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On the Stokes Problem in Lipschitz Domains (*).

G. P. GaLpr - C. G. SiMADER - H. SoHR

1. — Introduction.

Let Q2 be a bounded domain in R” (n = 2) with a Lipschitz continuous boundary
3Q. Then for given fe W 19(Q)", ge LU(Q), 3 W'~ VD 9(30)", 1 < ¢ < o, satisfy-
ing the compatibility condition

(1.1) Jgda: = j¢~Nda,
Q a

we are interested in the existence and uniqueness of a solution pair
(u, p) e Wh2(Q)" X LI(Q) satisfying j pdx =0, the Stokes equations

g
(1.2) ~-M+Vp=f, divu=gin 2, wu=¢ondQ,
and the inequality
(1.3) el oy + Ipllacor < CULF w100 + lgllzocr + lgllwe - 0000

where C = C({, n, q) > O is a constant and N denotes the exterior normal to 3Q. Our
aim is to prove this property under the assumption that the Lipschitz constant L of
the boundary 9Q is sufficiently small (smaller than a constant depending only on
and g¢); in particular such a pair (u,p) always exists if Q is a bounded domain with
902 e C™. Such a result is well known for a more regular domain. CATTABRIGA [4] proved
this result if 8Q2 e C* and n = 3; see GALDI-SIMADER [8] for all % = 2. Concerning the
integral equation approach see LADYZENSKAJA[14] and DEURING-VON WAHL-WEIDE-
MEIER [6]. AMROUCHE-GIRAULT [3] proved the existence and uniqueness of the solution
pair (u, p) together with (1.3) under the assumption 8Q € C'1, their proof rests on the
ADN-theory [2], see TEMAM [16], and on Giga’s result in [9]. Our assumption 3Q e C%!

(*) Entrata in Redazione il 3 luglio 1992.
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together with the smallness of L seems to be optimal for general domains. Examples
for non-smoothness can be taken from the elliptic theory [10] by setting p = 0.

Our hypothesis enables us to solve the Stokes problem above for domains having
edges and corners provided the opening angles are close to n. If ¢ = 2 the above result
on the existence and uniqueness of (u,p) holds for arbitrary Lipschitz domains with-
out smallness condition on L. Furthermore, there are many results on special do-
mains with edges and corners; see KELLOGG-OSBORN [12] for » = 2 and DAUGE [5] for
n=3.

The method of our proof is selfcontained and rather elementary, it rests on the
halfspace result and on localization and perturbation techniques. However, although
similar, our method is not completely parallel to that of CATTABRIGA [4]; let us analyze
the difference in the basic step where the smoothness of 3Q is involved. Cattabriga’s
assumption dQ e C? is really needed only in the case 1 < ¢ < 2 where the uniqueness
property that u e W§'9(Q)", pe L1(Q), fpdx =0, —du + Vp =0, divu = 0 implies

#=0, p=0is not as trivial as for ¢=2. 'i‘zhis uniqueness assertion is needed for prov-
ing the a priori estimate (1.3) by localization and compactness arguments. In order to
prove this uniqueness result, Cattabriga improves the regularity of (u,p) above by
the second order derivatives of u which requires the C*-regularity of 9Q; this leads to
Vu e L2 and u = 0. Instead of Cattabriga’s argument we use a regularity property for
the localized equations which enables us to consider two different exponents ¢ and s
simultaneously, see Section 3. The localized equations can be considered as equations
on the halfspace or the «bended» halfspace. So we have first to treat the Stokes prob-
lem in these unbounded domains.

SOME NOTATIONS. — Let 1 < ¢ < « and let ¢’ be defined by 1/¢ + 1/¢’ = 1. We use
the Lebesgue space L(Q) with norm |jull ¢ = ], and the usual Sobolev spaces
Wb 2(Q) and W& 9(Q) = C5° (Q)"*k where Cy° (2) means the space of all smooth fune-
tions having a compact support in Q. The norm in W ¢() is given by llullws.e@ =
= lullpoa + [Vedlpe) Where [Vulpaq = (01 ullf+ ... + 8, ul)s, Vu= (8%, ..., 3w),
9, =9/dx, (v=1,...,n). Furthermore we denote divu = d;u; + ... + 9y, and Ay =
=u+ ... + BZu. Let LI(Q)", Cg* ()", ... be the corresponding spaces of vector fields

u= Uy, ..., %) Let
Wh9(Q) = [Wg T (1

denote the dual space of Wi ¢ (Q). For a functional f: v~ [f, v] from W~17(Q) the
norm is defined by
Iflw-ro@=sup (Lf v11/[Vel, .
0#=veCs ()

The usual trace space W'~ 1/99(3Q) is well defined if 82 is Lipschitz continuous
N denotes the outward normal vector to 80 and j ... do the surface integral.

AN
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g € W'~ 1/:9(3Q) means the trace of u € W' 7(Q). Let (u, v) = [u-vdx denote
the L9~ L7 -pairing for scalar fields, vector fields or matrices. e

A bounded domain Q ¢ R®, n = 2, is called a Lipschitz domain with Lipschitz con-
stant L > 0 if the following is true.

To eaeh x € 3Q there exists an open ball B with center x and a function w: D > R
on some domain D ¢ R""! such that (sfter some appropriate rotation and translation
of the coordinate system depending on x) it holds

graphw =BN3Q, {,y.)eR":y'eD, s+ wy)2y,= oy} cR"\Q
for some ¢>0, |w(ys) — ol(y{)| <L|ys —y/| forall ys,y{eD.

The function o with the latter property is called a Lipschitz function. Let us put
r={x',x,) and V=(V',3,) where ' = (%1, ..., %p_1), V = (31, ..., Op_1). It is well
known that w: D-»R is a Lipschitz function if and only if w is continuous and
VweL"(D! in the sense of distribution. We get |w(ys) — w(y)| <
< (V' olu=@p-1)|ys — ¥i|, ys, yi €D, for such a function.

Within the proofs we use positive constants C, C;, ... which may change from line
to line.

Acknowledgement. The present work was initiated while the first author was vis-
iting the Universities of Bayreuth and Paderborn; the authors are grateful to DFQG,
CNR and MPI for supporting it.

2. - Main theorem and preliminary results.
Our main theorem reads as follows

2.1. THEOREM. - Let 1 < ¢ < = gnd let Q ¢ R™ (n = 2) be a bounded domain of class
C' or a bounded Lipschitz domain with sufficiently small Lipschitz constant L > 0
(i.e. L <M where M = M(n,q) >0 is o constant depending only on n, q). Then for
each given fe W L9(Q), geL9(Q) and ¢e W'~ VD930 satisfying [gdw =

= Jf N-¢do, there exists a unique pair (u, p) e W 1(Q)" X L1(Q) such that ﬁo de =0
and ’

2.2) —du+Vp=f, divu=g, u|lp=4¢.

Moreover, this pair is subject to the inequality

(2.3) Nl ey + 1Plzocay < CUfllw-r 0@y + [9llne@ + [$lw - o ocog)) -

where C = C(Q, n, q) >0 is a constant.
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REMARKS, - @) Let L1(Q) = [v e Li(Q): J vdx = 0! and define the operator
0

(2.4) 8, WP aQ)" x LY@y —» W 4(@Q)" x L1(Q)
defined by
S, (u, p) = ({Vu, V=) = (p, div"), —divu)
with the functional (Vu, V<) — (p, div*): v — (Vu, Vo) — (p, dive). Obviously, S, is
bounded and the dual operator
SF W@y x LI(@Q) - W +7(Q) X LT (Q)
coincides with S,.; we get
(2.5) SF=38,
which is a consequence of the symmetry property
(Vu, 3v) — (p, divv) — (divu, k) = (Vo, Vu) ~ (k, divu) — (dive, p)

for all (u, p) e WP Q)" x LUQ), (v, h) e W2 (Q)" x LT (Q).
Then the abstract formulation of Theorem 2.1 for ¢ = 0 means:

(2.6) S, is an isomorphism.

b) It is well known and easy to prove that the Lipschitz constant L of each C'-
domain can be chosen arbitrarily small. For this purpose we have to choose the balls
B in the definition of the Lipschitz domain sufficiently small. Therefore, the assertion
for C'-domains in Theorem 2.1 is a corollary of the assertion for Lipschitz do-
mains.

The proof of Theorem 2.1 rests on localization arguments by which the assertion is
reduced to the corresponding results for the whole space R”, the half space
H=R"={x=(2,...,2,) e R": 2, <0}
and the bended halfspace
2.0 H,={z= (', %,)eR": x, <o)},

where w: R*"! — R is a Lipschitz function. We only need the case that supp  is com-
pact which means that H, behaves like H for large |x|.

For the unbounded domains = R”, = H or = H,, the solution space W§*?(Q)" X
x L9(Q) above is too small to prove an existence and uniqueness result. Therefore, in
this cases we define

(2.8) We Q)" = Cg (@)1

being the completion of Cf* ()" under the Dirichlet norm [[Vo,. If 82 = 6 we can
identify each Cauchy sequence (u;) in C¢" (2)" with respect to [Vo], with that element
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u e L. (Q)" having the properties Vu e L1Q)", lim Va; = Vo in LY@ and u =
= lim #; in L{,.({2)", since we may use Poincare’s ine(iuality near the boundary 3. The
same is possible for Q = R” if 1 < ¢ < by using Sobolev’s inequality. However if
Q =R" and g > n, such a Cauchy sequence (u;) need not converge in L, (R™)" but
there exist constants ¢; such that this is true for (u; + ¢;) and so we can identify (%;) in
this case with a class in L{.(R")"” whose elements differ by a constant. For simplicity
we will consider Wi 9(R*)" for all 1 < g < o as a space of such classes; if 1 < ¢ < % we
find for each ue W& (R™)" a representative in L*(R")* where 1/n +1/s=1/q,
see [8],[13] for details.
Let

2.9) Wb @y = [WE e (Q)"1*

be the dual space of W7 (@), 1/q + 1/q' = 1. The norm of some functional f: v —
— [ f, v] from W~19(Q)" is given by
(2.10) I£lw-s0@r = sup |Lf, ””/”V?J”q'-
0=2veCy ()"
The space W¢" 7(Q)" is isometric to some closed subspace of L? ()" and therefore
reflexive, we get [W59(Q)*1* = WrH 2 Q)" If 3Q = ¢ or if 2 =R" and 1<q’' <n
(e. ¢ > n/(n ~ 1)), each fe Cy" (Q)" defines the functional v — (f, v) = [f-vda which

Q
is identified with £ If Q =R", ¢' 2n (le. 1<q<n/(n - 1)) we must additionally
suppose that f fdax =0 to get a well defined functional (f, -) e W~ 7(Q)" since f must

be zero on t}i)e class consisting of constants. The space of these functionals (f,-) is a
dense subspace of W~19(Q)" in all cases; indeed, (f, v) = 0 for all such f and given
ve WE e (Q)" implies v = 0.

Using the Hahn-Banach theorem, for each fe W1 9(Q)" we can find a matrix F =
= (Fy) e Lq(Q)"2 such that [ f, v] = (F, Vv) for all v e Wol 7°(Q)*. Moreover, F can be
chosen such that ||F||, = [|f]w-1.¢@y. Of course, each fe W=19(Q)* yields a well de-
fined distribution on Q being identified with f; we obtain f= — divF in the sense of
distributions where divF = (8, Fy + ... + 3, Fi)iz1, . n-

Our main result on R”, R" and H, reads as follows. The equation —4u + Vp = fis
understood in the sense of distributions.

23. LEMMA. - Let 1<g< o, n=2and let Q=R" or Q= R™. Then for each
fe W b9Q) and ge LY(Q) there exists o unique pair (u, p) e WE(Q)* x LI()
satisfying

2.11) ~Mu+Vp=f, divu=g.
Moreover it holds
(2.12) IVelpe@p? + Iplle@ < CUl Fllw-r @y + llgllo)

where C = C(Q, q) > 0 is a constant.
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Furthermore, suppose additionally 1 <s < «, ge L*(Q) and
2.13) sup  (|[£, o1 /IVolls @p?) < = .

OvﬁvECow(Q)n
Then (u, p) € W * (Q)* x L*(Q).
24. LEMMA. - Let 1 <g< o, 1<s< ®,n=2, left w: R® 1= R be a Lipschitz

function with compact support and let L = ||V’ w|,=@e-1y-1 be sufficiently small (i.e.
L < K where K = K(n, q, 8) > 0 is a constant).

Then for each fe W-L4(H,)" and geLY(H,) there exists a umique pair
(u, p) e Wi 9(H, )" x LY(H,,) satisfying

2.14) ~du+Vp=f, divu=g.
Movreover it holds
(2.15) IVaelLoca, 2 + oMo, < CUF s e, + lollioa,))

where C = Cw, n, q, s) >0 is a constant.
If additionally g e L°(H,) and

(2.16) sup  (|Lf, #1|/|Ve

0=veCy (H,)"

then (u, p) e We*(H,) x L*(H,,).

L) < o,

The proofs are given in the next sections. Observe that the boundary conditions
u]sz =0 and u]sy =0 are implicity contained in u e W ¢(H)" and u e wWEiH,)",
respectively.

3. - The whole space R”, the halfspace R” and the bended halfspace H,,; proof of
Lemmas 2.3 and 24.

PROOF OF LEMMA 2.3 FOR Q = R". - First we assume fe Cy° (R")" and g e Cy" (R*)
where we identify f with the functional [ f, -1: v—[f, v]1={f, v) = j fode. f1<g<
< n/(n — 1) we must additionally suppose that f fdx = 0. R”

In this case a (smooth) solution of —4u + V;I7R =f, divu = g can be sought of the
form :

3.1 wu=u; +Us+h, pP=p+p
where
h=V(E =gy, wm=E=*f, up=U?=Vh,
p1=_Q*f’ P2=_Q*Vh-

Here * means the convolution, while £ and U = (Uy), @ = (Q;) are the fundamental
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solutions of the Laplacian and Stokes equations, respeectively, namely

_(cl(n)[xlz‘" if n=3,

(27) Yog |z| if n=2,

U e (m)éy 12> + (n — 2)|x| "wa;] fn=3,
TN 4wy og ) - Je] Pyl iEn=2,

cs(m)|e| "w;, Hn=3,

Q) = { @m)t x| 2x, i n=2,

¢ (n), co(m), c3(n) being constants depending ounly on n.
A repeated use of the Calderon-Zygmund theorem on singular integrals, see[8;
p. 302], then leads to u e W¢™(R™)*, pe L"(R") and

82) IV Ly S G fllw-vr@ey + g

Loyt + lp L7 (®))

for all 1 <r< o, where C; = C;(n, ) > 0 is a constant.

Assume now, f and g satisfy the assumptions of the theorem. Then the density
property of C;° (R")" in W“l’q(R” )* explained above and the estimate (3.2) with
g =r yield the existence of a pair (u, p)eW&’q(R")” X LI(R"™) satisfying (2.11).
From (2.18) we know that flce ey extends by continuity to a functional
feW L3(R"). Therefore, the same argument as above yields a pair
(%, p) e WE*(R*)" x L*(R") satisfying — 42 + Vp = f, divii = g. We will show that
% =4 and p = P; this proves uw e W& (R™)", pe L*(R") and also the uniqueness of
(%, p) by choosing g = s. For this purpose we put w =% — # and ¢ = p — p. Then we
get

(8.3) (Vw, Vo) — (¢, divo) =0  for all ve C5* (R*)"
and divw = 0. Setting in particular v = Vy, y e C5° (R") we conclude from (3.3) that

(g, &) =0 for all y e C;° (R").
Then Weyl’s lemma yields that ¢ is harmonie on R", it holds ¢ € C* (R") and 4y = 0.
The mean value property for harmonic functions leads to
(3.4) ) = (MR ™" j (p(y) — p(y)) dy

Bg(z) )

where ¢, (n) depends only on n; we set Bp(x) = {y e R": |x —y| <R}, R > 0. Apply-
ing Holder’s inequality yields

1/q 1/s
W@l <R R | [ |p@lidy| +E"| [ |pwldy

Bg(x) Br(z)
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with ¢; = ¢3(n, g, s). Recalling p e LY(R"), p € L*(R") and letting B — c we obtain
¢ = 0. Now from (3.3) we get that Vw is harmonic and the same argument as for ¢
yields 4w = 0. Therefore, w is constant and so zero as element in W ¢(R")* This
proves the assertion of Lemma 2.3 for Q = R™

In the next proof we use the notation

3.5) Ce (@) = {ulo: we G (R)}

for unbounded domains Q ¢ R"

ProoF oF LEMMA 2.8 FOR 2 = R™. — For the halfspace H = R” we first assume that
fe Cy (HY* and g e C5* (H) where the identify f with the functional v — (f, v). We con-
sider extensions to Cy’-functions on R™ which are again denoted by f, g, respectively.
Following [4; p. 323] we then look for a (smooth) solution to (2.11) of the form

u=u+W, p=p+S

where % = (%;);-;.. , ia defined by u; = h; + 2 U * (f; — 9;9) with k and Uj; as be-
fore, W = (W;) by

WZ(GC) = .21 J‘Kij(x, - ?/l’ wn)Aj(ylr O)dy’ - JKij(x’ - y’7 xn)hj(y,’ O)d?/']
i=

SH oH

W]th AZ = 21 UU * (f] - a]g)’ L= (%", wn)’ ZA) by
j=

p= ‘]}_;IQ]‘ * (ﬁ'— 2;9),

S(x) = _}jl[aj J k(a' —y', x,)A;(y', O)dy' + J ke —y', x,) hi (Y, O)dy’},
= el aH

and

&, (2 — Y (@ — ;)

Ko =, ) = Cl(n)(l -y |2+ac2)<”+2)/2’ ¥=0,
W =y, 2,) = ca(n) i Yo =0
' -y, x,)= , =0.
Y n 2 (Ix/_yrlz_l_x;‘f)n/z ®

Following the proof given in [4; pp. 323-326] which is based on a well known vari-
ant of the Calderon-Zygmund theorem [2; Theorem 3.3], see also[8], we obtain
uwe W™ (H)", pe L"(H) and

(3.6) IVl ay® + Pl < Co (L f llov oy + 119 o)

for all 1 < » < « where C, = C;(n, r) > 0. Using the density of Cy" (H)" in Wb a(H)"
and that of Cy* (H) in LY(H) we get the existence of a pair (%, p) € WL (HY x LI(H)
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satisfying (2.11) and (2.12). Using (2.13) we find in the same way a pair
(%, p) e W (H)" x L*(H) satisfying (2.11) and (2.12) with ¢ replaced by s. To show
u=uU,p=pweput w=u—u%, y=p—p and get divww =0 and

(Vw, Vo) = (¢, dive) =0

even for all v e W ¢ (H)* N W2+ (H)". Now we take F e C;° (H)" and construct a sol-
ution pair (v,x) of (2.11) with f replaced by F and g =0. Thus we get dive =0,
ve WET(H)", ye L"(H) for all 1 <r< » and

(Vu, Vo*) — (x, divo*) = (F, v*)

even for all v* =vf + ¥ with vfe WEI(H)", vyFe WP (H)" Setting w = v*
vields

(F, w) = (Vv, Vw) — (y, divw) = {Vw, Vo) — {x, dive) =0

for all F e Cy° (H)" which leads to w = 0. This yields (¢, divv) = 0 for all v e C5° (H)"
which shows that 4y = 0. Since ¢ =p —p, ¢ cannot be a constant unless it is
Z€ero.

From v =u, p=p we conclude (u, p) e W&’S(H)" X L*(H). The uniqueness of
(u, p) follows by considering ¢ = s in the calculation above. This completes the proof
of Lemma 2.3.

Proor oF LEMMA 24. — We show that the operator S, in (24) for H, after some
transformation of the coordinates differs from the corresponding operator for H = R™
only by a «small» perturbation. Then Lemma 2.4 will be proved by applying Kato’s
perturbation criterion in the following formulation.

3.1. LEMMA (KaTo[11]). — Consider Banach spaces X, Y and two bounded linear
operators A and B from X to Y. Suppose A has a bounded inverse from Y to X
and

1Byl < CllAv], wveX

with a constant satisfying 0 < C < 1. Then A + B: X — Y is bijective with a bounded
tnverse.

The proof of this lemma is easy, If I denotes the identity in ¥ we get |[BA Y| <
< C < 1 for the operator norm and writing A + B = (I + BA ') A we get the desired
operator

A+B)'=[U+BA H)A]'=4"" io(—l)“(BA‘l)“.

Going back to the proof of Lemma 2.4, we first define the transformation z — %
fromH, to Hbyx, =@, ..., 2, 1= Xp_1, X, = &, — (). We write « = (', ®,) € H,,
=&, %,)eH, V=(V,9,) with 8 =38/0x;, V=(V,V,) with 3= 3/dk;, i=
=1, ..., n. If the functions w, % are related by u(x) = #(x) we obtain a transformation
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u— % of functions defined on H, to functions defined on H. We obtain
(3;2)x) = ((8; — w;9,) W& for 1,...,m~1,

eX! (3;0)@) = ((8; — w;d)u)a) for 1,...,m—1,
(B, u)(@) = (3, %)(@)

where w; = d;w (1 =1, ...,n ~ 1). Correspondingly we get a transformation f— f of
functionals for H,, to functionals for H by setting [f, v] = [f, #]. In this proof we dis-
tinguish {[-{, ¢, by writing {[-{l, &, Illq, &> (> )u, and {, -)z. Observe that the Jaco-
bian of the transformation x — & is one. ~

Furthermore we write = (u', u,), 4 = (%', %,) and div @ = 3,4 + ... + 0, %
Using (3.7) we easily get

3.8) 1Vl u, < C Vi b & < CallVatly, o,

for all w e W 9(H,,)" and correspondingly with g replaced by s; C;, C, are constants
only depending on w, g. The transformation » —u yields an isomorphism from
WE1(H, )" to WEe(HY". Correspondingly, f— f yields an isomorphism from
W-La(H,)" to WL (H™

Next we transform the equations (2.14) from H, to H. An elementary calculation
yields

(Vu, Vo) — (o, divo)y, = (Vii, Vo)y — (B, div O — (V' 4, (V) 8,7y —

— (V' )3y, V') + (V' 08,20, (V' 0) 3, V) + (B,(V 0)(3, 0" it

and dive = div % — (V' ) (3,%").
The abstract formulation for the first assertion in Lemma 2.4 means that the oper-
ator S,: W 9(H,)" X LY(H,)~ Wb (H, )" x L(H,) defined by

Sq (u, p) = (<Vu! v °>Hq, - <p’ div '>Hw’ ~div u)

is an isomorphism. Let S, y be the corresponding operator with H,, replaced by H.
The calculation above shows the following representation

3.9) S,(u, p) = 8, u(u, p) + B, p)
where the perturbation B(u, p) is given by
B, ) = (~(V'il,(V )8, )~ (V' 3, %, V' +
+ (V' @)8,8,(8" )8, + (B, (V @)y My — (V' 0)(E,8).
This expression yields
IBGE, D) w1 ey x Loen S CLlV 0|« (W@“q,lf + 18], &) + CallV' wlle Wﬁ”q,m
setting (f, ) = S,z (%, p) in (2.12) leads to

Vil + 180, 1 < CallSq, 1, DY w-10qay x Loy



G. P. GaLDI - C. G. SIMADER - H. SoHR: On the Stokes problem, etc. 157

and so we obtain the estimate
(8.10) “B(ﬁ, @HW-W(H)WL‘I(H) s Gy (“V’ me + ”V' w[]“i )”Sq,H('Zi/, ﬁ)”W-w(H)nqu(H)

where C; = C¢(n, q) depends only on =, q.

If K=C,(|V wll. +[|V %) <1 we may apply Lemma 3.1 and conclude that
S,, g + B is an isomorphism from W I(HY* x L1(H) to w-L S(H)* X LY(H). Due to
(3.9) and (3.8) we now obtain that S, above is an isomorphism. This proves the first
assertion of Lemma 24. To prove the last assertion we consider the intersections

X = [W§ 2 (Hy" x L(H)] N [W§* (H)" x L* (H)]

with
1w, 2l = 1€y P lwg e, e x Lo,y + 1wy P ig oy x 1oy
and
Y=[W L aHY x LY N W L 9HY" x L*(H)]
with |

A Dy = 1 D w10y x Laan + 1 Olo-1s@my x o -

For the definition of Y observe we have to identify two funetionals which coincide on
Cy” (H)™.
The same calculation as above for (3.10) now yields

3.11) IB, )|y < K|S, u (%, P)ly

with K = C4(|V' |l + |V’ 0|2 ) where C; = C;(n, g, 5) also depends an s. We get
0 < K <1if ||V’ ||, is sufficiently small. The abstract version of the last assertion of
Lemma 2.3 for Q = H means that the operator S, y is an isomorphism from X to Y.
Using (8.11) we conclude from Lemma 3.1 as before that S, is an isomorphism from X
to Y now with H replaced by H,. This proves the last assertion of Lemma 2.4.

4. - Proof of Theorem 2.1.

According to Remark 2.2, b) it is sufficient to consider a bounded Lipschitz do-
main £ ¢ R* with Lipschitz constant L which fulfills some smallness condition.
We will use the well known localization procedure and apply locally the lemmas on
R" and H,; this leads to the desired result. For this purpose we choose open balls
k

By, By, ...,B,cR" covering the closure Q of Q, ie. Oc¢ U B;. Furthermore we

choose functions ¢, e C° (B;), i=1,...,k, with 0 < ¢; <1 and Z p;(x) =1 for all

x € W. According to the definition of Llpschltz domains we can choose By, ...,B; as
follows.
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There is some k' with 1 <k’ <k such that B;N3Q2 =0 for i=1,2,...,k' and
B;cQfori=Fk'+1,..,k Foreachi=1,...k" we can find some Lipschitz continu-
ous function w’: D* — R with compact support and ||Ves?|. < L such that B; N Q ¢ H,
and B; N 30 ¢ 3H: (after some appropriate rotation and translation of the coordinate
system depending on 1); see (2.7) for the definition of H,. Put 2;=B;NQ for
i=1,..4

First we consider the case ¢ = 0 in the equations (2.2). Let (u, p) € W} 1(Q)" X
x L%(Q) with j pdx =0, put f= — du + Vp, g = dive and multiply the equations

Q

4.1) -M+Vp=f, divu=g

by the cut off function ¢;, ¢ =1, ..., k. This yields the local equations

4.2) — Mpsw) + V(p:p) =f;,  div(e;u) =g,

with ﬂ = @if“" (Ag?l)u - Z(Vgol)(Vu) + (Vgoz)p and 9= 9:9 + (anz)u For
i=1, ..., we may treat (4.2) as equations on H, and apply Lemma 2.4 and for
i=k'+1,..., kwe get equations which can be considered as equations on R" or on H

(after some translation). We carry out this procedure in several steps.
In the first step we prove the a priori estimate

“3)  ||Vellpogr® + Ipliee < CUlF w10 + lglow + lwllLs@p + IPllw-10@))

containing two additional terms on the right compared with (2.3); they will be re-
moved later on by some compactness argument.

Assuming L < K(n, g, gq) with ¢ =s in Lemma 24 we may apply (2.15) for
i=1, ... k" and obtain

V(o) lpeq, iy + | 9iPllLoa.n < CUlAllw-1oarir + I9illLec, ) -
To estimate the expressions on the right we consider test funetions v e Cy" (H,,:)", ap-

ply Poineare’s inequality on Q; = B; N Q ¢ H,;: (suppressing a rotation and translation
possibly needed depending on i) and use the estimates

1V(piv) Lo @r® < ClIVO Lo air®
(Vo) vllze @ < ClVolLe @ irts
e ) vllpe @ < ClIVollee aor?s
[(u, Qo) v)| < Cllullps@p Vol @ s
Ve, (Vo) 0) < Cllullaer | Volle a0

[{p, (V) v)| Cliplw-100 | V0llLo, -
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This leads to
Wilw 1o =

= sup {I{f, g — (u,(Vg;)v) — 2(Vu, (Vo) v) + (p, (Vo) )| /| Volle gy } <

0= ’lJECow(Hwi)n

<G| sup  [{f e /IV@i0lLe @r2) + Colllwlliogr + Iplw-100) <
0=veCy (H, D"

<G ”f”W“vq(.Q)n + Cz(“u“Lq(Q)” + Hp”W"-"(Q)>

and
lgiloaro < Cillglnaw + Collelloey-

Fori=1Fk'+1,...,k we get the same estimates with H_;: replaced by H and apply-
ing Lemma 2.3 instead of Lemma 2.4. In this case no smalles assumption on L is need-
ed. Summing up these estimate over i1 =1, 2, ..., k', ..., k we obatin the desired esti-
mate (4.3).

The next step yields the uniqueness property for (2.2). We will show that

1<g<o, (u,p)eWyuQ"xLIUD), dex=0,
o]

~du+Vp=0, divu=0,

implies » = 0 and p = 0.
For i=1, ...,k the local equations (4.2) now have the form

(44) —AMou) + Vig;p) =f;, divip;u) =g,

with f; = — (do)u — 2(Ve; )(Vo,)p, g: = (Vp;)-u. Applying the regularity property
in the Lemmas 2.3 and 2.4 concerning the exponent s we can show in a number of
steps that

4.5) ue WP2(@Q)y, peL?(Q).

Then we conclude that 0 = (—4u + Vp, u) = |Vulf:,, Vu=0, Vp=0 and p=0
using f pdx = 0. So it remains to show (4.5). This property is clear if ¢ = 2 sinee 0 is

bound%d. So we assume now 1< ¢q<2.

First we consider ¢ = 1, ...,%'. In the following we have to apply Lemma 2.4 for
finitely many exponents s, , ..., s,, (depending on ¢, 7) instead of s. Therefore we can
find some K = I?(n, @) > 0 such that for L < K in the following the assertion of Lem-
ma 24 is applicable. _

Now we choose s; > 1 such that 1/n + 1/s; = 1/q. Then Sobolev’s embedding the-
orem yields [|u]l= gy < Cl|Vatfl o@p®. Defining q' = q/(q — 1), s{ = s, /(s; - 1) we get
1/n+1/q'=1/s{,q' >s], s, > gq. Applying again Sobolev’s embedding theorem and
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Poincare’s inequality on Q; ¢ H,: we obtain for ve Cp° (H,:)":
|[(u, (Ap:) v} < Cillwlpo | Volie @it
W, (o))} < Collllpoga e 1 V0 llesarin s
(Vu, (Vo) )| < Ca|Vullpopt V0 o ai?s
Ve, (Vo) 0)| < Cy|| Vel |uoa,p?]

Vol <}1mi)"2 ;
[(p, (Vo) v)| < CsllpllLean I Vollor aror?
(P, (Vo:)v)| < CollplLoan Vol
This leads to fieW“l’q(Hwi)" and ﬁeW‘l'sl(Hmf)”. In the same way we get
g;e LY(H,) N L*(H,). The application of Lemma 2.4 now yields
(@it p:p) € (WEI(H )" x LUH,)I O [Wo St (H o) X L*(H,1)].

Fori=£k'+1,...,k we conclude in the same way using Lemma 2.3 for the halfspace
H instead of Lemma 2.4. This yields

(9:u, p;p) € [WHI(H)" x LUH)] N [Wy = (H)" x [L*(H)]

fori=k +1,....k

Therefore we have (%, p) e [W 2(Q)" X LI()]1N (W@ x LH(Q)]. If s, =z 21t
follows the desired result (4.4). If s, < 2 we repeat this procedure with g replaced by
s;>¢q and with s; replaced by s, defined by 1/n+1/s,=1/s;, this yields
(u, p) e Wy =(Q)* x L*2(Q). So we obtain (4.5) in a finite number of steps.

In the next step of our proof we show the a priori estimate (2.3) with ¢ = 0. For
this purpose we show by a compactness argument that the terms [u[Loqy and
lpllw-19) on the right of (4.8) may be omitted. We argue by contradiction. Suppose
the estimate

(4.6) IValpo@r + [Pliea < CUfw-1e@r + 9lnow)
is not true for all (u, p)e W 4(Q)" x L1(Q) with jpdm =0 where f= — Vu + Vp,

0
g=divu. Then we can choose (u;,p;) e Wy 9(Q)" x L(Q) with [p;dx=0 for
1=1,2,..., such that a

lirin ||f@HW'1‘q<9)" =0, lign “gi ”L‘I(Q) =0,

1Ve; lpoop® + Ipi ey =1, i=1,2,..,

where f; = — tu; + Vp;, g; = divu;,. We can single out a sub-sequence converging
weakly in W 9(Q)" X L?(Q); we may assume that the sequence itself converges
weakly to some element (u, p) € Wg» 9(Q)" X L(Q). Since £ is bounded we know that
(#, p) = fim (u;, p;) holds strongly in LI(Q)" X WL4(Q) and therefore that

u|lLo@r = li{ﬂ luilo@ms  plw-re@ = lign lp; w1909
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Applying estimate (4.3) yields

1< Clflw-roor + 9:llor@ + i ooy + 23 w1009
and letting i — « leads to
(4.7 1< Cllulpogn + Iplw-re@)

from which we conclude that (u,p) = (0, 0).
Sinee lim || f;w-149¢p = 0, lim ||g;|lzee) = 0 we obtain

lim ((Vu,;, Vo) — (p;, dive)) = (Vu, Vo) ~ (p, divo) =0

for all ve Cp*(Q)" and divu = 0. The weak convergence of p; to p in L?(Q) and
f pide =0 (i =1, ...) yields f pdx = 0. From the uniqueness assertion above we con-

2 Q
clude that (u,p)=(0,0) being a contradiction to (4.5). This proves (2.3) for
¢=0.

In the next step we show that the operator S, in (2.4) is an isomorphism. For this
purpose we use a duality argument. The inequality (2.3) with y = 0 means that

4.8) [, PIhwrp 2oy x 292y < ISy w0y P w120y L2

holds for all (, p) e W 9(Q)* x LI(Q) with LI(Q) as in (2.4). From the well known
closed range theorem we conclude that the dual operator S =8, in (2.5) is surjective
and since (4.6) holds for all 1 < ¢ < © we see that S, is surjective and therefore bijec-
tive for all 1 < ¢ < . This shows that S, is an isomorphism and so Theorem 2.1 is
proved for the special case ¢ = 0.

To prove Theorem 2.1 in the general case ¢ € W'~/ 9(3Q)" where j N-¢dc =

= Jf gdx we use the well known extension operator 30
Q
E: W1~ 930y - Wha(Q)y"

which is continuous and has the property E(¢)|s = ¢ for all ¢ € W'~ (/9:4(30). In
particular we have

49 |E@) w2y < Cllllw - asm ooy

where C = C(£, n, q) > 0 is a constant. Using the assertion of Theorem 2.1 for $=0
we find a unique pair (%, p) e Wi 9(Q)" x LY(Q) with fpdx =0 such that

—du+ Vp =f+ AE($), divﬁ=gg~ divE(¢).

This is possible since

[(g- avE(e) do = [gde - [N-E@ds=0.
Q Q a0
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Moreover we get from (2.3) for ¢ = 0 and (4.9):
Vil or? + [PlLe < CLllFlw-o@r + 1AB@) w1 0ar + 191y + 1div E(@) o)) <
< Coll fllw-1.00r + lglzey + éllw-am.oeop) -

Setting u = % + E($) we obtain u|s = %|s + E($)| o0 = ¢, dive = divii + divE(¢) =
=g and

—du+Vp=—Adu—AE$)+Vp=f.

Fina]ly, we get i[ﬁ'lwl.q(g)r» < C”Vi/: Lot since ?Zlag =0 and

llwroqr + 1plzo@ < |%lwsa@n + 1@ ooy + lplLee €
< O flw-acr + 1glzea + llwr -0 250y

which is the estimate (2.3). The pair (u, p) constructed above is unique; this also fol-
lows from the uniqueness assertion proved before. This completes the proof of Theo-
rem 2.1
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