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1. Introduction. A G6del-numbering ~ = (q)ili ~ N)  of all partial recursive 
(p.r.) functions f :  N - +  N is considered to be optimal if any other recursive 
sequence (giIi ~ N)  of p.r. functions can be effectively translated into ~o by a 
linearly bounded translation. This implies that all p.r. functions have rather 
low G6del numbers relative to cp when these numbers are compared with the 
lowest G6del numbers relative to any other G6del numbering. The lowest 
G6del number of f relative to an optimal G6del numbering ~o is a distinguished 
measure of size of p.r. functions in the sense of Blum's axiomatic approach [1]. 
Lowest G6del numbers have been independently considered by A. R. Meyer [7]. 

We prove that for any two optimal G6del numberings ~o and q~ there exists 
a recursive permutation t such that t and t-1 are linearly bounded and ~o i = 
~0t(t) for all i. It is the author's experience that this result cannot be obtained 
merely by careful attention to the details of the standard proof of Rogers 
recursive isomorphism theorem for G6del numberings [3] in spite of the fact 
that optimal G6del numberings admit a linearly bounded S~-function. The 
original proof of Theorem 4 was based on an improved version of the recursion 
theorem. However, the referee pointed out that an improved version of the 
injective translation theorem (Theorem 2) together with a combinatorial 
construction (Lemma 2) enable us to obtain this result as a corollary of an 
improved version of Roger's Isomorphism Theorem. 

An analogous isomorphism theorem holds for optimal enumerations of 
recursively enumerable sets. Optimal enumerations are a specification of optimal 
(universal resp.) algorithms according to Kolmogorov [2] and Solomonoff [5]. 
Next we establish a relationship between the relative frequency of G6del 
numbers of a p.r. funct ionfand the minimal program complexity off.  Functions 
with low minimal program complexity have a high relative frequency of pro- 
grams. This seems to be somewhat surprising since one might expect that optimal 
G6del numberings avoid many repetitions. But this fact corresponds with 
theorems of Friedberg [6]. Hereby we know that any one-one enumeration .of 
all p.r. functions must not be effective. Optimal G6del numberings and optimal 
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enumerations are strongly related to one another. It can be shown that the 
shortest programs of p.r. functions relative to an optimal Gtidel numbering are 
asymptotically random. 

2. Optimal Giidel Numberiags. Pk(Rk) denotes the set of all p.r. (rec.) 
functions h: N k --~ N. Let g E Pk+ l then for every i E N we denote gi = )tx[g(i, x)]. 
We shall use the concept of (acceptable) G/Sdel numbering in the sense of 
Rogers [3]. 

Definition 1. ~o k • Pk+l  is a G/Sdel numbering (G.N.) of Pk if and only if 
Vg • Pk+ 1 : 3t • R 1 : Vi • N: gi = ~k(1)- Obviously cp k is G.N. if and only if it 
satisfies the S-m-n theorem and the universal Turing-machine theorem. In the 
following let t~0 k be a fixed G.N. of Pk" We define the program complexity Kg(h) 
of h • P1 relative to g • P2 (we use the convention min ~ = ~ ) :  

Kg(h) = rain { ilg i = h }. 

Let I[ ill be the length of the binary notation of the integer i. We wish to ensure 
that the size of the functional II Kgl[ essentially does not depend on g. Therefore 
we introduce the concept of optimal G.N's. A function g: N - +  N is linearly 
bounded (l.b.) if and only if lim sup, g(n)/n < ~ .  This means that there exists 
c • N such that lie(i) [[ <- I I ill + c for all i > 0. 

Definition 2. ~ • P2 is an optimal G.N. of P1 if and only if Vf• P2 : 3t • R 1 : 
t is 1.b. ̂ f~ = %(o for all i. 

COROLLARY 1. Let q~ be an optimal G.N. of  PI and 95 • P2. Then there 
exists c • N :  [Ig, p(h)[I < [IKo(h)l[+e for all h •P1.  

Optimal G6del numberings are well known in terms of Turing machines. 
Any universal Turing machine which is able to simulate the Turing-machine 
table of any other Turing machine can be considered to be an optimal G.N. 
We give an easy formal proof of the existence of optimal G.N.'s. 

THEOREM 1. There exists an optimal G.N. ¢p of  P1. 
Proof. Consider the following pairing function g • R 2 : g(n, i) = 2" + i2" + 1 _ 1. 

g is a bijective function such that g, is l.b. for all n. Then we define ~o • P2 as 
follows: 

¢p(g(n, i), x) = ~2(n, i, x). 

This implies that ~ is an optimal G.N. of P1. 
In the following we shall use that optimal G.N.'s admit a linearly bounded 

S~-function. 

LEMMA 1. A G.N. ¢p of  Pi  is optimal i f  and only i f  it admits a linearly 
bounded S~-function, i.e., a function S~ e RI such that ~o2(i, x) = ~Sl (e , i ) (x )  for 
all e, i, x ~ N and ki[S~(e, i)] is linearly bounded for all e. 

Proof. Suppose ~o is a linearly bounded S~-function. Then for every f e  P2 
we can find an integer eo such that f =  2 2 i = %°. Hence ~0sl(eo, i)(x ) -= %o(, x) 
f ( i ,  x). Clearly t = ki[S~(eo, i)] is the desired t. Suppose now that ~o is optimal 
and let 95 be the optimal G.N. in the proof of Theorem 1. Then by Definition 2 
there exists a 1.b. t e Rl such that ~%(,,i)(x) = Cfg(,,i)(x) = ~o2(i, n, x), where 
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g(n, i) = 2"+ i2  " + 1 -  1. Hence q~ admits the S~-function tg, where M[tg(n, i)] is 
l.b. for all i. 

As a prelude to our linear isomorphism theorem for optimal G6del number- 
ings we give a new proof  of  the injective translation theorem. 

The statements and proofs of  Theorem 2, Theorem 3 and Lemma 4 are all 
due to the referee. He pointed out this way to prove Corollary 2, Corollary 3 
and Theorem 4. 

T H E O R E M  2. Let S~ E R 2 be an S(-function for  the G.N. ~o o f P  1. Then for  
every g E P2 we can effectivelyfind an integer eo such that gi = q)s[(eo, 0 for  all i 
and Ai[S](eo, i)] is injective. 

Proof. Via a standard application of the recursion theorem, we can effectively 
find an integer eo such that 2{ ~%o0, x) = 

undefined if Sj < i: [S:(eo, j)  = S~(eo, i)] 

0 i fV j  < i: [S~(eo,j) ~ S~(eo, i)] 
^ S j  > i: [j < x ^ S ~ ( e o , j )  = S~(eo, i)] 

gi(x) otherwise. 

Clearly Ai[S](eo, i)] must be one-one, for if not, let i o be the smallest i such that 
S~(eo, i) = S](eo, j)  for some j  > i. Then by the first clause %2o(j, x) = qOs~(eo,j)(x ) 
= ~Osl(eo,io)(X) is undefined for all x, while by the second clause 2 • ~o(Zo, x) = 
q~sl(~o, ;o)(x) = 0 for all x _> j.  Thus M[S](eo, i)] is injective. Thus by definition 
of  Co, q~sl(,o, i)(x) = ~O~o(i, x) = 'gi(x) for all i and all x. 

The padding lemma and the injective translation theorem are immediate 
consequences of  Theorem 2. 

C O R O L L A R Y  2. (Padding Lemma) Vi: 3h E RI :  h is injective^q~ i = q~h(i) 
for  all j .  

C O R O L L A R Y  3. (Injective Translat ion Theorem) Given any two G.N.'s q~ 
and (o o f  P1, we can effectively f ind an injective translation t = Ai[S~(eo, i)] such 
that ~i = q~t(i)for all i. 

It is an easy exercise to prove the recursive isomorphism theorem for G.N. 's  
by the use of  Corollary 3. However,  we are interested in a strengthened version 
o f  this theorem. 

T H E O R E M  3. (Isomorphism Theorem) Let % ~o be G.N,'s o f  P1 and let 
t, [ ~ R1 be injeetive translations, i.e., ~i = q~(i), q~ = ~ t ( o f  or all i. Then we can 
effectively f ind  a permutation ~ ~ RI  such that 

(1) ~(i) _< max { t ( j ) l j  <- i}, ~-1(i)  < max { f ( j ) ] j<  i}, and 
(2) ~i = qJ~(i)for all i. 

The p roo f  of  Theorem 3 follows immediately from the following combina- 
torial lemma. Given a relation A c N ×  N the closure ( A )  c N ×  N of  A is 
defined by: (i, j )  ~ (A)  ~ there is a finite sequence i = io, ii, • • ", i, = j such 
that (ik, i k+ l )~A for  k = 0 , ' . . ,  n - 1 .  For  any partial function f :  N---> N we 
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identify f = { ( x , f ( x ) ) [ x  ~ domain  f }  c N ×  N a n d f  -1 = {(f(x) ,  x ) l x  ~ domain  
f } .  f g  denotes the composi t ion of  the r e l a t i o n s f a n d  g. 

L E M M A  2. Le t  to, [o ~ R t  be injective funct ions .  Then we can effectively 
f i nd  a permutat ion  ~ E R 1 such that (1) ~ ~ to ( to  1to u toto 1~, and (2) ~(i) < 
max { t o ( j ) [ j  < i}, o~-1(i) < max {/o(J) lJ  < i}. 

Proof.  As is usual in such proofs,  graph ~ is enumerated in stages. Stage 2n 
is used to guarantee that  n E domain  ~ while stage 2 n +  1 is used to guarantee 
that  n ~ domain  - 1 .  We find it convenient  to simultaneously construct  two 
functions t, f e R 2 such that  the sequence [i " approx ima tes"  ~ and the sequence 
ti " app rox ima te s"  ~-~.  We recursively construct  ~, c, -~,  t and i such that  the 
following relations hold (let ~j be that  par t  of  ~ which is constructed in stages 
not  greater than j ) :  

(1) For  every j :  ts and [j are injective 

t i+l  c t j < [ j t j k J t j - l [ j - ~ > ,  [j+, c [ j < t j - l [ j - l U [ j t j >  

(2) For  every j :  a s = ts+ , c~ [s+11 ̂  j z domain  ~zs /~ j ~ domain  ~ J + l  
(3) For  every n and every z: if t .+~(z) > t .(z)  then there exists y < z such 

that  t . (y)  = t.+x(z); if f .+ , ( z )  > i.(z) then there exists y < z such that  
~ . (y )  = f .  + ~(z) .  

(4) For  every n and every z: t .+ l ( z )  < t.(z) implies . (z)  = t .+l(z) ;  f .+ l ( z )  
> i.(z) implies ~ - l ( z )  = {.+l(z). 

(1) and (2) imply that  = is bijective and ~ c to(foto w t o ~fo ~). Part  (2) o f  the 
l emma follows f rom (3) and (4). 

Construction o f  ~, t, L 

S tage  n, n even. Calculate m: = min {JtJ ¢ domain  ~._ 1} and check whether 
there exists j < t.(m): [ . ( j )  = m.  In this case set 

~(m): = min {j  < t.(m): [ . ( j )  = m} .  

• ~ ( , n )  Then set t'.+~: = f. and t.+~ = ~t°(m)-., where cr~ permutes  the values a and b" 

I f  no s u c h j  exists, then set 

~(m): = t , (m),  

Go on to stage n + 1. 

! i f z  = b 
~,(z) = if z a 

otherwise. 

° . m " tn+ 1 : : tn, tn+ 1 : ~Tt,,ct(m)tn" 

Stage n, n odd. Proceed as in the case n even but interchange the role of  
co, ~-1 and t, f. 

This completes the construction.  The relations (1)-(4) are all proved by trivial 
induction involving s traightforward checking of  all cases of  the construction. 
We illustrate stage n of  the construct ion with n even. The arrows ~', 4, ~, 
mean  t., f. ,  tn+l, fn+l: 
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there exists j no j exists 

Theorem 3 yields the following special isomorphism theorem for optimal 
G6del numberings. 

THEOREM 4. (Linear Isomorphism Theorem) Let ~o and ~ be optimal 
G6del numberings of PI, Then we can effectively find a permutation ~ ~ R 1 such 
that ~ and ~- i are linearly bounded and ~i = 9~(i) for all i. 

Proof. It follows from Lemma 1 and Theorem 2 that there exist injective 
functions t and [ which are linearly bounded such that ~i = qor,) and 9~ = ¢?t(o 
for all i. Hence Theorem 4 follows from Theorem 3. 

Theorem 2 also implies that there cannot exist a G6del numbering ~o such 
that K,p is minimal: 

THEOREM 5. Let ~o ~ P2 be an optimal G.N. of  P~. Then we can effectively 
construct an optimal G.N. ~ such that lira sup, K~(~o,)/n < 1. 

Proof. We construct an injective, linearly bounded h E R~ such that 9~h(,) = 
~0 o for all n. Hence by enumerating the functions (~i]i ~ N - h ( N ) - { 0 } )  in their 
natural order of succession one gets an optimal G.N. ~ such that lim sup, 
Ke(9.)/n < 1. 

It is well known that there exist recursive enumerations ~ of PI such that 
~b is not a G6del numbering of Px [6]. Some constructions of such a ~b imply that 
programs relative to ~ get excessively long. Now we give an example of a recursive 
enumeration ~ of P1 such that all p.r. functions g ~ PI have short programs 
relative to ~b but ~b cannot be a G6del numbering of P~. 

THEOREM 6. There exists ~b ~ P2 such that 

(1) Vg~P2: 3c: Vh ~Px: [[g~,(h)]l -< Ilgg(h)ll+c; 
(2) 4J is not a G~del numbering of P1. 

Proof. Let 9 be any optimal G6del numbering of P~. Calculate ff as follows: 

(gi(x) if x # 0 v ~i(x) is even 
~b(2i, x) = {9i(x)- 1 if x = 0/x 91(x) is odd 

[undefined if 9i(x) is undefined. 

(gi(x) if x # 0 v 9i(x) is odd 
~(2i+1, x) = {gi(x)+l i f x  = O^gi(x) is even 

(undefined if ¢pi(x) is undefined. 

Obviously K,(h) <_ 2K,(h)+ 1 for all h e P1. This proves part (1) of Theorem 6. 
Furthermore, the construction of $ implies: 

f i  even =~ ~i(0) even v ~t(0) undefined 
(R) ( i  odd ~ ~bi(0 ) odd v d/i(0 ) undefined. 
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Now suppose ~b is a G6del numbering. Then via a standard application of the 
recursion theorem we construct an integer i such that 

/i ~b~(x) = x = 0 ^ i odd 
x =  0 ^ i e v e n .  

This yields a contradiction to the relation (R). 

3. Optimal Enumerations. In a GSdel numbering we enumerate the set of 
all p.r. functions and describe functions in P1 by programs. In the same sense 
we can use any algorithm to enumerate (describe) the outputs by the inputs. 
We consider enumerations o fN.  A surjective/3 • P1 is called a recursive enumera- 
tion (en.) of N. We define the program complexity Kh(a ) of integer a relative to 
h e P1 by Kh(a) = min {nlh(n ) = a}. I f  h(n) = a, we call n a program that 
computes a. 

Definition 3./3 • P1 is an optimal en. of  N if and only if 

Vg • P l :  3h • R l :  h is l . b . ^ g  =/3h. 

This means that for any rec. en. g • P1 there exists h • R 1 which transforms a 
program for n relative to g into a program for n relative to/3 and the size of the 
program increases at most linearly. This implies 

COROLLARY 4. Let/3 • P1 be any optimal en. o f  N. Then for, every h • PI 
there exists e • N such that [[ Kp(n)I] -< ]I Kh(n)[I + c for  all n. 

T H E O R E M  7. There exists an optimal en. /3 • P1 of  N. 
Proof  Define/3g(n, i) = q~(n, i) where q~ is any G.N. of P1 and g(n, i) = 2" 

+ i 2 , + 1 - 1 .  

This compares with the definition of universal functions in Rogers [4]: 

Definition 4./3 • P1 is universal if and only if there exists f e  R z such that 
/3f = % where ~0 is some G.N. of  Pt .  

A proof  attributed to Blum and given in Rogers [4] proves that if/3 and/3 
are universal, then there exists a recursive permutation ~ such that/~ =/3~. 
We shall prove that for any two optimal en. there exists a recursive permutation 

such that /3 =/3~ with both ~ and ~-~ linearly bounded. We shall use the 
following 

LEMMA 3. A function [3 is an optimal en. i f  and only if/3 is a universal 
function with a linearly bounded encoder f • Rz, i.e.,/3f = q~ and Ax[f(i, x)] is l.b. 
for  all i. 

The proof  is analogous to that of Lemma 1. We next prove a result analogous 
to Theorem 2 with a proof  analogous to that proof. 

The statement and proof  of  Lemma 3 and Theorem 8 are due to the referee. 
He pointed out this way to prove Corollaries 5 and 6 and Theorem 8. 

T H E O R E M  8. Let/3 be any universal function. Then for  every g E P1 we can 
effectively f ind an integer eo such that g(i) =/3f(eo, i) for  all i and M[f(eo, i)] is 
injective. 
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Proof. Via a standard application of the recursion theorem, we can effectively 
find an integer eo such that 

undefined if 3j < i:f(eo, i) = f ( e o , j )  

9%(i) = 0 if Vj < i:f(eo, i) = f ( e o , j )  A 3j > i: [f(eo, i) = f ( e o , j )  
and g(i) has not yet converged in less than j steps 

g(i) otherwise 

Note that Ai[f(eo, i)] must be injective, for if not, let io be the smallest i such 
that f(eo, i) = f ( e o , j )  for some j > i. Then %o(J) -- flf(eo, J) = flf(eo, io) is 
undefined, but fif(eo, io) = %o(io) is definitely defined. Furthermore, since f is 
injective, by definition of eo, flf(ec, i) = %o(i) = g(i) for all i. 

As with G6del numberings this theorem immediately yields a padding lemma 
for universal functions as well as an injective translation theorem. We state 
these corollaries for optimal enumerations. 

COROLLARY 5. (Padding Lemma) Let fl be an optimal en. o f  N. Then for  
every i we can effectively f ind an injeetive, linearly bounded t E R l such that 
f ( i )  = f t ( j )  for  all j .  

COROLLARY 6. (lnjective Translation Theorem) Given any two optimal 
en. ~ and ~ o f  N, we can effectively f ind an injective, linearly bounded t ~ R 1 such 
that [3 = Bit. 

Corollary 6 and Lemma 2 immediately yield a special isomorphism theorem 
for optimal enumerations. 

THEOREM 9. (Linear Isomorphism Theorem) Let fl and ~ be any optimal 
enumerations o f  N. Then we can effectively f ind a permutation ~ ~ R 1 such that 
c~ and c~- 1 are linearly bounded and ~ = fl~. 

Obviously Theorems 5 and 6 also hold with respect to optimal enumerations. 
The analogous result to Theorem 6 is particularly interesting. 

THEOREM 10. There exists ~b ~ PI such that 

(1) VgEPx: 3c: Vn: I]g~,(n)[I < Hgg(n)ll+c, and 
(2) ~b is not a universal function. 

Kolmogoroff and Solomonoff only required property (1) for their concept 
of optimal (universal, resp.) algorithm, although their examples are optimal 
enumerations in our sense. In view of Theorem 10, our concept of optimal 
enumerations seems to be the more natural concept. 

Proof. Let/~ ~ Pl be an optimal en. of N. Calculate ~b as follows: 

( f ( i )  if f(i) is even 
~b(2i) = i f ( i ) - 1  if f( i) is  odd 

[,undefined if f(i) is undefined, 

( f ( i )  if f(i) is odd 
~b(2i+ 1) = {/3(i)- 1 if f( i)  is even 

[,undefined if f(i) is undefined. 
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Obviously K~(n) < 2Ka(n)+l for all n. This proves part (1) of Theorem I0. 
Furthermore, the construction implies 

J'i even =~ ¢(i) even v ¢(i) is undefined 
(R) ~i odd =~ ¢(i) odd v ¢(i) is undefined. 

Now suppose that ¢ is an optimal en. of N with encode r f •  R 2. Via a standard 
application of the recursion theorem we find an integer j such that 

f01 i f f ( j ,  x)is odd 
ef(j,  x) = 9~(x) =- if f (j, x) is even. 

This contradicts relation (R). 
We now establish a relation between optimal G6del numberings and optimal 

enumerations. 

PROPOSITION 1. Let cp e P2 be any G6del numbering of P1 and let fi • P~ 
be any optimal en. of  N. Then ¢ = ki, x[q~p(i)(x)] is an optimal G6del numbering 
of P1. 

The proof is entirely obvious. The same idea yields the following result. 

PROPOSITION 2. Let g • P1 be surjective and let fle PI be any optimal en. 
of N. Then gfl is an optimal en. of N. 

4. The Relative Frequency of GSdel Numbers. We shall only consider 
optimal GSdel numberings, but the results hold for optimal enumerations as 
well. We define the lower (upper) relative frequency of G6del numbers of 
h ~ P1 relative to g e P2 : 

Le(h) = lim inf n -1 ~ ~,,h Us(h) = lim sup n -1 ~ 3g,,h 
n i = 1  n i = 1  

where 8 denotes the Kronecker symbol. The upper (lower) relative frequency of 
G6del numbers essentially does not depend on the optimal G.N. that has been 
chosen. 

THEOREM 11. Let cp be any optimal G.N. Then for every g • Pz there is an 
integer e such that for all h • P1 : 

L¢(h) > c-XLg(h), U~(h) > c-lUg(h). 

Proof. This obviously holds for the optimal G.N. that has been constructed 
in the proof of Theorem 1. By the linear isomorphism theorem the assertion 
holds for any optimal G.N. 

Next we prove that p.r. functions with short programs have a high relative 
frequency of programs. It is an open problem whether the converse also holds. 

THEOREM 12. Let f e R  1 be such that ~ , f ( n )  -~ < ~ and let q~ be any 
optimal G.N. of  Px. Then there is an integer c such that L~(h)'f(K~(h)) >_ c-1 
f o r a l l h e P  1. 
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Proof. We can easily construct a recursive function g e R1 and an integer c 
such that for all j :  

lim inf -1 ~ ~g(i) >_ f ( j ) - % - l .  
n n i = 1  

Define ~b e P2 by ~b(i, x) = q~gti~(x). Hence L,(h)f(K~,(h)) > c -  t for all h ~ P1. 
Therefore Theorem 12 follows from Theorem l l. 

Let ~ be any optimal G.N. o f P  1. We consider the set 

W~ = (i  ~ N[ i -- K~(qoi) }. 

W~, is the set of lowest G6del numbers relative to q~. We can prove that there 
exist arbitrarily large gaps in W~. 

T H E O R E M  13. Let q~ be any optimal G.N. and let E > O. Then there exist 
infinitely many n such that 

3j < n: Vk < n 1- ' :  ( j + k  ¢ W~). 

(This means that for infinitely many n there exist gaps of size n ~ -" under the 
Gtidel numbers of  W~ that are less than n.) 

Proof. L e t f ~  R 1 be any function such that ~ , f ( n )  -1 < ~ .  Then we can 
easily find a bijective g ~ R 2 and e e N such that g(i, n) < c . f ( i ) 'n  for all i and 
all n > 0. Let h e P3 be given then we define ~b e P2 by ~b(g(i, n), x) = h(n, i, x). 
Hence Kch,. i < c . f ( i ) 'n  for all i and all n > 0. Therefore there exists ? such that 
K~h,, i < ?.f(i) .n for all i and all n > O. 

Now set h,,i = ~2-+~ and f ( i ) =  Vi~+'q,  where [- 7 denotes the lowest 
integer greater than. Hence K~(q~2,+~) < F'i~+"n for all i and all n > 0. This 
implies K~(~o2,+i)<2" for i<(2" /n?)  1/1+'. Hence 2"+i¢W~, for i <  
(2"/n?) ~/~ +'. This proves the theorem. 

T H E O R E M  14. Let q~ be any optimal G.N. o f  P~ and let fl E PI be any optimal 
en. of  N. Then there exists an integer c such that [[K,~(~oi)ll < IlKa(i)ll+c for all i. 

Proof. Define ff ~ P2 by ~b(j, x) = q~([3(j), x). Since q~ is optimal G.N. there 
exists c such that IlK~,(~0~)ll -< ]lK¢(q~i)[[+c. Obviously K#(cpi ) < Kp(i). Hence 
[I K~(q~i)I[ -< tl Kp(i)II + c, which proves Theorem 14. 

We shall give a more explicit interpretation of Theorem 14 which states 
that the binary notations of  numbers in W~, are asymptotically random. 

Let X* be the set of  all finite binary sequences. Relative to a partial algorithm 
A: X*--> X* we define the Kolmogorov program complexity of  x ~ X* by 
Ka(x) = rain { [y I: A(y) = x}. Here [y[ denotes the length of  sequences y. It is 
known from [2] that there is a partial algorithm A such that for any partial 
algorithm B: X* ~ X* there is an integer c such that Ka(x) < Kn(x)+c for 
all x e X*. Let A be such a universal algorithm. Those finite binary sequences x 
for which Ka(x) is not much smaller than Ix] have random behaviour [8]. We 
now prove that the binary notations of  numbers in W~, are asymptotically 

random. 

T H E O R E M  15. Let ~o be any optimal G.N. o f  PI. Then there exists c ~ N 
such that for all i ~ W~: Ka(bn(i)) > II i l l -  c. Here bn(i) is the binary notation of  i. 
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Proof. It follows from Theorem 14 that for all i ~ W~, 

Ilga(i)ll >- I[K~(~i){}-c = IIi[I-c. 

Hence IlKp(i)ll > {bn(i)[-c for all i ~ W~. Since the universal algorithm A can 
be chosen such that Kabn(i ) = ][Ka(i)[], Theorem 15 holds. 
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