
Algorithmica (1988) 3:347-365 Algorithmica
�9 1988 Spdnger-Verlag New York Inc.

Parallel Construction of a Suffix Tree with Applications 1

A. Apos to l i co , 2 C. I l i o p o u l o s , 2 G. M. L a n d a u , 3 B. Schieber , 3 a n d U. Vishk in 3"4

Abstract. Many string manipulations can be performed efficiently on suffix trees. In this paper a
CRCW parallel RAM algorithm is presented that constructs the suffix tree associated with a string
of n symbols in O(log n) time with n processors. The algorithm requires O(n 2) space. However, the
space needed can be reduced to O(n 1+~) for any 0< e ~- 1, with a corresponding slow-down propor-
tional to 1/e. Efficient parallel procedures are also given for some string problems that can be solved
with suffix trees.

Key Words. Parallel algorithms, CRCW RAM, Suffix trees, On-line string matching, Longest repeated
substring in a string, Approximate string matching, Skeleton trees, Processor allocation techniques.

1. In t roduc t ion . Let x = Xl, X 2 , . . . , X n be a s t r ing o f n =]x[symbols a n d a s s u m e
tha t xn is a spec ia l s y m b o l # tha t occurs n o w h e r e else in x. W e use I to d e n o t e

the alphabet of x, i.e., the set o f all d i s t inc t s y m b o l s o c c u r r i n g in x. (No te tha t

II1-< n.) G i v e n a s u b s t r i n g w o f x, a descriptor o f w is a n y pa i r (i, [wl) such tha t

i is the s t a r t ing p o s i t i o n in x o f a n o c c u r r e n c e o f w. The suffix tree Tx assoc ia t ed

wi th x is the tr ie (d ig i ta l sea rch tree) wi th n leaves a n d at mos t n - 1 i n t e r n a l
n o d e s such tha t :

(1) E a c h edge is l a b e l e d wi th a de sc r ip to r o f s o m e subs t r i ng o f x.
(2) N o two s ib l ing edges m a y have the s a m e (n o n e m p t y) prefix.
(3) E a c h l ea f is l a b e l e d wi th a d i s t inc t p o s i t i o n o f x.

(4) The c o n c a t e n a t i o n o f the labels o n the p a t h f rom the roo t to l ea f i desc r ibe
the suffix o f x s t a r t ing at p o s i t i o n i.

(See F igu re 1 for a n e x amp l e .) In prac t ice , the labe l o f the edge c o n n e c t i n g n o d e
to its p a r e n t n o d e is s to red in ~. Ob s e rv e tha t , in genera l , there is m o r e t h a n

o n e way to ass ign c o n s i s t e n t labe ls to the edges o f a suffix tree.

1 The results of this paper have been achieved independently and simultaneously in [AI-86] and
[LSV-86]. The research of U. Vishkin was supported by NSF Grant NSF-CCR-8615337, ONR Grant
N00014-85-K-0046, and Foundation for Research in Electronics, Computers, and Communication,
administered by the Israeli Academy of Sciences and Humanities. The research of A. Apostolico was
carried out in part while visiting at the Istituto di Analisi dei Sistemi e Informatiea, Rome, with
support from the Italian National Research Council. The research of G. M. Landau, B. Schieber,
and U. Vishkin was supported by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy under Contract DE-AC02-76ER03077.
2 Department of Computer Sciences, Purdue University, West Lafayette, IN 47907, USA.
3 Department of Computer Science, School of Mathematical Sciences, Tel Aviv University, Tel Aviv,
Israel 69978.
4 Department of Computer Science, Courant Institute of Mathematical Sciences, New York University,
251 Mercer Street, New York, NY 10012, USA.

Received November 3, 1986; revised November 30, 1987. Communicated by Jeffrey Scott Vitter.

348

(4,2) b . . 4 r ' ~ ~# ~ - ~ . a (4,a)

P-,

A. Apostolico, C. lliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a b a a b a b a a b a a b a b a #

Fig. 1. The suffix tree 7~ for x = abaababaabaababa#. For clarity, the arcs of T x are labeled by
substrings of x rather than by substring descriptors. Such descriptors are given on the two outermost
paths of the tree, as a sample illustration.

The main problem addressed in this paper is the parallel construction of the
suffix tree Tx associated with input string x. For fixed alphabet size, the sequential
algorithms in [We-73] and [Mc-76] construct Tx in linear time. The time bound
becomes O(n logllI) if the alphabet size is not a constant. Suffix trees and their
companion structures support many string manipulations, such as performing
on-line string matching [AHU-74], finding the longest repeated substring in a
string, testing square-freedom of a string [AP-83], [Ap-84], finding all the squares
or repetitions in a string [AP-83], computing substring statistics with or without
overlap [AP-85a], [AP-85b], and performing exact [AG-86] or approximate
[LV-86] pattern matching. A more detailed list of applications is given in lAp-85].
In the context of parallel computation, various open problems revolve around
Tx [Ga-85]. The only previous parallel algorithm for constructing suffix trees is
given in [LV-86]. It runs in time O(log n) and uses n2/log n processors.

We adopt the concurrent-read concurrent-write (CRCW) parallel random
access machine (PRAM) model of computation. We use n processors which can
simultaneously read from and write to a common memory with O(n z) locations.
In case several processors seek access to the same memory location for write
purposes, one of them succeeds but we do not know in advance which. See
[Vi-83] for a survey of results concerning PRAMs. The overall processors • time
cost of our algorithm is O(n log n), which is optimal when loglI I is of the same
order of magnitude as log n. Although the algorithm requires quadratic space,
only O(n log n) locations need initialization. Moreover, we show later that the
space can be reduced to O(n~+~), for any chosen 0 < e -< 1, with a corresponding
slow-down proportional to 1/e.

Parallel Construction of a Suffix Tree with Applications 349

Our approach to the construction of Tx consists of two main parts. In the first
part, describhd in Section 2, an approximate version of the tree is built, called
the skeleton. This part of the construction is reminiscent of an early approach to
subquadratic pattern matching [KMR-72]. The second part, described in Section
3, consists of refining the skeleton to transform it into T~. The processor allocation
technique that is used for the refinement is of independent interest. Allocating
processors to jobs is often a crucial task in the design of efficient parallel
algorithms, and there are papers mainly devoted to overcoming allocation prob-
lems. For example, [SV-81] solved the allocation problem in the algorithm of
[Va-75] for finding the maximum among n elements, [BH-83] and [Kr-83] solved
the allocation problem in the algorithm of [Va-75] for merging. [CV-86a], [CV-
86b], and [Vi-84] gave deterministic and randomized allocation schemes for list
ranking.

Section 4 contains a brief analysis of the various allocation techniques that
can be used for a suffix tree. In Section 5 we show how the space used in our
construction can be reduced. Finally, we describe in Section 6 how our suffix
tree construction leads to the design of efficient parallel algorithms for on-line
string matching, finding a longest repeated substring in a string, and performing
approximate pattern matching.

2. Constructing the Skeleton Tree. From now on we will assume without loss
of generality that n is a power of 2. We also extend x by appending to it n - 1
instances of the symbol # . We use x # to refer to this modified string. We now
list some salient features of the skeleton tree Dx of x, and then give a constructive
definition of Dx. The basic structure of the skeleton for the string of Figure 1 is
shown in Figure 2. The skeleton Dx of x is a tree with n leaves. Each internal
node of Dx has at least two children. The edges in Dx point from each node to
its parent. Each leaf or internal node of D~ is labeled with the descriptor of some
substring of x # having starting positions in [1, n]. If node /~ is labeled with
descriptor (i, 1), then I = 2 q for some q, 0 - q --- log n. If Ix is a leaf then 1 = n. If
/x is an internal node other than the root, then q is the stagenumber of/~. If the
label of/x corresponds to substring w of x, then we write w -- W(/x), and we call
/x the locus of w. A constructive definition for Dx is as follows:

(i) The root of D~ is the locus of the empty word. The root has [I I sons, each
one being the locus of a distinct symbol of L

(ii) Assume that all nodes of stagenumber up to l - 1 >- 0 have been inserted in
Dx. To expand Dx to stagenumber l ~ log n, consider the nodes of stagenum-
bet 1 - 1 one by one. For a generic such node/x, let w = W(/~). Now d o t h e
following:
1. If w = z # for some string z over I, then make/x the (unique) leaf labeled

(i, n), where i is the first component of the old label of/.~.
2. Assume instead that w cannot be written as z # for some string z over I.

Let {sl, s 2 , . . . , Sk} be a set of maximum cardinality among the sets formed
by distinct substrings of x # with the properties: [s, I = 2]w I and w is a
prefix of s,, t = 1 , 2 , . . . , k. (Thus, if i is the starting position of an

350 A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

Fig. 2. Basic structure of the skeleton tree D~ for the string of Figure 1. Solid points are used to mark
nonbranching nodes. Such nodes are introduced while constructing D~, but they are also removed
during the construction. Node labels are not reported in the figure.

occurrence of w in x # , then there is some st also starting at i. In the string

of Figure 1, for example, we have that each occurrence of w = ab in x #
extends into either s~ = abaa, or s2 = a b a # , or s3 = abab. On the other
hand , w = aa occurs in x # only as a prefix of Sl = aaba. Note that, in
general , an s, may occur more than once in x # .) We dist inguish two cases.
(a) k > 1. We create k sons of/x, vl , v2 , /)k, and make v, the locus of
st, t = 1, 2 , . . . , k. (b) k = 1, i.e., w occurs always as a prefix of the same

substr ing s~. We make / . , the locus of sl .

Observe that no two nodes of Dx can have the same label. A natura l parallel
cons t ruc t ion of Dr is based on the above definit ion. We describe such a construc-
t ion in detail, to acqua in t the reader with the basic concurrent steps which are
used throughout this paper.

We use n processors Pl,P2, . . . ,pn, where i is the serial number of processor

Pi. At the beginning , processor pi is assigned to the ith posi t ion of x, i = 1, 2 , n.

Parallel Construction of a Suffix Tree with Applications 351

It is convenient to think of each processor as being assigned two segments of
the common memory, each segment consisting of log n + 1 cells. The segments
assigned to Pi are called IDi and NODE, respectively. By the end of the
computation, IDa[q] (i = 1, 2 , . . . , n; q =0, 1 , . . . , log n) contains (the first com-
ponent of) a descriptor for the substring of x # of length 20 which starts at
position i in x # , with the constraint that all the occurrences of the same substring
of x get the same descriptor. If, for some value of q < log n, NODE~[q] is not
empty, then it represents a node /z of stagenumber q in Dx, as follows: the field
NODE~[q].LABEL is a replica of IDi[q], and the field NODE~[q].PARENT
points to the location of the parent of/z . Finally, NODEi[log n] stores the leaf
labeled (i, n) and thus is nonempty for i = 1, 2 , . . . , n. For convenience, we extend
the notion of ID to all positions i > n through the convention: IDa[q] = n + 1 for
i > n. The computation makes crucial use of a bulletin board (BB) of n x (n + 1)
locations in the common memory. All processors can simultaneously write to BB
and simultaneously read from it. We use the following concurrent-write conven-
tion. In case several processors try simultaneously to write into the same memory
location, one of them succeeds but we do not know in advance which. In the
following we call winner(i) the index of the processor which succeeds in writing
to the location of the common memory attempted by p~.

Procedure Skeleton-Tree takes as input the string x and a location of the
common memory called ROOT, and computes the entries of the arrays NODEi[q],
ID~[q] (i = 1 , 2 , . . . , n, q =0, 1 , . . . , l o g n). The procedure consists of some
initializations, that implement point (i) in the definition of Dx, and log n main
iterations, implementing point (ii).

The initializations are as follows. In parallel, all processors initialize their
NODE and ID arrays. Next, processors facing the same symbol of I attempt to
write their serial number in the same location of BB. Say, if x~ = s ~ I, processor
p~ attempts to write i in BB[1, s]. Through a second reading from the same
location, pi reads j=winner(i) and sets ID~[O]<-j. (Thus (j, 1)becomes the
descriptor for every occurrence of symbol s.) For all i such that winner(i) = i,
processor p~ sets NODE~[O].PARENT <-- address(ROOT) and copies IDa[0] = i
into NODE~[O].LABEL. Hence NODE~[O] becomes the locus of s.

We now describe iteration q, q =0, 1 , . . . , log n - 1, which is also performed
synchronously by all processors. First, processor p~, i = 1, 2 , . . . , n, creates a
composite label TIDi, by setting: TID~ <-- (IDa[q], ID~+2q[q]). Next, processor pi
attempts to write i in BB[TID~] = BB[IDi[q], ID~+2q[q]]. Now, processor p~ sets:
ID~[q + 1] <-- winner(i), i = 1, 2 , . . . , n. The processors that are not winners become
idle for the remainder of the stage. On the other hand, any winner p~ performs
the following:

NODE~[q + 1].PARENT ~- (IDa[q], q)
NODE~[q + 1].LABEL <-- IDi[q + 1]
if NODE~o,Eql[q] has only one child then

begin
NODE~[q + 1].PARENT ~ NODE~D,tq][q].PARENT;
Make NODE~D,tq1[q] empty.

end

352 A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

Thus, the winners create new locuses in their associated NODE locations.
Whenever a node/~ is created that has no siblings, then the pointer from parent(l~)
is removed and copied into/~. This avoids the formation of chains of unary nodes.

The existence of siblings can be checked as follows. Assume that for each row
r of BB, there is a distinct memory location, say A UX[r], known to all processors.
At each stage, there are siblings iff two or more successful processors write to
different locations of the same row of BB. To find out whether this is the case,
all successful processors writing in the same row r of BB attempt to write their
index in AUX[r]. Next, all the processors in that row except the winner write
a special marker in AUX[r]. Finally, all the processors in the same row check
the status of AUX[r]. Clearly, processor pi was the only successful processor in
row r iff, at the time of checking, AUX[r] = i.

The correctness of the procedure follows by straightforward induction. Since
no two n-symbol substrings of x# are identical, processor p~ (i = 1, 2 , . . . , n)
must be occupying the " leaf" NODE~[Iog n] at the end of the computation. The
time complexity is obviously O(log n). Note that NODE~[q].LABEL not empty
implies NODE~[q].LABEL = (i, 2q), that is, the label of a node, when defined,
is nothing but the address of that node. Although the LABEL fields are entirely
redundant so far, assuming this node format from the start simplifies the rest of
our presentation. Finally, we remark that BB need not be initialized.

3. Refining Dx. By the end of the construction of Dx, processor Pi will be
occupying leaf i, i-- 1, 2 , . . . , n. Prior to starting the transformation of Dx into
Tx, the labels of all nodes of Dx have to be modified as follows. Recall that the
current LABEL of a node g is a starting position of W(/.,) in x # which is also
the address of this node. The modified label (m-label) to be constructed for g is
any pair (i, l) such that, letting W(/~) = W(parent(t.Q) �9 w, it is l = Iw] and i is
the starting position of an occurrence of w in x # . In the following, we call the
m-labeled skeleton the tree that is obtained by substituting every label of Dx with
a consistent m-label. Setting aside the orientation of edges, the main difference
between Tx and the m-labeled skeleton Dx is that in Tx there cannot be two
sibling nodes such that their labels describe two substrings of x having a common
prefix (i.e., D~ is not a trie). However, the m-labeled D~ shares with T~ the
properties (1), (3), and (4) listed in defining the latter, provided x # is used there
in the place of x.

A processor can trivially compute the m-label of/~ in constant time knowing
the LABEL of/~, and the stagenumbers, say q and q', of g and parent(l~),
respectively. Formally, i f j is the LABEL of/x, then (j + 2 q', 2 q - 2 a') is the m-label
of g. The n processors can produce all m-labels in log n parallel steps. Using
the parent pointers, the processors migrate toward ROOT with a synchronous
pace based on stagenumbers: the m-labels of all children of nodes with the same
stagenumber are computed at the same time. (Recall that the difference in
stagenumber between a node and its parent is not necessarily 1.) At the beginning,
all processors occupying leaves which are children of nodes of stagenumber
log n - 1 change the labels of these nodes into m-labels. Next, the processors

Parallel Construction of a Suffix Tree with Applications 353

compete for the common parent node, say, by attempting to simultaneously write
on it the labels (addresses) of the nodes which they currently occupy. The winners
are marked "free": they ascend to the parent node where they will perform the
necessary label adjustment at the appropriate stage. The losers simply take a
record of the (old) label used by the winner. The (q - 1)th iteration involves all
free processors on nodes with a stagenumber of q or higher. The operation is
the same as above.

A by-product of the m-label construction process is a mapping that assigns
some leaves and internal nodes to processors in such a way that the following
property is met.

PROPERTY 1. If a node other than R O O T has k children, then precisely k - 1
of the children have been assigned a processor. Moreover, each one of the k - 1
processors knows the address of the unique sibling without a processor.

The proof of Property 1 is straightforward. Let now (i, !) and (L m) be the
m-labels of two sibling nodes /z and z, of Dx, and let q be the stagenumber of
parent(lz) = parent(u).

FACT 1. The substrings of x # whose descriptors are the m-labels o f /x and u
have a common prefix of length at most 2 q --1.

FACT 2. If k is the length of the longest common prefix of x#[i , i+ I - 1] and
x # [j , j + m - 1], then ID,[[log kJ] = IDj[Llog k]].

Fact 1 follows from the definition of Dx, Fact 2 holds by the construction of
the IDs.

Assuming a fixed-size alphabet, the transformation of the m-labeled Dx into
Tx is carried out in two steps. First, a tree is produced that is identical to Tx save
the fact that all edges are directed upward, as in Dx. Next, the directions of all
edges are reversed.

The first and more important step is actuated by producing log n - 1 consecutive
refinements of Dx = D (~~ The qth such refinement is denoted by D (l~
Informally, D (L~ ,-o-1) is a labeled tree with n leaves and no unary nodes which
has much the same structure of the m-labeled Dx. In particular, properties (1),
(3), and (4) of the definition of Tx hold for any refinement of D~. The refinement
D (~ is identical to T~ except for the edge directions. Figure 3 shows the second
refinement for our example skeleton.

We now give rigorous definitions for D (~~ q = 1, 2 , . . . , log n - 1. We do
so by specifying how D ~176 is obtained from D ~176 for q =
1, 2 , . . . , log n - 1. For simplicity, we use k henceforth to denote log n - q - 1 .
First, two more definitions are needed. A nest is any set formed by all children
of some node in D (k). Let (i, l) and (j, k) be the labels of two nodes in some
nest of D Ck). An integer t, 0 < t<-min[/, k], is a refiner for (i, l) and (j, k) iff
x#[i , i+ t - 1] = x # [L j + t - 1] .

354 A. Apostolico, C. lliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

a

a

a

b
a

�9 b

Fig. 3. No nest of the skeleton of Figure 2 undergoes changes in the first refining stage. The effect
of the second refining stage is visible in the lightly shaded areas of the present figure. Parent nodes
of the nests that were eligible at the inception of this stage are shown solid. Among the effects of
this stage, the old locus of abaa (shown shaded) is eliminated from the tree. One more refining stage
leads to the tree of Figure 1.

Assume now that all ref inements down to D (k), log n - 1 - k < 0, have already
been produced, and that D ~k) meets the fol lowing cond i t ion (k) :

(i) D (k) is a labeled tree with n leaves and no unary nodes.
(ii) O (k) enjoys propert ies (1), (3), and (4) of the defini t ion of Tx.

(iii) D (k) is labeled in such a way that no pair of labels of nodes in the same
nest admits a refiner of size 2 k.

Observe that condi t ion(log n - 1) is met trivially by Dx. Moreover, part (iii) of
condit ion (0) implies that reversing the direct ion of all edges of D <~ would change
D ~~ into a digital-search tree that stores the collect ion of all suffixes of x. Clearly,
such a trie fulfills precisely the defini t ion of Tx.

Parallel Construction of a Suffix Tree with Applications 355

We now define D (k-l) as the tree obtained by transforming D (k~ as follows.
The manipulations that transform D (k) into D ~k-1) are performed synchronously
on all and only the eligible nests of D (k), i.e., on those nests that might admit a
refiner of size 2 (k-l). Clearly, the only eligible nests in D~ are those whose parent
nodes have stagenumber log n - 1. There is only one such nest in the skeleton of
Figure 2, namely, that formed by leaves 1 and 9 (however, this nest does not
have a refiner of size 2 (l ~ ~- n/4). The nests of nodes whose parents have
stagenumber log n - 2 become eligible at the inception of the second refining
stage (see Figure 3), and so on.

Assume that, in D (k), all nodes that are parents of currently eligible nests are
suitably marked. Let (il, l~), (i2, 12), . . . , (i,,, Ira) be the set of all labels in some
eligible nest of D ~k). Let v be the parent node of that nest. The nest is refined
in two steps.

Step I. Use the L A B E L and ID tables to modify the nest rooted at v as follows.
With the child node labeled (ij, lj) associate the split-label (IDi j[k-1] ,
ID~j§ 1]) , j = 1, 2 , . . . , m. Now partition the children of v into equivalence
classes, putting in the same class all nodes with the same first component of their
split-labels. For each nonsingleton class which results, perform the following
three operations:

(1) Create a new parent node /x for the nodes in that class, and m a k e / z a son
of v.

(2) Set the LABEL of /z to (i, 2Ck-~)), where i is the first component of the
split-label of all nodes in the class.

(3) Consider each child o f /x . For the child whose current LABEL is (/j,/j),
change L A B E L to (ij + 2 (k-l), lj -- 2(k-1)).

Step 2. I f more than one class resulted from the partition, then stop. Otherwise,
let C be the unique class resulting from the partition. It follows from assumption
(i) on D (k~ that C cannot be a singleton class. Thus a new parent node /z as
above was created for the nodes in C during step 1. Make/z a child of the parent
of v and set the L A B E L of/~ to (i,/+2~k-1)), where (i, l) is the label of v.

The following theorem shows that our definition of the series of refinements
O (k) is unambiguous.

THEOREM 1. The synchronous application of steps 1 and 2 to all eligible nests of
D tk) produces a tree that meets condit ion(k-1) .

PROOF. Properties (ii) and (iii) of condi t ion(k-1) are easily established for
D Ck-1). Thus we concentrate on property (i). Since no new leaves were inserted
in the transition from D k tO D (k-l), property (i) will hold once we prove that
D (k-l) is a tree with no unary nodes.

Clearly, the nest of the children of the root is not eligible for any k > 0. Thus,
for any parent node v of an eligible nest of D Ck), parent(v) is defined. By

356 A. Apostolico, C. lliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

condition(k), node v has more than one child, and so does parent(v). Let 1~ (k)
be the structure resulting from application of step 1 to D (k).

If, in D (k), the nest of parent(v) is not eligible, then v is a node of D ~k-l~, and
v may be the only unary node in /5 Ck) between any child of u in D (k) and the
parent of u in D ck). Node u is removed in step 2, unless u is a branching node
in /)(k). Hence no unary nodes result in this part of D (k-D.

Assume now that, in D (k), both the nest of u and that of parent(v) are eligible.
We claim that, i n /5 (k~, either the parent of u has not changed and it is a branching
node, or it has changed but is still a branching node. Indeed, by definition of
D (k), neither the nest of v nor that of parent(v) can be refined into only one
singleton equivalence class. Thus, by the end of step 1, the following alternatives
are left:

1. The parent, of u in /5 (k~ is identical to parent(v) in D (k). Since the nest of
parent(v) could not have been refined into only one singleton class, then
parent(v) must be a branching node in D (k-D. Thus this case reduces to that
where the nest of parent(v) is not eligible.

2. The parent of u in /~(k) is not the parent of v in O (k). Then parent(v) in /~(k)
is a branching node, and also a node of O (k-l). I f v is a branching node in
/~(k), then there is no unary node between v and parent(v) i n / 5 (k~, and the
same holds true between any node in the nest of v and p. I f v is a unary node
in /5 (k~, then the unique child of v is a branching node. Since the current
parent of v is also a branching node by hypothesis, then removing v in step
2 eliminates the only unary node existing on the path from any node in the
nest of v to the closest branching ancestor of that node. []

In order to specify which nests of D ck-~) are eligible, we need to complete the
rules for eligibility. In the light of the preceding discussion, it is easy to see that,
once a node has become the parent of an eligible nest, it will not lose this property
through the subsequent refinements (as long as it is not eliminated from the tree),
even though the nest itself may undergo changes. Moreover, the nests of nodes
created in producing D ~k-l) are eligible for the transition from D ~k-~) to D ck-2).

I f the nest of D Ck) rooted at v had a row R of BB all to itself, then the
transformation undergone by this nest in step 1 can be accomplished by m
processors in constant time, m being the number of children. Each processor
handles one child node. It generates the split-label for that node using its LABEL
and the ID tables. Next, the processors use the row of BB assigned to the nest
and the split-labels to partition themselves into equivalence classes: each pro-
cessor in the nest whose split-label has first component i competes to write the
address of its node in the ith location of R. A representative processor is elected
for each class in this way. Singleton classes can be trivially spotted through a
second concurrent write restricted to los ingprocessors (after this second write,
a representative processor which still reads its node address in R knows itself to
be in a singleton class). The representatives of each nonsingleton class now create
the new parent nodes, label them with the first component of their split-label,
and make each new node accessible by all other processors in the class. To
conclude step 1, the processors in the same class update the labels of their nodes.

Parallel Construction of a Suffix Tree with Applications 357

For step 2, the existence of more than one equivalence class needs to be tested.
This is done through a competit ion of the representatives which uses the root of
the nest as a common write location, and follows the same mechanism as in the
construction of D~. I f only one equivalence class was produced in step I, then
its representative performs the adjustment of the label prescribed by step 2.

The above discussion suggests that, once each node of, say, Dx = D ~176 is
assigned to a distinct processor, D ~176 could be produced in constant time.
The difficulty, however, is how to assign the nodes (notably, the newly inserted
ones) of D (~~ in constant time. It turns out that bringing fewer processors
into the game leads to a crisp (re-)assignment strategy.

By definition, D (g~ does not have unary nodes. It is seen then that the manipula-
tions of steps 1 and 2 can be operated in constant time by assigning m - 1
processors, rather than m to a nest of m nodes. The only additional assumption
to be made is that, at the beginning, all m - 1 processors have access to the unique
node which lacks a processor of its own. Before starting step 1, the processors
elect one of them to serve as a substitute for the missing processor. After each
elementary step, this simulator "catches-up" with the others.

In view of Property 1, this shows that n processors can achieve the first
refinement of Dx. As to the assignment of the rows of BB to the nodes of D (k~,
simply assign the ith row to processor Pi. Then, whenever p; is in charge of the
simulation of the missing processor in a nest, its BB row is used by all processors
in that nest.

For any given value of k, let a legal assignment of processors to the nodes of
O (k) be an assignment that enjoys Property 1.

THEOREM 2. Given a legal assignment of processors for D (k), a legal assignment
of processors for D Ck-D can be produced in constant time.

PROOF. We give first a constant-time policy that reaUocates the processors in
each nest of O (k) on the nodes of/)(k) . We then show that our policy leads to a
legal assignment for D ck-~.

Let v be the parent of a nest of D (k). A node to which a processor has been
assigned is called pebbled. By hypothesis, all but one of the children of v are
pebbled. Also, all children of v are nodes o f / 5 (k). In the general case, some of
the children of v in O (•) are still children of v in /5 ~k~, while others became
children of newly inserted nodes/x~,/z2 ,/z,. Our policy is as follows. At the
end of step 1, for each node ~r of j~(k) such that all children of/zr are pebbled,
one pebble (say, the representative processor) is chosen among the children and
passed on to the parent. In step 2, whenever a pebbled node v is removed, then
its pebble is passed down to the (unique) son/~ of v in /)Ck~.

Clearly, our policy can be implemented in constant time. To prove its correct-
ness, we need to show that it generates a legal assignment for D (k-~. It is easy
to see that if node v is removed in the transition from/)(k~ to O (k-n, then the
unique son /z of v in /~(k) is unpebbled in /)(k~. Thus, in step 2, it can never
happen that two pebbles are moved onto the same node of D (k-l).

358 A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

By definition of D (k), the nest of node u cannot give rise to a singleton class.
Thus at the end of step 1, either (Case 1) the nest has been refined in only one
(nonsingleton) class, or (Case 2) it has been refined in more than one class, some
of which are possibly singleton classes. Before analyzing these two cases, define
a mapping f from the children in the nest of the generic node 9 of D ck) into
nodes of D ok-l) as follows. If node/z is in the nest of 9 and also in D ~k-~) then
set/z ' = f (/ z) = / z ; if instead/z is not in D ~k-l), l e t / z '= f (/ z) be the (unique) son
of/~ i n / 5 (k).

In Case 1, exactly one node ~ is unpebbled in /5 ~k). All the nodes /z"s are
siblings in D ck-~) and, by our policy,/x' is pebbled in D (k-~) iff/z is pebbled in
D (k).

In Case 2, node 9 is in D (k-l). Any node/~ in the nest of 9 is i n / 5 (k). At the
end of step 2, the pebble of node/~ will go untouched unless/~ is in a nonsingleton
equivalence class. Each such class generates a new parent node, and a class
passes a pebble on to that node only if all the nodes in the class were pebbled.
Thus, in D ck-l), all the children of v except one are pebbled by the end of step
1. Moreover, for each nonsingleton equivalence class, all nodes in that class but
one are pebbled. At the end of step 2, for each node/~ which was in the nest of
9 in D (k), node /z' is pebbied iff /~ was pebbled at the end of step 1, which
concludes the proof. []

4. Storing a Suffix Tree. In some advanced applications (see, for example,
[AP-83], [AP-85a], [AP-85b], and [LV-86]), Tx needs only to be traversed bottom-
up. The structure achieved for D (~ would suffice for thise tasks. Like any trie,
however, Tx is usually employed to perform downward searches, starting at its
root. This requires the insertion, for each original directed edge (/z, 9) of D (~
of a matched downward edge (u,/x). Correspondingly, each node l, must now
store appropriate downward labels for all the downward edges originating from
it. Such labels supply the branching information needed in the course of a
downward search in Tx of a string w. We examine two different ways of defining
such information. More precisely, let (i, I) be the label of the upward edge (/z, 9).
One way is to label the matched downward edge (9, tz) with the symbol of I that
corresponds to xi. This entails that the branching decision at each node be driven
by the symbol that occupies a certain position of w. The second way is to use
the value of IDi[0]. To use this information during a search, an auxiliary table
must have been precomputed that maps each symbol of I into its corresponding
ID.

In either case, the set of downward labels of each internal node of Tx can be
stored using a linear list, a binary trie, or an array. Resorting to arrays enables
searching for w in Tx in time O([w[), but requfres space O([I I �9 n) or O(1/2)
(depending on the labeling convention adopted) to store Tx. Lists or binary tries
require only linear space for Tx. However, the best time bounds for searching w
under the two labeling conventions become O(Iw I logll I) and O(Iw I log n), respec-
tively. Such bounds refer to the implementation with binary tries. For ordered
alphabets, the bound O(]w I log[I I) extends also to the list implementation of the

Parallel Construction of a Suffix Tree with Applications 359

symbol-based downward labels. We describe below the trie implementation of
symbol-labels and the array implementation o f /D- labe l s , since all the others
can be derived from one of these two quite easily.

We show how to implement symbol-based downward labels with tries, i.e.,
how to replace each original internal node of D (~ with a binary trie indexing to
a suitable subset of L This transformation can be obtained in O(logtlI) time
using the legal assignment of processors that holds on D (~ at completion. We
outline the basic mechanism and leave the details as an exercise. We simply
perform log[I[i'urther refinements of D (m, for which the ID tables are not needed.
In fact, the best descriptor for a string of log[l[bits or less is the string itself.
Thus, we let the processors in each nest partition their associated nodes into finer
and finer equivalence classes, based on the bit-by-bit inspection of their respective
symbols. Clearly, a processor occupying a node with upward label (i, l) will use
symbol x; in this process. Whenever a new branching node v is created, one of
the processors in the current nest of v climbs to /z =father(v) and assigns the
appropriate downward label to/z . At the end, the processors assign downward
labels to the ultimate fathers of the nodes in the nest.

Finally, we discuss the array implementation o f / D - b a s e d downward labels.
This representation' is needed in Section 6. We assign a vector of size n, called
OUT~, to each node v of D (~ The vector OUTv stores the downward edges
from v as follows. If/~ is a son of v and the upward label of /x is (i, I), a pointer
to /z is stored in OUT~[IDdO]]. It is an easy exercise to show that n processors
legally assigned to D (m, and equipped with O(n) locations each, can construct
this implementation of Tx in constant time. In fact, the same can be done with
any D Ck;, but the space needed to accommodate OUT vectors for all refinements
D (k) would become O(n 2 log n). Observe that, since n processors cannot initialize
O(n 2) spaces in O(log n) time, the final collection of OUT vectors will describe
in general a graph containing T~ plus some garbage. Tx can be separated from
the rest by letting the processors in each nest convert the OUT vector of the
parent node into a linked list. This task is accomplished trivially in extra O(log n)
time. The interested reader may refer to [FL-80]. For one of the applications of
Section 6, however, we shall need the entire series of D (k) implemented by OUT
vectors.

5. Reducing the Space. Both the preparation of Dx and its subsequent refine-
ments need O(n 2) space. Procedure Skeleton-Tree needs O(n 2) space due to the
array BB, which is used at each iteration q to partition the composite labels
(TIDs) into equivalence classes. In any refining stage, the nest of each node v
needs a distinct array of n locations for partitioning the split-labels of the nodes
in the nest into equivalence classes. In this section we show that both problems
can be solved using only O(n ~+~) space, for any 0 < e-< 1, at the expense of a
corresponding slow-down proportional to 1/e.

We analyze the procedure Skeleton-Tree first. Consider some substring w of x
of length 2 q, with q > 0, and let w = w~w2 with Iwd = Iw21 = 2q-'. Let N 1 and N2
be the IDs assigned by the procedure to w~ and w2, respectively. Recall that each

360 A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

of N~, N2 is an integer between 1 and n. The difficulty in creating the ID for w
is that the pair (N1, N2) may assume n 2 values.

We show how to solve this problem using only O(n ~§ space. We assume for
simplicity that n ~ is an integer, but it is easy to generalize our solution to the
cases where n ~ is not an integer. We focus on computing the 119 of the string w
above. The same manipulations are performed in parallel for all substrings of x
of length 2q. The idea is to express N2 by its representation in the base nL The
coefficients (a~, a2, . . . , a~/~) (least-significant coefficient first) of this representa-
tion are easily computed in 1/e steps as follows:

f o r i = l to 1 / e d o
begin

ai ~ N2 mo d n ~

end

Iteration q of Skeleton-Tree is now modified to contain 1/e subiterations. The
input to subiteration 8, 8 = 1, . . . , l / e , is as follows:

(i) An ID for the pair consisting of the left substring and the 8 - 1 - t u p l e
(a l , . . . , a~-l). This 119 is a number between 1 and n.

(ii) The 119 a~, i.e., a number between 0 and n" - 1.

The output of subiteration 8 is an ID for the pair consisting of the left substring
and the 8-tuple (a l , . . . , as). This ID is a number between 1 and n.

The concurrent-write contests that take place within any subiteration of iteration
q of the Skeleton-Tree procedure are similar to the original ones. The only
difference is that now an auxiliary array of size (n + 1) x n ~ suffices. Detaiis are
left to the reader. For any fixed 0 < e -< 1 the total space requirements are bounded
by O(n ~+~) and the running time by O((1 /e) log n) = O(log n).

Our space reduction technique extends easily to the refining stages. We outline
the main changes and omit the tedious details. With reference to the generic
intermediate tree D <k), we focus on the processors that handle the nest of some
node u. Recall that, in order to refine this nest, the processors partition their
underlying nodes into equivalence classes, according to the first component of
the split-labels. For this purpose, a row of BB was used in our original construc-
tion, namely, the row assigned to the representative processor of the nest. Assume
instead that processor Pl, i = 1, . . . , n, is assigned only an array LITTLE-BBi
consisting of n ~ locations of the common memory, and let pj be the representative
of the nest of u. We perform the partition of the nest in 1/e subiterations as
follows. First, all processors in the nest compute the representation of the first
component of their split-labels in the base nL There are n ~ possible values for
the first coefficient of this representation. Thus, the processors in the nest can
partition themselves in n ~ classes through a concurrent-write contest on LITTLE-
BB). In this way, each class elects a representative processor. The LITTLE-BB
arrays associated with these representatives is similarly used to obtain a second

Parallel Construction of a Suffix Tree with Applications 361

refinement of the classes. This refinement is based on the second coefficients in
the representations of the split-labels in base n ~. It should be clear how to proceed
with the remaining 1 / e - 2 subiterations. For any fixed 0 < e-< 1 the total space
requirements are bounded by O(n l+~) and the running time by O((1 /e) log n) =
O(log n).

I f the suffix tree is implemented by OUT~ vectors, as needed in the next section,
it would require O(n2) space. However, we can reduce the space to 0 ((1 / e) n 1+ ~) =
O(n 1§ ising the ideas of the space reduction described above.

6. Applications. In this section we describe some applications of our parallel
suffix tree construction in the design of efficient parallel algorithms.

PROBLEM 1. On-line string matching. Suppose a string x = x l , . . . , x n - l , # is
given in advance (for preprocessing). Answer as fast as possible (on-line) queries
of the form: "Does the string z = zl, . . . , z,, (the pattern) occur in x?"

SOLUTION.

Preprocessing. Construct the suffix tree of x # . In the course of the computat ion
We save~

(1) The log n BBs used in log n iterations of the procedure Skeleton-Tree.
(2) All the intermediate trees D (k), k = log n - 1 0. Each of these intermediate

trees is implemented by the vectors OUT~, defined in Section 4.

The computat ion of this step takes O(log n) time using n processors.

On-line Processing of the Queries.

Step 1. Recall that in Section 2 we computed IDi[q] (i = 1 , n; q = 0 , . . . ,
log n) for the string x # . The value IDa[q] is a unique name of the substring
xi, . . . , xi+2q-1, where ID~[q] = IDj[q] if x~ , x~+2q-1 -- xj , xj+2,-l. We start
the on-line processing by naming some of the substrings in the pattern z. For
q -- 0 , . . . , [log mJ, the substrings we are naming are all substrings whose length
is 2 q which start at positions i, where i is a multiple of 2 q and i + 2 q -< m. The
names are stored in the vectors PID~[q] (i.e., PID~[q] is the unique name of the
substring z~, . . . , z~+2~-i). The naming is done such that if two substrings of length
2 q, o n e i n z and the other in x # , are equal then their names are equal too. For
this, we compute the PID labels using the same BBs used in the Skeleton-Tree
procedure. (These BBs are saved in the preprocessing stage.)

Step 2. Let PID1[[log mJ] (that is, the name of the prefix of z whose length is
2 t~~ be k. Observe that if none of the IDi[[log mJ] is equal to k then the
prefix of z whose length is 2 t~~ does not occur in x. We conclude that the
answer to the query is NO (i.e., z does not occur in x). Suppose k = IDa[[log mJ]
for some 1 -< i -< n - 1. We check whether NODEk[[log mJ] appears in D ~176
Note that NODEk[[log mJ] will not appear in D r176 if and only if all the

362 A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

substrings of x whose prefix of length 2 [IogmJ is the same as the prefix of z also
have the same prefix of length 2 tl~ I f NODEk[[log mJ] appears in D ~~
then we are guaranteed that it will also appear in D ([l~ and we proceed to
step 3. This is because all the refinements O 0~ n - l) , . . . , D ~ tJog,,J) deal only with
substrings whose length is greater than 2 tlog,~j. Otherwise, i.e., NODEk[[log mJ]
does not appear in D (l~ we check whether z is equal to Xk,. . . , Xk+m-~ letter
by letter. This can be done in log m time using m/ log m processors. The answer'
to the query is YES if and only if the two strings are equal.

Step 3. We find a node v in the suffix tree such that z is a prefix of W(v) (if
such node exists). For this, we use the vectors PID~[q] of step 1 and the D ~q~
trees, q = [log mJ - 1 , . . . , 0 of the preprocessing. Node v is found using some
notion of binary search in [log mJ iterations.

Iteration q (q = [log mJ - 1 , . . . , 0). Let v and z' be the input parameters of
iteration q. (For iteration [log mJ - 1, v = NODEk[[log mJ] and z' is the suffix
of z starting at position 2 tlogmj + 1.) The invariant property satisfied in all the
iterations is that v is a node in D ~q+l) and z' is a substring whose length is less
than 2 q+l. Our goal is to check whether z' follows an occurrence of W(v). We
work o n D (q). There are two possibilities:

1. The node v appears in D (q). Possibility 1 has two subpossibilities:
1.1. 2 q is larger than the length of z'. In this case we do nothing and the input

parameters of the present iteration become the input parameters of the
next iteration.

1.2. 2 q is less than or equal to the length of z'. Assume that z' starts at position
j o f z and b is the value stored in PIDj[q]. I f the entry OUT~[b] is empty
then z does not occur in x. Otherwise, the input parameters of the next
iteration will be the suffix of z' starting at position 2 q + 1 and the node
pointed to by OUT~[b].

2. The node v does not appear in D ~q). This means that v had only one son in
/)(q+l) and so it was omitted from D (q) (in step 2 of refining /5(q+1)). Le t /z
be the single son of v in /)(q+~). Possibility 2 has two subpossibilities:
2.1. 2 q is larger than the length of z'. Assume that the LABEL of # in D Cq)

is (i , l) . In this case z' occurs in x if and only if z' is a prefix of
xi+1-2%~,..., xi+l. We check this letter by letter in log m time using
m/ log m processors.

2.2. 2 q is less or equal to the length of z'. We compare ID~+l_2,+~[q] (the
unique name of x~+1-2',+1, �9 �9 �9 xs+~) to the unique name of the prefix of z'
whose length is 2 q. I f these names are different then z does not occur in
x. Otherwise, the input parameters of the next iteration will be the suffix
of z ' starting at position 2 q -F 1 and the node/z .

Remarks. (a) We did not initialize the vectors OUT~, therefore it could be that
we will get a wrong positive answer. To avoid mistakes, every time we get a
positive answer we explicitly check whether z really appears in x at the position

Parallel Construction of a Suffix Tree with Applications 363

given in the answer. This can be done in [log mJ time using m/log m processors
as a last step.

(b) The on-line computation can be extended to obtain additional information
about z. For example:

(1) What is the number of occurrences of z in x?
(2) In case there is more than one occurrence, what is the starting position of

the first (or last or all) occurrence(s) of z in x?
(3) What is the longest prefix of z which occurs in x?

Complexity. The preprocessing takes O(log n) time using n processors. Answer-
ing a query takes O(log m) time using m/log m processors.

PROBLEM 2. Finding the longest repeated substring in a string. Given a string x
find the longest substring which occurs in x more than once.

SOLUTION. W(1.,) is defined in Section 2. Let IW(v)l be the length of W(v).

Step 1. Construct the suffix tree of x # and find IW(v)} of each node v.

Step 2. Find the internal node v with the maximum I W(v)l field. The substring
represented by the path from the root to v is the longest repeated substring in x.

Step 2 can be carried out using the parallel algorithm for finding the maximum
given in [SV-81].

Complexity. Step 1 takes O(log n) time using n processors. Step 2 takes
O(log log n) time using n/ log log n processors.

PROBLEM 3. Approximate string matching. Suppose a string x, a pattern z, and
a parameter k are given. (Let n (resp. m) be the length of x (resp. z).) Find
occurrences of z in x with at most k differences. We distinguish three types of
differences:

(a) A letter
(b) A letter
(c) A letter

in z corresponds to a different letter in x.
in z corresponds to "no letter" in x.
in x corresponds to "no letter" in z.

SOLUTION. [LV-86] gave both a serial and a parallel algorithm for the problem.
This paper enables us to design an alternative parallel algorithm which essentially
consists of parallelizing the serial algorithm of [LV-86]. The alternative parallel
algorithm is based on both the parallel prefix tree construction, of this paper,
and parallel algorithm for answering Lowest Common Ancestor (LCA) queries
of [SCV-87]. In order to keep this presentation short we refrain from describing
this alternative algorithm in detail. This alternative parallel algorithm for the
approximate string matching problem runs in time O (k + l o g n) using n+m
processors. Note that the parallel algorithm of [LV-86] consists of two parts: (1)
analysis of the pattern and (2) analysis of the text. Part 1 runs in O(log m) time

364 A. Apostolico, C. lliopoulos, G. M. Landau, B. Schieber, and U. Vishkin

using m z processors. Part 2 runs in O (k + l o g m) time using n processors. So,
comparison of the performance of these two parallel algorithms depends on the
relative values of n and m and also on whether the pattern is given in advance
for preprocessing.

Acknowledgment. We are grateful to Zvi Galil for stimulating discussions and
helpful comments, to C. L. Liu and J. S. Vitter for their insightful editorial
assistance, and to the referees for their careful reviews.

[AHU-74]

[Ap-84]

[Ap-85]

lAG-86]

[AI-86]

[AP-83]

[AP-85a]

[AP-85b]

[BH-82]

[CV-86a]

[CV-86b]

[FL-80]

[Ga-85]

[KMR-72]

[Kr-83]

[LSV-86]

[LV-86]

References

A. V. Aho, J. E. Hopcroft, and J. D: Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA, 1974.
A. Apostolico, On context-constrained squares and repetitions in a string, RAIRO
Theoretical Informatics, 18 (1984), 147-159.
A. Apostolico, The myriad virtues of subword trees, in A. Apostolico and Z. Galil
(editors), Combinatorial Algorithms on Words, NATO ASI Series, Series F: Computer
and System Sciences, Vol. 12, Springer-Verlag, Berlin, 1985, pp. 85-96.
A. Apostolico and R. Giancarlo, The Boyer-Moore-Galii string searching strategies
revisited, SIAM Journal on Computing, 15 (1986), 98-105.
A. Apostolico and C. Iliopoulos, Parallel log-time construction of suffix trees, CSD TR
632, Department of Computer Science, Purdue University, Sept. 1986.
A. Apostolico and F. P. Preparata, Optimal off-line detection of repetitions in a string,
Theoretical Computer Science, 22 (1983), 297-315.
A. Apostolico and F. P. Preparata, Structural properties of the string statistics problem,
Journal of Computer and System Sciences, 31 (1985), 394-411.
A. Apostolico and F. P. Preparata, Data structures and algorithms for the string statistics
problem, CSD TR 541, Department of Computer Science, Purdue University, Sept. 1985.
A. Borodin and J. E. Hopcroft, Routing, merging and sorting on parallel models of
computation, Journal of Computer and System Science, 30 (1985), 130-145.
R. Cole and U. Vishkin, Deterministic coin tossing with applications to optimal parallel
list ranking, Information and Control, 70 (1986), 32-53.
R. Cole and U. Vishkin, Approximate and exact parallel scheduling with applications
to list, tree, and graph problems, Proceedings of the 27th Annual Symposium on Founda-
tions of Computer Science, 1986, pp. 478-491.
M. Fisher and L. Ladner, Parallel prefix computation, Journal of the Association for
Computing Machinery, 27 (1980), 831-838.
Z. Galil, Open problems in stringology, in A. Apostolico and Z. Galil (editors), Com-
binatorial Algorithms on Words, NATO ASI Series, Series F: Computer and System
Sciences, Vol. 12, Springer-Verlag, Berlin, 1985, pp. 1-10.
R. M. Karp, R. E. Miller, and A. L. Rosenberg, Rapid identification of repeated patterns
in strings, trees, and arrays, Proceedings of the 4th ACM Symposium on Theory of
Computing, 1972, pp. 125-136.
C. P. Kruskal, Searching, merging, and sorting in parallel computation, IEEE Transac-
tions on Computers, 32 (1983), 942-946.
G. M. Landau, B. Schieber, and U. Vishkin, Parallel construction of a suffix tree,
TR-53/86, Department of Computer Science, Tel Aviv University, 1986, and also Proceed-
ings of the 14th ICALP, Lecture Notes in Computer Science, Vol. 267, Springer-Verlag,
Berlin, 1987, pp. 314-325.
G. M. Landau and U. Vishkin, Introducing efficient parallelism into approximate string
matching, Proceedings of the 18th ACM Symposium on Theory of Computing, 1986, pp.
220-230.

Parallel Construction of a Suffix Tree with Applications 365

[Mc-76]

[ScV-87]

[sv-81]

[Va-75]

[Vi-83]

[Vi-84]

[We-73]

E. M. McCreight, A space-economical suffix tree construction algorithm, Journal of the
Association for Computing Machinery, 23 (1976), 262-272.
B. Schieber and U. Vishkin, Parallel computation of lowest common ancestor in trees,
TR-63/87, Department of Computer Science, Tel Aviv University, 1987.
Y. Shiloach and U. Vishkin, Finding the maximum, merging, and sorting in a parallel
model of computation, Journal of Algorithms, 2 (1981), 88-102.
L. G. Valiant, Parallelism in comparison problems, SlAM Journal on Computing, 4
(1975), 348-355.
U. Vishkin, Synchronous parallel computation--a survey, TR-71, Department of Com-
puter Science, Courant Institute, New York University, 1983.
U. Vishkin, Randomized speed-ups in parallel computation, Proceedings of the 16th
ACM Symposium on Theory of Computing, 1984, pp. 230-239.
P. Weiner, Linear pattern matching algorithm, Proceedings of the 14th IEEE Symposium
on Switching and Automata Theory, 1973, pp. 1-11.

