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Designing Networks with Compact Routing Tables 

Greg N. Frederickson 1'2 and Ravi Janardan ~'3 

Abstract, Classes of  network topologies are identified in which shortest-path information can be 
succinctly stored at the nodes, if they are assigned suitable names. The naming allows each edge at 
a node to be labeled with zero or more intervals of  integers, representing all nodes reachable by a 
shortest path via that edge. Starting with the class of  outerplanar networks, a natural hierarchy of 
networks is established, based on the number  of  intervals required. The outerplanar networks are 
shown to be precisely the networks requiring just one interval per edge. An optimal algorithm is 
given for determining the labels for edges in outerplanar networks. 

Key Words. Distributed network, Graph theory, Message routing, Outerplanar network, Routing 
table, Shortest paths. 

1. Introduction. The routing of messages between pairs of  nodes is a basic 
activity in a distributed network. Assuming a cost function on the edges of  the 
network, it is desirable to route each message along a shortest path. The most 
straightforward approach is to maintain a complete routing table at each of the 
n nodes, which gives for each potential destination the name of the next node 
on a shortest path to the destination. This approach requires that n -  1 items of 
routing information be stored at each node in the network, with each item being 
a node name. If  the network is dense and of irregular topology, then one would 
not expect to be able to do appreciably better spacewise than using complete 
routing tables. However, for sparse networks, is it possible to maintain O(rl 2) 
items of routing information in the network and still achieve shortest path 
routings ? We examine this question in the context of  being free to assign (log n)-bit  
names to the nodes. We present a node naming and message routing scheme that 
can handle broad classes of  networks with arbitrary nonnegative costs on the 
edges. The scheme groups networks, starting with the class of  outerplanar 
networks, into a natural hierarchy based on the amount of  space devoted to 
storing routing information. 

Routing schemes for tree networks and shortest-path routing schemes for 
unit-cost ring networks have been presented in [SK], and later in [vLT1]. The 
nodes are assigned names from 1 to n, and the end of every edge {v, w} incident 
with any node v is labeled with a subinterval of  [1, n], with wraparound allowed 
in the subinterval. The interval represents the set R~.w of nodes such that there 
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is a shortest path from v to each node in Rv.w with the first edge on this path 
being {v, w}. In [vLT2] interval labeling schemes are also given for certain highly 
regular networks with edges of unit cost, including complete graphs, complete 
bipartite graphs, and grids. 

We first give an interval labeling scheme for outerplanar networks with arbitrary 
nonnegative costs on the edges. The scheme stores just d items of routing 
information at every node v, of  degree d. Thus O(n) items of routing information 
are stored in total. For arbitrary nonnegative edge costs, we show that the 
outerplanar graphs are precisely the graphs for which such an interval property 
holds. Furthermore, we establish a very nice "reflection" property of outerplanar 
graphs. Using this property we are able to generate an optimal algorithm for 
determining the labels of  all edges. 

In [vLT2] a k-interval labeling scheme is proposed,  in which each edge is 
labeled with up to k intervals encoding shortest paths. A 2-interval labeling 
scheme is given in [vLT2] for a unit-cost grid with row- and column-wraparound. 
We present a result that is stronger in that it is applicable to graphs of irregular 
topology and allows arbitrary nonnegative edge costs. We show that k-interval 
labeling schemes, for k > 1, can handle classes of  graphs much richer than the 
class of  outerplanar graphs. Thus, our results can be helpful in designing a 
network when small routing tables are desirable. 

In particular, we establish that any graph that can be embedded in the plane 
such that all but q of the vertices are on p faces has a [ (3p+ q)/2]-interval  
property. In fact, the number  of  items of routing information required at a node 
of degree d is at most 3p + q + d - 2. I f  the p faces form s connected components,  
we show that the graph has a [(2p+s+q)/2J-interval'labeling, with a total of 
at most 2p + s + q + d - 2 intervals at any node. Our approach can also be applied 
to graphs that can be embedded on a surface of positive genus g. We show that 
such graphs possess a [(2p + s + q +4g) /2] - in terva l  labeling, and use a total of  
at most 2p + s + q + 4g + d - 2 intervals at any node. In addition, our labeling 
scheme can be adapted naturally to planar graphs in which we wish to route 
messages to vertices on only a selected subset of  the faces. This technique, together 
with other ideas, can then be used to generate a near-shortest-paths routing 
scheme for general planar graphs [FJ2]. 

We are thus able to handle conveniently networks with more desirable proper- 
ties than either tree or ring networks alone. Since our networks allow more 
interconnections than ring networks, distances between nodes can be made smaller 
than in ring networks. Since we can handle networks that are at least biconnected, 
a single node or edge fault will not disconnect the network, as is the case with 
trees. In fact, in [FJ3] we present a space-efficient and fault-tolerant routing 
scheme for outerplanar networks. For any combination of node and edge faults 
that do not disconnect the network, the scheme restores near-optimal routings 
by storing at each node only a constant amount of additional information per fault. 

A preliminary version of this paper  appeared in [FJ1]. 

2. Routing in Outerplanar Networks. We first summarize the interval routing 
method presented in [SK] for trees and rings. The nodes are named appropriately 
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with the integers f rom 1 to n. For  trees, the names  are depth-first  numbers .  For  
rings, the names  are assigned consecutively,  going clockwise a round  the ring. 
For  any vertex v of  degree d, let wl, w 2 , . . . ,  wa be the neighbors  of  v indexed 
in clockwise order  a round  the exterior face starting f rom v. Each edge incident  
with v is labeled by an interval,  with the intervals f rom all edges incident  with 
v forming a part i t ion o f  [1, n ] -  v. W r a p a r o u n d  is a l lowed in the intervals. For  
instance,  the interval [ i, j ) ,  i > j, contains {i, i + 1 , . . . ,  n, 1 . . . .  , j - 1 }. Denote  the 
intervals by [li, Ii+1), for  i = 1, 2, . . . ,  d, where Id+~ = v. Without  loss of  generali ty,  
assume that  interval [li, li+l) labels edge {v, wi}. The values l~, i = 1, 2 , . . . ,  d, are 
stored in a table at node  v, each with a pointer  to associa ted edge {v, w~}. When 
a message arrives at node  v, if its dest inat ion u is not equal  to v, then the table 
is searched for  the entry li such that  l~_< u < I~+l. The message  is then sent out 
on edge {v, w~}. Since the values 1~, i = 1, 2 , . . . ,  d + 1, form a rotated list [MS],  
IF2],  the table can be searched in O(log d)  t ime using a modif ied b inary  search. 

The interval labeling me thod  also works for  ou te rp lanar  networks  if the nodes 
are named  appropr ia te ly .  An outerplanar network is a ne twork  that  can be 
e m b e d d e d  in the p lane  such that  all nodes  lie on one face [H].  Throughou t  this 
pape r  we consider  ou te rp lanar  networks  in the context  o f  such an embedding ,  
called an outerplane embedding. We assign as names  to the nodes  the integers 
f rom 1 to n in consecut ive order  starting at an arbi t rary node  and proceeding  
clockwise a round  the exter ior  face. I f  any node  v is visited more  than  once in 
this traversal ,  implying v is an art iculat ion point  o f  the network,  then v may  be 
named  on any one of  the visits. We call such a naming  of  the nodes a clockwise 
node  naming.  An ou te rp lanar  ne twork with a clockwise node  naming  is shown 
in Figure l(a) .  We first show that  for any ass ignment  of  costs to edges, each end 
of  every edge can be labeled with an interval such that  any message  is routed 
along a shortest  path.  Such a labeling of  the edges of  the ne twork  of  Figure 1 (a) 
is shown in Figure l (b) .  

1 2 

(a) 
k.L/[1,4) [4,1) k2# [2,3) 

(b) 
Fig. 1. (a) A clockwise naming of  the nodes of a weighted outerplanar graph. (b) A labeling of  the 
edges of  the outerplanar graph of Figure l(a) with intervals encoding shortest paths. 
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THEOREM 2.1. Let G be an n-vertex outerplanar graph with a clockwise naming 
of  its vertices. For any assignment of  nonnegative costs to its edges, the end of  every 
edge incident with any vertex v can be labeled with a subinterval o f  [1, n] such that 
the edge is the first edge on a shortest path from v to any vertex in the subinterval. 

PROOF. Identify a set S of shortest paths in G such that there is a unique path 
in S between every pair of vertices, and any subpath of a path in S is also in S. 
Such a set of  paths is produced, for instance, by Warshall 's algorithm [W], [AHU] 
if, for all pairs of  vertices i and j, the first (i, j ) -pa th  of  shortest length that is 
discovered in the algorithm is the shortest path chosen. If  G is not biconnected, 
then it could be augmented with additional edges to yield G' ,  as follows. For 
i=  1,2 . . . .  , n, if edge {i, ( i m o d  n ) + l }  is not in (3, include it in G '  with very 
large cost. This forces the vertex names in G '  to appear  in order around the 
exterior face. I f  the costs are chosen large enough, then S will be a set of  shortest 
paths for G'  also. 

Consider any neighbor w of v. If  edge {v, w} is not the first edge on the shortest 
path in S from v to any vertex, then clearly each end of this edge should be 
labeled with the empty interval. Otherwise, there is a nonempty set of vertices 
to each of which there is a shortest path in S from v whose first edge is {v, w}. 
Let u~ and ut be the first and last vertices in clockwise order around the exterior 
face from v in this set. 

Suppose that for some vertex x in [u~, u,], there were a path P~ from v to x 
in S such that {v, w'} is the first edge in P~, for some w ' #  w. Since x is between 
ul and u~ on the exterior face, P~ must cross the shortest path in S from v to 
one of ul and ut. Call this path P2. Let y be a vertex shared by P~ and P2. The 
subpaths of P1 and P2 that start at v and end at y are distinct, and thus cannot 
both be in S. This means that not both P~ and P2 are in S, a contradiction. 
Thus {v, w} is the first edge in the shortest path from v to each vertex in 
[u, ,  u,]. D 

Thus, edge {v, w} can be labeled at v by an interval of vertex names such that 
each vertex in the interval is reachable from v by a shortest path whose first edge 
is {v, w}. We say that {v, w} claims these vertices at v. 

3. Determining Edge Labels Efficiently. We show how to determine efficiently 
the labels for the ends of all edges. Suppose that the graph is biconnected, and 
that edge costs satisfy the generalized triangle inequality, i.e., each edge is a shortest 
path between its endpoints. (At the end of this section we discuss how to handle 
graphs that do not satisfy these properties.) Edges {v, wi} and {v, wi+~} incident 
with vertex v claim adjacent sets of consecutive vertices around the exterior face. 
Let z be the farthest vertex from v in a counterclockwise direction around the 
exterior face that is claimed by {v, wi+~}, w e  call z the split vertex of  vertex v 
relative to neighbors wi and w~+t, or the split vertex for (v, w~, w~+l). Taking the 
split vertex for (v, w0, w~) to be w~, and the split vertex for (v, Wd, Wd+t) to be v, 
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the label on edge {v, w;} at v will be [z,z ') ,  where z is the split vertex for 
(v, w~_~, w;), and z' is the split vertex for (v, w;, w~+~). 

Using the above characterization, the split vertex for (v, wi, W;+l) can be found 
in O(n) time, for any vertex v and neighbors w; and W;+l. Since there are O(n) 
triples of the form (v, w;, w;+0 in an outerplanar graph, all split vertices can be 
found in O(n 2) time. However, by exploiting a "reflection" property of outer- 
planar graphs, an O(n)-time algorithm to find all split vertices can be generated. 

We first generalize the discrete problem of determining all split vertices to a 
continuous version by viewing each vertex as a point and each edge as a continuum 
of points, with the distance function extended in the natural way. Let P(P~,P2) 
denote the distance between points Pl and P2- If x is a point on an exterior edge 
e = {w~, w2}, with x # w~ and x r w2, and Wl following w2 in a clockwise direction 
around the exterior face, we call w~ and w2 the neighbors ofx.  For any x, including 
points coinciding with vertices, and consecutive neighbors w~ and W;+l of x, 
let x' be the point on an exterior edge such that p(x,w;)+p(w;,x ')= 
p(x, w~+~)+ p(w~__~, x'). We call x' the split point of point x relative to neighbors 
w; and W;+l, or the split point for (x, wi, w;+~). 

We illustrate split points using Figure l(a). The split point for vertex 5 relative 
to neighboring vertices 1 and 4 is the point on edge {1, 2} that is at distance 0.5 
from vertex 2. The split point for the point on edge {4, 5} at distance 2.5 from 
vertex 5 is the point on edge {1, 2} that is at distance 3 from vertex 2. 

Let uj and uj+~ be consecutive neighbors of x'  on the shortest paths realizing 
p(w~+~, x') and p(w;, x'), respectively. Note that such neighbors can always be 
found, because the graph satisfies the generalized triangle inequality. 

LEMMA 3.1 (Reflection). Let x be any point, including an endpoint, on an exterior 
edge of outerpIanar graph G, and let w~ and w~+, be consecutive neighbors of  x. Let 
x' be the split point for (x, w~, wi+~), and let uj and U~+l be consecutive neighbors 
of x' on the shortest paths realizing p(W;+l, x') and p(w~, x'), respectively. Then x 
is the split point for (x', uj, uj+~). 

PROOF. Since x' is the split point for (x, w~, Wg+l) and uj and Uj+l are on shortest 
paths realizing p(wg+~,x') and p(wi, x'), respectively, we have p(x, w;)+ 
p(w,  uj+,)+ p(uj+~, x ')=p(x,  W~+l)+ p(w~+~, uj)+ p(uj, x'). Note that w; and w;+~ 
are on shortest paths realizing p(uj+ 1, x) and p(uj, x), respectively, since otherwise 
the generalized triangle inequality would not hold. Thus, p(Uj+l,X)= 
p(Uj+l,Wi)+p(Wi, X ) and p(uj, x)=p(uj,  wi+l)-kp(Wi+a,X). It follows that 
p(x',uj+~)+p(uj+~,x)=p(x',uj)+p(uj, x), i.e., x is the split point for 
(x', uj, uj+0. [] 

The idea behind the algorithm is to match up triples (x, wi, Wi+l) and 
(x', uj, uj+0. Since there are infinitely many points, the matching is done collec- 
tively. A maximal sequence of exterior edges, with partial edges at either end of 
the sequence, is matched up with a similar sequence such that for any pair of 
points on one sequence, their split points are the same distance apart on the 
other sequence. If G contains just one interior face, then one sequence of edges 
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suffices, with each point mapped to a point halfway around the face. Otherwise 
choose an interior face f with just one interior edge. Denote the vertices o f f  in 
clockwise order by v~, v 2 , . . . ,  vr, where e~={v~, vi+~}, i =  1 , 2 , . . . ,  r - l ,  are 
exterior edges and er = {Vr, Vl} is the interior edge. Let [] f [[ be the length of the 
boundary o f f .  

Let y = �89 ]] f [] - [[ er I[. Let the path of points from v~ to vr around the exterior 
face be split into three consecutive subpaths, P~, P2, and P3, where P1 and P3 
consist of  closed sets of points, and are both of length y. First, match P~ with 
P3, relative to neighbors on f Second, contract paths P~ and P3 to vertices v~ 
and vr, respectively. Note that the beginning and end of path P2 may be in the 
middle of  edges, say ej and ek, SO that the contraction induces new edges e~ and 
e~. Finally, delete er from G. Call the resulting graph G'. Recursively match up 
edge sequences in G'.  Denote this algorithm as CONTMATCH. 

LEMMA 3.2. For any biconnected outerplanar graph (3, Algorithm CONTMA TCH 
correctly matches up edge sequences such that corresponding points on two edge 
sequences are the split points of each other relative to appropriate neighbors. 

PRooF. The proof  is by induction on i, the number of interior faces of  G. 
Clearly, for i =  1, the matching is done correctly. For i >  1, consider some face 
f with precisely one interior edge. The points in P1 have their split points in 1~ 
and vice versa. Thus these points are correctly handled. 

For any point x on P2, its split point x '  relative to w~ and wi+ 1 in G will be 
the same in G'.  This follows since the distance from x to any point not in 
PI w P2 w 1'3 will decrease by exactly y in the transformation from G to G'.  For 
any point x such that neither x nor x'  are on f in G, p(wi, x') and p(wi+~, x') 
will remain the same in G' ,  since neither shortest path will use P~ or P3 in G. 
Furthermore, if one of these shortest paths does use er in G, then the corresponding 
shortest path in G'  would have the same length, since the shortest path P2 between 
vl and vr has length ]1 er I[" 

Thus the transformation from G to G'  preserves the matching of points with 
their split points for all points not in P~ or P3. Since G'  has one fewer interior 
face, C O N T M A T C H  matches up edge sequences in G '  correctly, by the induction 
hypothesis. Thus all points in G are correctly matched. [] 

The matching of edge sequences for the graph in Figure 1 (a) is shown in Figure 
2. Matching sequences are labeled with the same letter. Each edge sequence is 
also labeled with its length. Note that a sequence may either be open or closed 
at either end. A sequence is shown to be closed at one end if there is an up mark 
at that end. Note that sequences f are open at both ends, sequences b are open 
at one end and closed at the other, and sequences a and c are closed at both ends. 

We now discuss the changes necessary to transform C O N T M A T C H  into an 
algorithm that determines split vertices for every vertex in G. Consider a point 
x representing vertex v in G, with neighbors wi and wi+~. If  the split point for 
(x, wi, w~+~) falls on vertex z, then z is the split vertex for (v, w~, w~+~). Otherwise 
the split point falls on some edge e ={ul ,  u2}, where Ul directly follows u2 
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Fig. 2. Matching edge sequences generated by the edge-labeling algorithm. 

clockwise around the exterior face. By definition, the split vertex for (v, wi, Wi+l) 
is Ul. Thus for each exterior edge e={u~, u2} in such orientation, we set 
ewvertex(e) to ul. 

Algorithm DISCMATCH is similar to CONTMATCH. Values of cwvertex(e) 
are supplied for every exterior edge e in G, along with the value ]] f II for each 
interior face f When C O N T M A T C H  matches edge sequences in paths, DISC- 
M A T C H  also processes the paths in the following way. It moves down P~ and 
P3, finding for each point x representing vertex v with neighbors w~ and Wi+l in 
one path, the split point x'  for x, and the edge e that x' is on, in the other path. 
The algorithm then outputs the 4-tuple (v, wi, w~+~, cwvertex(e)). 

When G' is formed, then cwvertex(e~) should be set to ewvertex(ej), and 
similarly for edge e~,. 

THEOREM 3.1. For any biconnected outerplanar graph G, Algorithm DISC- 
M A T C H  correctly determines the split vertex for each vertex v relative to neighbors 
wi and w~+~ . Furthermore, DISCMATCH uses O(n) time. 

PROOF. Correctness follows from the correctness of C O N T M A T C H  along with 
the correctness of the handling of the cwvertex(e) values. We analyze the time 
complexity as follows. If G contains just one interior face, then linear time suffices 
to determine the split vertices. Otherwise consider the handling of  an interior 
f a c e f  with exactly one interior edge. The time for this is proportional to cl + czn', 
where cl and c2 are constants and n' is the number of vertices eliminated in the 
transformation from G to G'. We charge el to f and c2 to each vertex eliminated. 
Since there are O(n) interior faces, the result then follows. [] 

If G is not biconnected, then apply DISCMATCH to each nontrivial biconnec- 
ted component H of G and infer the split vertices as before. However, if some 
split vertex of H is an articulation point of G, then a straightforward application 
of the method for labeling edges from the split vertices will not yield the correct 
edge labels. For instance, suppose that edge {v, wi} is labeled with the interval 
[z, z'), where z is the split vertex for (v, wi-1, wi) and z' is the split vertex for 
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(v, w;, w;+~). If z is an articulation point, then {v, w;} claims not only z, but also 
the vertices in the biconnected components attached to H at z. However, it is 
easy to construct examples where the names of these vertices do not get included 
in [z, z'). On the other hand, if z' is an articulation point then the opposite 
problem can arise, where too many vertices are included in [z, z'). 

The problem can be overcome as follows. Note that for each articulation point 
a in H, the names of the nodes in G - ( H - a )  form an interval [ l(a) ,  r(a)].  
Label the edges of H as before, except that for each split vertex that is an 
articulation point, use the corresponding l ( . )  instead of the name of the split 
vertex itself. All the intervals [1(. ), r( .  )] can be identified in O(n) time. 

Any edges of G that do not satisfy the generalized triangle inequality can be 
removed by applying the following recursive algorithm to each biconnected 
component of G. Precompute for each interior face the cost of its boundary and 
identify the interior faces adjacent to it. 

If the graph contains just one interior face, then find the maximum cost edge 
on its boundary. If the cost of this edge exceeds the cost of the remainder of the 
boundary, then delete this edge before returning. Otherwise let f be an interior 
face with exactly one interior edge e. If II e H > 1[ f -  e 11, then delete e, coalesce 
the remaining portions of the two interior faces that shared e into a single face 
and recurse on the resulting graph. Otherwise, delete f -  e, recurse on the resulting 
graph, and reintroduce f -  e into the graph G' remaining after this call. Let f '  
be the interior face defined by this reintroduction and let e' be a maximum cost 
edge o f f -  e. If I1 e' II > H f ' -  e' [I, then delete e' before returning. 

THEOREM 3.2. Let G be an n-vertex outerplanar graph with nonnegative edge 
costs. The above algorithm enforces the generalized triangle inequality on G, and 
does so in O(n) time. 

PROOF. We prove correctness by induction on the number i of interior faces of 
G. The basis case of i=  1 is immediate. The inductive hypothesis is that the 
algorithm works correctly if G has fewer than i interior faces, i > 1. 

Suppose that G has i interior faces. If IIe II > H f -  e H, then the algorithm is 
called recursively on G - e ,  which has i - 1  interior faces. The theorem then 
follows from the inductive hypothesis. Otherwise, the algorithm is invoked recur- 
sively on G - ( f -  e), which has i - 1 interior faces. By the inductive hypothesis, 
the graph G' returned from this call satisfies the triangle inequality. Let f "  be 
the portion of f '  contained in G', and let e" be any edge of f". We claim that 
the addition of f - e  to G' cannot decrease the distance between the endpoints 
of e". I f f "  is e then the claim is immediate, since ]l e" U = I]e II -< II f -  e II- Otherwise, 
since e was deleted in the recursive call, we have II f "  [1 <~ IIe II, and I[ e" [] -< ]1 f "  l] <- 
II f -  e II follows. Thus the claim holds, and e" satisfies the triangle inequality in 
G'w ( f - e ) .  This is also true of any other edge of G', since any path between 
its endpoints that uses f -  e must contain the endpoints of some edge off" .  Thus 
only edges of f - e  need be checked, and this is handled correctly. 

The running time analysis is as follows. Information about interior faces can 
be precomputed in O(n) time from a standard representation of an embedding 
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[LT]. Any edge is deleted at most once, added back at most once, and examined 
once in finding a maximum cost edge. Constant work is done in updating 
information about faces when an edge or a portion of an interior face is deleted, 
since at most two faces are lost and at most one gained in the process. Thus the 
algorithm takes O(n) time. [] 

4. The 1-Interval Property for Graphs. In this section we characterize the class 
of  graphs for which an interval labeling of edge ends exists. We consider two 
criteria for identifying these graphs. In the first, the vertices must be given names 
that will be appropriate for any assignment of  edge costs. In the second, the edge 
costs are assumed fixed before vertices are named. The first ease corresponds to 
an application in which the costs of the network edges may change over time to 
reflect the state of  the network. When this happens,  it is necessary to recompute 
the interval routing information. However, it is not reasonable to rename nodes. 

An n-vertex graph has the 1-intervalproperty if there is a naming of its vertices 
with integers from 1 to n such that for every assignment of  nonnegative costs to 
the edges the following holds. At each vertex the end of every edge can be labeled 
by a subinterval of [1, n], such that the edge is the first edge on a shortest path 
from the vertex to any vertex in the subinterval. The following theorem character- 
izes the graphs with this property. 

THEOREM 4.1. A graph has the 1-interval property if  and only if  it is outerplanar. 

PROOF. If  a graph is outerplanar, then, by Theorem 2.1, it has the 1-interval 
property. To show the converse we use a forbidden subgraph characterization of 
outerplanar graphs [CH] (see also [H] for a statement without prooof),  which 
states that a graph is outerplanar if and only if it does not contain a subdivision 
of K 4 or  K2~3. Here K4 is the complete graph on four vertices and K2. 3 is the 
complete bipartite graph on sets of  size two and three, and a subdivision of K4 
(resp. K2.3) is a graph obtained by inserting zero or more vertices into the edges 
of  K4 (resp. K2.3). 

Let G be a graph that is not outerplanar and consider any naming of G. I f  G 
contains a subdivision H of K4, then let Ii < 12 < 13 < 14 be the names of the vertices 
of  K 4 in H. Assign costs to the edges of  G such that each path in H obtained 
by subdividing one of the edges {11,12}, {11,13}, and {12,/4} of K4 receives a total 
cost of  1, while each path obtained by subdividing one of the edges {11,14}, {12,/3}, 
and {/3,/4} of K4 receives a total of  cost 3. Then the shortest paths from 11 to /2, 
13, and 14 are all unique, with the first edge on the paths to /2 and /4 being the 
same, but different from the first edge on the path to 13. Thus no 1-interval labeling 
is possible at 11. 

Otherwise, G contains a subdivision H of K2.3. Let 11 < 12 < 13 </4 < 15 be the 
names of the vertices of  K2. 3 in H. Without loss of  generality, let Ii and lu, u r 1, 
be the vertices from the size 2 bipartition of K2,3. Let Iu be the set of  even indices 
less than u and odd indices greater than u of  vertices from the size 3 bipartition. 
Note that I ,  has cardinality 2. Assign edge costs in G similarly as above, such 
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that the shortest paths from l~ to the other vertices of  K2,3 are unique, with the 
first edge on the paths to the vertices with indices in It, u {u} being the same, but 
different from the first edge on the path to the vertex whose index is not in 
I , u { u } .  Since the latter Vertex and 1~ cannot be consecutive, even with 
wraparound, a 1-interval labeling at l~ is not possible. [] 

If  vertex names can be chosen after the assignment of edge costs is known, 
then the class of graphs for which each edge end at any vertex can be labeled 
by a single interval is slightly larger than the class of outerplanar graphs. We say 
that a graph has the weak 1-intervalproperty if for each assignment of nonnegative 
edge costs, there is a naming of its vertices such that each edge end at any vertex 
can be labeled by an interval encoding shortest paths. 

THEOREM 4.2. A graph has the weak 1-interval property if and only if its bi- 
connected components are either outerplanar o r  K 4. 

PROOV. Consider any graph G whose biconnected components are either outer- 
planar or  K 4. Let nonnegative weights be assigned to its edges. If  any edge of 
G does not satisfy the generalized triangle inequality, then label it at each end 
with the empty interval and delete it. Let G'  be the resulting graph. We show 
that there is a naming of the nodes of G '  such that a 1-interval labeling of its 
edges is possible. This labeling along with the empty labels on the deleted edges 
yields a 1-interval labeling of the edges of  G. For the purpose of naming the 
vertices of G',  remove an edge from each K 4 and generate an outerplane embed- 
ding of the resulting graph. Assign a clockwise naming with respect to this 
embedding. For any K 4 in G',  each edge claims at one of its endpoints the nodes 
in the subgraph attached to the K4 at the other endpoint. As the names of these 
nodes are the consecutive integers assigned between the first and last visits of 
the latter endpoint, they form an interval. For any outerplanar component  of G' ,  
rename each articulation point of the component  by an interval of integers which 
represents the nodes in the subgraph attached to the component  at the articulation 
point. It then follows from Theorem 2.1 that each edge end of the component  
can be labeled by an interval. 

For the converse consider any graph G which has at least one biconnected 
component  that is neither outerplanar nor K4. This component  must contain a 
subdivision of K2,3. (We may ignore subdivisions of K4 for the following reason. 
If  the biconnected component  contains a proper subdivision of K4,  then a 
subdivision of K~.3 can be inferred from it. If  the biconnected component  contains 
K4 itself, then the latter must necessarily be a proper subgraph of the component.  
A subdivision of K2,3 can be inferred from the K4 and some of the nodes and 
edges not in K4.) Suppose that the subdivision is K2.3 itself. Assign costs 1, 2, 
and 2 to the edges incident with one of the vertices v in the size 2 bipartition, 
and costs 1, 3, and 3 to the edges incident with the other vertex u, such that both 
edges of cost 1 are incident with same vertex w in the size 3 bipartition. Assign 
cost 5 to the remaining edges of G. We claim that for no naming of G does there 
exist a 1-interval labeling of edge ends in G. Suppose to the contrary that there 



Designing Networks with Compact Routing Tables 181 

is such a naming.  Let li, 1 -< i-~ 5, be the names  assigned to the vertices of  K2,3, 
where,  without  loss of  generali ty,  v is n a m e d  1t, u is named  12, and w is named  
/3. Since {l~, 13} claims 13 and /2 at l~, and {12, 13} claims 13 and 11 at /2, either 
ll, /3, 12 o r /2 , /3 ,  11 forms an interval. As {/4,/l} claims Ii, /3, and/5  at /4 ,  it follows 
that  ei ther 15, l l , /3 , /2  or 12,/3, 11,15 forms an interval. Now,  {15, 11} claims l~,/3, 
a n d / 4  at 15, implying that  some permuta t ion  of  l~, 13,/4 forms an interval,  which 
is impossible .  

The preceding  a rgument  can be extended to any p roper  subdivis ion of  K2, 3 
by assigning cost 0 to each edge of  the subdivis ion not incident  with either u 
or v. [] 

5. Multi-Interval Edge Labelings. The p roper ty  of  any ou te rp lanar  graph that  
makes  it amenab le  to interval routing is that  there is an embedd ing  such that  all 
vertices are on the b o u n d a r y  of  the same face. Any edge {v, w} incident  on v 
claims a set o f  consecut ive vertices a round  this face. I f  a p lanar  graph has an 
embedd ing  in which two faces together  contain  all the vertices, then any edge 
will claim a subset  o f  vertices f rom each face, consecut ive a round  each face. 
N a m e  the vertices a round  one face in turn, and then a round  the other  face. Each 
edge will c laim at most  one interval on each face, except  that  for each face there 
can be one edge that  claims some of  the lowest  and highest numbered  vertices 
on the face. Since more  than  one face is needed  to contain all the vertices, the 
lowest  and highest numbered  vertices will not be consecutive,  even with 
wrapa round ,  and so require two intervals. An example  is shown in Figure 3, in 
which edges {1, 6}, {4, 5}, {5, 12}, {12, 13}, {13, 7}, {7, 8}, {3, 9}, {9, 10}, and {10, 11} 

Fig. 3. A graph with a face covering of two faces (whose boundaries are shown in bold) with the 
labels assigned to edge ends at node 2. 
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have cost 1, and all other edges have cost 6. The edge labels are given for edges 
incident on vertex 2, where for example edge {2, 8} incident on vertex 2 is labeled 
with three intervals. 

Thus it is possible to generate reasonable multi-interval labelings for edges in 
graphs in which there are just a few faces that contain all the vertices. Interval 
routing can be used as before in a corresponding network, with a short table 
containing the routing information stored at each node, except that now an edge 
{v, w} incident on v may be associated with several different values of  1~ in the 
table. In this section we explore the potential for such graphs, when the few 
special faces have no vertices in common. 

Let G = (V, E)  be a connected graph with positive edge weights. Let R ..... be 
the set of  vertices to which there is a shortest path from v containing edge {v, w}. 
Suppose that G is planar. Consider a plane embedding Ge = (V, E, F) of G, 
where F is the set of faces. Let Cv, w be a simple closed curve in the plane that 
separates R~,w from G-R~, , . ,  and crosses no edge twice. Let a segment of C~.w 
be a maximal continuous portion of C~,,w that is contained in a face. 

LEMMA 5.1. At  most one segment of C ..... is contained in any one face of Ge. 

PROOF. Since G is connected and v is in G - R  ..... it follows that G-R~,w is 
connected. Since C~,w crosses no edge twice, any edge that it crosses has one 
endpoint in R .... and the other not in R~,w. Suppose there were a face such that 
two continuous segments S~ and $2 of C .... are contained in it. Then a continuous 
curve $3 can be drawn from an interior point of  S~ to an interior point of $2, 
such that $3 remains in the face, i.e., crosses no edge. But then R ..... is not 
connected, since there is a nonempty subset of it within each of the regions 
created by separating Cv.w by S 3 . [] 

We introduce the notion of a trivial face, whose boundary comprises a single 
vertex. Thus we include the possibility of having zero or more vertices, each of 
which creates an interval by itself. A face covering F' of the vertices of Ge is a 
set of faces, such that any vertex in G is on one of the faces in F' .  A face covering 
F '  is disjoint if no two faces in F '  share a vertex. Assign the vertices names in 
order around each face in turn. 

THEOREM 5.1. Let Ge be a planar embedding with a disjoint face covering of p 
nontrivial faces and q trivial faces. The number of  intervals needed to label any 
edge is at most [ (3p+q)/2] .  

PROOF. Let nontrivial f a c e f h a v e  vertices it, !r + 1 . . . .  , Jr. It follows from Lemma 
5.1 that Rv, w either contains no vertices from f, contains all vertices in some 
interval [i', j ' ] ,  or contains vertices in two intervals [if., i'] and [j ' ,  Jr], where !1 <- i' 
and i '+l<j '<- jr .  

Represent Ro, w, defined over the indices 1 to n, symbolically as R',,w defined 
over the indices 1 to 3p + q, in the following way. Represent face f, f = 1, 2 , . . . ,  p, 
by indices 3 f - 2 ,  3 f - l ,  and 3f  Let R'~.w contain 3 f - 2  if R .... contains !r, 3f  if 
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R~,~ contains jl-, and 3 f -  1 if R ..... c~ [!r+ 1, J r -  1] ~ Q. Also, let the vertex in any 
trivial face u, u = 1 , 2 , . . . ,  q, be represented by index 3p+u. The number of  
intervals in R'~,w and R~.~ will be the same. But R'~,,. can have at most [(3p + q)/2] 
nonadjacent intervals. [] 

We next bound the number  of  intervals labeling all edge ends at a vertex v of  
degree d, which gives a bound on the total number  of  items of routing information 
stored at a node of degree d in a corresponding network. Let F '  be a face covering 
of  the vertices of  Ge, consisting of disjoint nontrivial faces. Let C~ be a collection 
of simple curves in the plane, with the following properties. The simple curves 
partition the plane into regions, each region containing one of the sets 
R~,w~, R~,w, , . . . ,  Rv, .... where w~, w 2 , . . . ,  wd are the neighbors of  v, and with 
the boundary of each region containing v. Thus the only vertex contained in any 
of the curves is v. No curve is allowed to cross any edge of G~ more than once, 
and no two curves share more than their endpoints. Let F~ be those faces in F' ,  
each of which is crossed by a curve in C~. We first derive an upper  bound r(d) 
on the number of  crossings r~. that C~ makes with the boundaries of faces in F' .  

To derive the bound r(d) we generate from Ge, F~, and C~ an embedded 
graph, (3e, called a mimicking graph, that describes the relevant features. Let a 
crossing point be a point where a simple curve of C~ crosses a boundary edge of 
some nontrivial face f in F~. Also call v a crossing point if v is on the boundary 
of some face in F~. Coinciding with the position of each crossing point x in G~, 
include vertex u~ in G~. I f  v comprises a trivial face in G~, then include v in G~ 
and let 6~ = 1. Otherwise, let 6~ = 0. 

For each face f in F~,, include the following edges in G~. Include edges that 
connect, in order of x, the sequence of vertices u~ for face f into a simple cycle, 
thus tracing out the boundary of face f For each portion of Cv outside of  any 
face of  F~, going from crossing point x of  face f to crossing point x '  of  face f ' ,  
where f and f '  are possibly the same, include an edge from ux to u~,, coinciding 
with that portion of C~. I f  6~ = 1, then for any portion of C~, going from crossing 
point x to v, include an edge from u~ to v. 

We illustrate the construction of the mimicking graph using Figure 4(a) and 
(b). Figure 4(a) shows the graph of Figure 3 together with the simple curves 
separating the sets of  vertices claimed at vertex 2 by the incident edges. The 
mimicking graph is shown in Figure 4(b). 

LEMMA 5.2. Let v be a vertex of degree d. The number of  crossings that the curves 
in C~ make with a set F' of  p disjoint nontrivial faces in Ge is at most r( d ) = 2p + d - 2. 

PROOF. We count vertices, edges, and faces in de. Let p~ be the number  of 
faces in F~,. The number  of vertices is r~, + 6~. This follows since for each face f 
with rr crossings, there are r t- vertices of type ux. The number of  edges is 
3 rv /2+ d / 2 +  ~ v -  1, as is seen by the following. For each face f, there is a cycle 
of  rj edges. In addition, there are (r~, + d ) /2  + 6 v -  1 edges representing portions 
of  Cv outside of  the faces in Fv. We get the latter by counting endpoints of  curves 
in C~ and then dividing by two. There are rv + 6~ - 1 endpoints of  curves in C~, 
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(a) 

(b) 

Fig. 4. (a) Collection of simple curves which separate the sets of vertices claimed by vertex 2 in 
Figure 3. (b) The mimicking graph for Figure 4(a). 
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excluding v, and d + 6 ~ -  1 curves of  Cv not in F~ which have an endpoint at v. 
The number  of  faces in Ge is p~ + d. This follows since there is one face for each 
face in F~, and d other faces incident on v. 

Recall Euler's formula for planar graphs [H, p. 103]: 

IVI-IEI+IF[=2. 
A 

Substituting the values from Ge yields 

( r ~ + 6 ~ ) - ( 3 r v / 2 + d / 2 + S v - 1 ) + ( p ~ + d )  : 2 .  

Solving for rv gives rv = 2p~ + d -  2. Since Pv -< P, the bound can be chosen as 
r ( d ) =  2p+ d - 2 .  [] 

THEOREM 5.2. Let Ge be a planar embedding with a disjoint face covering of  p 
nontrivial and q trivial faces. The number of  intervals labeling all edge ends at a 
vertex v o f  degree d is at most 3p + q + d - 2 .  

PROOF. From Lemma 5.2 the number of  crossings of  nontrivial faces is at most 
r = 2p + d - 2. Each consecutive pair of  crossings on a face induces an interval, 
except for at most one pair per face, which induces two intervals. Thus there are 
at most 3 p + d - 2  intervals induced by nontrivial faces. There are at most q 
intervals induced by the trivial faces. [] 

Suppose that only a subset of vertices in the graph are allowed to be the 
destination of messages. The following corollary is used in an approximate routing 
scheme presented in [FJ2]. 

COROLLARY 5.1. Let Ge be a planar embedding of  a graph G with destination set 
19. I f  all but q vertices in D are on p faces, then the number of  intervals labeling 
all edge ends at a vertex of  degree d is at most 3p + q + d - 2 .  [] 

6. Edge Labelings from Adjacent Faces. It is possible to get a better bound on 
the number  of  intervals labeling an edge when faces in the face covering share 
vertices. Let F '  be a face covering consisting of nontrivial faces. Define a relation 
-= on nontrivial faces in F' such that fl  ---f2 if and only if either f l  and f2 share 
a vertex, or there is a face f3 such that f~ ~f3 and f3-=f2. A component F" of a 
face covering F '  is a maximal subset of  nontrivial faces of  F '  such that for any 
fl  and f2 in F", f l=-f2  . 

Let G e be a planar embedding with a face covering F '  of  p nontrivial faces, 
all in the same face component.  Construct an Eulerian multigraph G '  = ( I,~ E ' )  
as follows. Insert each edge into E '  with multiplicity equal to the number  of  
faces on whose boundary the edge appears. Consider a plane embedding G" of 
G '  consistent with Ge. A restricted walk W of G'e is an Eulerian walk of G'e such 
that if W enters a vertex v on one edge, it leaves v on the next edge around v 
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(a) (b) 

Fig. 5. (a) A graph with a face covering of two faces (whose boundaries are shown in bold) which 
share common vertices. (b) A restricted walk of an Eulerian multigraph derived from the face covering 
of Figure 5(a), with the vertices named accordingly. 

in either a clockwise or counterclockwise direction. Such a walk always exists, 
by extending arguments  presented in [F1]. N a m e  the vertices in G in order as 
they first appear  in the restricted walk o f  G'e. An example of  a planar  graph with 
a face covering of  two adjacent faces is shown in Figure 5(a). The corresponding 
Eulerian mult igraph is shown in Figure 5(b), along with a restricted walk, which 
generates the vertex names. 

Recall that  C~,w is a simple curve in the plane separating R~,w from G - R v ,  w, 
and crossing no edge twice. 

LEMMA 6.1. For any vertex v and neighbor w, closed curve C~,w intersects the 
restricted walk W o f  G'e no more than 2p times. 

PROOF. C,~,w will cross each face of  Ge at most  once. It will intersect an edge 
in G'e at each end of  the crossing. Thus at most  p faces in Ge are crossed, each 
of  which results in two intersections of  C~,w with W. 71 

LEMMA 6.2. The number o f  intervals in R .... is at most  p. 

PROOF. Traverse the planar  Eulerian walk W of  G'e in order  starting with a 
vertex inside C~.w. When W crosses outside of  Cv, w hop ahead to the next vertex 
on W inside Cv, w. Since a vertex is inside Cv, w if and only if its first occurrence 
is visited, ignore all visits except the first. Thus all vertices are visited in order, 
with gaps in the consecutive number ing occurr ing when W goes outside Cv, w 
and then comes back in. Since there are 2p intersections of  C~,w with W, there 
are at most  p such occurrences.  Thus the number  of  intervals in R~,w is at 
most  p. []  
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For a planar graph G with embedding Ge that has several face components,  
find a restricted walk of each face component  of  Ge. Assign names to the vertices 
in order as they first appear  in an Eulerian walk around each face component  
in turn, and then the trivial faces. 

THEOREM 6.1. Let Ge be a planar embedding with a face covering of  p nontrivial 
faces, forming s face components, and q trivial faces. The number of  intervals needed 
to label any edge is at most [(2p + s + q) /2] .  

PROOF. Let nontrivial face component  c consist of  Pc faces and have vertices 
ic, ic + 1 , . . . ,  jc, for c = 1, 2 , . . . ,  s. From Lemma 6.2, Rv, w contains either at most 
Pc intervals from c, or Pc + 1 intervals from c, where one interval contains ic and 
another contains jc. As in the proof  of Theorem 5.2, represent R~.w symbolically 
as R'v.w over the indices 1 to 2 p + s + q .  A face component  c will be represented 
by 2pc + 1 indices, and a trivial face will be represented by one index. The number 
of  intervals in R',.w will exactly equal the number  of  intervals in R ..... But then 
R~,w can have at most [ (2p+s+q) /2J  nonadjacent intervals. [] 

THEOREM 6.2. Let Ge be a planar embedding with a face covering of  p nontrivial 
faces, forming s face components, and q trivial faces. The number of intervals labeling 
all edge ends at a vertex v of  degree d is at most 2p + s + q + d - 2 .  

PROOF. By Lemma 5.2 the number  of times that the curves enter faces in F '  is 
at most r ( d ) = 2 p + d - 2 .  In a restricted walk of the Eulerian multigraph of any 
face component,  if all visits to a vertex but the first are ignored, then there is 
one interval per entrance, plus one interval for not having wraparound. In 
addition, there is one interval per trivial face. [] 

7. Edge Labelings for Nonplanar Graphs. Our results can also be extended to 
yield reasonable edge labelings for graphs that can be embedded on a surface 
of  small genus. We shall show that the number  of  intervals needed to label an 
edge increases by 2 for each increase of  I in the genus. An example of  a nonplanar  
graph that can be embedded on a torus is shown in Figure 6, with the torus 
represented as a rectangle in which both pairs of  opposite sides are identified. 
(See pp. 116-117 of [H] for terminology relating to embedding graphs on sur- 
faces.) The embedded graph has a face covering of  two faces, whose boundary 
edges are shown in bold. Let edges {1, 2}, {2, 3}, {5, 6}, {7, 8}, {9, 10}, {11, 12}, 
and {13, 14} have cost 2, and all other edges have unit cost. At vertex 15, edge 
{15, 16} will be labeled with five intervals, [2, 3), [6, 8), [10, 12), [13, 14), and 
[16, 1). 

Let g be the smallest integer such that G can be embedded on a surface of 
genus g and let Ge = ( V, E, F)  be such an embedding. Let F '  be a set of  disjoint 
faces in this embedding. This case is essentially the same as if there are just two 
edges incident on v. Let Fv, w be those faces in F ' ,  each of which is crossed by 
closed curve C~.w. We first derive an upper  bound r(2, g) on the number  of  times 
rv, w that C~,w crosses the boundaries of  faces in F' .  
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Fig. 6. A nonplanar graph embedded on a torus, with a face covering of two faces (whose boundaries 
are shown in bold). 

As before, we generate a mimicking graph d e from Ge, Fv,~, and Cv, w. The 
construction is essentially the same, except for the following. Note that v will 
not be a crossing point, or otherwise included in G e. Remove those handles on 
the surface that are not used by any edge. Let g '  be the genus of the resulting 
surface. 

LEMMA 7,1. The number of times that closed curve C~,w crosses a set F' of p 
disjoint nontrivial faces in an embedding of  G on a surface of  genus g is at most 
r(2, g) = 2p +4g. 

PROOF. We count vertices, edges, and faces in Ge. Let P~,w be the number of 
faces in Fv, w. The number  of vertices is r~,w. This follows since, for each face f 
with ry crossings, there are rf vertices of  type ux. The number  of  edges is 3r~,w/2 
as is seen by the following. For each face f, there is a cycle of (c edges. In addition, 
there are r~,w/2 edges representing portions of C~,w outside of  the faces in Fv, 
since no point of  C~,w will coincide with v in Ge. The number of faces in Ge is 
P~,w + 2. This follows since there is one face for each face in F~,, and two faces 
split by C~,w. 

Recall Euler's formula generalized to polyhedra of  genus g [H, p. 117]: 

[vl-lEl+lF[=2-2g. 

Substituting our values from (~e we get 

r~,~-3r~,w/2+(p~,~,+2) = 2 - 2 g ' .  

Solving for r~,w we get 

r~,~ = 2p~,~ + 4g'. 
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Since Pv,~,. <- P and g'-< g, we can choose as our bound 

r(2, g) = 2p +4g. [] 

Assign names to the vertices in G in order around each face of  F '  in turn. 

T~EOREM 7.1. Let Ge be an embedding of  G on a surface of  genus g, and let 
Ge have a face covering of  p nontrivial faces, forming s face components, and 
q trivial faces. The number o f  intervals needed to label any edge is at most 
[(2p + s + q + 4g) /2] .  

PROOF. Similar to that of  Theorem 6.1. [] 

LEMMA 7.2. The number of  crossings that the curves in C~ make with a set F' o f  
p disjoint nontrivialfaces in Ge is at most r(d, g) = 2p + 4g + d - 2. 

PROOF. A mimicking graph G is generated and Euler's formula generalized to 
polyhedra of  genus g is used, as in Lemma 5.2. [] 

THEOREM 7.2. Let Ge be an embedding of  G on a surface of  genus g, and let Ge 
have a face covering of  p nontrivial faees, forming s face components, and q trivial 
faces. The number of  intervals labeling all edge ends at a vertex v of  degree d is at 
most 2 p + s + q + 4 g + d - 2 .  

PROOF. Similar to that of Theorems 5.2 and 6.2. [] 

8. A Proper Hierarchy of Graphs. Analogous to the 1-interval property, for 
k > 1 we say that a graph has the k-interval property, if there is a naming of its 
vertices with integers from 1 to n such that for every assignment of  nennegative 
edge costs, each edge end can be labeled with at most k intervals encoding 
shortest paths. 

The k-interval properties, for k > 0, lead to a natural hierarchy of  graphs. Let 
Cs be the class of graphs having the k-interval property, k > 0. We show that 
the classes qf(k) form a proper hierarchy. Thus, by using an increasingly larger 
number of  intervals to label edges, it is possible to handle progressively richer 
classes of  graphs. 

The following lemma provides a means for separating the classes. 

LEMMA 8.1. For k > 0 ,  K2.2k+l has the (k+l)- in terval  property, but not the 
k-interval property. 

PROOF. K2,2k+l has a planar embedding with a face covering of one regular 
and 2 k - 1  trivial faces. Thus by Theorem 5.1 it has the ( k +  1)-interval property. 

We show that K2.2k+~ does not have the k-interval property as follows. Without 
loss of generality, let one of the nodes in the size 2 bipartition be named 1, and 
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the other be named u. Define set S, as {ill is even and i<u}u{i[i is odd and 
i > u}. Let w = min{S,}.  Then there is an assignment of  costs to edges such that 
edge {1, w} is on the shortest path from 1 to each of  the vertices in S, w{u} .  
There are k +  1 nodes not in Su tj {u}, no two of  which are consecutive, even with 
wraparound. Thus k +  1 intervals are necessary to label edge {1, w}. [] 

THEOREM 8.1. Fork>O, 

~(k)~ ~(k+ 1). 

PROOF. Clearly, ~ ( k ) c ~ ( k + l ) .  By the preceding theorem the inclusion 
is proper, since, for each k, there is a graph that is not in ~3(k) but is 
in ~3(k+ 1). [] 

Recall from Section 4 that ~3(1) is precisely the class of  outerplanar graphs. 
For k >  1, the problem of  characterizing the classes ~3(k) remains open. 

Acknowledgments. The authors would like to thank the referees for a careful 
reading of  the paper and for numerous suggestions. 
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