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Parallel  Construction of a Suffix Tree with Applications 1 

A. Apos to l i co ,  2 C. I l i o p o u l o s ,  2 G.  M. L a n d a u ,  3 B. Schieber ,  3 a n d  U. Vishk in  3"4 

Abstract. Many string manipulations can be performed efficiently on suffix trees. In this paper a 
CRCW parallel RAM algorithm is presented that constructs the suffix tree associated with a string 
of n symbols in O(log n) time with n processors. The algorithm requires O(n 2) space. However, the 
space needed can be reduced to O(n 1+~) for any 0< e ~- 1, with a corresponding slow-down propor- 
tional to 1/e. Efficient parallel procedures are also given for some string problems that can be solved 
with suffix trees. 
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1. In t roduc t ion .  Let x = Xl, X 2 , . . . ,  X n be  a s t r ing  o f  n = ]x[ symbols a n d  a s s u m e  
tha t  xn is a spec ia l  s y m b o l  # tha t  occurs  n o w h e r e  else in  x. W e  use  I to d e n o t e  

the  alphabet of  x, i.e., the  set o f  all  d i s t inc t  s y m b o l s  o c c u r r i n g  in  x. (No te  tha t  

II1-< n.) G i v e n  a s u b s t r i n g  w o f  x, a descriptor o f  w is a n y  pa i r  (i, [wl) such  tha t  

i is the  s t a r t ing  p o s i t i o n  in  x o f  a n  o c c u r r e n c e  o f  w. The  suffix tree Tx assoc ia t ed  

wi th  x is the  tr ie  (d ig i ta l  sea rch  tree) wi th  n leaves  a n d  at  mos t  n - 1  i n t e r n a l  
n o d e s  such  tha t :  

(1) E a c h  edge is l a b e l e d  wi th  a de sc r ip to r  o f  s o m e  subs t r i ng  o f  x. 
(2) N o  two s ib l ing  edges  m a y  have  the  s a m e  ( n o n e m p t y )  prefix. 
(3) E a c h  l ea f  is l a b e l e d  wi th  a d i s t inc t  p o s i t i o n  o f  x. 

(4) The  c o n c a t e n a t i o n  o f  the  labels  o n  the  p a t h  f rom the  roo t  to l ea f  i desc r ibe  
the  suffix o f  x s t a r t ing  at p o s i t i o n  i. 

(See F igu re  1 for  a n  e x amp l e . )  In  prac t ice ,  the  labe l  o f  the  edge c o n n e c t i n g  n o d e  
to its p a r e n t  n o d e  is s to red  in  ~. Ob s e rv e  tha t ,  in  genera l ,  there  is m o r e  t h a n  

o n e  way  to ass ign  c o n s i s t e n t  labe ls  to the  edges  o f  a suffix tree.  
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Fig. 1. The suffix tree 7~ for x = abaababaabaababa#. For clarity, the arcs of  T x are labeled by 
substrings of  x rather than by substring descriptors. Such descriptors are given on the two outermost 
paths of  the tree, as a sample illustration. 

The main problem addressed in this paper is the parallel construction of the 
suffix tree Tx associated with input string x. For fixed alphabet size, the sequential 
algorithms in [We-73] and [Mc-76] construct Tx in linear time. The time bound 
becomes O(n logllI) if the alphabet size is not a constant. Suffix trees and their 
companion structures support many string manipulations, such as performing 
on-line string matching [AHU-74], finding the longest repeated substring in a 
string, testing square-freedom of a string [AP-83], [Ap-84], finding all the squares 
or repetitions in a string [AP-83], computing substring statistics with or without 
overlap [AP-85a], [AP-85b], and performing exact [AG-86] or approximate 
[LV-86] pattern matching. A more detailed list of applications is given in lAp-85]. 
In the context of parallel computation, various open problems revolve around 
Tx [Ga-85]. The only previous parallel algorithm for constructing suffix trees is 
given in [LV-86]. It runs in time O(log n) and uses n2/log n processors. 

We adopt the concurrent-read concurrent-write (CRCW) parallel random 
access machine (PRAM) model of computation. We use n processors which can 
simultaneously read from and write to a common memory with O(n z) locations. 
In case several processors seek access to the same memory location for write 
purposes, one of them succeeds but we do not know in advance which. See 
[Vi-83] for a survey of results concerning PRAMs. The overall processors • time 
cost of our algorithm is O(n log n), which is optimal when loglI I is of the same 
order of magnitude as log n. Although the algorithm requires quadratic space, 
only O(n log n) locations need initialization. Moreover, we show later that the 
space can be reduced to O(n~+~), for any chosen 0 <  e -< 1, with a corresponding 
slow-down proportional to 1/e. 
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Our approach to the construction of Tx consists of two main parts. In the first 
part, describhd in Section 2, an approximate version of the tree is built, called 
the skeleton. This part of the construction is reminiscent of an early approach to 
subquadratic pattern matching [KMR-72]. The second part, described in Section 
3, consists of refining the skeleton to transform it into T~. The processor allocation 
technique that is used for the refinement is of independent interest. Allocating 
processors to jobs is often a crucial task in the design of  efficient parallel 
algorithms, and there are papers mainly devoted to overcoming allocation prob- 
lems. For example, [SV-81] solved the allocation problem in the algorithm of 
[Va-75] for finding the maximum among n elements, [BH-83] and [Kr-83] solved 
the allocation problem in the algorithm of [Va-75] for merging. [CV-86a], [CV- 
86b], and [Vi-84] gave deterministic and randomized allocation schemes for list 
ranking. 

Section 4 contains a brief analysis of  the various allocation techniques that 
can be used for a suffix tree. In Section 5 we show how the space used in our 
construction can be reduced. Finally, we describe in Section 6 how our suffix 
tree construction leads to the design of efficient parallel algorithms for on-line 
string matching, finding a longest repeated substring in a string, and performing 
approximate pattern matching. 

2. Constructing the Skeleton Tree. From now on we will assume without loss 
of generality that n is a power of 2. We also extend x by appending to it n - 1 
instances of  the symbol # .  We use x #  to refer to this modified string. We now 
list some salient features of  the skeleton tree Dx of x, and then give a constructive 
definition of Dx. The basic structure of the skeleton for the string of Figure 1 is 
shown in Figure 2. The skeleton Dx of x is a tree with n leaves. Each internal 
node of Dx has at least two children. The edges in Dx point from each node to 
its parent. Each leaf or internal node of D~ is labeled with the descriptor of some 
substring of  x #  having starting positions in [1, n]. If  node /~ is labeled with 
descriptor (i, 1), then I = 2 q for some q, 0 -  q --- log n. If Ix is a leaf then 1 = n. If 
/x is an internal node other than the root, then q is the stagenumber of/~. If  the 
label of/x corresponds to substring w of x, then we write w -- W(/x), and we call 
/x the locus of  w. A constructive definition for Dx is as follows: 

(i) The root of D~ is the locus of the empty word. The root has [I I sons, each 
one being the locus of a distinct symbol of  L 

(ii) Assume that all nodes of stagenumber up to l -  1 >- 0 have been inserted in 
Dx. To expand Dx to stagenumber l ~ log n, consider the nodes of stagenum- 
bet 1 - 1  one by one. For a generic such node/x,  let w = W(/~). Now d o t h e  
following: 
1. If  w = z #  for some string z over I, then make/x the (unique) leaf labeled 

(i, n), where i is the first component of the old label of/.~. 
2. Assume instead that w cannot be written as z #  for some string z over I. 

Let {sl, s 2 , . . . ,  Sk} be a set of maximum cardinality among the sets formed 
by distinct substrings of x #  with the properties: [s, I = 2]w I and w is a 
prefix of s,, t = 1 , 2 , . . . ,  k. (Thus, if i is the starting position of an 
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Fig. 2. Basic structure of the skeleton tree D~ for the string of Figure 1. Solid points are used to mark 
nonbranching nodes. Such nodes are introduced while constructing D~, but they are also removed 
during the construction. Node labels are not reported in the figure. 

occurrence of w in x # ,  then there is some st also starting at i. In  the string 

of Figure 1, for example,  we have that each occurrence of w = ab in x #  
extends into either s~ = abaa, or s2 = a b a # ,  or s3 = abab. On the other 
hand ,  w = aa occurs in x #  only as a prefix of Sl = aaba. Note that, in 
general ,  an s, may occur more than  once in x # . )  We dist inguish two cases. 
(a) k > 1. We create k sons of/x,  vl ,  v2 . . . .  , /)k, and  make v, the locus of 
st, t = 1, 2 , . . . ,  k. (b) k = 1, i.e., w occurs always as a prefix of  the same 

substr ing s~. We make / . ,  the locus of  sl .  

Observe that no two nodes  of  Dx can have the same label. A natura l  parallel  
cons t ruc t ion  of Dr  is based on the above definit ion.  We describe such a construc- 
t ion in detail,  to acqua in t  the reader with the basic concurrent  steps which are 
used throughout  this paper.  

We use n processors Pl,P2, . . .  ,pn, where i is the serial number of processor 

Pi. At the beginning ,  processor  pi is assigned to the ith posi t ion of  x, i = 1, 2 . . . .  , n. 
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It is convenient to think of each processor as being assigned two segments of 
the common memory, each segment consisting of log n + 1 cells. The segments 
assigned to Pi are called IDi and NODE,  respectively. By the end of the 
computation, IDa[q] (i = 1, 2 , . . . ,  n; q =0,  1 , . . . ,  log n) contains (the first com- 
ponent of) a descriptor for the substring of x #  of length 20 which starts at 
position i in x # ,  with the constraint that all the occurrences of the same substring 
of x get the same descriptor. If, for some value of q < log  n, NODE~[q] is not 
empty, then it represents a node /z  of stagenumber q in Dx, as follows: the field 
NODE~[q].LABEL is a replica of IDi[q], and the field NODE~[q].PARENT 
points to the location of the parent of/z .  Finally, NODEi[log n] stores the leaf 
labeled (i, n) and thus is nonempty for i = 1, 2 , . . . ,  n. For convenience, we extend 
the notion of  ID to all positions i > n through the convention: IDa[q] = n + 1 for 
i > n. The computation makes crucial use of  a bulletin board (BB) of n x (n + 1) 
locations in the common memory. All processors can simultaneously write to BB 
and simultaneously read from it. We use the following concurrent-write conven- 
tion. In case several processors try simultaneously to write into the same memory 
location, one of them succeeds but we do not know in advance which. In the 
following we call winner(i) the index of the processor which succeeds in writing 
to the location of the common memory attempted by p~. 

Procedure Skeleton-Tree takes as input the string x and a location of the 
common memory called ROOT, and computes the entries of the arrays NODEi[ q], 
ID~[q] ( i =  1 , 2 , . . . ,  n, q =0,  1 , . . . , l o g  n). The procedure consists of some 
initializations, that implement point (i) in the definition of Dx, and log n main 
iterations, implementing point (ii). 

The initializations are as follows. In parallel, all processors initialize their 
NODE and ID arrays. Next, processors facing the same symbol of  I attempt to 
write their serial number in the same location of BB. Say, if x~ = s ~ I, processor 
p~ attempts to write i in BB[1, s]. Through a second reading from the same 
location, pi reads j=winner(i) and sets ID~[O]<-j. (Thus (j, 1 )becomes  the 
descriptor for every occurrence of symbol s.) For all i such that winner(i) = i, 
processor p~ sets NODE~[O].PARENT <-- address( ROOT) and copies IDa[0] = i 
into NODE~[O].LABEL. Hence NODE~[O] becomes the locus of s. 

We now describe iteration q, q =0,  1 , . . . ,  log n -  1, which is also performed 
synchronously by all processors. First, processor p~, i =  1, 2 , . . . ,  n, creates a 
composite label TIDi, by setting: TID~ <-- (IDa[q], ID~+2q[q]). Next, processor pi 
attempts to write i in BB[ TID~] = BB[IDi[q], ID~+2q[q]]. Now, processor p~ sets: 
ID~[q + 1] <-- winner(i), i = 1, 2 , . . . ,  n. The processors that are not winners become 
idle for the remainder of the stage. On the other hand, any winner p~ performs 
the following: 

NODE~[q + 1 ].PARENT ~- (IDa[q], q) 
NODE~[ q + 1].LABEL <-- IDi[ q + 1] 
if NODE~o,Eql[q] has only one child then 

begin 
NODE~[ q + 1].PARENT ~ NODE~D,tq][ q].PARENT; 
Make NODE~D,tq1[q] empty. 

end 
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Thus, the winners create new locuses in their associated NODE locations. 
Whenever a node/~ is created that has no siblings, then the pointer from parent(l~) 
is removed and copied into/~. This avoids the formation of chains of unary nodes. 

The existence of  siblings can be checked as follows. Assume that for each row 
r of  BB, there is a distinct memory location, say A UX[ r], known to all processors. 
At each stage, there are siblings iff two or more successful processors write to 
different locations of the same row of BB. To find out whether this is the case, 
all successful processors writing in the same row r of BB attempt to write their 
index in AUX[r]. Next, all the processors in that row except the winner write 
a special marker in AUX[r]. Finally, all the processors in the same row check 
the status of  AUX[r]. Clearly, processor pi was the only successful processor in 
row r iff, at the time of checking, AUX[r] = i. 

The correctness of the procedure follows by straightforward induction. Since 
no two n-symbol substrings of x#  are identical, processor p~ (i = 1, 2 , . . . ,  n) 
must be occupying the " leaf"  NODE~[Iog n] at the end of the computation. The 
time complexity is obviously O(log n). Note that NODE~[q].LABEL not empty 
implies NODE~[q].LABEL = (i, 2q), that is, the label of a node, when defined, 
is nothing but the address of that node. Although the LABEL fields are entirely 
redundant so far, assuming this node format from the start simplifies the rest of  
our presentation. Finally, we remark that BB need not be initialized. 

3. Refining Dx. By the end of  the construction of Dx, processor Pi will be 
occupying leaf i, i-- 1, 2 , . . . ,  n. Prior to starting the transformation of Dx into 
Tx, the labels of  all nodes of  Dx have to be modified as follows. Recall that the 
current LABEL of a node g is a starting position of  W(/.,) in x #  which is also 
the address of this node. The modified label (m-label) to be constructed for g is 
any pair (i, l) such that, letting W(/~) = W(parent(t.Q) �9 w, it is l = Iw] and i is 
the starting position of  an occurrence of w in x # .  In the following, we call the 
m-labeled skeleton the tree that is obtained by substituting every label of  Dx with 
a consistent m-label. Setting aside the orientation of edges, the main difference 
between Tx and the m-labeled skeleton Dx is that in Tx there cannot be two 
sibling nodes such that their labels describe two substrings of x having a common 
prefix (i.e., D~ is not a trie). However, the m-labeled D~ shares with T~ the 
properties (1), (3), and (4) listed in defining the latter, provided x #  is used there 
in the place of  x. 

A processor can trivially compute the m-label of/~ in constant time knowing 
the LABEL of/~,  and the stagenumbers, say q and q', of  g and parent(l~), 
respectively. Formally, i f j  is the LABEL of/x, then ( j  + 2 q', 2 q - 2  a') is the m-label 
of g. The n processors can produce all m-labels in log n parallel steps. Using 
the parent pointers, the processors migrate toward ROOT with a synchronous 
pace based on stagenumbers: the m-labels of  all children of nodes with the same 
stagenumber are computed at the same time. (Recall that the difference in 
stagenumber between a node and its parent is not necessarily 1.) At the beginning, 
all processors occupying leaves which are children of  nodes of stagenumber 
log n -  1 change the labels of these nodes into m-labels. Next, the processors 
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compete for the common parent node, say, by attempting to simultaneously write 
on it the labels (addresses) of the nodes which they currently occupy. The winners 
are marked "free":  they ascend to the parent node where they will perform the 
necessary label adjustment at the appropriate stage. The losers simply take a 
record of the (old) label used by the winner. The (q - 1)th iteration involves all 
free processors on nodes with a stagenumber of q or higher. The operation is 
the same as above. 

A by-product of the m-label construction process is a mapping that assigns 
some leaves and internal nodes to processors in such a way that the following 
property is met. 

PROPERTY 1. If a node other than R O O T  has k children, then precisely k -  1 
of the children have been assigned a processor. Moreover, each one of  the k -  1 
processors knows the address of the unique sibling without a processor. 

The proof  of Property 1 is straightforward. Let now (i, !) and (L m) be the 
m-labels of two sibling nodes /z  and z, of Dx, and let q be the stagenumber of 
parent(lz ) = parent(u). 

FACT 1. The substrings of  x #  whose descriptors are the m-labels o f /x  and u 
have a common prefix of  length at most 2 q --1. 

FACT 2. If  k is the length of  the longest common prefix of x#[ i ,  i+ I -  1] and 
x # [ j , j  + m - 1], then ID,[ [log kJ ] = IDj[ Llog k] ]. 

Fact 1 follows from the definition of Dx, Fact 2 holds by the construction of 
the IDs. 

Assuming a fixed-size alphabet, the transformation of the m-labeled Dx into 
Tx is carried out in two steps. First, a tree is produced that is identical to Tx save 
the fact that all edges are directed upward, as in Dx. Next, the directions of all 
edges are reversed. 

The first and more important step is actuated by producing log n - 1 consecutive 
refinements of  Dx = D (~~ The qth such refinement is denoted by D (l~ 
Informally, D (L~ ,-o-1) is a labeled tree with n leaves and no unary nodes which 
has much the same structure of the m-labeled Dx. In particular, properties (1), 
(3), and (4) of the definition of Tx hold for any refinement of D~. The refinement 
D (~ is identical to T~ except for the edge directions. Figure 3 shows the second 
refinement for our example skeleton. 

We now give rigorous definitions for D (~~ q = 1, 2 , . . . ,  log n - 1. We do 
so by specifying how D ~176 is obtained from D ~176 for q =  
1, 2 , . . . ,  log n -  1. For simplicity, we use k henceforth to denote log n - q - 1 .  
First, two more definitions are needed. A nest is any set formed by all children 
of some node in D (k). Let (i, l) and (j, k) be the labels of two nodes in some 
nest of D Ck). An integer t, 0 <  t<-min[/, k], is a refiner for (i, l) and (j, k) iff 
x#[ i ,  i+ t - 1 ] =  x # [ L j +  t - 1 ] .  
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Fig. 3. No nest of the skeleton of Figure 2 undergoes changes in the first refining stage. The effect 
of the second refining stage is visible in the lightly shaded areas of the present figure. Parent nodes 
of the nests that were eligible at the inception of this stage are shown solid. Among the effects of 
this stage, the old locus of abaa (shown shaded) is eliminated from the tree. One more refining stage 
leads to the tree of Figure 1. 

Assume now that all ref inements down to D (k), log n - 1 - k < 0, have already 
been produced,  and  that D ~k) meets the fol lowing cond i t ion (k ) :  

(i) D (k) is a labeled tree with n leaves and  no unary  nodes.  
(ii) O (k) enjoys propert ies  (1), (3), and  (4) of  the defini t ion of Tx. 

(iii) D (k) is labeled in such a way that no pair  of  labels of nodes  in the same 
nest admits  a refiner of size 2 k. 

Observe that condi t ion( log  n - 1) is met trivially by Dx. Moreover,  part  (iii) of  
condit ion (0) implies that reversing the direct ion of  all edges of D <~ would  change 
D ~~ into a digital-search tree that stores the collect ion of all suffixes of x. Clearly, 
such a trie fulfills precisely the defini t ion of  Tx. 
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We now define D (k-l) as the tree obtained by transforming D (k~ as follows. 
The manipulations that transform D (k) into D ~k-1) are performed synchronously 
on all and only the eligible nests of D (k), i.e., on those nests that might admit a 
refiner of  size 2 (k-l). Clearly, the only eligible nests in D~ are those whose parent 
nodes have stagenumber log n - 1. There is only one such nest in the skeleton of 
Figure 2, namely, that formed by leaves 1 and 9 (however, this nest does not 
have a refiner of  size 2 ( l ~  ~- n/4). The nests of  nodes whose parents have 
stagenumber log n - 2  become eligible at the inception of the second refining 
stage (see Figure 3), and so on. 

Assume that, in D (k), all nodes that are parents of  currently eligible nests are 
suitably marked. Let (il, l~), (i2, 12), . . . ,  (i,,, Ira) be the set of  all labels in some 
eligible nest of  D ~k). Let v be the parent node of  that nest. The nest is refined 
in two steps. 

Step I. Use the L A B E L  and ID tables to modify the nest rooted at v as follows. 
With the child node labeled (ij, lj) associate the split-label ( IDi j[k-1] ,  
ID~j§ 1]) , j  = 1, 2 , . . . ,  m. Now partition the children of v into equivalence 
classes, putting in the same class all nodes with the same first component  of  their 
split-labels. For each nonsingleton class which results, perform the following 
three operations: 

(1) Create a new parent node /x  for the nodes in that class, and m a k e / z  a son 
of  v. 

(2) Set the LABEL of /z to (i, 2Ck-~)), where i is the first component  of  the 
split-label of  all nodes in the class. 

(3) Consider each child o f /x .  For the child whose current LABEL  is (/j,/j), 
change L A B E L  to  ( ij + 2 (k-l), lj -- 2(k-1)). 

Step 2. I f  more than one class resulted from the partition, then stop. Otherwise, 
let C be the unique class resulting from the partition. It follows from assumption 
(i) on  D (k~ that C cannot be a singleton class. Thus a new parent node /z as 
above was created for the nodes in C during step 1. Make/z  a child of  the parent 
of  v and set the L A B E L  of/~ to (i,/+2~k-1)), where (i, l) is the label of  v. 

The following theorem shows that our definition of the series of  refinements 
O (k) is unambiguous.  

THEOREM 1. The synchronous application of  steps 1 and 2 to all eligible nests of  
D tk) produces a tree that meets condit ion(k-1) .  

PROOF. Properties (ii) and (iii) of  condi t ion(k-1)  are easily established for 
D Ck-1). Thus we concentrate on property (i). Since no new leaves were inserted 
in the transition from D k tO D (k-l), property (i) will hold once we prove that 
D (k-l)  is a tree with no unary nodes. 

Clearly, the nest of  the children of the root is not eligible for any k > 0. Thus, 
for any parent node v of  an eligible nest of  D Ck), parent(v) is defined. By 
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condition(k), node v has more than one child, and so does parent(v). Let 1~ (k) 
be the structure resulting from application of  step 1 to D (k). 

If, in D (k), the nest of parent(v) is not eligible, then v is a node of  D ~k-l~, and 
v may be the only unary node in /5 Ck) between any child of  u in D (k) and the 
parent of  u in D ck). Node u is removed in step 2, unless u is a branching node 
in /)(k). Hence no unary nodes result in this part  of  D (k-D. 

Assume now that, in D (k), both the nest of  u and that of parent(v) are eligible. 
We claim that, i n /5  (k~, either the parent of  u has not changed and it is a branching 
node, or it has changed but is still a branching node. Indeed, by definition of 
D (k), neither the nest of  v nor that of  parent(v) can be refined into only one 
singleton equivalence class. Thus, by the end of  step 1, the following alternatives 
are left: 

1. The parent, of  u in /5 (k~ is identical to parent(v) in D (k). Since the nest of  
parent(v) could not have been refined into only one singleton class, then 
parent(v) must be a branching node in D (k-D. Thus this case reduces to that 
where the nest of  parent(v) is not eligible. 

2. The parent of  u in /~(k) is not the parent of  v in O (k). Then parent(v) in /~(k) 
is a branching node, and also a node of O (k-l). I f  v is a branching node in 
/~(k), then there is no unary node between v and parent(v) i n / 5  (k~, and the 
same holds true between any node in the nest of  v and p. I f  v is a unary node 
in /5 (k~, then the unique child of  v is a branching node. Since the current 
parent of  v is also a branching node by hypothesis, then removing v in step 
2 eliminates the only unary node existing on the path from any node in the 
nest of  v to the closest branching ancestor of  that node. [] 

In order to specify which nests of  D ck-~) are eligible, we need to complete the 
rules for eligibility. In the light of  the preceding discussion, it is easy to see that, 
once a node has become the parent of  an eligible nest, it will not lose this property 
through the subsequent refinements (as long as it is not eliminated from the tree), 
even though the nest itself may undergo changes. Moreover, the nests of  nodes 
created in producing D ~k-l) are eligible for the transition from D ~k-~) to D ck-2). 

I f  the nest of  D Ck) rooted at v had a row R of BB all to itself, then the 
transformation undergone by this nest in step 1 can be accomplished by m 
processors in constant time, m being the number  of  children. Each processor 
handles one child node. It generates the split-label for that node using its LABEL 
and the ID tables. Next, the processors use the row of BB assigned to the nest 
and the split-labels to partition themselves into equivalence classes: each pro- 
cessor in the nest whose split-label has first component  i competes to write the 
address of  its node in the ith location of R. A representative processor is elected 
for each class in this way. Singleton classes can be trivially spotted through a 
second concurrent write restricted to los ingprocessors  (after this second write, 
a representative processor which still reads its node address in R knows itself to 
be in a singleton class). The representatives of  each nonsingleton class now create 
the new parent nodes, label them with the first component  of  their split-label, 
and make each new node accessible by all other processors in the class. To 
conclude step 1, the processors in the same class update the labels of  their nodes. 
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For step 2, the existence of more than one equivalence class needs to be tested. 
This is done through a competit ion of the representatives which uses the root of  
the nest as a common write location, and follows the same mechanism as in the 
construction of  D~. I f  only one  equivalence class was produced in step I, then 
its representative performs the adjustment of  the label prescribed by step 2. 

The above discussion suggests that, once each node of, say, Dx = D ~176 is 
assigned to a distinct processor, D ~176 could be produced in constant time. 
The difficulty, however, is how to assign the nodes (notably, the newly inserted 
ones) of  D (~~ in constant time. It turns out that bringing fewer processors 
into the game leads to a crisp (re-)assignment strategy. 

By definition, D (g~ does not have unary nodes. It is seen then that the manipula- 
tions of  steps 1 and 2 can be operated in constant time by assigning m -  1 
processors, rather than m to a nest of  m nodes. The only additional assumption 
to be made is that, at the beginning, all m - 1 processors have access to the unique 
node which lacks a processor of its own. Before starting step 1, the processors 
elect one of  them to serve as a substitute for the missing processor. After each 
elementary step, this simulator "catches-up" with the others. 

In view of Property 1, this shows that n processors can achieve the first 
refinement of  Dx. As to the assignment of  the rows of BB to the nodes of  D (k~, 
simply assign the ith row to processor Pi. Then, whenever p; is in charge of  the 
simulation of the missing processor in a nest, its BB row is used by all processors 
in that nest. 

For any given value of  k, let a legal assignment of  processors to the nodes of  
O (k) be an assignment that enjoys Property 1. 

THEOREM 2. Given a legal assignment of processors for D (k), a legal assignment 
of processors for D Ck-D can  be produced in constant time. 

PROOF. We give first a constant-time policy that reaUocates the processors in 
each nest of  O (k) on the nodes of/)(k) .  We then show that our policy leads to a 
legal assignment for D ck-~. 

Let v be the parent of  a nest of  D (k). A node to which a processor has been 
assigned is called pebbled. By hypothesis, all but one of the children of v are 
pebbled. Also, all children of  v are nodes o f / 5  (k). In the general case, some of 
the children of v in O (•) are still children of  v in /5 ~k~, while others became 
children of newly inserted nodes/x~,/z2 . . . .  ,/z,. Our policy is as follows. At the 
end of  step 1, for each node ~r of  j~(k) such that all children of/zr  are pebbled, 
one pebble (say, the representative processor) is chosen among the children and 
passed on to the parent. In step 2, whenever a pebbled node v is removed, then 
its pebble is passed down to the (unique) son/~ of v in /)Ck~. 

Clearly, our policy can be implemented in constant time. To prove its correct- 
ness, we need to show that it generates a legal assignment for D (k-~. It is easy 
to see that if node v is removed in the transition from/)(k~ to O (k-n,  then the 
unique son /z of  v in /~(k) is unpebbled in /)(k~. Thus, in step 2, it can never 
happen that two pebbles are moved onto the same node of D (k-l). 
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By definition of D (k), the nest of node u cannot give rise to a singleton class. 
Thus at the end of step 1, either (Case 1) the nest has been refined in only one 
(nonsingleton) class, or (Case 2) it has been refined in more than one class, some 
of which are possibly singleton classes. Before analyzing these two cases, define 
a mapping f from the children in the nest of the generic node 9 of D ck) into 
nodes of D ok-l) as follows. If  node/z  is in the nest of 9 and also in D ~k-~) then 
set/z '  = f ( / z ) = / z ;  if instead/z is not in D ~k-l), l e t / z '= f ( / z )  be the (unique) son 
of/~ i n / 5  (k). 

In Case 1, exactly one node ~ is unpebbled in /5 ~k). All the nodes /z"s are 
siblings in D ck-~) and, by our policy,/x' is pebbled in D (k-~) iff/z is pebbled in 
D (k). 

In Case 2, node 9 is in D (k-l). Any node/~ in the nest of 9 is i n / 5  (k). At the 
end of step 2, the pebble of node/~ will go untouched unless/~ is in a nonsingleton 
equivalence class. Each such class generates a new parent node, and a class 
passes a pebble on to that node only if all the nodes in the class were pebbled. 
Thus, in D ck-l), all the children of v except one are pebbled by the end of step 
1. Moreover, for each nonsingleton equivalence class, all nodes in that class but 
one are pebbled. At the end of step 2, for each node/~ which was in the nest of 
9 in D (k), node /z' is pebbied iff /~ was pebbled at the end of step 1, which 
concludes the proof. [] 

4. Storing a Suffix Tree. In some advanced applications (see, for example, 
[AP-83], [AP-85a], [AP-85b], and [LV-86]), Tx needs only to be traversed bottom- 
up. The structure achieved for D (~ would suffice for thise tasks. Like any trie, 
however, Tx is usually employed to perform downward searches, starting at its 
root. This requires the insertion, for each original directed edge (/z, 9) of D (~ 
of a matched downward edge (u,/x). Correspondingly, each node l, must now 
store appropriate downward labels for all the downward edges originating from 
it. Such labels supply the branching information needed in the course of a 
downward search in Tx of a string w. We examine two different ways of defining 
such information. More precisely, let (i, I) be the label of the upward edge (/z, 9). 
One way is to label the matched downward edge (9, tz) with the symbol of I that 
corresponds to xi. This entails that the branching decision at each node be driven 
by the symbol that occupies a certain position of w. The second way is to use 
the value of IDi[0]. To use this information during a search, an auxiliary table 
must have been precomputed that maps each symbol of I into its corresponding 
ID. 

In either case, the set of downward labels of each internal node of Tx can be 
stored using a linear list, a binary trie, or an array. Resorting to arrays enables 
searching for w in Tx in time O([w[), but requfres space O([I I �9 n) or O(1/2) 
(depending on the labeling convention adopted) to store Tx. Lists or binary tries 
require only linear space for Tx. However, the best time bounds for searching w 
under the two labeling conventions become O(Iw I logll I) and O(Iw I log n), respec- 
tively. Such bounds refer to the implementation with binary tries. For ordered 
alphabets, the bound O(]w I log[I I) extends also to the list implementation of the 
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symbol-based downward labels. We describe below the trie implementation of 
symbol-labels and the array implementation o f /D- labe l s ,  since all the others 
can be derived from one of  these two quite easily. 

We show how to implement symbol-based downward labels with tries, i.e., 
how to replace each original internal node of D (~ with a binary trie indexing to 
a suitable subset of L This transformation can be obtained in O(logtlI) time 
using the legal assignment of processors that holds on D (~ at completion. We 
outline the basic mechanism and leave the details as an exercise. We simply 
perform log[I[ i'urther refinements of D (m, for which the ID tables are not needed. 
In fact, the best descriptor for a string of  log[l[ bits or less is the string itself. 
Thus, we let the processors in each nest partition their associated nodes into finer 
and finer equivalence classes, based on the bit-by-bit inspection of their respective 
symbols. Clearly, a processor occupying a node with upward label (i, l) will use 
symbol x; in this process. Whenever a new branching node v is created, one of 
the processors in the current nest of v climbs to /z =father(v) and assigns the 
appropriate downward label to/z .  At the end, the processors assign downward 
labels to the ultimate fathers of the nodes in the nest. 

Finally, we discuss the array implementation o f / D - b a s e d  downward labels. 
This representation' is needed in Section 6. We assign a vector of  size n, called 
OUT~, to each node v of D (~ The vector OUTv stores the downward edges 
from v as follows. If/~ is a son of  v and the upward label of /x  is (i, I), a pointer 
to /z  is stored in OUT~[IDdO]]. It is an easy exercise to show that n processors 
legally assigned to D (m, and equipped with O(n) locations each, can construct 
this implementation of  Tx in constant time. In fact, the same can be done with 
any D Ck;, but the space needed to accommodate OUT vectors for all refinements 
D (k) would become O(n 2 log n). Observe that, since n processors cannot initialize 
O(n 2) spaces in O(log n) time, the final collection of  OUT vectors will describe 
in general a graph containing T~ plus some garbage. Tx can be separated from 
the rest by letting the processors in each nest convert the OUT vector of the 
parent node into a linked list. This task is accomplished trivially in extra O(log n) 
time. The interested reader may refer to [FL-80]. For one of the applications of  
Section 6, however, we shall need the entire series of D (k) implemented by OUT 
vectors. 

5. Reducing the Space. Both the preparation of Dx and its subsequent refine- 
ments need O(n 2) space. Procedure Skeleton-Tree needs O(n 2) space due to the 
array BB, which is used at each iteration q to partition the composite labels 
(TIDs) into equivalence classes. In any refining stage, the nest of each node v 
needs a distinct array of  n locations for partitioning the split-labels of the nodes 
in the nest into equivalence classes. In this section we show that both problems 
can be solved using only O(n ~+~) space, for any 0 <  e-< 1, at the expense of a 
corresponding slow-down proportional to 1/e. 

We analyze the procedure Skeleton-Tree first. Consider some substring w of x 
of length 2 q, with q >  0, and let w = w~w2 with Iwd = Iw21 = 2q-'. Let N 1 and N2 
be the IDs assigned by the procedure to w~ and w2, respectively. Recall that each 



360 A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin 

of  N~, N2 is an integer between 1 and n. The difficulty in creating the ID for w 
is that the pair (N1, N2) may assume n 2 values. 

We show how to solve this problem using only O(n ~§ space. We assume for 
simplicity that n ~ is an integer, but it is easy to generalize our solution to the 
cases where n ~ is not an integer. We focus on computing the 119 of  the string w 
above. The same manipulations are performed in parallel for all substrings of  x 
of  length 2q. The idea is to express N2 by its representation in the base nL The 
coefficients (a~, a2, . . . ,  a~/~) (least-significant coefficient first) of  this representa- 
tion are easily computed in 1/e steps as follows: 

f o r i = l  to 1 / e d o  
begin 

ai ~ N2 mo d  n ~ 

end 

Iteration q of  Skeleton-Tree is now modified to contain 1/e subiterations. The 
input to subiteration 8, 8 = 1, . . . ,  l / e ,  is as follows: 

(i) An ID for the pair consisting of  the left substring and the 8 - 1 - t u p l e  
( a l , . . . ,  a~-l). This 119 is a number  between 1 and n. 

(ii) The 119 a~, i.e., a number  between 0 and n" - 1. 

The output of  subiteration 8 is an ID for the pair consisting of  the left substring 
and the 8-tuple ( a l , . . . ,  as). This ID is a number  between 1 and n. 

The concurrent-write contests that take place within any subiteration of  iteration 
q of  the Skeleton-Tree procedure are similar to the original ones. The only 
difference is that now an auxiliary array of size (n + 1) x n ~ suffices. Detaiis are 
left to the reader. For any fixed 0 < e -< 1 the total space requirements are bounded 
by O(n ~+~) and the running time by O((1 /e )  log n) = O(log n). 

Our space reduction technique extends easily to the refining stages. We outline 
the main changes and omit the tedious details. With reference to the generic 
intermediate tree D <k), we focus on the processors that handle the nest of  some 
node u. Recall that, in order to refine this nest, the processors partition their 
underlying nodes into equivalence classes, according to the first component  of  
the split-labels. For this purpose, a row of  BB was used in our original construc- 
tion, namely, the row assigned to the representative processor of  the nest. Assume 
instead that processor Pl, i = 1, . . . ,  n, is assigned only an array LITTLE-BBi 
consisting of  n ~ locations of  the common memory,  and let pj be the representative 
of  the nest of  u. We perform the partition of the nest in 1/e subiterations as 
follows. First, all processors in the nest compute the representation of the first 
component  of  their split-labels in the base nL There are n ~ possible values for 
the first coefficient of  this representation. Thus, the processors in the nest can 
partition themselves in n ~ classes through a concurrent-write contest on LITTLE- 
BB). In this way, each class elects a representative processor. The LITTLE-BB 
arrays associated with these representatives is similarly used to obtain a second 
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refinement of  the classes. This refinement is based on the second coefficients in 
the representations of  the split-labels in base n ~. It should be clear how to proceed 
with the remaining 1 / e -  2 subiterations. For any fixed 0 < e-< 1 the total space 
requirements are bounded by O(n l+~) and the running time by O( (1 /e )  log n) = 
O(log n). 

I f  the suffix tree is implemented by OUT~ vectors, as needed in the next section, 
it would require O(n2) space. However, we can reduce the space to 0 ( ( 1 / e )  n 1+ ~) = 
O(n 1§ ising the ideas of  the space reduction described above. 

6. Applications. In this section we describe some applications of  our parallel 
suffix tree construction in the design of efficient parallel algorithms. 

PROBLEM 1. On-line string matching. Suppose a string x = x l , . . . ,  x n - l , #  is 
given in advance (for preprocessing). Answer as fast as possible (on-line) queries 
of  the form: "Does  the string z = zl, . . . ,  z,, (the pattern) occur in x?"  

SOLUTION. 

Preprocessing. Construct the suffix tree of  x # .  In the course of  the computat ion 
We save~ 

(1) The log n BBs used in log n iterations of  the procedure Skeleton-Tree. 
(2) All the intermediate trees D (k), k = log n - 1 . . . . .  0. Each of these intermediate 

trees is implemented by the vectors OUT~, defined in Section 4. 

The computat ion of this step takes O(log n) time using n processors. 

On-line Processing of the Queries. 

Step 1. Recall that in Section 2 we computed IDi[q] (i = 1 . . . .  , n; q = 0 , . . . ,  
log n) for the string x # .  The value IDa[q] is a unique name of  the substring 
xi, . . . ,  xi+2q-1, where ID~[q] = IDj[q] if x~ . . . .  , x~+2q-1 -- xj . . . .  , xj+2,-l. We start 
the on-line processing by naming some of the substrings in the pattern z. For 
q -- 0 , . . . ,  [log mJ,  the substrings we are naming are all substrings whose length 
is 2 q which start at positions i, where i is a multiple of 2 q and i + 2 q -< m. The 
names are stored in the vectors PID~[q] (i.e., PID~[q] is the unique name of the 
substring z~, . . . ,  z~+2~-i). The naming is done such that if two substrings of  length 
2 q, o n e  i n z  and the other in x # ,  are equal then their names are equal too. For 
this, we compute the PID labels using the same BBs used in the Skeleton-Tree 
procedure. (These BBs are saved in the preprocessing stage.) 

Step 2. Let PID1[ [log mJ ] (that is, the name of the prefix of  z whose length is 
2 t~~ be k. Observe that if none of the IDi[ [log mJ]  is equal to k then the 
prefix of  z whose length is 2 t~~ does not occur in x. We conclude that the 
answer to the query is NO (i.e., z does not occur in x). Suppose k = IDa[ [log mJ ] 
for some 1 -< i -< n - 1. We check whether NODEk[ [log mJ ] appears in D ~176 
Note that NODEk[ [log mJ]  will not appear  in D r176 if and only if all the 
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substrings of  x whose prefix of  length 2 [IogmJ is the same as the prefix of  z also 
have the same prefix of  length 2 tl~ I f  NODEk[ [log mJ ] appears in D ~~ 
then we are guaranteed that it will also appear  in D ([l~ and we proceed to 
step 3. This is because all the refinements O 0~ n - l ) , . . . ,  D ~ tJog,,J) deal only with 
substrings whose length is greater than 2 tlog,~j. Otherwise, i.e., NODEk[ [log mJ ] 
does not appear  in D (l~ we check whether z is equal to Xk,. . . ,  Xk+m-~ letter 
by letter. This can be done in log m time using m/ log  m processors. The answer'  
to the query is YES if and only if the two strings are equal. 

Step 3. We find a node v in the suffix tree such that z is a prefix of  W(v) (if 
such node exists). For this, we use the vectors PID~[q] of  step 1 and the D ~q~ 
trees, q = [log mJ - 1 , . . . ,  0 of  the preprocessing. Node v is found using some 
notion of binary search in [log mJ iterations. 

Iteration q (q = [log mJ - 1 , . . . ,  0). Let v and z'  be the input parameters of  
iteration q. (For iteration [log mJ - 1, v = NODEk[ [log mJ ] and z' is the suffix 
of  z starting at position 2 tlogmj + 1.) The invariant property satisfied in all the 
iterations is that v is a node in D ~q+l) and z' is a substring whose length is less 
than 2 q+l. Our goal is to check whether z' follows an occurrence of W(v).  We 
work o n  D (q). There are two possibilities: 

1. The node v appears in D (q). Possibility 1 has two subpossibilities: 
1.1. 2 q is larger than the length of z'. In this case we do nothing and the input 

parameters of  the present iteration become the input parameters  of  the 
next iteration. 

1.2. 2 q is less than or equal to the length of  z'. Assume that z' starts at position 
j o f z  and b is the value stored in PIDj[q]. I f  the entry OUT~[b] is empty 
then z does not occur in x. Otherwise, the input parameters of  the next 
iteration will be the suffix of  z' starting at position 2 q + 1 and the node 
pointed to by OUT~[b]. 

2. The node v does not appear  in D ~q). This means that v had only one son in 
/)(q+l) and so it was omitted from D (q) (in step 2 of  refining /5(q+1)). Le t /z  
be the single son of v in /)(q+~). Possibility 2 has two subpossibilities: 
2.1. 2 q is larger than the length of z'. Assume that the LABEL of # in D Cq) 

is (i , l) .  In this case z' occurs in x if and only if z' is a prefix of  
xi+1-2%~,..., xi+l. We check this letter by letter in log m time using 
m/ log  m processors. 

2.2. 2 q is less or equal to the length of  z'. We compare ID~+l_2,+~[q] (the 
unique name of  x~+1-2',+1, �9 �9 �9 xs+~) to the unique name of  the prefix of  z' 
whose length is 2 q. I f  these names are different then z does not occur in 
x. Otherwise, the input parameters of  the next iteration will be the suffix 
of  z '  starting at position 2 q -F 1 and the node/z .  

Remarks. (a) We did not initialize the vectors OUT~, therefore it could be that 
we will get a wrong positive answer. To avoid mistakes, every time we get a 
positive answer we explicitly check whether z really appears in x at the position 
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given in the answer. This can be done in [log mJ time using m/log m processors 
as a last step. 

(b) The on-line computation can be extended to obtain additional information 
about z. For example: 

(1) What is the number of  occurrences of  z in x? 
(2) In case there is more than one occurrence, what is the starting position of  

the first (or last or all) occurrence(s) of z in x? 
(3) What is the longest prefix of z which occurs in x?  

Complexity. The preprocessing takes O(log n) time using n processors. Answer- 
ing a query takes O(log m) time using m/log m processors. 

PROBLEM 2. Finding the longest repeated substring in a string. Given a string x 
find the longest substring which occurs in x more than once. 

SOLUTION. W(1.,) is defined in Section 2. Let IW(v)l be the length of W(v). 

Step 1. Construct the suffix tree of x #  and find IW(v)} of  each node v. 

Step 2. Find the internal node v with the maximum I W(v)l field. The substring 
represented by the path from the root to v is the longest repeated substring in x. 

Step 2 can be carried out using the parallel algorithm for finding the maximum 
given in [SV-81]. 

Complexity. Step 1 takes O(log n) time using n processors. Step 2 takes 
O(log log n) time using n/ log log n processors. 

PROBLEM 3. Approximate string matching. Suppose a string x, a pattern z, and 
a parameter k are given. (Let n (resp. m) be the length of  x (resp. z).) Find 
occurrences of z in x with at most k differences. We distinguish three types of 
differences: 

(a) A letter 
(b) A letter 
(c) A letter 

in z corresponds to a different letter in x. 
in z corresponds to "no letter" in x. 
in x corresponds to "no letter" in z. 

SOLUTION. [LV-86] gave both a serial and a parallel algorithm for the problem. 
This paper enables us to design an alternative parallel algorithm which essentially 
consists of  parallelizing the serial algorithm of [LV-86]. The alternative parallel 
algorithm is based on both the parallel prefix tree construction, of  this paper, 
and parallel algorithm for answering Lowest Common Ancestor (LCA) queries 
of [SCV-87]. In order to keep this presentation short we refrain from describing 
this alternative algorithm in detail. This alternative parallel algorithm for the 
approximate string matching problem runs in time O ( k + l o g  n) using n+m 
processors. Note that the parallel algorithm of  [LV-86] consists of  two parts: (1) 
analysis of  the pattern and (2) analysis of  the text. Part 1 runs in O(log m) time 
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using m z processors. Part 2 runs in O ( k + l o g  m) time using n processors. So, 
comparison of  the performance of these two parallel algorithms depends on the 
relative values of  n and m and also on whether the pattern is given in advance 
for preprocessing. 
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