2.1. — The image of M by a weakly g'-umbilical map is a totally
umbilical submanifold of M'.

THEOREM IV.3.2.2. — Assume f is a weakly g'-umbilical map from a simply con-
nected complete manifold M into a space of constant curvature M'. Then

1) f(M) is a sphere.

2) M admils a decomposition M, X M, where TM,= Ker f, and M, is diffe-
omorphic to the sphere f(M)c M'. '

THEOREM IV.3.2.3. ~ Assume f is a strongly ¢'-umbilical map from a simply con-
nected complete manifold M into a space of constant curvature. Then
1) /(M) is a sphere.

2) M admits o decomposition M, X M, where TM, = Ker f, and M, is isomeiric
to & sphere.

Proor. — The 1st theorem. Is an application of I1.2.2.

The 2nd theorem. We have Ker f,C Ker ¢, thus by theorem 1.5.5 we can write
M= M xM, M, being diffeomorphic to (M), which is totally umbilical, hence
included into a sphere. Moreover f(M) is complete an has no boundary since f is
of congtant rank., f(M) is then the whole sphere. ‘
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The 3rd theorem. By similar arguments as in 11.3.4 we can see that M,, as f(M),
is irreducible, and that f, induces an homothecy: TM,—f,TM. Hence M,
is isometrie to a sphere,

IV.4. Spherical maps.
Generalizing the definition of « extrinsic sphere» by B. Y. CHEN [Ch 1] we set:

IV.4.1. Definition.

A map f: (M, g) - (M', g') is said to be spherical if it is strongly g¢'-umbilical
and if its mean eurvature vector £ is parallel in the normal bundle (that is for V'+:
cf. 1.3.6), and non null.

IV.4.2. Spherical maps into a Kihler manifold.

‘We shall now prove

THEOREM IV.4.2.1. — Assume f: (M, g) — (M'*, g') is a spherical map, with values
in o Kdhler manifold of real dimension 2n'. If M is simply connected complete, and f

analytical of rangk 2n'— 2, then one of the irreducible components of (M , §) s iso-
metric 1o an even dimensional sphere.

This theorem is based on two lemmas.

LevmA IV.4.2.2, — Assume X e T, M and { is a section of fTM*. Denoting
by A' the 2nd fundamental tensor of f(M) isometrically immersed in M', we have:

Vil = — Alf X+ Vite.

Levma IV.4.2.3. — Assume Xe T, M and { is a ficld along f. Denoting by J
the complex structure of M’ we have:

Vot = JVel.

PROOF OF THE LEMMAS. — 1st lemma. Property (5) of V' shows that the tangent
component of Vi{ depends only on f,X.

On the other hand for Ye T, M and for any section Y’ of f,TM such that
Y, = f, Y, we have:

9Vl 1+ Y) = — g'(5, Ve X¥')  as V' is metric
=—g'((,. ' (X, Y)) = — ¢'(5, o' (14X, 1+ 7))
by prop. 11.2.2,

= — g'(4;/+X, 7+ ¥Y) by the definition
of 4.
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Hence we get the lemma.

2nd lemma, We omit the proof, which is a computation in local coordinates.

PROOF OF THE THEOREM. — We shall use here the method of CHEN [Ch1]. By
our assumptions, f is strongly ¢-umbilieal:

o(X,Y)=g'(f: X, [ Y)&, —1is parallel for V'+,

HEH

and. [&] is constant.

We can apply theorem I1.3.4: M = M,X M, where TM,= Kerf, and if M,
admits the de Rham decomposition M,= MiX...xX M%, f induces an homothecy of a
submanifold M,? in M—isomorphic to Mi—into a leaf M.’ of f,TM:: We denote
its ratio by AL

We can chose a unitary section of f,TM*, 5, orthogonal to &. Vit being metric,
we have V'y = 0. Hence Vy = — A, f, X -+ Vi 'y = 0, 4 being orthogonal to the
mean curvature vector of f(M). We define a function ¢ on M; by

P(M) = Gim (J%n)-

By a computation we can see that

Vydp = — (X]£])29(X, ).

Moreover there exists at least one ¢ for which ¢ is non constant, for if the contrary
held, one could see that {z, Jn} would generate f,TM*, hence we would have
1€l = o.

The result of OBATA [Ob] then proves that M; is isometric to the sphere of
radius 1/A¢)¢] in E**, where 27 = dim M;.

5. — Integral formulas.

We shall here state formulas relating the norms of the 2nd fundamental forms
of f, of f(M), and of Kerf,, in the case where f induces a conformal map from
Ker fz into f,7M—e.g. when f is a Riemannian submersion or a mapping of
rank 1—. In the sequel we denote by |- -+ | the norm of any type of tensor, for either
metric ¢, or metric g'.

V.1. The conformal case.

Our results will follow from the

PRrOPOSITION V.1.1. — Assume f: (M, g) — (M', ¢') is a mapping of constant rank
between Riemannian manifolds. Suppose there ewists a function o on M s.t. for any
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XeXKerfr we have: ||fuX| = 0| X|. With the notations of 1.4, we have at any point
of M
lo]*> e*[ao]* + o*]o']* .

Hence we obtain:

COROLLARY V.1.2. — Assume f: (M, g) — (M', ¢') is o mapping of constant rank
between Riemannian manifolds, M being compact.
Suppose there ewists a function o on M s.i. for X € Ker fy we have:

If+ X1 = o X1 -

Then, with the notations of 1.4 we have:

[1012> a3 [ [ools + @3 1o'17]

M M

where o, denotes the lower bound of o.

PROOF OF PROPOSITION V.1.1. — Is a direet computation of |of, using at m an
orthonormal frame {e,, ..., €,} 8.t. {s_r 1, ..., €} generates Ker fi.
We have |fye:] = ele] for ¢ >n —r and

n

ol = 3 lotes el = 3 Tetes, edl*+ 3 Dlew, ol

Uy3= b=

iyi=
Using propositions 1.5.2 and I1.2.2, and the definitions of the norms, we find

the required equality.

V.2. The case of a fibration.

Whenever f defines a fibration with compact fiber F, we obtain:

COROLLARY V.2.1. — With the hypothesis of corollary V.1.2, if | defines a fibration
with compact fiber F, we have:

[11*> [ [ 100l + gbtvol B [1o')e]
M M 1(21)
and

COROLLARY V.2.2. — Assume f is @ map of constant rank 1 from an orientable
compact Eiemannian manifold inio a Riemannian manifold (M', g'). Suppose moreover
that f defines a fibration with compact fiber F. With the notations of 1.4, we have:

J ot int it [1oude + ms i1, ot 1) [ 1]

where C s the curve f(M) and k its curvature,
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V.3. Case of ¢ Riemanwnian submersion.

Using a result by HERMANN [He] we obtain.

COROLLARY V.3. — Assume f is a mapping of constant rank from a compact Rieman-
nian manifold (M, g) inie o Riemannian manifold (M', ¢'), which induces a Rieman-
nian submersion from M unto (f(M), g'). If the fibre F or f is compact, with the nota-
tions of 1.4, we hove: ’

[Cal

[Ch]
[Ch 1]

[Ch 2]
[Ch & Va]

[Die]
[Do]

[Ee & Le]
[Ee & Sa]
[Gr & Mo]
[Ha]
[He]
[Hi]
[Ko & No]

[Li]

[1o12> [100l2 + (vol B) [ 107]2
M M M
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