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Decomposition and Intersection of Simple Splinegons 1 

David  P. Dobkin,  2 Diane L. Souvaine,  2"3 and Chr is topher  J. Van Wyk 4 

Abstract. A splinegon is a polygon whose edges have been replaced by "well-behaved" curves. We 
show how to decompose a simple splinegon into a union of monotone pieces and into a union of 
differences of unions of convex pieces. We also show how to use a fast triangulation algorithm to 
test whether two given simple splinegons intersect. We conclude with examples of splinegons that 
make the extension of algorithms from polygons to splinegons difficult. 
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1. Introduction. A major  failing o f  many  results in computa t ional  geometry  is 
that  they work  only on well-behaved objects. This is a severe limitation in applying 
computa t iona l  geometry  algori thms to practical  problems since most  real shapes 
are not  po lygons  at all, let alone convex polygons.  Despite the proliferat ion o f  
work  in this area, a recent  survey [15] and a recent book  [1.7] contain few results 
that  involve curved objects. 

To combat  this, Souvaine [21] has defined the spl inegon as a generalization 
o f  the polygon.  Splinegons provide an analytical f ramework within which to 
s tudy algori thms on curved objects. Souvaine presents three methods  for extend- 
ing po lygona l  algori thms to splinegons and applies them to a b road  class o f  
examples. Here we focus specifically on algorithms for  decompos ing  simple 
splinegons into bet ter-behaved pieces, and detecting whether  two simple 
spl inegons intersect. 

Let ~'(n) be the time required to tr iangulate a simple po lygon  that has n vertices. 
Comput ing  a t r iangulat ion is linear-time equivalent  to comput ing  for  each vertex 
v o f  a po lygon  the zero, one, or  two edges that  are internally visible to v in the 
horizontal  direction [3], [6]. Tarjan and Van Wyk have given an O(n log log n)-  
time algori thm for the problem of  comput ing  internal horizontal-vertex-visibility 
informat ion [22], which,  by the above-ment ioned  connect ion with tr iangulation,  
shows that  ~-(n) = O(n log log n); no lower b o u n d  better than the trivial T(n) = 
l~(n) is known.  
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Tarjan and Van Wyk also show that given both the internal and external 
horizontal-vertex-visibility information for a polygon (both of which can be 
computed using any triangulation algorithm), one can test whether the polygon 
is simple in linear time. It is straightforward to extend both the algorithms for 
internal horizontal-visibility computation and for simplicity testing to splinegons. 
We use both extended algorithms to obtain our results. 

The rest of  this paper is organized as follows. We define splinegons formally 
in Section 2. In Section 3 we extend the notion of monotone decomposition from 
polygons to simple splinegons. This result is not difficult, but it illustrates several 
pitfalls that one often encounters in computing with curved objects. 

In Section 4 we consider the problem of  extending the convex decomposition 
of a simple polygon to splinegons. We show that several extensions fail because 
not all splinegons admit such decompositions. Our best result is a method for 
decomposing a splinegon into a union of differences of  unions of convex pieces. 
This result uses the monotone decomposition of a simple splinegon with a simple 
carrier polygon. 

In Section 5 we use O( z( n ) )-time simplicity testing on splinegons to derive 
an O( z( n ) )-time algorithm that detects whether the boundaries of two simple 
n-sided splinegons intersect. This result involves a novel application of  Jordan 
sorting [10]. Detecting whether the areas of  two splinegons intersect is a simple 
corollary of  this result [2]. Heretofore, even the restricted problem of whether 
two simple n-gons intersect was not known to be solvable in o(n log n) time. We 
present this result in the framework of splinegons in order to state it in a more 
generally useful form. 

In Section 6 we discuss two limitative results on splinegons that shed light on 
why they sometimes pose more difficult problems than polygons. Section 7 
contains brief concluding remarks. 

2. Definitions. A splinegon S can be formed from a polygon P on n vertices, 
vl, v 2 , . . . ,  v~, by replacing each line segment v~vi+l with a curved edge ei which 
also joins v~ and v~§ and which satisfies the following condition: the region S-seg~ 
bounded by the curve e~ and the line segment viv~§ must be convex. 5 Note that 
the new edge need not be smooth. The polygon P is called the carrier polygon 
of the splinegon S. 

Splinegons form a rich class of geometric objects. Souvaine discusses many 
examples, and presents natural extensions of the notions of  simplicity and 
convexity from polygons to splinegons [21]. We note here only that the convexity 
of a carrier polygon does not imply the convexity of its splinegon, and that the 
simplicity of a splinegon and its carrier polygon are completely unrelated (see 
Figure 1). 

Given an n-sided simple splinegon S, we classify its edges as concave-in or 
concave-out as follows. A line segment edge is concave-in. If ei is not a line 
segment, and for any point p ~ S-segi a line segment that joins p to ei intersects 

5 Subscripts are always interpreted modulo n. 
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Fig. L Two four-sided splinegons, with dashed lines showing carrier polygons. In (a) the carrier 
polygon is convex, but the splinegon is neither simple nor convex; in (b) the splinegon is simple, 
but the carrier polygon is not. 

the interior of  S, then e~ is a concave-in edge. If  ei is not a line segment and for 
any point p ~ S-seg~ a line segment that joins p to e~ intersects the exterior of  S, 
then e~ is a concave-out edge. 

Geometric algorithms on linear objects use certain primitive procedures (e.g., 
calculating segment-segment intersections) that can be done in constant time. 
For splinegons, the analogous primitives are more complex and may involve 
unsolvable problems (e.g., finding exact roots of  fifth-degree polynomials). We 
avoid this difficulty by postulating the existence of  the following oracles, which 
we use as primitive operations in our algorithms: 

(1) Compute the intersection of two curved edges, or the maximum and minimum 
separation between them. 

(2) Compute the intersection of  a line with a curved edge. 
(3) Given a curved edge and either a direction or a point, report both the point 

and the direction of  a line that supports the edge of that point. 
(4) Determine the line that supports a pair of  curved edges. 

All of  the algorithms in this paper require |  of  these operations on an n-sided 
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splinegon, so we will not account separately for these operations in the time 
bounds for the algorithms. 

3. Monotone Decomposition. A splinegon S is y-monotone if there exist two 
points Plow, Phigh E S that partition S into two chains that are monotone in the 
y-direction. In this section we discuss the decomposition of an arbitrary splinegon 
S into y-monotone splinegons. In the case of polygons, the decomposition is an 
easy consequence of the horizontal-vertex-visibility decomposition [3], [6], [14], 
to which we now turn. 

Given a simple polygon, the horizontal line segments that join a vertex to its 
visible edge or edges define a partition of  the polygon into trapezoids. This 
partition can be computed in O('r(n)) time on an n-sided simple polygon [22]. 
Assuming that no polygon vertices have the same y-coordinate, each trapezoid 
contains exactly two polygon vertices: one on its top edge and one on its bottom 
edge. Given the horizontal-vertex-visibility partition, one computes a y-monotone 
decomposition by adding an edge between the polygon vertices of  any trapezoid 
that has a polygon vertex lying in the middle of  a horizontal edge. In the rest of 
the paper we refer to such vertices as y-notches. 

The algorithm for horizontal-vertex-visibility partition of a polygon relies on 
two key properties of  the edges: 

(1) Each edge crosses any horizontal line at most once. 
(2) If a set of edges crosses two horizontal lines, the order in which they cross 

the horizontal lines is the same on both lines. 

Both properties are satisfied by simple splinegons whose edges are all monotone 
in the y-direction. Thus we generalize the notion of horizontal-vertex-visibility 
partition to splinegons by adding (at most two) vertices to each side so that all 
sides are monotone in the y-direction. The horizontal line segments that join 
vertices to visible edges partition the splinegon into visibility cells; visibility cells 
are bounded by one or two horizontal edges and by y-monotone portions of two 
splinegon sides; all splinegon vertices occur on the horizontal edge of some 
visibility cell. 

Given the horizontal-vertex-visibility partition of a splinegon, there is one more 
twist to computing a y-monotone decomposition. We cannot extend the polygon 
algorithm directly because there might be no obvious way to connect two vertices 
of a splinegon (see Figure 2). Thus we amend the polygon algorithm as follows: 
for any visibility cell with a y-notch v, if the line segment I that connects the two 
vertices of  the cell crosses either of the two sides of  the cell, let e be the edge 
that l touches closer to v; let l' be the line through v that is tangent to e at a 
relative interior point of e; add the line segment from v to l ' n  e as an edge of 
the y-monotone decomposition. This operation adds a vertex to the splinegon; 
the total number of vertices added in this way is at most the number of y-notches. 

The result of this amended algorithm is a correct, y-monotone decomposition 
of  the splinegon. However, the carrier polygon of some of the y-monotone pieces 
might not be simple (see Figure 3). Should one desire to simplify the carrier 
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Fig. 2. A ten-sided splinegon divided into five visibility cells. To compute a y-monotone decomposition, 
we must further subdivide the visibility cell bounded by dashed line segments by adding vertices 
along both of its curved edges. One of these vertices is at l ' n  e. 

polygon,  it is easy to do so in l inear  t ime by scann ing  from P~ow to Phigh, adding  
new vertices hor izontal ly  opposi te  existing vertices whenever  necessary to keep 

the carrier po lygon simple. This step adds no more than  one vertex per  existing 
vertex. 

We summarize  the above results in the fol lowing theorem: 

THEOREM. An n-sided splinegon can be decomposed into y-monotone pieces with 

I 

i I 

Fig. 3. A y-monotone splinegon with eight sides and a nonsimple carrier polygon (using the long 
dashed edge and the seven solid line segments) can also be represented as a ten-sided splinegon with 
a simple carrier polygon (using the three shorter dashed edges and the seven solid line segments). 
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simple carrier polygons in 0 ( r( n ) )-time. The total number of vertices in the decompo- 
sition is O(n). 

4. Convex Decomposition. The problem of decomposing a simple polygon into 
convex pieces has received attention in various forms for several years [1], [5], 
[7], [11], [12], [14], [18]. The motivation for this decomposition is to solve 
problems on more complicated general polygons by combining the solutions to 
the problem on convex subpolygons, so decomposition into an infinite number 
of convex pieces is not interesting. Thus we use the term "convex decomposition" 
to mean a decomposition into a finite number of convex pieces. 

Any polygon can be decomposed into a union of  convex pieces, L.Ji Ai [1], 
[5], [7], [ 11 ], [ 12], [ 14], [ 18]. Direct extension of any of  these results to the case 
of splinegons is impossible: the splinegon in Figure 4(a) cannot be decomposed 
into a finite number of convex pieces. 

However, Figure 4(a) also suggests a promising amendment to the problem. 
For any representation of  a splinegon $, each of the regions S-seg{s is convex, 

2 

(Q) 

vi +1 

,/ ~'  I 
(bl  

Fig. 4. Simple splinegons that cause various decomposit ion schemes to fail. The splinegon in (a) 
cannot be represented as I._J i Ai for any finite choice of  convex A~ ; in (b) the edges incident to v; 
are tangent at vi, so a decomposit ion of the form I Ji A~ - U ;  B~ for any finite choice of  convex A; 
and B i must  be incorrect in a neighborhood of vi. 
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so we could try to decompose the splinegon into a difference of two unions of 
convex sets: (._)iAi-U; B;. Sets Ai would include some convex decomposition 
of the carrier polygon, together with the S-seg's of concave-in edges of S. Sets 
B~ would be the S-seg's of concave-out edges of S. 

There are several problems with this scheme. Existing algorithms work only 
on simple polygons, but a simple splinegon can have a nonsimple carrier polygon 
(Figure l(b)). Even if the carrier polygon is simple, however, the scheme of 
decomposing S into a difference of unions of convex sets, (_J~ A; - (...J~ B~, is flawed. 
Figure 4(b) shows a simple splinegon with a simple carrier polygon; no 
matter how much the carrier is refined, any convex decomposition of the form 
IJi Ai - ~_.Ji B~ must be incorrect near vertex vi. 

If the carrier polygon were simple, then we could form a kind of "chained" 
convex decomposition of S: begin with a convex decomposition of the carrier 
polygon, then unite in the concave-in edges and subtract out the concave-out 
edges in order. For example, we might write the splinegon in Figure 4(a) as 
((Avov~v2w S-Sego)- S-segl)- S-seg2. Although it is correct, this decomposition 
has several disadvantages: it is guaranteed to consist of f/(n) convex pieces, and 
the ordering of the union and subtraction operations makes it awkward to 
parallelize algorithms that use it. Another disadvantage to requiring that the 
carrier polygon be simple is discussed in Section 6: there exist n-sided splinegons 
whose smallest simple carrier polygons have I~(n 2) vertices. 

All of these examples lead us to suggest an alternate scheme for decomposing 
a splinegon into convex pieces. First, apply the algorithm of the last section to 
produce a decomposition into y-monotone pieces with simple carrier polygons. 
Each of these pieces can be decomposed into convex pieces in several ways. The 
result of any of these efforts is a decomposition of the splinegon interior in the 
form (..)j ([_.Ji A/j- [_.Ji B~), with convex A/j and B~. 

A naive way to perform the convex decomposition of a y-monotone splinegon 
with a simple carrier polygon is to form the convex decomposition of the carrier 
polygon, then unite in the concave-in S-seg's and subtract out the concave-out 
S-seg's. This results in a decomposition whose size is l)(n). 

An approach that offers greater promise for decomposing a y-monotone 
splinegon S is to form a splinegon S' by replacing each concave-out edge of S 
by a line segment that joins its two vertices. Note that the y-monotonicity of S 
guarantees that S' is simple. Splinegon S' is readily decomposed into the smallest 
possible number of convex pieces, opt(S'). 

THEOREM. Splinegon S' can be decomposed optimally into the union of convex 
pieces (with or without Steiner points) using existing polygonal algorithms [ 1], [7], 
[11], [12]. 

PROOF. Form polygon Q by replacing each concave-in edge of S' by a convex 
polygonal chain each of whose edges is tangent to the curved edge. The edges 
added to decompose Q are identical to the edges added to decompose S', so 
opt(S') = opt(Q). [] 
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Given the convex decomposition of S', the concave-out S-seg's can be subtrac- 
ted from the result to give a convex decomposition of S. 

COROLLARY. A monotone splinegon S can be decomposed into the union of the 
convex decomposition of S' (as defined above) and the difference of the concave-out 
S-segs. The number of pieces in the convex decomposition is opt(S') + v(S), where 
v(S) is the number of concave-out S-seg's in S. 

5. Intersection Detection. Given two n-sided simple splinegons K 1 and K2, we  

wish to detect in O(r(n))  time whether their boundaries have any points in 
common. The previous best-known result related to this problem is that detecting 
the intersection of simple polygons can be performed in O(n log n) time [20]. 
For convex polygons, f l (n)  is a lower bound on the time to detect boundary 
intersection, even if preprocessing is allowed; however, area intersection can be 
detected in O(log n) time [2]. 

Our approach is to create from Kx and K2 a merged splinegon M such that 
the boundaries of K~ and K2 are disjoint if and only if M is simple. Splinegon 
M consists of  the edges of K1 and K2 together with a "bridge" between them 
that is composed of a constant number of edges. One way to find such a bridge 
was proposed by Hershberger [8]; it requires a linear-time algorithm for comput- 
ing the convex hull of a simple splinegon [19], and uses two cases depending on 
whether the convex hull of one splinegon contains the other. Our method for 
finding a bridge uses Jordan sorting [10], an algorithm that plays a crucial role 
in O(z(n)) - t ime simplicity testing. 

ALGORITHM FOR INTERSECTION DETECTION 

(1) Find the y-extent (minimum and maximum y-coordinates of any point) of 
K~ and / (2 .  If  the y-extents of  K1 and K2 do not overlap, then K~ n K2 = 0 .  
Otherwise, choose a value Ycut that lies in both y-extents. Assume without 
loss of generality that each edge of K~ and Ke intersects the line y = Ycut in 
no more than two points. 

(2) For i =  1,2, 
(a) Find the sequence of points (pj) at which Ki crosses y = Your, in the order 

in which they appear around the boundary of Ki. 
(b) Let o'~ be the sequence (p~) sorted in order of increasing x-coordinate. 
(c) Scan cr~ in order of increasing x, labeling each point. The label assigned 

to point p~ should be touch~ if the boundary of Ki does not cross y =Ycut 
at pj ; ini if the interior of K~ lies to the right of pj ; and out~ if the interior 
of K~ lies to the left of p~. 

(3) Merge o-~ and o-2 into a single sorted sequence ~. 
(4) Scan o- for a consecutive pair of crossing points q~ ~ KI and q2 ~ K2 that are 

labeled with different subscripts. 
(5) Pry each splinegon K~ slightly open at qi, so that q~ is split into two points 

qi+ and q~-, with q~+ above q~-. Let M be the splinegon consisting of the 
"slightly opened" K~ and K2 together with two nonintersecting segments 
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Fig. 5. Illustrating intersection detection for simple splinegons K 1 and K 2. Point t is labeled touch1, ql 
is labeled out1, and q2 is labeled in 2. The bridge to build M will be constructed between ql and q2. 

that join ql+ to q2+ and q l -  to q2-. The boundaries of  K1 and K2 intersect 
if and only if M is not simple. 

(See Figure 5.) 

THEOREM. This algorithm correctly detects whether the boundaries of two n-sided 
simple splinegons intersect in O( 7"( n ) ) time. 

PROOF. First we show that the algorithm is correct. Splinegon M is constructed 
by adding two edges to splinegons K 1 and K 2.  These edges do not cross each 
other, and they are chosen so that they do not cross any edge of  K1 or / (2 .  Since 
KI and K 2 a r e  both simple, M is nonsimple if and only if an edge of  KI and an 
edge of  K2 have nonempty intersection. 

Next we show that the total work done by the algorithm is O(~(n)). Step (1) 
can be performed in linear time. The definition of splinegons implies that the 
output of step (2a) has size at most 2n, and that this output can be computed in 
O(n) time. The algorithm of  [10] can be used to perform step (2b) in O(n) time. 
Steps (2c), (3), and (4) involve linear-time scans of lists of length O(n). Step (5) 
can be performed in O(r(n))  time using the algorithm of [22]. [] 

It is easy to extend this result to detect area intersection [2]. 

COROLLARY. It is possible to detect in O(7(n)) time whether the areas of two 
n-sided simple splinegons intersect. 
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PROOF. Use the above algorithm to detect whether the boundaries of the two 
splinegons intersect. If  they do not, the method described by Preparata and 
Shamos to determine whether a point lies inside a polygon [17] can easily 
be generalized to determine whether one splinegon lies entirely inside the 
other. [] 

Although it is not mentioned in the algorithm, the scan of step (4) can even 
obviate step (5): if tr' contains a sequence of the form (in~, in2, o u t l ,  out2) , then 
the boundaries of the two splinegons intersect. 

The assumption that the splinegons intersect the cutting line only in isolated 
points can be removed by having the splinegon oracle report only the leftmost 
and rightmost points of each connected component of the intersection. This 
technique is a generalization of that used by Van Wyk [23]. 

6. Limitative Results. Topologists often refer to "curvilinear triangulations" of 
surfaces [4], [9], [16]. In the context of splinegons, it is natural to consider 
constructing such a subdivision using additional edges that enjoy the same 
property as splinegon sides. The visibility cell of Figure 2 shows that this is 
impossible if we do not permit the introduction of additional vertices or "Steiner 
points." Thus, a curvilinear triangulation of an n/2-sided splinegon could have 
as many edges as a curvilinear triangulation of an n-sided splinegon. This has 
implications for the translation to splinegons of algorithms that proceed by 
hierarchical triangulation [13]; Souvaine discusses more details [21]. 

We now show that simplifying the carrier polygon can be quite expensive by 
constructing an n-sided splinegon G whose smallest simple carrier polygon has 
l'~(n 2) vertices. Begin by constructing an equilateral, equiangular polygonal path 
C of k segments, with vertices Vo, V l ; . . . ,  '/)k-l, k > 2, such that C together with 
the line segment York-1 bounds a convex region. Let R be the (possibly infinite) 
open region bounded by VoVk-I and the two lines that contain VoV~ and Vk-2Vk-1, 
whose intersection with C is empty. Let hi be a point interior to the region 
bounded by C and VoVk-~ and h2 be a point in region R; let H = h~h2. Let p and 
q be points in R such that pro and qVk-~ do not intersect H, but pq does intersect 
H. The following lemma implies that we can construct a splinegon edge from p 
to q that fits C "very tightly" in that any inscribed path must contain at least k 
segments: 

LEMMA. There exists a curve D that joins  p and q such that 

(1) D does not intersect H, 
(2) D u pq bounds a convex region, and 
(3) any polygonal path inscribed in D that does not intersect H u C contains at  

least k segments. 

PROOF. Erect perpendicular bisectors to each of the segments of C. Define 
points wi on these perpendicular bisectors as follows: w_~ -- p; for 0-< i < k -  1, 
let wi be the intersection of the line through w~_~ and v~ and the perpendicular 
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bisector of  the edge vivi+l. Take D to be any convex curve between p and q that 
passes between each point wi and the corresponding segment of  C; such a D 
obviously exists. 

The perpendicular  bisectors containing the points wi define sectors with respect 
to the center of  the curve C. The key observation to the proof  of  the lemma is 
that any inscribed path in edge D that does not cross H must have a vertex 
in each of  these sectors: any segment with endpoints on D that are not in 
adjacent sectors must intersect C by the way the points w~ were chosen. Since 
there are k sectors, any inscribed path in D that does not cross H has at least k 
vertices. [] 

(See Figure 6.) 
Notice that any curve that lies between D and C has the same inscribed-paths 

property as D. The way to construct splinegon G is now clear: we pack many 
edges between C and D;  each edge adds only one vertex to G, but adds at least 
k vertices to any simple carrier polygon. 

ir162 

w2 

. ,~ -  \ \ / ' *o 

" \ \v. vo// 

\ q / \ 
\ h2, / 
\ / 
\ / 
\ / 
\ R /  
\ /  
\ /  
v 

Fig. 6. Illustrating the proof of the lemma: any path inscribed in D that does not intersect either the 
polygonal path Vo,. . . ,  v4 or the line segment H must contain at least five segments. 
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To be more precise, put k vertices on the line segment vop and k vertices on 
the line segment Vk-lq. Join Vo to h i ,  and q to h2, by line segments. Construct 
2k + 1 curved edges that complete the boundary of  G by joining Vk-~ to p SO that 

(1) the boundary of G is simple; 
(2) each vertex on vop, except for Vo, is adjacent to two vertices on vk-lq; and 
(3) each vertex on Vk-lq, except for q, is adjacent to two vertices on Vop. 

Splinegon G has 3 k + 4  vertices. Let Pc be a simple polygon for G. By the 
above lemma, Pc has at least k vertices on any curved edge of  G, of which k - 2 
are not original vertices of  G. Since G has 2k + 2 curved edges, Pc has at least 
( 2 k + 2 ) ( k - 2 )  + 3 k + 4  = 2k2+ k vertices. 

This construction can obviously be modified to construct splinegons whose 
number of  vertices when divided by three leaves a remainder of 0 or 2. Thus we 
have the following theorem. 

THEOREM. For any n, there exist splinegons whose simple carrier polygons have 
fl( n 2) vertices. 

7. Conclusions and Open Problems. In this paper we have seen two kinds of 
splinegon problems. Decomposition into monotone or convex pieces presents 
challenging difficulties not encountered in the polygon case, whereas detection 
of  intersections is a relatively straightforward extension of the result for polygons. 

We have also shown a negative result on the potential complexity of  finding 
a simple carrier polygon for a splinegon. This result demonstrates that a simple 
splinegon is a more powerful object than a simple polygon in its ability to 
represent shape information. 

The techniques in this paper are likely to have wider application in turning 
polygon algorithms into splinegon algorithms. 
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