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1. Introduction. We call a language U a power-separating language if there 
is a positive integer m > 1 such that for every word x either {x m, xm+l, " • " } C~ 
U = ~ or {x m, x m + x , . . .  } ~ U. In this paper we determine some properties of 
the power-separating regular languages and their relation with the noncounting 
regular languages. In general the class of noncounting regular languages is 
properly contained in the class of  power-separating regular languages. The 
automata accepting such languages are discussed and we establish a decom- 
position of regular languages in function of power-separating regular languages. 

2. Definitions and Properties of Power-Separating Regular Languages. 
Throughout this paper X will represent a finite alphabet and X* the free semi- 
group generated by X. Any subset U of X* will be called a language over X. 
A language U is called regular if U is accepted by a finite automaton;  this is 
equivalent to the property that U is a union of some of the equivalence classes of  
a right congruence relation over X* of finite index. The symbol I [ will stand 
for the cardinality of  a set. We recall the following definition of a noncounting 
language (see [4]). 

Definition 1. A language U c X* is a noncounting language over X if and 
only if there is a non-negative integer k (k dependent on U) such that for all 
x, y, z ~ X*,  xyRz ~ U ' ~  xyk+~z E U. 

Definition 2. A word x e X* is called power-free if and only if v" = x implies 
n = 1, where v s X*. The set of all power-free words over X will be denoted by 
P(X).  For any x e X* and m _> 0, let jm = {x. ln  ___ m} .  In particular, J )  = 

{A,  x, x~, "" "} = x*.  

Definition 3. (1) A language U over X is called a quasi-power-separating 
language or simply qp-separating language if and only if for every x e X* there 
is an integer re(x) > 1 such that either j~(x) c~ U = ~ or j~(x) ~ U. The minimal 
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positive integer m(x) satisfying the above property will be called the height of  x 

relatively to U. 
(2) A language U over X is called a power-separating language or simply 

p-separating language if and only if there is an integer m _> 1 such that for all 
x ~ X* either J~  n U = ~ or J~  _ U. The minimal positive integer m satisfying 
the above property will be called the height of  U. 

By a (qp)p-separating regular language we shall mean a (qp)p-separating 
language which is regular. 

We observe that if x E X* is a power-free word and v = x" for  some n > 1, 
v e X*, then jm _ jm for every integer m > 1. The following theorem is now 

obvious. 

P R O P O S I T I O N  1. (1) A language U over X is a qp-separating language 
i f  and only i f  for every x ~ P(X) there is an integer m(x) >_ 1 such that either 
J7  (x) n U = ~ or  jm(x) ~ U. (2) A language U over X is a p-separating language 
i f  and only i f  there is an integer m > 1 such that for every x E P(X) either 
J~' n U =  e or J~  ~ U. 

P R O P O S I T I O N  2. Let x ~ X*, x ~ A. Then x ~ P(X) i f  and only i f  J2 
is a p-separating regular language. 

Proof. Suppose x e X* and J2 is a p-separating regular language; then x is 
power-free. Indeed, if x is not  a power-free word, say x = v", n ¢ 1, for some 
v e X * ,  then for every k > 1, v"k~J~ but v "k+l CJ~. 

Conversely, assume x e P(X) ;  then, since Jx 1 = x * ~ { A } ,  j x is a regular 
language. Now suppose v e P(X). We will show that Jo 1 n J J  = ~ or # _c J ) .  
Let us suppose that Jv ~ n J )  # e .  Then there exist k > 1 and r > 1 such that 
v k = x r. Then, by Lemma 5.5.2 ([2]), vx = xv. Let Y = {v, x};  then Y* is a 
commutat ive set such that Y* _c X* (commutative set means every pair of  
words commute  (see [2])). By Lemma 5.5.1 ([2]), there is a word ~ such that 
Y* _q oJ* and so v = oJ h', x = ~o h2 for some h l, h a >_ 1. It follows that h 1 = h z 
and v = x holds, since x, v are power-free. Thus Jo 1 = J ) .  This completes the 
p roof  of  the proposition. 

P R O P O S I T I O N  3. Every noncounting regular language U over X is a 
p-separating regular language. 

Proof. Suppose U is a noncount ing regular language. Then by definition 
there exists an integer k > 0 such that, for every x, y, z e X*, xykz e U.¢~ 
xyk+~ze U. Let m = k + l  and v e X * .  Then, if v"¢  U then v"+~¢U for all 
r _> 1 and on the other hand, if v" e U then v "+~ e U for all r > 1. Thus U is a 
p-separating regular language. 

P R O P O S I T I O N  4. Let X = (x} and U c X*. Then the following are 
equivalent. (1) U is a noncounting regular language; (2) U is a p-separating regular 
language. 

Proof. (1) ~ (2) follows directly f rom Proposit ion 3. N o w  we prove (2) ~ (1). 
Suppose U ~ X* is a p-separating regular language. Then by definition there 
exists m > 1 such that either Jff  ~ U = ~ or jm _c U. If  jm C~ U = ~ then U 
is finite and so U is a noncount ing regular language. I f  on the other hand 
jm _ U, then clearly U is a noncount ing regular language. Thus (2) =~ (1). 
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In general, the class of p-separating regular languages contains the class of 
noncounting regular languages properly, The following example will show this 
fact. 

Example 1. Let X = {a, b}. The regular language L = {a2%2"Im, n >_ 1 } 
is not a noncounting regular language. For if k is even, then a2akb 2 e L but 
a2ak+lb 2 ¢ L; if k is odd, then aakb 2 e L but aak+lb 2 ¢ L. L is a p-separating 
regular language. Indeed, if we take m = 2, then for every x ~ X*, J f  n L = ~. 

3. Operations an p-Separating Regular Languages. 

PROPOSITION 5. The class of  p-separating regular languages over X 
contains X* and all the finite subsets of  X* and it is closed under the Boolean 
operations of union, intersection and complementation. 

Proof. It is clear that X* is a p-separating regular language. If  U is a finite 
subset of X* and the maximal length of words in U is m, then for every x ¢ A, 
x e P ( X ) ,  we have jm+l n U = ~. Thus every finite subset of X* is a p- 
separating regular language. 

Let us prove now that this class is closed under Boolean operations. Suppose 
that U1 and U2 are in the class with the heights ml and mz respectively. We have 
for any x e X*, either j~,l c~ Ut = ~ or j~,1 _c U and either jff2 c~ U = ~ or 
Jff '  ~ Uv Take m = m l + m  v It is easy to see that, for any x ~ X * ,  either 
J ~  A (g l  N U2) = ~ or jm _c (UI n U2) and that either jm n (UI~U2) = 
or J~ ~_ (UI~U2). Thus the class of p-separating regular languages is closed 
under the Boolean operations u ,  c~ and - .  

In general the concatenation of two p-separating regular languages may not 
be a p-separating regular language. For example, A = {(ab)2"aln > 1} and 
B = { b(ab) 2m+ llm -> 1 } are two p-separating regular languages. However, the 
concatenation AB = {(ab)2"ln >_ 3} is regular but not p-separating. 

For a p-separating regular language U, the sets U.  " d = {x e X*ldx ~ U} 
and U ' .  d = {x  ~X*lxd~ U} are in general not p-separating languages. For  
example, in Example 1, the language L = {a2mb2"[m, n > 1 } is a p-separating 
regular language over X = { a, b } but both L " .  a2b 2 = { a2mlm > 0}; L .  • a2b 2 
= {b2n[n > 0} are not p-separating languages. 

A p-separating language may fail to be a regular language. The following 
proposition will show this fact. 

PROPOSITION 6. Let P(X)  be the set of all power-free words over X. 
Then the following are true. (1) P(X) is a p-separating language; (2) I f  IX] = 1, 
then P(X) is regular; (3) I f  IX[ > 2, then P(X) is not regular. 

Proof (1) If v e P(X), then j2  N P(X) = ~. Hence P(X) is a p-separating 
language. 

(2) If IxI = 1, then ]P(X)i < ~ .  Hence P(X) is regular. 
(3) Assume X = {a, b , . - . ,  d} and IXI >_ 2. If P(X) is a union of some 

classes of a congruence relation, then the cardinality of the congruence classes 
is not finite. To show this, let [x] denote the class containing x and observe that 
[a], [b] and [ab] form different classes. Let us prove now by induction on k 
that for any k _> 1, [a], [b], [ab], [a2b2], . . . ,  [akb k] form different classes. Assume 
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the proposi t ion is true for  k. Consider  the word a ~+ tbk+ t e P(X). I t  is sufficient 
to show tha t  ak+lb k+x does not belong to the classes [a], [b], [ab], [a2ba], ' ' ' ,  
[akbk]. This is true, because a z ¢ P(X) and ak+ :b k+t e P(X), b z C P(X) and 
bk + l bk+ z • P(X), (a~b i) (alb i) ~ P(X) and a k+ l bk+ l albi ~ P(X) for  i = 1, 2,. • ", k. 

Thus  a k+ Ib k+ 1 belongs to a new congruence class. Hence the cardinality of  the 
congruence classes is infinite and (3) follows. 

4. Automata Accepting p-Separating Regular Languages. Let T be a monoid  
and let H be a subset o f  2". The relation Pn defined on T by aP n b .~ H . .  a = 
H . .  b, where H .  . a = ( (x, y)lx, y ~ T, xay ~ H} is a congruence of T called 
the principal congruence determined by H (see [1]), and H, if  not empty,  is a 
union of  classes of  Pa. The set H is said to be disjunctive if and only if Pn is the 
equality. 

I f  U is a language over the alphabet  X, then the quotient  mono id  X*/P v is 
called the syntactic monoid  of  U and it is denoted by Syn (U). I t  is well known 
that  U is a regular language if and only if Pv is o f  finite index, that  is if and 
only if Syn (U) is finite. 

Definition 4. Let  A = (S, X, M, s 1, F)  be an au tomaton .  (1) A is called 
qp-separating if and only if for  every x E X*, there is an integer re(x) > 1 such 
that  either {M(s t ,  xk)[k > m(x)} n F = e or {M(st ,  x~)l k _> re(x)} ~ F. (2 )A 
is called p-separating if and only if there is an integer m > 1 such that  for  every 
x E X *  either {M(s t ,  x~)l k >_ m } C ~ F =  ~ or {M(s l ,  xk)l k _> m} _ F. 

P R O P O S I T I O N  7. Let U be a regular language over X. Then the following 
are equivalent. (1) U is accepted by a qp-separating automaton; (1)' U is accepted 
by a p-separating automaton; (2) U is a qp-separating regular language; (2)' U is 
a p-separating regular language; (3) Pv is a congruence of  finite index and for 
every x • X* there exists an integer re(x) >_ 1 such that either jm(x) n U = ~ or 
j~(x) c_ U; (3)' Pv is a congruence of  finite index and there exists an integer 
m > 1 such that for every x • X* either J~' c~ U = ~ or jm C U. 

Proof. First we show (1) <* (1)'. Tha t  (1)'  =~ (1) is clear. Suppose (1) holds. 
Then there exists an a u t o m a t o n  A = (S, X, M, st ,  F)  such that  for any x e X* 
there is an integer re(x) _> 1 such that  either {M(s t ,  x")[n > re(x)} c~ F = 
or {M(st,  x")l n >_ re(x)} _c F and U = T(A). For  every x, let too(X) > 1 be 
the minimal  positive integer satisfying the above condition. Since S is finite, the 
funct ion mo(x ) is such that  [{mo(X)tX • X*}[ < oo holds. Let m = max  {mo(x)l 
x e X * } .  Then  for  every x e X *  either {M(s t ,  x")[n >_ m} c~ F = ~ or {M(s t ,  
x")[n > m} ~_ F. This shows that  A is ap-separa t ing  a u t o m a t o n  and U = T(A). 
Thus (1) ~ (1)'. 

Next  we show (1)'  =~ (2) '  ~- (3)'  ~ (1)'. 
Suppose (1) '  holds, tha t  is, there is a p-separa t ing automaton"A = (S, X, M, 

s t, F)  accepting U. Then by definition there is an integer m > 1 such that  for  
every x e X *  either {M(s t ,  x")[n >_ m} n F = ~ or {M(s  1, x")[n _> m} ~ F. I t  
follows tha t  for  every x E X* either jm n U = ~ or J~" _ U. Thus  U is a p-  
separat ing regular language and (1)'  =~ (2)'  hold. 

N o w  suppose (2)'. Since U is a regular language, (3) '  follows directly f rom 
(2)'. 
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To show (3)' =*- (I) ' ,  assume (3)' and as usual we construct an au tomaton  
A = (S, X, M, sl, F)  as follows: Take S to be the classes of  Pv, sl = [A] and 
F be the set of  all [x] where x E U. The transition map is defined by M([x], y) = 
[xy], for all x, y s X*. It is clear that U = T(A) and for every x s X*, either 
{ M ( s  l, x")]n >_ m} n F = z or {M(s l ,  x")ln -> m} c F, since by assumption 
for every x e X*, either jm  n U = z or  arm ~ U. This completes the p roof  of  
(1)' ~e. (2)' ¢~ (3)'. 

Similarly, we can prove (1) ~ ,  (2) ,=, (3) by the same argument.  
It is well known that if the regular language U is noncounting,  then its 

syntactic monoid  contains only trivial subgroups. This result can be generalized 
to the case of  p-separating regular languages in the following way. 

P R O P O S I T I O N  8. Let U be a p-separating regular language over X and 
let Syn (U) be the syntactic monoid of  U. Then Syn (U) contains a disjunctive set 
H such that for any subgroup G o f S y n  ( U), G n H ~ ;J implies G ~_ H. 

Proof. Let H = (ala E Syn (U) and a = Ix], where x ~ U}. Since Syn (U) = 
X*/Pv,  it is immediate that H is a disjunctive subset of  Syn (U) and, since U is 
regular, Syn (U) is a finite monoid.  

I f m  is the height of  U, then for every x E X* either arm n U = ~ or jm  _~ U. 
Let a ~ G n H, where G is a subgroup of  Syn (U) and let e be the identity o f  

G. For  every b s G, we have b" = e, where n is the order of  G. Let e = [z], 
where z ~ X*. I f  e ¢ H, then for every integer k > 1, eke H and therefore 
Z k ¢ Uo This implies that J~  n U = z .  Let a = [x], x s X*, if arm n U = z ,  
then x ""+~ ¢ U and a = a ""+1 = [x m"+l] ¢ H, a contradiction. Hence J ~  __q U, 
x "m ~ U and e = a"" = [x "m] s H. 

Let b = [y], y ~ X*. I f  Jr  m n U = z ,  then y~"" ¢ U and e = b"" = [y,m] ¢ H, 
a contradiction. Hence J ~  c_ U, y,m+l E U and b = b "m+x= [y"m+~]~H. 

Therefore G _c H. 

C O R O L L A R Y  1. The only p-separating regular languages U over X such 
that Syn (U) is a group are X* and ~. 

5. A Decomposition of Regular Language Relatively to p-Separating Regular 
Languages. Following [10], a language U ~ ~ is called right pure if Ux n U 

~ implies x = A. I f  A ¢ U, then U is right pure if and only if U is a prefix 
code ([9]). In [10], it has been shown that  a language U is regular if and only if 
there exists a finite number  o f  right pure languages V1, V2," • ", Vk, WI, W2," " ", 
Wk such that U = U~= 1 viwi*. We will have a similar representation relatively 
to the p-separating regular languages. First we prove the following proposition. 

P R O P O S I T I O N  9. Every right pure language U over X is a p-separating 

regular language. 
Proof. Let x E P(X). I f  x E U, then clearly x" ¢ U for every n > 2 and hence 

j z n U = ~ is true. I f x  ¢ U, then either J )  n U = ~ or there is an integer m 
such that xmc U. But the latter case will imply Jff+~ n U = ~. Hence by 
Proposit ion 1, U is a qp-separating language which is a p-separating language by 
Proposit ion 7. Thus every right pure language is a p-separating language. 
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P R O P O S I T I O N  10. A language U is regular i f  and only i f  there exists a 
finite number of p-separating regular languages V1, V2,'" ", Vk, WI, W2,'" ", Wk 
such that U = Uk=l V,.Wi*. 

Proof. The p r o o f  is s t ra igh t forward  by app ly ing  the above  p ropos i t ion  and 

the resul t  ment ioned  above.  
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