Power-Separating Regular Languages

by

H. J. SHYR* and G. THIERRIN*

Department of Mathematics University of Western Ontario London, Ontario, Canada

1. Introduction. We call a language U a power-separating language if there is a positive integer $m \ge 1$ such that for every word x either $\{x^m, x^{m+1}, \dots\} \cap$ $U = \emptyset$ or $\{x^m, x^{m+1}, \dots\} \subseteq U$. In this paper we determine some properties of the power-separating regular languages and their relation with the noncounting regular languages. In general the class of noncounting regular languages is properly contained in the class of power-separating regular languages. The automata accepting such languages are discussed and we establish a decomposition of regular languages in function of power-separating regular languages.

2. Definitions and Properties of Power-Separating Regular Languages. Throughout this paper X will represent a finite alphabet and X^* the free semigroup generated by X. Any subset U of X^* will be called a language over X. A language U is called regular if U is accepted by a finite automaton; this is equivalent to the property that U is a union of some of the equivalence classes of a right congruence relation over X^* of finite index. The symbol || will stand for the cardinality of a set. We recall the following definition of a noncounting language (see [4]).

Definition 1. A language $U \subseteq X^*$ is a *noncounting language* over X if and only if there is a non-negative integer k (k dependent on U) such that for all x, y, $z \in X^*$, $xy^{k_z} \in U \Leftrightarrow xy^{k+1}z \in U$.

Definition 2. A word $x \in X^*$ is called *power-free* if and only if $v^n = x$ implies n = 1, where $v \in X^*$. The set of all power-free words over X will be denoted by P(X). For any $x \in X^*$ and $m \ge 0$, let $J_x^m = \{x^n | n \ge m\}$. In particular, $J_x^0 = \{\Lambda, x, x^2, \cdots\} = x^*$.

Definition 3. (1) A language U over X is called a *quasi-power-separating* language or simply *qp-separating language* if and only if for every $x \in X^*$ there is an integer $m(x) \ge 1$ such that either $J_x^{m(x)} \cap U = \emptyset$ or $J_x^{m(x)} \subseteq U$. The minimal

^{*} This research has been supported by Grant A7877 of the National Research Council of Canada.

positive integer m(x) satisfying the above property will be called the *height* of x relatively to U.

(2) A language U over X is called a *power-separating language* or simply *p-separating language* if and only if there is an integer $m \ge 1$ such that for all $x \in X^*$ either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$. The minimal positive integer m satisfying the above property will be called the height of U.

By a (qp) p-separating regular language we shall mean a (qp) p-separating language which is regular.

We observe that if $x \in X^*$ is a power-free word and $v = x^n$ for some $n \ge 1$, $v \in X^*$, then $J_v^m \subseteq J_x^m$ for every integer $m \ge 1$. The following theorem is now obvious.

PROPOSITION 1. (1) A language U over X is a qp-separating language if and only if for every $x \in P(X)$ there is an integer $m(x) \ge 1$ such that either $J_x^{m(x)} \cap U = \emptyset$ or $J_x^{m(x)} \subseteq U$. (2) A language U over X is a p-separating language if and only if there is an integer $m \ge 1$ such that for every $x \in P(X)$ either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$.

PROPOSITION 2. Let $x \in X^*$, $x \neq \Lambda$. Then $x \in P(X)$ if and only if J_x^1 is a p-separating regular language.

Proof. Suppose $x \in X^*$ and J_x^1 is a *p*-separating regular language; then x is power-free. Indeed, if x is not a power-free word, say $x = v^n$, $n \neq 1$, for some $v \in X^*$, then for every $k \geq 1$, $v^{nk} \in J_x^1$ but $v^{nk+1} \notin J_x^1$.

Conversely, assume $x \in P(X)$; then, since $J_x^1 = x^* \setminus \{\Lambda\}$, J_x^1 is a regular language. Now suppose $v \in P(X)$. We will show that $J_v^1 \cap J_x^1 = \emptyset$ or $J_v^1 \subseteq J_x^1$. Let us suppose that $J_v^1 \cap J_x^1 \neq \emptyset$. Then there exist $k \ge 1$ and $r \ge 1$ such that $v^k = x^r$. Then, by Lemma 5.5.2 ([2]), vx = xv. Let $Y = \{v, x\}$; then Y^* is a commutative set such that $Y^* \subseteq X^*$ (commutative set means every pair of words commute (see [2])). By Lemma 5.5.1 ([2]), there is a word ω such that $Y^* \subseteq \omega^*$ and so $v = \omega^{h_1}$, $x = \omega^{h_2}$ for some h_1 , $h_2 \ge 1$. It follows that $h_1 = h_2$ and v = x holds, since x, v are power-free. Thus $J_v^1 = J_x^1$. This completes the proof of the proposition.

PROPOSITION 3. Every noncounting regular language U over X is a p-separating regular language.

Proof. Suppose U is a noncounting regular language. Then by definition there exists an integer $k \ge 0$ such that, for every x, y, $z \in X^*$, $xy^{kz} \in U \Leftrightarrow xy^{k+1}z \in U$. Let m = k+1 and $v \in X^*$. Then, if $v^m \notin U$ then $v^{m+r} \notin U$ for all $r \ge 1$ and on the other hand, if $v^m \in U$ then $v^{m+r} \in U$ for all $r \ge 1$. Thus U is a p-separating regular language.

PROPOSITION 4. Let $X = \{x\}$ and $U \subseteq X^*$. Then the following are equivalent. (1) U is a noncounting regular language; (2) U is a p-separating regular language.

Proof. (1) \Rightarrow (2) follows directly from Proposition 3. Now we prove (2) \Rightarrow (1). Suppose $U \subseteq X^*$ is a *p*-separating regular language. Then by definition there exists $m \ge 1$ such that either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$. If $J_x^m \cap U = \emptyset$ then U is finite and so U is a noncounting regular language. If on the other hand $J_x^m \subseteq U$, then clearly U is a noncounting regular language. Thus (2) \Rightarrow (1). In general, the class of *p*-separating regular languages contains the class of noncounting regular languages properly. The following example will show this fact.

Example 1. Let $X = \{a, b\}$. The regular language $L = \{a^{2m}b^{2n}|m, n \ge 1\}$ is not a noncounting regular language. For if k is even, then $a^2a^kb^2 \in L$ but $a^2a^{k+1}b^2 \notin L$; if k is odd, then $aa^kb^2 \in L$ but $aa^{k+1}b^2 \notin L$. L is a p-separating regular language. Indeed, if we take m = 2, then for every $x \in X^*$, $J_x^2 \cap L = \emptyset$.

3. Operations on *p*-Separating Regular Languages.

PROPOSITION 5. The class of p-separating regular languages over X contains X^* and all the finite subsets of X^* and it is closed under the Boolean operations of union, intersection and complementation.

Proof. It is clear that X^* is a *p*-separating regular language. If U is a finite subset of X^* and the maximal length of words in U is *m*, then for every $x \neq \Lambda$, $x \in P(X)$, we have $J_x^{m+1} \cap U = \emptyset$. Thus every finite subset of X^* is a *p*-separating regular language.

Let us prove now that this class is closed under Boolean operations. Suppose that U_1 and U_2 are in the class with the heights m_1 and m_2 respectively. We have for any $x \in X^*$, either $J_x^{m_1} \cap U_1 = \emptyset$ or $J_x^{m_1} \subseteq U$ and either $J_x^{m_2} \cap U = \emptyset$ or $J_x^{m_2} \subseteq U_2$. Take $m = m_1 + m_2$. It is easy to see that, for any $x \in X^*$, either $J_x^m \cap (U_1 \cap U_2) = \emptyset$ or $J_x^m \subseteq (U_1 \cap U_2)$ and that either $J_x^m \cap (U_1 \setminus U_2) = \emptyset$ or $J_x^m \subseteq (U_1 \setminus U_2)$. Thus the class of *p*-separating regular languages is closed under the Boolean operations \cup , \cap and -.

In general the concatenation of two *p*-separating regular languages may not be a *p*-separating regular language. For example, $A = \{(ab)^{2n}a|n \ge 1\}$ and $B = \{b(ab)^{2m+1}|m \ge 1\}$ are two *p*-separating regular languages. However, the concatenation $AB = \{(ab)^{2n}|n \ge 3\}$ is regular but not *p*-separating.

For a *p*-separating regular language *U*, the sets $U \cdot d = \{x \in X^* | dx \in U\}$ and $U \cdot d = \{x \in X^* | xd \in U\}$ are in general not *p*-separating languages. For example, in Example 1, the language $L = \{a^{2m}b^{2n}|m, n \ge 1\}$ is a *p*-separating regular language over $X = \{a, b\}$ but both $L \cdot a^2b^2 = \{a^{2m}|m \ge 0\}$; $L \cdot a^2b^2$ $= \{b^{2n}|n \ge 0\}$ are not *p*-separating languages.

A p-separating language may fail to be a regular language. The following proposition will show this fact.

PROPOSITION 6. Let P(X) be the set of all power-free words over X. Then the following are true. (1) P(X) is a p-separating language; (2) If |X| = 1, then P(X) is regular; (3) If $|X| \ge 2$, then P(X) is not regular.

Proof. (1) If $v \in P(X)$, then $J_v^2 \cap P(X) = \emptyset$. Hence P(X) is a *p*-separating language.

(2) If |X| = 1, then $|P(X)| < \infty$. Hence P(X) is regular.

(3) Assume $X = \{a, b, \dots, d\}$ and $|X| \ge 2$. If P(X) is a union of some classes of a congruence relation, then the cardinality of the congruence classes is not finite. To show this, let [x] denote the class containing x and observe that [a], [b] and [ab] form different classes. Let us prove now by induction on k that for any $k \ge 1$, [a], [b], [ab], $[a^2b^2]$, \cdots , $[a^kb^k]$ form different classes. Assume

the proposition is true for k. Consider the word $a^{k+1}b^{k+1} \in P(X)$. It is sufficient to show that $a^{k+1}b^{k+1}$ does not belong to the classes [a], [b], [ab], $[a^2b^2], \cdots$, $[a^kb^k]$. This is true, because $a^2 \notin P(X)$ and $a^{k+2}b^{k+1} \in P(X)$, $b^2 \notin P(X)$ and $b^{k+1}b^{k+2} \in P(X)$, $(a^ib^i) (a^ib^i) \notin P(X)$ and $a^{k+1}b^{k+1}a^ib^i \in P(X)$ for $i = 1, 2, \cdots, k$. Thus $a^{k+1}b^{k+1}$ belongs to a new congruence class. Hence the cardinality of the congruence classes is infinite and (3) follows.

4. Automata Accepting *p*-Separating Regular Languages. Let *T* be a monoid and let *H* be a subset of *T*. The relation P_H defined on *T* by $aP_Hb \Leftrightarrow H \dots a = H \dots b$, where $H \dots a = \{(x, y) | x, y \in T, xay \in H\}$ is a congruence of *T* called the principal congruence determined by *H* (see [1]), and *H*, if not empty, is a union of classes of P_H . The set *H* is said to be disjunctive if and only if P_H is the equality.

If U is a language over the alphabet X, then the quotient monoid X^*/P_U is called the syntactic monoid of U and it is denoted by Syn (U). It is well known that U is a regular language if and only if P_U is of finite index, that is if and only if Syn (U) is finite.

Definition 4. Let $A = (S, X, M, s_1, F)$ be an automaton. (1) A is called *qp-separating* if and only if for every $x \in X^*$, there is an integer $m(x) \ge 1$ such that either $\{M(s_1, x^k)|k \ge m(x)\} \cap F = \emptyset$ or $\{M(s_1, x^k)|k \ge m(x)\} \subseteq F$. (2) A is called *p-separating* if and only if there is an integer $m \ge 1$ such that for every $x \in X^*$ either $\{M(s_1, x^k)|k \ge m\} \cap F = \emptyset$ or $\{M(s_1, x^k)|k \ge m\} \subseteq F$.

PROPOSITION 7. Let U be a regular language over X. Then the following are equivalent. (1) U is accepted by a qp-separating automaton; (1)' U is accepted by a p-separating automaton; (2) U is a qp-separating regular language; (2)' U is a p-separating regular language; (3) P_U is a congruence of finite index and for every $x \in X^*$ there exists an integer $m(x) \ge 1$ such that either $J_x^{m(x)} \cap U = \emptyset$ or $J_x^{m(x)} \subseteq U$; (3)' P_U is a congruence of finite index and there exists an integer $m \ge 1$ such that for every $x \in X^*$ either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$.

Proof. First we show (1) \Leftrightarrow (1)'. That (1)' \Rightarrow (1) is clear. Suppose (1) holds. Then there exists an automaton $A = (S, X, M, s_1, F)$ such that for any $x \in X^*$ there is an integer $m(x) \ge 1$ such that either $\{M(s_1, x^n)|n \ge m(x)\} \cap F = \emptyset$ or $\{M(s_1, x^n)|n \ge m(x)\} \subseteq F$ and U = T(A). For every x, let $m_0(x) \ge 1$ be the minimal positive integer satisfying the above condition. Since S is finite, the function $m_0(x)$ is such that $|\{m_0(x)|x \in X^*\}| < \infty$ holds. Let $m = \max\{m_0(x)|x \in X^*\}$. Then for every $x \in X^*$ either $\{M(s_1, x^n)|n \ge m\} \cap F = \emptyset$ or $\{M(s_1, x^n)|n \ge m\} \subseteq F$. This shows that A is a p-separating automaton and U = T(A). Thus (1) \Rightarrow (1)'.

Next we show $(1)' \Rightarrow (2)' \Rightarrow (3)' \Rightarrow (1)'$.

Suppose (1)' holds, that is, there is a *p*-separating automaton $A = (S, X, M, s_1, F)$ accepting U. Then by definition there is an integer $m \ge 1$ such that for every $x \in X^*$ either $\{M(s_1, x^n) | n \ge m\} \cap F = \emptyset$ or $\{M(s_1, x^n) | n \ge m\} \subseteq F$. It follows that for every $x \in X^*$ either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$. Thus U is a *p*-separating regular language and $(1)' \Rightarrow (2)'$ hold.

Now suppose (2)'. Since U is a regular language, (3)' follows directly from (2)'.

To show (3)' \Rightarrow (1)', assume (3)' and as usual we construct an automaton $A = (S, X, M, s_1, F)$ as follows: Take S to be the classes of $P_U, s_1 = [\Lambda]$ and F be the set of all [x] where $x \in U$. The transition map is defined by M([x], y) = [xy], for all $x, y \in X^*$. It is clear that U = T(A) and for every $x \in X^*$, either $\{M(s_1, x^n) | n \ge m\} \cap F = \emptyset$ or $\{M(s_1, x^n) | n \ge m\} \subseteq F$, since by assumption for every $x \in X^*$, either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$. This completes the proof of $(1)' \Leftrightarrow (2)' \Leftrightarrow (3)'$.

Similarly, we can prove $(1) \Leftrightarrow (2) \Leftrightarrow (3)$ by the same argument.

It is well known that if the regular language U is noncounting, then its syntactic monoid contains only trivial subgroups. This result can be generalized to the case of *p*-separating regular languages in the following way.

PROPOSITION 8. Let U be a p-separating regular language over X and let Syn (U) be the syntactic monoid of U. Then Syn (U) contains a disjunctive set H such that for any subgroup G of Syn (U), $G \cap H \neq \emptyset$ implies $G \subseteq H$.

Proof. Let $H = \{a | a \in \text{Syn}(U) \text{ and } a = [x], \text{ where } x \in U\}$. Since $\text{Syn}(U) = X^*/P_U$, it is immediate that H is a disjunctive subset of Syn(U) and, since U is regular, Syn(U) is a finite monoid.

If *m* is the height of *U*, then for every $x \in X^*$ either $J_x^m \cap U = \emptyset$ or $J_x^m \subseteq U$. Let $a \in G \cap H$, where *G* is a subgroup of Syn (*U*) and let *e* be the identity of *G*. For every $b \in G$, we have $b^n = e$, where *n* is the order of *G*. Let e = [z], where $z \in X^*$. If $e \notin H$, then for every integer $k \ge 1$, $e^k \notin H$ and therefore $z^k \notin U$. This implies that $J_z^m \cap U = \emptyset$. Let a = [x], $x \in X^*$, if $J_x^m \cap U = \emptyset$, then $x^{mn+1} \notin U$ and $a = a^{mn+1} = [x^{mn+1}] \notin H$, a contradiction. Hence $J_x^m \subseteq U$, $x^{nm} \in U$ and $e = a^{nm} = [x^{nm}] \in H$.

Let b = [y], $y \in X^*$. If $J_y^m \cap U = \emptyset$, then $y^{mn} \notin U$ and $e = b^{nm} = [y^{nm}] \notin H$, a contradiction. Hence $J_y^m \subseteq U$, $y^{nm+1} \in U$ and $b = b^{nm+1} = [y^{nm+1}] \in H$. Therefore $G \subseteq H$.

COROLLARY 1. The only p-separating regular languages U over X such that Syn (U) is a group are X^* and \emptyset .

5. A Decomposition of Regular Language Relatively to *p*-Separating Regular Languages. Following [10], a language $U \neq \emptyset$ is called right pure if $Ux \cap U \neq \emptyset$ implies $x = \Lambda$. If $\Lambda \notin U$, then U is right pure if and only if U is a prefix code ([9]). In [10], it has been shown that a language U is regular if and only if there exists a finite number of right pure languages $V_1, V_2, \dots, V_k, W_1, W_2, \dots, W_k$ such that $U = \bigcup_{i=1}^k V_i W_i^*$. We will have a similar representation relatively to the *p*-separating regular languages. First we prove the following proposition.

PROPOSITION 9. Every right pure language U over X is a p-separating regular language.

Proof. Let $x \in P(X)$. If $x \in U$, then clearly $x^n \notin U$ for every $n \ge 2$ and hence $J_x^2 \cap U = \emptyset$ is true. If $x \notin U$, then either $J_x^1 \cap U = \emptyset$ or there is an integer *m* such that $x^m \in U$. But the latter case will imply $J_x^{m+1} \cap U = \emptyset$. Hence by Proposition 1, *U* is a *qp*-separating language which is a *p*-separating language by Proposition 7. Thus every right pure language is a *p*-separating language.

PROPOSITION 10. A language U is regular if and only if there exists a finite number of p-separating regular languages $V_1, V_2, \dots, V_k, W_1, W_2, \dots, W_k$ such that $U = \bigcup_{k=1}^{k} V_k W_k^*$.

Proof. The proof is straightforward by applying the above proposition and the result mentioned above.

REFERENCES

- A. H. CLIFFORD and G. B. PRESTON, *The Algebraic Theory of Semigroups*, Math. Surveys Series, Vols. 1 and 2, Amer. Math. Soc., Providence, R.I., 1961 and 1967.
- [2] S. GINSBURG, The Mathematical Theory of Context-Free Languages McGraw-Hill, New York, 1968.
- [3] A. GINZBURG, Algebraic Theory of Automata, Assoc. Comput Mach. Monograph Series, Academic Press, New York, 1968.
- [4] R. MCNAUGHTON and S. PAPERT, Counter-free Automata, M.I.T. Press, 1971.
- [5] A. R. MEYER, A note on star-free events, J. Assoc. Comput. Mach. 16 (1969), 220-225.
- [6] M. O. RABIN and D. SCOTT, Finite automata and their decision problems, IBM J. Res. Develop. 3 (1959), 114-125.
- [7] M. P. SCHÜTZENBERGER, On finite monoids having only trivial subgroups. Information and Control 8 (1965), 190-194.
- [8] M. P. SCHÜTZENBERGER, On a family of sets related to McNaughton's L-language, In Automata Theory, E. R. Caianiello, (Ed.), Academic Press, New York, (1966), pp. 320-324.
- [9] M. P. SCHÜTZENBERGER, On synchronizing prefix codes, Information and Control 11 (1967), 396-401.
- [10] G. THIERRIN, Décomposition des Langages Réguliers, R.I.R.O. 3^e annee, N° R-3, (1969), 45-50.

(Received 19 June 1972)