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Abstract. We develop an O(n) algorithm to construct a rectangular dual of an n-vertex planar 
triangulated graph. 
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1. Introduction. A rectangular dual of an n-vertex graph, G = (V, E), is com- 
prised of n nonoverlapping rectangles with the following properties: 

(a) Each vertex i c V, corresponds to a distinct rectangle i in the rectangular dual. 
(b) If (i, j )  is an edge in E, then rectangles i a n d j  are adjacent in the rectangular 

dual. 

It is easily seen that some graphs do not have a rectangular dual and that for 
yet others, the rectangular dual is not unique. Further, whenever a graph has a 
rectangular dual, it has one whose outer boundary is rectangular. In this paper 
we are interested only in such duals. 

The rectangular dual of a graph finds application in the floor planning of 
electronic chips and in architectural design [2], [3], [4], [8]. Each vertex of the 
graph G represents a circuit module and the edges represent module adjacencies. 
A rectangular dual provides a placement of the circuit modules that preserves 
the required adjacencies. 

The problem of finding a rectangular dual has been studied in [1], [2], [4], 
[6], [7], and [8]. In all of these studies, the input graph is either assumed to be 
planar or is planarized by the addition of vertices during the early stages of the 
dual construction algorithm. 

In this paper we assume that the graph, G, is a properly triangulated planar 
(PTP) graph. A PTP graph (3, is a connected planar graph that satisfies the 
following properties: 

P1. Every face (except the exterior) is a triangle (i.e., bounded by three edges). 
P2. All internal vertices have degree > 4. 
P3. All cycles that are not faces have length ~ 4. 
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Fig. 1.1. (a) Planar triangulated graph. (b) and (c) Rectangular dual. 

Figure 1.1 shows an example of  a PTP graph, G, and two of its rectangular 
duals. In [1] it is shown that every planar graph that satisfies P1 and P3 also 
satisfies P2. 

Kozminski and Kinnen [6], [7] have developed necessary and sufficient condi- 
tions under which a PTP graph has a rectangular dual. In order to state these 
conditions, we restate the following terminology from [6] and [7]: 

DEFINITIONS [6], [7]. A block is a biconnected component.  A plane block is a 
planar block. The block neighborhood graph (BNG) of a planar graph G, is a 
graph in which there is a distinct vertex for each biconnected component  of  (3. 
There is an edge between two vertices iff the two biconnected components  they 
represent have a vertex in common. The remaining definitions are with respect 
to an embedding of the planar graph. A shortcut in a plane block G, is an edge 
that is incident to two vertices on the outermost cycle (this is defined in a natural 
way with respect to a given embedding of the plane block) of  G and that is not 
a part of  this cycle (see Figure 1.2). A corner implying path in a plane block (3, 
is a segment vl, v 2 , . . . ,  Vk of the outermost cycle of  G with the property that 
(v~, vk) is a shortcut and that v2, � 9  vk_~ are not the endpoints of  any shortcut. 
A critical corner implying path in a biconnected component  Gi of G is a corner 
implying path of  Gi that does not contain cut vertices (articulation points) of  G. 
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f 

a 

Outermost cycle: abcdefghi 
Shortcuts: ci, dh, dg 
Corner implying paths: cbai, defg 

Fig. 1.2 
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THEOREM 1.1 [6], [7]. 
following is true: 
(a) 

(b) 

A PTP graph, G, has a rectangular dual iff one of the 

G is biconnected and has no more than four corner implying paths. 
G has k, k > 1, biconnected components; the BNG of G is a path; the biconnected 
components that correspond to the ends of this path have at most two critical 
corner implying paths; and no other biconnected component contains a critical 
corner implying path. 

Kozminski and Kinnen [6], [7] have developed an O(n 2) algorithm to construct 
the rectangular dual of  an n-vertex PTP graph, G, that satisfies the necessary 
and sufficient conditions of  Theorem 1.1. This algorithm simultaneously verifies 
that the given planar graph is properly triangulated. Bhasker and Sahni [1] have 
developed an O(n) algorithm to determine if a given planar graph is properly 
triangulated. Since the conditions of  Theorem 1.1 are testable in O(n) time, their 
algorithm leads to an O(n) algorithm to test the existence of a rectangular dual 
for a planar graph. 

In this paper  we extend our work reported in [1] to construct a planar dual 
(whenever one exists) in O(n) time. 

2. Algorithm Overview. The strategy adopted by our algorithm is best explained 
by examining a rectangular dual (Figure 2.1(a)). There are 10 rectangles in this 
figure. This figure may be partitioned into six columns, A-F.  Each column has 
the property that it contains no vertical edge. Clearly, every rectangular dual can 
be so partit ioned into a finite number  of  columns. 

From this column partitioning of a rectangular dual, we can construct a directed 
graph called the path digraph (PDG). The PDG contains a distinguished vertex 
called the HeadNode. In addition, it contains one vertex for each rectangle in 
the dual. Since the dual of Figure 2.1(a) has 10 rectangles, its PDG will consist 
of  11 vertices. The directed edges of  the PDG reflect the "on top of"  relation 
defined by the dual. For example, rectangle 1 is on top of rectangle 2 which is 
on top of rectangle 3. This relation is completely specified by traversing the 
columns of the dual top to bottom. The HeadNode is, by definition, on top of 
all the rectangles. 

Traversing the six columns of Figure 2.1(a) yields the PDG of Figure 2.1(b). 
Each column of the dual corresponds to a distinct path from the HeadNode of 
the PDG to a leaf vertex (i.e., a vertex with no outgoing edges). For instance, 
the path (HeadNode -~ 4--> 5 -~ 3) corresponds to column B while the path (Head- 
Node -~ 9 -  7 -~ 8) corresponds to column E. 

A vertex i is a parent of another vertex j in the PDG iff (i, j )  is a directed edge 
of the PDG. I f  i is a parent of  j, then j is a child of i. In the PDG of Figure 
2.1(b), 1 is a parent of  2 which in turn is a parent of  3; 7 has the parents 6 and 
9; 8 has the parents 4, 7, and 10; 8 is a child of 4; 5 is a child of  4; etc. The 
children of any vertex o f a  PDG are ordered left to right. This ordering corresponds 
to the order in which the children appear  in the dual. So, for example,  1 is to 
the left of  4 which is to the left of  6 which is to the left of 9 in the dual. Hence, 
as children of the HeadNode, they appear  in the order 1, 4, 6, 9 (left to right). 
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Fig. 2.1. Example of (a) a rectangular dual, (b) a PDG, and (c) a PTP graph. 

Similarly, 5 is to the left o f  8; so 5 is drawn to the left of  8 as children o f  4. As 
a result o f  this ordering o f  the children o f  each vertex in the PDG,  we can order  
the paths f rom the H e a d N o d e  to the leaves. When this is done,  the first path in 
the P D G  corresponds  to the leftmost column o f  the dual, the second path to the 
next column,  and so on. 

Let i and j be two vertices in a PDG. We shall say that i is a distant ancestor 
o f j  iff the P D G  contains a directed path f rom i to j that has length at least 2. 
For  the example  o f  Figure 2.1(b), 1, 4, and the H e a d N o d e  are the distant ancestors 
o f  vertex 3; 6, 9, and the H e a d N o d e  are the distant ancestors o f  vertex 8; the 
H e a d N o d e  is the only distant ancestor o f  vertices 2, 5, 7, and 10. No  other  vertex 
has a distant ancestor. 

The following lemma is a direct consequence o f  the definition o f  a PDG.  

LEMMA 2.1. Let G be a P D G  for  some rectangular dual  Let i a n d j  be two vertices 
in G. l f  i is a distant ancestor o f  j, then i is not a parent o f  j. 

Next, let us examine a planar  tr iangulated graph for which Figure 2.1(a) is a 
rectangular  dual. This is shown in Figure 2.1(c). The solid edges in this figure 
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represent edges contained in the PDG (though in the PDG these are directed). 
The broken edges represent edges not in the PDG. 

The next lemma states two important properties of planar triangulated graphs 
and PDGs. 

LEMMA 2.2. I f  (i, j )  is an edge in a planar triangulated graph, then: 

(a) i is not a distant ancestor of  j in the PDG. 
(b) j is not a distant ancestor of  i in the PDG. 

Our algorithm to obtain a rectangular dual begins with a planar triangulated 
graph that satisfies the necessary and sufficient conditions of [6] and [7], and 
first obtains a PDG that satisfies Lemma 2.2. From this PDG, a rectangular dual 
is obtained by traversing the HeadNode to leaf paths left to right. 

We illustrate the basic mechanics of the process stated above on the planar 
embedding of Figure 2.1(c). To obtain a PDG, we first identify four (not 
necessarily distinct) vertices. These are called the northwest ( N W ) ,  northeast 
(NE) ,  southwest (SW) ,  and southeast (SE)  vertices of the planar graph. For the 
graph of Figure 2.1(c) we have N W =  1, N E  =9,  S W = 3 ,  and SE =8. 

Vertices 1, 4, 6, 9, 10, 8, 3, and 2 define the outer boundary of the graph. The 
outer boundary may be decomposed into four segments: top, right, bottom, and 
left. For the example of Figure 2.1(c), the top outer boundary is defined by the 
vertices 1, 4, 6, and 9; the right outer boundary by the vertices 9, 10, and 8; the 
bottom outer boundary by 3, and 8; and the left outer boundary by the vertices 
1, 2, and 3. Figure 2.2 shows the boundary orientations that are used by us. 

To obtain the PDG we begin with a HeadNode that has no children. The left 
outer boundary (1 --> 2 --> 3) of the PTP graph is traversed. This becomes the leftmost 
HeadNode to leaf path of the PDG. We will later see that by a proper choice of 
N W  and SW, we can guarantee that the planar triangulated graph contains no 
edges that violate Lemma 2.2 with respect to the PDG so far constructed (Figure 
2.3(a)). As the left outer boundary is traversed, these vertices are eliminated from 
the graph and the next left outer boundary identified. This elimination and 
boundary identification yields the graph of Figure 2.3(b). 

The new left outer boundary cannot be included as a path in the PDG under 
construction because of the presence of the edge (4, 8). If  the path (4, 5, 8) is 

NW NE 

SE 
Fig. 2.2. Boundary orientations. 
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added to the PDG, 4 will become a distant ancestor of 8 and the edge (4, 8) will 
violate Lemma 2.2. We can get around this difficulty by not using the edge (5, 8). 
Rather, the path is completed by using the edge (5, 3) in place of (5, 8). The 
offending edge (4, 8) is used to complete another path. This yields the PDG of 
Figure 2.3(c) and the graph of Figure 2.3(d). Note that in going from Figure 
2.3(b) to 2.3(d), the S W  vertex has not changed. This is because S W  = SE  and 
all HeadNode  to leaf paths must end at a bottom outer vertex. 

The left outer boundary is now (6, 7, 8). Adding this to the PDG yields the 
PDG of Figure 2.3(e). The planar graph that remains is Figure 2.3(f). Traversing 
this last path yields the PDG of Figure 2.3(g). One may easily verify that the 
PDG of Figure 2.3(g) and the planar triangulated graph of Figure 2.1(c) satisfy 
Lemma 2.2. Further, observe that the PDGs of Figure 2.1(b) and 2.3(g) are not 
identical. This is no cause for concern as a planar triangulated graph can have 
many rectangular duals. The rectangular dual we shall obtain from the PDG of 
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Figure 2.3(g) is different from the one our algorithm would obtain from Figure 
2.1(b). 

The actual process of obtaining a PDG is far more complex than suggested 
by this simple example. This example does, however, illustrate the basic strategy. 
The complexities involved in obtaining the PDG are examined, in detail, in 
Section 4. 

Obtaining a rectangular dual is now a relatively straightforward task. We 
traverse the leftmost HeadNode to leaf path and place rectangles of unit height 
in column A (Figure 2.4(a)). While the column is of unit width, it is possible for 
some of the rectangles in this column to be wider. The next HeadNode to leaf 
path is 4 3  5 ~ 3. Since 4 is adjacent to the already placed rectangles 1 and 2 (see 
Figure 2.1(c)), we close off rectangles 1 and 2 and obtain the placement of Figure 
2.4(b). This placement of rectangle 4 allows the next rectangle, 5, to be adjacent 
to rectangle 2. Rectangle 5 is to be adjacent to 2 and on top of the already placed 
rectangle 3. This leads to Figure 2.4(c). The next path is 4 3 8. Since 4 is already 
placed, it is extended into column C. Since 8 is adjacent to 3, 4, and 5, it is 
placed as in Figure 2.4(d) and rectangles 3 and 5 closed on their right. When the 
path 6 3 7 -~ 8 is traversed, 6 is begun at the top. 6 is adjacent to the placed block 
4. So, 4 is closed and 6 placed as in Figure 2.4(e). 7 is adjacent to the placed 
blocks 4 and 8 and so is placed as in Figure 2.4(e). At this time, the three blocks 
6, 7, and 8 are open. Traversing the final path 9 3  103  8 results in the placement 
of Figure 2.4(f) and the closing of all rectangles. 

The details of the algorithm to obtain the dual from the PDG are provided in 
the next section. 

3. From PDG to Rectangular Dual. The rectangular dual is obtained from the 
PDG by carrying out an ordered depth first traversal of the PDG. In this traversal, 
the children of each node are examined left to right. The basic principles 
underlying our algorithm for this task were described in Section 2. Here, we 
consider the details of our implementation. 

The rectangular dual is a collection of nonoverlapping rectangles placed in a 
two-dimensional space. Any position in this space is defined by providing two 
coordinates: x and y. Figure 3.1 shows the origin of ot'r coordinate system. Notice 
that y increases as we go down. Corresponding to each vertex v (other than the 
HeadNode) in the PDG, there will be a rectangle v in the dual. The position of 
this rectangle is uniquely characterized by providing the x positions of the two 
vertical edges and the y positions of the two horizontal edges (Figure 3.1). 

With each vertex/rectangle v we associate the following values: 

visit. This is a boolean field that is initially FALSE. It is set to TRUE the 
first time vertex v is reached during the depth first traversal. At this 
time, the rectangle for v is placed on the dual. 

left. The x-coordinate of the left vertical edge of the rectangle v. 
right. The x-coordinate of the right vertical edge of this rectangle. 

top. The y-coordinate of the top horizontal edge. 
bottom. The y-coordinate of the bottom horizontal edge. 
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Fig. 2.4. Rectangular  dual construction.  
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Fig. 3.1. Coordinate system for the dual. 

We use the notation a.b to mean "the b value of a." For example,  v.visit 
denotes the visit value of vertex v, etc. Notice that for each rectangle v, v. bottom > 
v. top and v. left < v. right. 

Our algorithm to obtain the rectangular dual from the PDG consists of two 
procedures: ConstructDual and place, place is a recursive procedure that does 
the actual placement of  rectangles onto the two-dimensional space. This place- 
ment is carried out in a columnar fashion as suggested by the column decomposi-  
tion of Figure 2.1(a). This procedure is invoked by ConstructDual after it has 
done some initialization, x, y, and FirstPath are variables that are global to 
procedure place, x records the x-coordinate of  the left edge of the column that 
is currently being placed. All columns are assumed to be of  unit width. So, for 
example,  when we are placing the rectangles 1, 2, and 3 of  column A of Figure 
2.1(a), x = 0. When we are placing rectangles 4 and 5, x = 1 and when rectangles 
6 and 7 are being placed, x = 3. y gives us the last y-coordinate in the current 
column to which a rectangle has been assigned (or equivalently, the next y- 
coordinate that is free). When procedure place is initially invoked, no rectangles 
have been placed. Hence, x and y are initialized to 0 in line 1 of ConstructDual 
(Figure 3.2). The variable FirstPath is boolean valued. Its value is true initially 
(line 2) and remains true as long as we are placing rectangles in the first column. 
This is the case as long as we are traversing the leftmost path of  the PDG (e.g., 
HeadNode -o 1 --> 2 ~ 3 in Figure 2.1(b)). Procedure place uses a boolean variable, 
visit, that is associated with each vertex v in the PDG. v.visit is FALSE initially 
and becomes TRUE when the vertex v is reached for the first time during the 
traversal of  the PDG. The only other initialization that is done by ConstructDual 
is the rectangle for the HeadNode. This is defined to be of  zero height and width 
and located at (0, 0) (line 4). 

The invokation of procedure place from line 5 results in the placement of  
rectangles for all vertices in the PDG, except for the HeadNode. However, the 
position of the right vertical edges of  the rightmost rectangles is not done. This 
is completed in lines 6-8. When the invokation of procedure place (line 5) is 
completed, x gives us the x-coordinate of  the left edge of the last vertical column. 
The right x-coordinate of  this column is x + 1. 
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line PROCEDURE ConstructDual(HeadNode); 
(* use the path digraph with root HeadNode to obtain the rectangular dual *) 

1 x=0; y-=0; (*begin at coordinates (0,0) *) 
2 FirstPath = TRUE; 
3 Set v.visit= FALSE for all vertices v in the PDG; 
4 Set the left, right, top and bottom fields of HeadNode to 0; 
5 place (HeadNode); (* procedure to place rectangles *) 
6 FOR each vertex v on the rightmost digraph path, DO 

(* set right boundaries of rightmost rectangles *) 
7 v.right=x+l; 
8 ENDFOR; 
9 END ConstructDual; 

Fig. 3.2 

place (v)  is a recursive procedure  that results in the placement  o f  all rectangles 
for all vertices in the P D G  that are descendants  o f  v (this includes vertex v, in 
case v ~ H e a d N o d e )  (Figure 3.3). On entry to place, x is the left bounda ry  o f  the 
co lumn we are to work in and y its top boundary .  Furthermore,  v.visi t  = FALSE.  
So, except for the initial invokat ion when v = HeadNode ,  v always corresponds  
to a vertex whose rectangle has yet to be placed. 

I f  the rectangle for v has not been placed (i.e., v # H e adNode ) ,  then this 
rectangle is p laced in lines 1-18. The left and top values for this rectangle are 
clearly x and y, respectively. I f  v is on the leftmost path (i.e., FirstPath = TRUE) ,  
then its rectangle is arbitrarily given a height o f  1. Hence,  y is incremented by 1 
(line 4) and v.bot tom = y. m a x _ y  is a global variable used to record the overall 
height o f  the rectangular  dual. It will become evident, later, that  this is s imply 
the number  o f  vertices on the leftmost path in the P D G  (excluding the HeadNode) .  
In case v is not  on the leftmost path o f  the PDG,  then its bo t tom coordinate  
v .bot tom is determined by examining all the rectangles that are to be adjacent  
to it and on its left. These are obtained by examining the original adjacency list 
o f  v. This list contains four  categories o f  vertices: 

A. Vertices whose rectangles will begin in columns to the right o f  the one we 
are currently working on. These vertices have their visit value FALSE.  

B. At most  one vertex, u, whose rectangle is immediately  above v in the current 
column. Note  that by  definition of  a co lumn partit ion, there are no vertical 
edges in a column. Hence,  at most  one vertex can have its rectangle immedi- 
ately above v's rectangle in the current column.  I f  v is the first rectangle in 
the co lumn (i.e., v is a child o f  HeadNode ) ,  then no such u exists. I f  u exists, 
then u. visit = T R U E  and u. bottom = v. top. 

C. At most  one vertex u whose rectangle is immediately  below v in the current 
column. This vertex u is a child o f  v in the PDG.  

D. All other  vertices. These vertices have visit = T R U E  and occupy  a cont iguous 
segment o f  the previous column (i.e., the one with left bounda ry  x - 1 ) .  

v.bot tom is determined by the vertices in C and D. I f  the vertex u on C has 
already been visited, then its u.top is known and v.bot tom must equal u.top 
(Figure 3.4(a)). I f  there is no vertex in C or if the C vertex has not been visited, 
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line P R O C E D U R E  place (v); 
(* place the rectangles corresponding to vertices in the digraph with root v *) 

1 IF (v  ~ HeadNode)  T H E N  
2 [ v . v i s i t = T R U E ;  v . l e f i = x ;  v . t op=y;  
3 IF FirstPath T H E N  (* rectangle height = 1 *) 
4 [ y = y + 1; v. bottom = y; max_y  = y ] 

5 ELSE 
6 [ v. bottom = y; 
7 FOR all vertices u on the adjacency list of  v, DO 

(* u 's  are obtained from the original graph, not the path digraph *) 
8 IF (u.visit) A N D  (u.bottom # v.top) T H E N  
9 [(* u must  be to the left of  v *) 

10 u. right = x; 
11 IF (u. bottom > v. bottom) T H E N  
12 [ y = (u.bottom +max{u. top,  v.top})/2; 

13 v.bottom = y ] 
14 E N D I F ]  
15 ENDIF;  
16 E N D F O R  ] 
17 E N D I F  (* FirstPath *)] 
18 ENDIF;  (* v # HeadNode *) 

19 IF (v has no children) T HE N 
20 [ v. bottom = max_y  ] 

21 ELSE 
22 [ FirstChild = TRUE;  (* local variable *) 
23 FOR all children w of  v, DO 

(* children are obtained from the path digraph via an anticlockwise traversal *) 
24 CASE 
25 : w.visit: [ v.bottom = w.top ] 
26 : FirstChild: [ place (w); FirstChild = FALSE ] 
27 : ELSE: [ FirstPath = FALSE; x = x + I; y = v. bottom; place ( w ) ] 
28 ENDCASE;  
29 E N D F O R  ] 
30 ENDIF;  (* v has no children *) 
31 E N D  place; 

Fig. 3.3 

v. top 

u . top:=v.bottom 

t 
D 

v . top  

(~) 
Fig. 3.4. Determining v.bottom. 

(b) 
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then its top value is not known and v.bottom is determined by the vertices in D 
(Figure 3.4(b)). 

In either case, for each vertex u in D, we can set u.right---x as u.right = v.left. 
Note that (u.visit A N D  u.bottom ~ v.top) iff u ~ D or (u ~ C and u satisfies Figure 
3.4(a)). Lines 10-14 are written as though Figure 3.4(a) is not the case. Under 
this assumption, these lines are executed only for vertices u, u ~ D. Their right 
boundaries are set and v.bottom is set so as to allow the child (if any) of  v to 
share an adjacency with the lowermost rectangle of  D (lines 12 and 13). In case 
Figure 3.4(a) is the case, then the only useful work done in lines 10-14 is the 
setting of u. right for all u, u c D. 

Lines 19-30 handle the placement of  the children of v (if any), the case of  
Figure 3.4(a), and the case that C is empty. I f  C is empty, then v has no children. 
Hence, v is the bot tommost  rectangle in the current column and so should extend 
to max_y. This is handled in line 20. I f  v has children, then these are examined 
left to right (this is more clearly defined by following the edges in the PDG 
that leave vertex v in an anticlockwise order). Let w be a child of  v. We have 
three cases: 

1. w has already been visited. This is the case represented by Figure 3.4(a) with 
w = u. In this case, we need to set v.bottom to w.top (line 25). 

2. w is the leftmost (or first) child of  v. At this time, a recursive call is made to 
place w and all its descendants (line 26). 

3. w has not been visited and is not the leftmost child. In this case, w is to be 
placed in the next column. So x is incremented and w and its descendants 
are placed by the recursive call of  line 27. Note that since y is a global variable, 
its value could get changed as a result of  an earlier call to place (w) (for 
example,  from line 26 or even 27 itself). So, it is necessary to initialize y each 
time as in line 27. 

The variables w and FirstChild are local variables of  procedure place. The 
correctness of  the placement  procedure follows from the fact that the PDG is 
obtained from a planar triangulated graph and from our handling of  the case of  
Figure 3.4(b). The complexity of  the placement step is readily seen to be O(n), 
where n is the number  of  vertices in the P D G  (note that since the original graph 
is planar and connected, it contains O(n) edges). 

When our placement algorithm is used on the PDG of Figure 2.1(c), the 
rectangular dual of  Figure 2.4 is obtained. 

4. Obtaining the PDG 

4.1. Input. The input to our algorithm is a connected planar triangulated graph 
described by its adjacency lists. Such a graph may or may not have a rectangular 
dual. The necessary and sufficient conditions of  [6] and [7] that are described 
in Section 1 of  this paper  may be tested for in O(n) time using the algorithm of 
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(a) (b) 

Fig. 4.1. (a) Clockwise ordering and (b) anticlockwise ordering. 

[1]. This algorithm also determines whether the inpu t graph is a PTP (properly 
triangulated planar) graph. If  the input graph fails these tests, then no rectangular 
dual exists and we need proceed no further. So, assume that the tests are passed. 
Hence, a rectangular dual exists. 

To find a PDG we can begin with the PTP graph drawing obtained by the 
algorithm of [1]. This drawing, quite naturally, satisfies the properties P1-P3 of 
a PTP graph as stated in Section 1. From this drawing, a new linked list 
representation of the graph is obtained. This is described below. 

Every drawing of a graph imposes a natural cyclical ordering on the vertices 
that are adjacent to another vertex. For example, consider the drawing of Figure 
2.1(c). Vertices 1, 3, 4, and 5 are adjacent to vertex 2. A clockwise ordering is 
obtained by following the incident edges in a clockwise direction (Figure 4.1 (a)). 
This gives us the cycle (1, 4, 5, 3, 1). An anticlockwise ordering is obtained by 
following the incident edges in an anticlockwise direction (Figure 4.1(b)). This 
gives us the cycle (3, 5, 4, 1, 3). In either case, the starting point is irrelevant as 
the cycles (1, 4, 5, 3, 1), (4, 5, 3, 1, 4), (5, 3, 1, 4, 5), etc., are the same. 

The starting point for our algorithm to obtain a PDG is the drawing obtained 
by the algorithm of [!]. This drawing is represented in the form of doubly linked 
circular adjacency lists (see [5] for a definition of a doubly linked circular list). 
When a circular adjacency list is traversed in one direction, the vertices appear 
in clockwise order. When it is traversed in the opposite direction, they appear 
in anticlockwise order. Our algorithm actually requires two copies of the circular 
adjacency list of each vertex. One copy gets modified as the algorithm progresses 
while the other is unchanged. The latter copy is referred to as the original adjacency 
list while the former is simply called the adjacency list. 

4.2. Initialization and Variables Used. In addition to utilizing two sets of 
adjacency lists, our algorithm to construct a PDG uses several variables. These 
variables may be divided into the categories: 

A. Variables associated with each vertex of the planar graph. 
B. Variables associated with the PDG. 
C. Variables associated with the planar graph (other than those in A). 
D. Program variables. 
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We list, below, all the variables used by us. A description of the significance 
of each of these is also provided. 

Category A: variables associated with each vertex of  the planar graph 

The variables are denoted using the notation v.f This means v a r i a b l e f  associated 
with vertex v (and read "v dot f " ) .  

A.1. NotInPDG... This is a boolean-valued variable that is initially TRUE 
for all vertices v. When a vertex v is added to the PDG, v.NotInPDG is 
set to FALSE. 

A.2. RightOuter... This is a boolean valued variable that is TRUE for vertices 
on the right outer boundary of the subgraph being processed. For example, 
when the planar graph of Figure 2.2 is being processed, RightOuter is TRUE 
for vertices 8, 9, and 10, and FALSE for the remaining vertices. During the 
course of the algorithm, other vertices will have their RightOuter field set 
to TRUE (i.e., when they are on the right outer boundary of the subgraph 
being processed). However, the value of this variable never changes from 
TRUE to FALSE. 

A.3, TopOuter... Similar to RightOuter except that it is true for vertices on 
the top outer boundary (e.g., vertices 1, 4, 6, 9 (initially) of  Figure 2.2). 

A.4. BotOUter... Similar to TopOuter except that it is true for vertices on the 
bottom outer boundary (e.g., vertices 3 and 8 (initially) of  Figure 2.2). 

A.5. TopNext... This is a link variable that links together the TopOuter vertices 
from left to right. Thus in Figure 2.2, the TopNext variable is used to record 
the chain 1 ~ 4 ~ 6 ~ 9 as the top outer boundary of the initial graph being 
processed. As our algorithm proceeds, the top outer boundary will change 
and the variable TopNext associated with other vertices will be initialized. 

A.6. BottomNext... Similar to TopNext except that the bottom boundary is 
chained left to right. For the example graph of Figure 2.2, BottomNext is 
initially used to maintain the chain 3 ~ 8. 

A.7. LeftBound.ary... This variable may have one of the three values {0, 1, 2}. 
v.LeftBoundary = 2 iff v has never been a left boundary vertex. Otherwise, 
v.LeftBoundary may be 0 or 1. Recall from our informal discussion of  
Section 2 that the PDG is constructed by traversing the left boundary of 
the graph, deleting this left boundary,  traversing the new left boundary, 
deleting this, and so on. The new left boundary is constructed while the 
present one is being traversed. To distinguish between vertices on the present 
left boundary and those on the next, two values 0 and 1 are used. I f  0 (1) 
denotes vertices on the present left boundary,  then 1 (0) denotes those on 
the next left boundary. 

A.8. RightOuterReached... This variable is initially NIL  for all vertices. During 
the course of the algorithm it will be used to record the fact that certain 
vertices are adjacent to certain right outer vertices. As will be seen later, 
this variable is introduced to ensure that the algorithm runs in O(n) time. 
next... This is used to chain together vertices on the left boundary. The 
last vertex, v, on the chain has v.next = NIL. For the graph of Figure 2.2, 
the initial left boundary chain 1-~ 2 ~ 3 is maintained using this variable. 

A.9. 
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Category B: variables associated with the PDG 

B.1. StartNode... This is a vertex in the PDG. When a subgraph is being 
processed, all paths that are to be be added to the PDG begin at StartNode, 

B.2. EndNode.. .  All paths added to the PDG during the processing of a 
subgraph end at EndNode. 

B.3. VerticesRemaining... This is a boolean-valued variable that is true as long 
as there are vertices yet to be added to the PDG. 

B.4. parent... The next vertex added to the PDG is to be a child of  this PDG 
vertex. 

Category C: variables associated with the planar graph (other than those in A) 

C.1. N W . . .  Denotes the northwest vertex of the subgraph being processed. 
For the example of  Figure 2.2, N W  = 1 initially. 

C.2. N E . . .  The northeast vertex. Initially NE = 9 for the example of  Figure 2.2. 
C.3. S W . . .  The southwest vertex. Initially SW=3 for the example of 

Figure 2.2. 
C.4. SE . . .  The southeast vertex. Initially SE = 8 for the example of  Figure 2.2. 
C.5. next_NW.. .  The vertex that will become the N W  vertex after the present 

left boundary  has been processed, next_NW = 4 when N W  = 1 in the graph 
of Figure 2,2. 

C.6. next_SW.. .  The next southwest vertex. This is vertex 8 when SW= 3 in 
Figure 2.2. 

Category D: program variables 

D.1. LeftBound... This is a 0/1 valued variable used to tell us whether Left- 
Boundary = 0 or LeftBoundary = 1 signifies a vertex on the present left 
boundary.  

D.2. p . . .  Variable used to traverse the chain of left boundary vertices. Note 
that this chain begins at the vertex N W  and ends at the vertex SW. 

D.3. pred_p... The predecessor of  p on the left boundary chain. 
D.4. q . , .  Variable used in the construction of the next left boundary chain. It 

denotes the last vertex added to this chain. Note that this chain will begin 
at next_NW and end at next_SW. 

There are several other variables in Category D. The use of  these is very 
localized and their significance will become apparent  from the context in which 
they are used. 

The initialization process requires us to do the following: 

I1. Identify the NW, NE, SW, and SE vertices of  the input PTP graph, G. This 
is done by identifying the corner (or critical corner) implying paths of G. 
There can be at most four such paths (Theorem 1.1). Let the number  of such 
paths be k. Pick a vertex (any) from the interior of each of these k paths. 
Now pick an additional 4 - k  vertices from the outer boundary.  Note that 
the outer boundary must be comprised of at least four vertices. I f  it has only 
three vertices, then G is either a triangle or has a triangle that is not a face. 
The former case can be handled as a special case and the latter case violates 
condition P1 (Section 1) o f a  PTP graph. The four vertices seiected are labeled 
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Fig. 4.2. Examples showing corner implying paths: (a) three corner, (b) four corner, and (c) two 
critical corner implying paths. 

NW, SW, SE, and NE in such a manner  that these are encountered  in this 
(cyclic) order  when the outer boundary  is traversed in the anticlockwise 
direction. Some examples are shown in Figure 4.2. Broken edges denote 
corner  (or critical corner)  implying paths. 

I2. Initialize the fol lowing boundary  chains: 
(a) Left boundary  from N W  to SW using next. 
(b) Top  boundary  f rom N W  to NE using TopNext. 
(c) Bottom boundary  from SW to SE using BottomNext. 

I3. Set LeftBoundary = 0 for all vertices on the left boundary  chain and LeftBoun- 
dary = 2 for all other vertices. Set TopOuter and BotOuter = T R U E  for all 
vertices on the chains (b) and (c) o f  I2, respectively. 

I4. Set RightOuter = T R U E  for all vertices on the outer  boundary  that are between 
NE and SE (inclusive). 

15. Set RightOuterReached = N I L  for each vertex in G. 
I6. Initialize the P D G  to contain just the HeadNode. 

Since the algori thm of  [ 1 ] identifies the outer  boundary  of  the obta ined drawing, 
it is possible to carry out the initializations o f  I1-16 in O(n) time. 

4.3. PDG Construction. While the basic idea in t roduced in Section 2 for the 
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construction of the PDG is quite simple, the actual construction is complicated 
by the need to handle several special cases that arise. We shall describe these 
special cases and how they are handled as we describe the working of the general 
PDG construction algorithm. This algorithm is comprised of the nine procedures: 
set_next_NWSW, add_to_PDG, paths, process_chord, process_BottomLeft, 
process_hanging_component, process_ TopLeft, process_RightOuter, and pro- 
cess_NotRightOuter. After the initialization steps I1-16 described in the previous 
section are complete, procedure paths is invoked. This in turn invokes procedures 
set_next_NWSW, add_ to_PDG, process_RightOuter, and process_NotRightOuter. 
Procedures process_RightOuter, process_NotRightOuter in turn invoke the remain- 
ing four procedures. The details of  each of these nine procedures are provided 
in the following subsections. 

4.3.1. set_next_NWSW. This algorithm determines the values of next_NW and 
next_SW. As processing proceeds from one left boundary to the next, NW and 
SW move toward the right along the top and bot tom outer chains. This continues 
until the end of the chain is reached. At this time, the variable N W  or SW (or 
both) that has reached the end of its chain remains stationary. 

4.3.2. add_to_PDG(p). This procedure is used to add the vertex p or just an 
edge t o t h e  PDG. I f p  is not already in the PDG, then it is introduced as a child 
of  the vertex parent. Furthermore,  if p is the last vertex on the left boundary,  
then it completes a newly added path in the PDG. Since all such paths must end 
at vertex EndNode, the edge (p, EndNode) is also added to the PDG. 

I f p  is already in the PDG, there are two possibilities for p: p = NW or p = SW. 
This is so, as it is only the N W  or SW vertices of  the subgraph currently being 
processed that can be on several left boundary  paths (see the description of 
set_next_NWSW). I f  p = NW, the edge (StartNode, p) was added to the PDG 
during an earlier left boundary  traversal. So nothing is to be done now. I f p  = SW, 
then the edge (parent, p) has to be added. Note that parent must be a newly 
added vertex as the current left boundary must contain at least one new vertex. 
Finally, note that since p = SW is already in the PDG, the edge (p, EndNode) 
must have been added to the PDG at some earlier time. 

4.3.3. paths. This is described formally by the Pascal-like code of Figure 4.3. 
It adds all the vertices in the subgraph bounded by the vertices NW, NE, SW, 
and SE to the PDG. This is done by successively traversing and deleting the left 
boundary of the subgraph. Each such traversal of  a left boundary results in the 
addition Of a path to the PDG. This path begins at StartNode, goes through the 
left boundar2r and ends at EndNode. Procedure paths is a recursive procedure. 
When it is invoked initially, NW, NE, SW, and SE have the values specified in 
Section 4.2; StartNode = HeadNode; EndNode = NIL;  and LeftBound = O. 

The repeat loop of lines 1-19 essentially traverses the graph by advancing from 
one left boundary to the next. This terminates when all vertices have been added 
to the PDG. The variable parent is set to StartNode in line 2 as all paths added 
to the PDG must begin at this node. VerticesRemaining is set to FALSE in line 
3 'as  there may be no vertices left after we traverse the present left boundary. The 
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line PROCEDURE paths ( NW, NE, SW, SE, StartNode, EndNode, LeftBound); 
(* cover all vertices in the graph bounded by vertices NW, NE, SW, and SE by paths. 
These paths are added to the path digraph between StartNode and EndNode *) 

1 REPEAT (* obtain path cover *) 
2 parent = StartNode; 
3 VertieesRemaining = FALSE; 
4 set_next_NWSW; 
5 p = NW; (* vertex on present left boundary *) 
6 pred_p = NIL; (* predecessor of p on left boundary *) 
7 q = next_NW; (* vertex on next left boundary *) 
8 q. LeftBoundary = 1 - LeftBound; 
9 REPEAT (* travel down present left boundary *) 

10 add_to_PDG (p); parent =p; 
11 IF p. RightOuter 
12 THEN proeess_RightOuter 
13 ELSE process_NotRightOuter 
14 ENDIF; 
15 pred_p = p; 
16 p =p. next; (* advance p *) 
17 UNTIL (p = NIL); 
18 N W  = next_NW; S W  : next_SW; LeftBound = 1 - LeftBound; 
19 UNTIL (NOT VertieesRemaining); 
20 END paths; 

Fig. 4.3 

values  for  n e x t _ N W  and  n e x t _ S W  are de t e rmine d  by the p r o c e d u r e  call  of  l ine 
4. p, p red_p ,  and  q are in i t ia l ized  in l ines 5-8 to pe r fo rm  the t raversa l  o f  the left 
b o u n d a r y  and  to cons t ruc t  the next  left b o u n d a r y .  

The repea t  l oop  o f  l ines 9-17 implement s  the t raversal  o f  the left bounda ry ,  p 
denotes  the  left  b o u n d a r y  vertex present ly  be ing  examined .  This ver tex is a d d e d  
to the P D G  (line 10) and  then p rocessed  in line 11. The na ture  o f  this process ing  
de pends  on whe ther  or  not  p is on the r ight  bounda ry .  Fo l lowing  this,  p and  
p r e d _ p  are  a d v a n c e d  to the next  vertex on the left b o u n d a r y  (l ines 15 and  16). 
The t raversal  of  the left b o u n d a r y  ends  when p falls off the left b o u n d a r y  
( p  = NIL) .  

Dur ing  the process ing  o f  the left b o u n d a r y ,  the g raph  is modi f ied  and  the new 
N W ,  S W ,  L e f t B o u n d  values  are as ind ica ted  in line 18. 

4.3.4. process_chord .  The norma l  left b o u n d a r y  to left b o u n d a r y  advance  o f  our  
a lgor i thm is in te r rup ted  by the occur rence  of  specia l  cases. There  are five special  
cases that  we need  to handle .  Fou r  o f  these are h a n d l e d  by p rocedure s  pro- 

cess_ chord,  process_  B o t t o m L e f t ,  process_  h a n g i n g _  c o m p o n e n  t, and process_  T o p L e f t  

and  the fifth by the mechan i sm of  the R i g h t O u t e r R e a c h e d  var iable  that  is associ-  
a ted  with each vertex. The  first special  case arises when a chord  is de tec ted .  A 
chord  is an edge (u, v) that  satisfies the fo l lowing proper t ies :  

S1. Both u and v are  on the present  left bounda ry .  
$2. (u, v) is not  an edge o f  the left bounda ry .  
$3. u is a p redecesso r  o f  v on the left b o u n d a r y  cha{n and  v is not  in the PDG.  
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Fig. 4.4. Edge (4, 8) is a chord. 

Suppose we start with the PTP graph of Figure 2.2. After the first left boundary 
has been processed, the PDG is as in Figure 2.3(a) and the PTP graph is as in 
Figure 2.3(b). The new left boundary is 4--> 5--> 8. If this left boundary is added 
to the PDG to get the PDG shown in Figure 4.4, then because of the presence 
of  the edge (4, 8") in the PTP graph, condition (a) of Lemma 2.2 is violated and 
no rectangular dual can be obtained from the PDG. 

Hence, the presence of a chord requires us to deviate from our normal way of 
building the PDG. If  (u, v) is a chord, then u must not be a distant ancestor of 
v in the PDG. Otherwise, no rectangular dual can be obtained from the PDG. 
The situation of Figure 4.4 is corrected by eliminating the edge (5, 8) and adding 
the edge (5, 3) to the PDG. Now, 4 is not a distant ancestor of 8 and the presence 
of the edge (4,8) in the PTP graph does not create any difficulties with 
Lemma 2.2. 

The general circumstance surrounding a chord is shown in Figure 4.5(a). Edge 
(ch_p, ch_r) denotes the chord and ch_p is a predecessor of ch_r on the left 
boundary chain. At the time a chord is detected by our algorithm, ch_p will be 
in the PDG while ch_r will not. 

The planar region bounded by the cycle c h _ p ~ . . . ~ . . . ~  ch_r~ ch_p may 
contain additional vertices (such as a, b, c, etc., of Figure 4.5(a)). The edge 
(ch_p, ch_r) will be a chord with respect to all left boundaries in this region. So 
it is necessary to handle the entire region separately. This is done by first isolating 
this region from the rest of the remaining subgraph. Specifically, we traverse the 
adjacency list of vertex ch_r in the anticlockwise direction beginning at the vertex 
ch_p (step 1 of procedure process_chord, Figure 4.6). This traversal stops when 
the immediate predecessor, ch_SE, of ch_r in the left boundary chain is reached. 
Note that ch_SE ~ ch_p as (ch_p, ch_r) is not a left boundary edge. Deleting the 
edges between ch_r and all the vertices encountered during this traversal (includ- 
ing ch_p and ch_SE), results in isolating the subgraph of Figure 4.5(b). 

To process this subgraph, the NW, NE, SW, and SE vertices need to be 
identified. The first step in this identification is to traverse the original adjacency 
list of ch_SE clockwise beginning at ch_r. ch_end is the first vertex encountered. 
This vertex must be to the left of the current left boundary. To see this, observe 
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Fig. 4.5, Chord (ch_p, ch_r). 

step P R O C E D U R E  process_chord (ch_p, ch_r, LeftBound); 
1 traverse the adjacency list for vertex ch_r anticlockwise beginning at vertex ch_p 

and ending when the vertex ch_SE such that ch_SE.next = ch_r (i.e., the predecessor 
of  ch_r on the current left boundary) is reached 

1.1 for all vertices (including ch_p and ch_SE) encountered during this traversal, set 
their RightOuter field to TRUE and delete edges between these vertices and ch_r 
from the graph; 

2 set ch_end to be the vertex that is on the original adjacency list of  ch_SE and 
clockwise from ch_r; 

3 traverse the original adjacency list of  ch_end anticlockwise beginning at ch_SE, until 
the last vertex ch_SW such that chSW. NotlnPDG = TRUE and ch_SW.LeftBoun- 
dary = LeftBound is reached (this traversal essentially follows vertices on the current 
left boundary) 

3.1 for vertices between ch_SW and ch_SE that are encountered during this traversal, 
set BottomNext field, set BotOuter to TRUE and LeftBoundary = 2; 

4 {at this time, a subgraph bounded by ch_p, the newly marked RightOuter vertices, 
ch_SE, ch_SW, and vertices on the current left boundary between ch_p and ch_SW 
has been isolated.} 
Set ch_SW, next to NIL; 

5 paths (ch_p, ch_p, ch_SW, ch_SE, ch_p, ch_end, LeftBound); 
END process_chord; 

Fig. 4.6 
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that by the choice of  the initial NW, NE, SW, and SE, the first left boundary 
cannot have a chord. So, the current left boundary cannot be the first left boundary.  
Hence, ch_SE has an adjacent vertex clockwise from ch_r and to its left. 

Next, traverse the original adjacency list of  ch_end anticlockwise beginning 
at the vertex ch_SE. This traversal terminates at the last vertex ch_SW that is 
both on the current left boundary and that is not in the PDG. Hence, this traversal 
essentially moves backward on the left boundary chain. Note that ch_SW # ch_p 
as ch_p is already in the PDG (furthermore, it may not be adjacent to ch_end). 
However,  ch_SW may be the same vertex as ch_SE. 

The isolated subgraph of Figure 4.5(b) will be processed using procedure paths 
recursively, ch_p will be the northwest and northeast vertex, ch_SW the southwest, 
and ch_SE the southeast. Before the recursion can begin, the right outer boundary,  
bottom outer boundary,  etc., need to be initialized. This is done in step 3.1 of  
process_chord. Finally, all the paths added to the PDG during the recursive call 
of step 5 should begin at ch_p and end at ch_end. This ensures that ch_p is not 
a distant ancestor of ch_r in the PDG. 

4.3.5. process_BottomLeft. This is the second of the four special cases alluded 
to in Section 4.3.4. This arises when the current version of the PTP graph contains 
an edge (p, r) with the properties: 

B1. p is on the current left boundary and p ~ SW. 
B2. r is on the current bot tom boundary and r r  SW. 

The situation is depicted in Figure 4.7. Because of the way in which we construct 
the next left boundary,  it is necessary to handle the bottom left corner bounded 
by the edge (p, r) and the left and bot tom boundaries in a special way. 

The special processing of the bottom left corner is carried out by procedure 
process_BottomLeft (Figure 4.8). Step 1 isolates the affected region. This is done 
by traversing the adjacency list of  vertex r anticlockwise beginning at the vertex 
p and terminating at the first vertex bl_SE that is on the bot tom boundary. 

We shall show later that the subgraph, H, being processed always satisfies the 
following condition: 

C1. The subgraph H contains no edge (u, v) such that both u and v are on the 
bot tom boundary and u and v are not adjacent on the bottom boundary 
chain. 

As a result of  C1, bl_SE and r must be adjacent on the bottom boundary chain 
and bl_SE.BottomNext = r (as in Figure 4.7). The vertices encountered during 
the anticlockwise traversal of  r 's adjacency list (including p and bl_SE) form 
the right outer boundary of the region to be specially handled. Deleting the edges 
that connect r to these vertices isolates the bottom left region from the remainder 
of the graph. The vertices in the isolated region get added to the PDG as a result 
of  the recursive call of  paths from step 2. Note that p is both the N W  and NE 
vertex and that all paths added to the PDG will begin at p and end at the current 
EndNode. Observe that the bottom and top outer boundaries do not need to be 
initialized. 
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4.3.6. process_hanging_component. The third special case is also a consequence 
of  the manner  in which we construct the next left boundary. There will be times 
when the present and next left boundaries have the form given in Figure 4.9 and 
the region inbetween (marked hanging component)  contains vertices that have 
yet to be added to the PDG. Before advancing to the next left boundary,  it is 
necessary to handle the hanging component.  This is done by Figure 4.10 (pro- 
cedure process_hanging_component). 

At the time process_hanging_component is invoked, vertices hg_p and hg_r are 
known. Furthermore, it is known that there is at least one vertex in the hanging 
component  (as we shall see, (hg_start, hg_p) is not an edge of the current left 

step 
1 

1.1 

PROCEDURE process_BottomLeft; 
traverse the adjacency list for vertex r anticlockwise beginning at vertex p and ending 
when the vertex b l S E  such that bl_SE. BotOuter = TRUE is reached 

for all vertices (including p and bl_SE) encountered during this traversa[, set their 
RightOuter field to TRUE and delete edges between these vertices and r from the 
graph; 

{at this time, a subgraph bounded by p, the newly marked RightOuter vertices, bI_SE, 
SW, and vertices on the current left boundary between p and S W  has been isolated} 
paths (p, p, SW, bl SE, p, EndNode, LeftBound); 

E N D process_ BottomLeft; 

Fig. 4.8 
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Fig. 4.9. Hanging component. 
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path. So, if the hanging component  is empty, the graph has a face that is not a 
triangle). 

As in the preceding two special cases, we first isolate the hanging component  
and then process it by using procedure paths recursively. The broken part of the 
present left boundary has been processed by the time process_hanging_component 
is invoked. Hence, all vertices on this segment and all edges incident to these 
vertices have been deleted from the modified copy of the PTP graph. To determine 
the vertex hg_start, it is necessary to traverse the original adjacency list of hg_r 
in clockwise order beginning at vertex hg_p. hg_start is the first vertex encountered 
(excluding hg_p) that is on the current feft boundary (step 1 of  Figure 4.10). Let 
hg_SE be the first vertex encountered after hg_p during this traversal. This vertex 
must be part  of  the hanging component.  In particular, hg_SE ~ hg_start. This is 
so as the graph is a PTP graph and the hanging component  is not empty. 

This traversal of  the adjacency list of hg_r also enables us to identify the vertex 
hg_NE (which may be the same as hg_SE) and label the right outer boundary 
of the hanging component  (steps 1.1 and 2). The vertex hg_NW is obtained by 
traversing the original adjacency list of vertex hg_start clockwise beginning at 
the vertex hg_NE. During the processing of the broken segment (hg_start ~ hg_p) 
of the current left boundary,  all vertices of the hanging component  that are 
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step PROCEDURE process_hanging_component ( hg_p, hg_r, LeftBound); 
1 traverse the original adjacency list of hg_r clockwise beginning at the vertex hg_p 

and ending when a vertex hg_start with hg_start. LeftBoundary=LeftBound is 
reached. Let hg_SE be the first vertex encountered after vertex hg_p 

1.1 for all vertices (excluding hg_p and hg_start) encountered during this traversal, 
set their RightOuter field to TRUE and delete edges between them and vertex hg_r; 

2 let hg_NE be the vertex encountered just before vertex hg_start is reached in the 
above traversal; 

3 traverse the original adjacency list of hg_start clockwise starting at vertex hg_NE 
until a last vertex hg_NW such that hg_NW.LeftBoundary= 1-LeftBound and 
hg_NW. NotlnPDG = TRUE is reached (this traversal essentially follows vertices on 
the next left boundary) 

3.1 for all vertices from hg_NE to hg_NW that are encountered in this traversal, set 

TopNext field, set TopOuter to TRUE and LeftBoundary =2  (i.e., as new vertices); 
4 traverse the original adjacency list of hg_p anticlockwise starting at vertex hg_SE 

until a last vertex hg_SW such that hg_SW.LeftBoundary=l-LeftBound and 
hg_SW.NotlnPDG=TRUE is reached (this traversal also follows vertices on the 
next left boundary) 

4.1 for all vertices from hg_SE to hg_SW that are encountered in this traversal, set 
BottomNext field, set BotOuter to TRUE and LeftBoundary = 2; 

5 {the subgraph bounded by hg_NW, hg_NE, hg_SE, hg_SW has now been isolated 
from the rest of the graph.} 
Set hg_SW.next to NIL; 

6 paths (hg_NW, hg_NE, hg_SW, hg_SE, hg_start, hg_p, 1- LefiBound); 
END process_hanging_component; 

Fig. 4.10 

adjacent to vertices between hg_start and hg_p are labeled as candidates for the 
next left boundary, hg_NW is the last vertex encountered in the aforementioned 
traversal of  the original adjacency list of hg_start that has been labeled in this 
way (step 3). Step 3.1 initializes the top boundary of the hanging component. 

Step 4 identifies the vertex hg_SW and step 4.1 initializes the bottom outer 
boundary of  the hanging component. To isolate the hanging component,  it is 
necessary to delete the edges between its right outer boundary and hg_r. This is 
done in step 1.1. All other edges (i.e., those incident to the broken segment of 
the current left path) were deleted during the processing of this segment. 

The left boundary chain was constructed while the broken segment of the 
current left path was processed. All that is required is to put in the end of chain 
terminator (NIL). This is done in step 5. 

All paths added to the PDG because of the recursive invokation of step 6 begin 
at hg_start and end at hg_p. 

4.3.7. process_TopLeft. The last algorithm that handles a special case is pro- 
cedure process_TopLeft (Figure 4.11). This handles the situation when the 
modified graph being processed currently has an edge (p, r) such that: 

TL1. p is on the current left boundary. 
TL2. r is on the current top boundary and r # NW. 
TL3. (p, r) is not a top boundary edge. 
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step PROCEDURE process_TopLeft; 
1 traverse the adjacency list of r clockwise beginning at the vertex p and ending when 

a vertex t lNE  with tl_NE. TopOuter = TRUE is reached. Let tl_SE be the first vertex 
encountered after vertex p 

1.1 for all vertices (excluding p) encountered during the traversal, set their RightOuter 
field to TRUE and delete edges between them and vertex r; 

2 traverse the adjacency list of p anticlockwise starting a~ vertex t lSE until a last 
vertex tl SW such that tl_SW.LeftBoundary = 1 - LeftBound and tI_SW. NotlnPDG = 
TRUE (this traversal essentially follows vertices on the next left boundary) 

2.1. for all vertices from tI_SE to tl_SW that are encountered in this traversal, set 
BottomNext field, set BorOuter to TRUE and LeftBoundary = 2; 

3 {the subgraph bounded by next NW, tl_NE, tl_SE, tl_SW has now been isolated 
from the rest of the graph.} 
Set tl_SW.next to NIL; 

4 paths (next_NW, tl_NE, tl_SW, tl_SE, StartNode, p, 1-  LeftBound); 
END process_ TopLeft; 

Fig. 4.11 

The s i tua t ion  crea ted  by  such an edge is shown in F igure  4.12. By the t ime the 
edge (p, r) is de tec ted  by  our  a lgor i thm,  the  b r o k e n  segment  of  the  current  left 
b o u n d a r y  has been  p rocessed  and  de le ted  f rom the graph.  Fur ther ,  the  vert ices 
f rom n e x t _ N W  to t l _ S W  to t l_SE to r on the  ou te r  b o u n d a r y  o f  the  top  left  
region have been  cha ined  toge the r  as par t  o f  the  next  left b o u n d a r y .  W h e n  the 
edge (p, r) is de tec ted ,  we real ize that  this  next  left b o u n d a r y  is incorrec t  and  
process  the  top  left  reg ion  recursively.  

To process  the top  left  region,  this reg ion  is first i so la ted  f rom the work ing  
PTP graph  and  the vert ices t l_SW, tl_SE, and  t l_NE ident i f ied.  To begin  with,  
we may  assume that  r r nex t_NW.  ( I f  r = nex t_NW,  then  the cond i t ions  for a 
hang ing  c o m p o n e n t  are sat isf ied with p = hg_p and  r = hg_r. So, this case may  
be h a n d l e d  by  process_hanging_component.) The code  o f  F igure  4.11 makes  this 
a s sumpt ion ,  t l_NE and  t l_SE are ob t a ined  as in s tep 1. t l_NE ob ta ined  in this 
way must  be ad jacen t  to r on the top  b o u n d a r y  because  of  the fo l lowing  cond i t ion  
that  the s u b g r a p h  H be ing  p rocessed  a lways  satisfies (we shall  prove  this later):  

C2. The subg raph  H conta ins  no edge (u, v) such that  bo th  u and  v are on the 
top  b o u n d a r y  and  u and  v are not  ad j acen t  on the t op  b o u n d a r y  chain.  

Step 1.1 isola tes  the t op  left  region;  s tep 2 identif ies  the ver tex t l_SW; and  
step 2.1 sets the b o t t o m  b o u n d a r y  of  the top  left region.  The recursive call  of  
s tep 4 results  in all vert ices o f  the top  left reg ion  be ing  a d d e d  to the P D G  by the 
inc lus ion  o f  pa ths  that  begin  at the  presen t  StartNode and  end at the  node  p 
which  is a l r eady  in the PDG.  

4.3.8. process_RightOuter. With the d i scuss ion  of  the  special  p rocedu re s  com- 
plete ,  we can resume our  d i scuss ion  of  p r o c e d u r e  paths. As po in t ed  out  in Sect ion 
4.3.3, the p rocess ing  o f  the current  left b o u n d a r y  is done  one vertex at a t ime,  
top  to bo t tom.  The p rocess ing  assoc ia ted  with any vertex p de pe nds  on whe ther  
or  not  it is a r ight ou te r  vertex.  In this sec t ion we cons ider  the case when p is a 
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Fig. 4.12. Top left region. 

right outer vertex. This is handled by procedure process_RightOuter (Figure 4.13). 
This procedure performs the following functions: 

Task 1. In case the graph has a nonempty region above p, this region is 
processed (Figure 4.14). 

Task 2. If p is reached for the first time and there is an edge (p, t) such that 
t is on the left boundary and t is not adjacent to p on the left boundary 
chain, the region bounded by the left boundary and the edge (p, t) is 
processed (Figure 4.15). 

At the time proeess_RightOuter is invoked, all predecessors of p on the left 
boundary chain have been processed. This means that these vertices and edges 
incident to them have been deleted from the working version of the PTP graph. 
Ifpred_p = NIL, then p = N W =  NE and the region above p is empty. Ifpred_p 
is a right outer vertex, then the region (if any) above pred_p was processed when 
process_RightOuter was invoked with pred_p as the p vertex. If pred_p is not a 
right outer vertex, then there is at least one vertex on the right of the left boundary 
that is above p. Hence, the conditional of line 1 correctly identifies the conditions 
under which the region above p is not empty. 

The broken line of Figure 4.14 signifies the segment of the left boundary that 
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line PROCEDURE process_RightOuter; 
1 IF ((pred_p # NIL) AND (NOT pred_p.RightOuter)) THEN 
2 [ q.next = p; p.LeftBoundary = 1 - LeftBound; 
3 m = p. next; p. next= NIL; (* save p.next in m *) 
4 paths (nex t_NW,  NE, p, p, StartNode, NIL, 1 -  LeftBound); 
5 p.next = m (* reset p.next *)] 
6 ENDIF;  
7 I F ( p = S W )  T HE N RETURN;  

(* finished traversing current path and graph *) 
8 Set NW,  next_NW, N E  and q to p; p. LeftBoundary = 1 -  LeftBound; 
9 StartNode = p; 

10 IF (p is being visited for the first time) T HE N 
11 [ Starting from the vertex t that is adjacent to p and such that t. RightOuter = TRUE,  

traverse the adjacency list of p clockwise and do: 
12 IF ( t. LeftBoundary= LeftBound A N D  t # p.next)  T H E N  
13 [ 1F (t, No t lnPDG)  THEN 

[ (* vertex not added to digraph *) 
14 process_chord (p, t, LeftBound)] 
15 ELSE 

[(* t must be S W * )  
16 process_hanging_component ( t, p, 1 -  LeftBound) 

(* treat previous left boundary as current *)] 
17 ENDIF;  
18 p.next = t ] 
19 ELSE 
20 [ set t. RightOuterReached =p  ] 
21 ENDIF;  
22 END traversal] 
23 ENDIF;  
24 deleted edge (p, p.next)  from graph; 
25 END proeess_RightOuter; 

Fig. 4.13 

has been processed prior to this invokation of  process_RightOuter. When this 
segment was processed, the next left boundary chain from next_NW to q was 
created. To process the region above p, we merely complete the left boundary 
chain of  this region as in lines 2 and 3 and invoke paths as in line 4. 

When line 7 is reached, the region (if any) above p has been processed and 
deleted from the working copy of  the graph. If p = SW, then since p is a right 
outer vertex, p = SE also. Hence the processing of  the entire graph (or subgraph) 
is complete.  Note  that at this time, VerticesRemaining = FALSE and p. next = NIL. 
So, procedure paths terminates. 

If p ~ SW, then we are not at the end of  the left boundary and the situation 
is as depicted in Figure 4.15. If vertex p is being examined at this point of  this 
procedure for the first time, then its adjacency list is traversed in the anticlockwise 
direction, beginning at a right outer vertex, t". Because of  the fol lowing condition, 
the vertex t" is unique. 

C3. The subgraph H being processed at any time has no edge (u, ~) such that 
both u and v are on the right boundary and u and v are not next to one 
another on this right boundary. 
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Fig. 4.14. Region above p. 

Each vertex that is on p's adjacency list is examined. If t is on the left boundary 
and is not adjacent to p on the left boundary chain, then t is the t' o f  Figure 
4.15. The left boundary from p to t' cannot be processed in the normal manner 
as this would  result in a P D G  in which p is a distant ancestor o f  t'. In case t' is 
not in the PDG, then the conditions for a chord are satisfied and procedure 
process_chord invoked to process the region between the left boundary and the 

P 

I 
t t=~ 

SW 

Fig. 4.15. Region below p. 
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edge (p, t'). During this processing, the entire region is deleted from the working 
copy of the graph and t" is now the vertex that is anticlockwise adjacent to t'. 
So the traversal of  p ' s  adjacency list terminates. In case t' is already in the PDG, 
t' must equal S W  as the N W  and S W  vertices are the only ones that can survive 
after being added to the PDG. The region bounded by the current left boundary 
and the edge (p, t') can be handled as a hanging component  with hg_p = t' and 
hg_r = p. Once again, this region is eliminated during its processing as a hanging 
component  and t" becomes the next vertex anticlockwise adjacent to p. So the 
traversal of  p ' s  adjacency list is complete. 

I f  the vertex t does not satisfy the conditions of  line 12, then its RightOuter- 
Reached variable is set to p to indicate that it is reachable by a single edge from 
the right outer vertex p. This is used in the next procedure to detect a chord. By 
setting this variable now, we avoid having to traverse p 's  adjacency list several 
times. This prevents the computing time of our algorithm from becoming O(n2). 

4.3.9. process_NotRightOuter. The Pascal-like code for this procedure is given 
in Figure 4.16. This procedure is charged with the task of adding vertices to the 
next left boundary. On entry, this left boundary  begins at next_NW and ends at 
q. Since the graph we are dealing with is a PTP graph, q and p are adjacent 
vertices. The adjacency list of  vertex p is traversed in the clockwise direction in 
the loop of lines 2-30. This traversal begins just after the vertex q. 

Let the adjacent vertex currently being examined be r. The case of lines 6-12 
is the same as that of  lines 12-18 of Figure 4.13 and is handled in an identical 
manner. Lines 13-21 examine the case when r is a vertex that has not been seen 
by the algorithm earlier, r is added to the next left boundary chain in lines 14 
and 15. The special cases of  a top left and bot tom left corner created by the edge 
(p, r) are detected and processed in lines 16-21. 

The last case for r that requires us to do anything is that of  line 22. In this 
case the vertex r has been reached from two nonadjacent  vertices on the current 
left boundary chain. This means that there is a hanging component  that is to be 
processed. 

Following the processing of vertex r in lines 5-24, this vertex is on the next 
left boundary chain. At this time we perform Task 2 of  Section 4.3.8 for the case 
that p is not reached the first time. This is done in lines 26-29. Performing this 
task is somewhat  simplified as vertex r cannot be in the PDG when the conditionals 
of line 26 are true. Because of the code of lines 26-29 in Figure 4.16, executing 
the code of lines 11 and 12 of Figure 4.13 when p is being visited other than the 
first time cannot result in any useful work. The adjacency list o f p  will be traversed 
and line 20 is the only one that can be reached. However t.RightOuterReached 
is already p ! 

4.3.10. Proofs for C1-C3 

LEMMA 4.1. Condition C1 of Section 4.3.5 is always true. 

PROOF. This is true initially when H is the whole original PTP graph. To see 
this, note that by the initial choice of NW, NE, SW, and SE, the bottom boundary 
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line P R O C E D U R E  process NotRightOuter; 
(* p is not on the right outer boundary. So, q is adjacent to p. Examine all other vertices 
adjacent to p *) 

1 delete edge (p, q) from the graph; 
2 LOOP 
3 IF (adjacency list of p is empty) THEN RETURN; (* finished *) 
4 r = vertex on adjacency list of p that is clockwise from q; 
5 CASE 
6 : ( r. Le f tBounda(v  = Le f tBound  A N D r # p. next): 

7-12 These lines are lines 13-18 of Figure 4.13 with t replaced by r 
13 : (r. Le f tBoundary  =2): (* r is a new vertex *) 
14 q. next  = r; r. Le f tBoundary  = 1 - Le f tBound;  

15 q = r; VerticesRemaining = TRUE; 
16 IF (r. TopOuter) THEN 
17 [ process_ TopLeft;  n e x t _ N W  = r ] 

18 ELSEIF ( r .BotOuter  AND p r S W )  THEN 
19 [ process_Bot tomLef t ;  next_ S W  = r; 
20 p.nex t  = NIL; RETURN (* exit left boundary traversal *) 

] 
21 ENDIF; 
22 : ( r. Le f tBoundary  = 1 - Le f tBound  ): 

23 q = r; process_hanging_component  ( p, r, Le f tBound) ;  

24 ENDCASE; 
25 delete edge (p, r) from the graph; 
26 IF ( ( r .R igh tOuterReached  = N W )  AND ( N W . n e x t  # r)) THEN 
27 [ process_chord ( N W ,  r, 1 - L e f t B o u n d ) ;  

(* process subgraph marked by next left boundary vertices *) 
28 N W . n e x t  = r; q = r ] 

29 ENDIF; 
30 REPEAT; 
31 END process_NotRightOuter;  

Fig. 4.16 

cannot have a shortcut. We need to establish that all subsequent invokations of 
procedure paths preserve this condition. Let us examine each of these. 

(a) From step 5 of procedure process_chord (Figure 4.6) 
From Figure 4.5(b) we see that the bottom boundary consists of left boundary 

vertices between ch_SW and ch_SE. Each of these is adjacent to ch_end. So, if 
there is an edge (u, v) that violates C1, then vertices u, v, and ch_end form a 
triangle that is not a face. This violates the requirement that the initial graph is 
a PTP graph. 

(b) From step 2 of procedure process_BottomLeft (Figure 4.8) 
The new bottom boundary is a left segment of the previous bottom boundary 

(Figure 4.7). So, if C1 is true for the previous boundary, it must be for the new 
o n e .  

(c) From step 6 of procedure process_hanging_component (Figure 4.10) 
All the new bottom boundary vertices are adjacent to vertex hg_p (see Figure 

4.9). So, if there is an edge (u, v) that violates C1, then the graph has a triangle 
(u, v, hg_p) that is not a face. So such an edge cannot exist. 
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Table 1. Typical run times on an Apollo DN320 workstation. 

Number of PDG from PTP 
nodes graph 

Time (seconds) 

Dual from PDG 

25 0.179 0.0127 
50 0.311 0.0237 

100 0.693 0.0495 

(d) F rom step 4 of  procedure  process_TopLeft (Figure 4.11) 
All vertices on the new bo t tom boundary  are adjacent  to vertex p (see Figure 

4.12). So C1 must  be satisfied. []  

The proofs  o f  the fol lowing lemmas are similar to that of  Lemma 4.1. 

LEMMA 4.2. Condition C2 stated in Section 4.3.7 is always true. 

LEMMA 4.3. Condition C3 of Section 4.3.8 is always true. 

4.4. Complexity Analysis. The algorithm we have described is easily imple- 
mented to run in O(n) time. The only cause for concern is that  we need to begin 
the traversal o f  various adjacency lists f rom seemingly r andom points. A closer 
examinat ion reveals that  this is not  so. The node  at which the traversal starts fits 
into one o f  the fol lowing categories: 

(a) It is one node  clockwise or anticlockwise f rom a left bounda ry  node. 
(b) Let (u, v) be an edge. This edge is represented by two nodes:  one (say A) 

on the adjacency list for u and the other  (say B) on the adjacency list for v. 
I f  the edge (u, v) is detected from vertex u, then we may wish to traverse the 
list for  v beginning at the node  for u. This can be done,  easily, by keeping 
a pointer  f rom A to B and another  f rom B to A. 

5. Experimental Results. Our  algorithm to find a rectangular  dual was pro- 
g rammed in Pascal and run on an Apollo DN320 workstation. The typical time 
taken for PTP graphs with 25, 50, and 100 nodes is shown in Table 1. As can be 
seen, the algori thm is very practical. We also ran the 36-node example of  [6]. 
This required only 0.232 seconds.  

6. Conclusions. We have developed a linear-time algorithm to obtain a rect- 
angular  dual of  a planar  tr iangulated graph. This algorithm has been p rogrammed  
in Pascal. Experimental  results indicate that it is a very practical algorithm. 
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