Annali di Matematica pura ed applicata (IV), Vol. CLXVII (1994), pp. 1-23

On the Convergence of Solutions of Degenerate Elliptic Equations in Divergence Form(*).

R. DE ARCANGELIS - F. SERRA CASSANO

Summary. – It is studied the convergence of solutions of Dirichlet problems for sequences of monotone operators of the type – div $(a_k(x, D \cdot))$, where the functions a_k verify the following degenerate coerciveness assumption

$$(a_h(x,\,\xi_1) - a_h(x,\,\xi_2) | \xi_1 - \xi_2) \ge \mu_h(x) | \xi_1 - \xi_2 |^p \qquad (p \ge 2),$$

being $(\mu_h)_h$ a sequence of function verifying a Muckenhoupt condition uniformly in h.

0. – Introduction.

Given a sequence of Carathéodory functions $a_h \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, the asymptotic behaviour, as h tends to $+\infty$, of the solutions of the equations

$$-\operatorname{div}\left(a_{h}(x,Du)\right)=f(x)$$

has been generally studied under equicoercive assumptions of the type

(0.1)
$$(a_h(x,\xi)|\xi) \ge |\xi|^p \quad \text{for every } h \ (p>1),$$

see for instance [1], [3], [7], [8], [12], [15], [16].

In this paper we study the case in which, instead of (0.1), each function a_h verifies a *degenerate* coerciveness condition depending on h.

One of the results proved (see Corollary 3.6) concerns, for example, the case in

^(*) Entrata in Redazione il 10 luglio 1991, in versione riveduta il 7 agosto 1992.

Indirizzo degli AA.: R. DE ARCANGELIS: Dipartimento di Matematica e Applicazioni «Renato Caccioppoli», Università degli Studi di Napoli Federico II, via Cintia - Complesso Monte S. Angelo, 80126 Napoli, Italia; F. SERRA CASSANO: Dipartimento di Matematica, Università di Trento, via Sommarive 14, 38050 Povo (Trento), Italia.

which the following conditions are assumed:

(0.2)
$$\begin{cases} a_{h}(x, 0) = 0, \\ |a_{h}(x, \xi_{1}) - a_{h}(x, \xi_{2})| \leq L\mu_{h}(x)(1 + |\xi_{1}|^{p} + |\xi_{2}|^{p})^{(p-2)/p} |\xi_{1} - \xi_{2}| & (p \geq 2), \\ (a_{h}(x, \xi_{1}) - a_{h}(x, \xi_{2}) |\xi_{1} - \xi_{2}| \geq \mu_{h}(x) |\xi_{1} - \xi_{2}|^{p}, \end{cases}$$

for a.e. x in \mathbb{R}^n , for every ξ_1, ξ_2 in \mathbb{R}^n , and every $h \in \mathbb{N}$, where $(\mu_h)_h$ is a sequence of functions in the Muckenhoupt class $A_p(K)$ (see (1.3)) such that, for every cube Q of \mathbb{R}^n , $(\mu_h)_h$ and $(\mu_h^{1-p'})_h$ are bounded in $L^1(Q)$.

We prove the existence of a subsequence $(a_{h_r})_r$ of $(a_h)_h$, of a Carathéodory function $a_{\infty} : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ and of a function μ_{∞} in $A_p(K)$ verifying

(0.3)
$$\begin{cases} a_{\infty}(x, 0) = 0, \\ |a_{\infty}(x, \xi_{1}) - a_{\infty}(x, \xi_{2})| \leq L' \mu_{\infty}(x)(1 + |\xi_{1}|^{p} + |\xi_{2}|^{p})^{(p-2)/(p-1)} |\xi_{1} - \xi_{2}|^{1/(p-1)}, \\ (a_{\infty}(x, \xi_{1}) - a_{\infty}(x, \xi_{2}) |\xi_{1} - \xi_{2}) \geq \mu_{\infty}(x) |\xi_{1} - \xi_{2}|^{p}, \end{cases}$$

for a.e. x in \mathbb{R}^n , for every ξ_1, ξ_2 in \mathbb{R}^n , such that, for every regular bounded open set Ω and f in $L^{\infty}(\Omega)$ the unique solutions u_r of the Dirichlet problems

$$-\operatorname{div} (a_{h_{-}}(x, Dv)) = f \text{ in } \Omega, \quad v = 0 \text{ on } \partial \Omega$$

converge weakly in $W_0^{1,1}(\Omega)$ to the unique solution u_{∞} of the Dirichlet problem

$$-\operatorname{div}(a_{\infty}(x,Dv))=f$$
 in Ω , $v=0$ on $\partial\Omega$.

Moreover the weak convergence in $(L^1(\Omega))^n$ of the momenta $a_{h_r}(x, Du_r)$ to the momentum $a_{\infty}(x, Du_{\infty})$ holds.

The above convergence result is obtained as a particular and more readable case from a general convergence result (see Theorem 3.5).

The techniques employed in this paper are classical and rely on a weighted compensated compactness type result (Theorem 1.2) proved in [6].

We finally recall that the case of homogenization, in which $a_h(x, \xi) = a(hx, \xi)$ where $a(\cdot, \xi)$ is a 1-periodic function in each variable x_i (i = 1, 2, ..., n) is studied in [6] under less restrictive assumptions.

1. - Notations and preliminary results.

We denote by Q a generic (open or closed) cube of \mathbb{R}^n (n > 1) with faces parallel to the coordinates planes.

The symbols $(\cdot | \cdot)$, |E|, $\oint f dx$, p' indicate respectively the scalar product of \mathbb{R}^n , the Lebesgue measure of the set E, the mean value of f on $E\left(i.e. |E|^{-1} \int_E f dx\right)$ and the conjugate of p (*i.e.* p' = p/(p-1)).

Let p > 1 and let λ be a *weight* on \mathbb{R}^n , that is a measurable function on \mathbb{R}^n such that $\lambda > 0$ a.e., λ and $\lambda^{1-p'}$ are in $L^1_{\text{loc}}(\mathbb{R}^n)$, set $L^p(\Omega, \lambda) = \{u \in L^1_{\text{loc}}(\Omega): u\lambda^{1/p} \in L^1(\Omega)\}$ and $W^{1, p}(\Omega, \lambda) = \{u \in W^{1, 1}_{\text{loc}}(\Omega): u \text{ and } |Du| \in L^p(\Omega, \lambda)\}.$

It is easy to verify that $W^{1, p}(\Omega, \lambda)$ endowed with the topology induced by the norm $\|u\|_{W^{1, p}(\Omega, \lambda)} := \|u\lambda^{1/p}\|_{L^{p}(\Omega)} + \||Du|\lambda^{1/p}\|_{L^{p}(\Omega)}$ is a reflexive and separable Banach space.

We denote by $W_0^{1, p}(\Omega, \lambda)$ the closure of $C_0^1(\Omega)$ in the topology of $W^{1, p}(\Omega, \lambda)$, by $W^{-1, p'}(\Omega, \lambda)$ its dual space and by $\langle \cdot, \cdot \rangle$ the duality bracket between $W^{-1, p'}(\Omega, \lambda)$ and $W_0^{1, p}(\Omega, \lambda)$.

We recall that (cf. Theorem 1.4 in [14] and Proposition 1.2 in [5])

(1.1) $W_0^{1, p}(\Omega, \lambda) = W^{1, p}(\Omega, \lambda)$. $\cap W_0^{1, 1}(\Omega)$ for every bounded open set Ω with Lipschitz boundary, λ in A_p (see below for the definition of A_p).

REMARK 1.1. – It easy to see that $W_0^{1, p}(\Omega, \lambda)$ continuously embeds in $W_0^{1, 1}(\Omega)$ and compactly in $L^q(\Omega)$ for every $q \in [1, n/(n-1))$, hence we have that $L^n(\Omega) \subset W^{-1, p'}(\Omega, \lambda)$; moreover it can be easily proved that there exists a positive constant $c = c(p, \Omega)$ (depending only on p and Ω) such that

(1.2)
$$||f||_{W^{-1,p'}(\Omega,\lambda)} \leq c \left(\int_{\Omega} \lambda^{1-p'} dx \right)^{1/p'} ||f||_{L^{n}(\Omega)},$$

for every weight λ , on \mathbb{R}^n .

Given p > 1, $K \ge 1$ and a weight λ we say that λ is in the Muckenhoupt class $A_p(K)$ (see [11]) if

(1.3)
$$\left(\int_{Q} \lambda \, dx \right) \left(\int_{Q} \lambda^{1-p'} \, dx \right)^{p-1} \leq K \quad \text{for every cube } Q.$$

We set $A_p := \bigcup_{K \ge 1} A_p(K)$.

 A_p weights verify the following higher summability property (see [4] and also [5]): for every p > 1 and $K \ge 1$ there exist two positive constants c = c(p, K) and $\delta = \delta(p, K)$ (depending only on p and K) such that

(1.4)
$$\left(\int_{Q} \lambda^{1+\delta} dx \right)^{1/(1+\delta)} \leq c \oint_{Q} \lambda dx , \quad \left(\int_{Q} \lambda^{(1-p')(1+\delta)} dx \right)^{1/(1+\delta)} \leq c \oint_{Q} \lambda^{1-p'} dx ,$$

for every cube Q and λ in $A_p(K)$; moreover, (cf. [9]) if Ω is a bounded open set of \mathbb{R}^n

there exists a positive constant $c = c(p, K, \Omega)$ (depending only on p, K and Ω) such that

(1.5)
$$\int_{\Omega} |u|^p \lambda \, dx \leq c \int_{\Omega} |Du|^p \lambda \, dx \,,$$

for every λ in $A_p(K)$, u in $W_0^{1, p}(\Omega, \lambda)$.

In [6] the following result of compensated compactness type is proved (compare also with [12]).

THEOREM 1.2. – Let λ be in A_p , $K \ge 1$; let $(\lambda_h)_h$ be a sequence in $A_p(K)$ and let Ω be a bounded open set.

Consider a sequence of functions $(u_h)_h \subseteq W^{1, p}(\Omega, \lambda_h)$ and u in $W^{1, p}(\Omega, \lambda)$ such that

$$\int_{\Omega} \left(\left| u_{h} \right|^{p} + \left| D u_{h} \right|^{p} \right) \lambda_{h} dx \quad \forall h, \qquad u_{h} \to u \text{ in } L^{1}(\Omega)$$

and a sequence of vector functions $(a_h)_h \subseteq (L^{p'}(\Omega, \lambda_h^{1-p'}))^n$ and a in $(L^{p'}(\Omega, \lambda^{1-p'}))^n$ such that

$$\int_{\Omega} \left(|a_h|^{p'} \lambda_h^{1-p'} dx \le c_2 \quad \forall h, \quad -\operatorname{div}(a_h) = f \in L^n(\Omega) \quad on \ C_0^1(\Omega), \\ a_h \to a \ in \ (L^1(\Omega))^n \operatorname{-weak}. \right)$$

Then

.

$$(a_h | Du_h) \rightarrow (a | Du) \quad in \ \mathcal{O}'(\Omega).$$

In [5] a weak compactness result for A_p weights is proved: if Q_0 is a fixed cube of \mathbb{R}^n and $(\lambda_h)_h$ is a sequence in $A_p(K)$ such that $(\lambda_h)_h$ and $(\lambda_h^{1-p'})_h$ are bounded in $L^1(Q_0)$, then there exist a positive constant c = c(n) (depending only on n) and two weights $\tilde{\lambda}$ and λ such that

(1.6)
$$\widetilde{\lambda}$$
 and λ are in $A_p(cK)$, $\lambda(x) \leq \widetilde{\lambda}(x) \leq K\lambda(x)$ for a.e. $x \in Q_0$,

and, up to subsequences,

(1.7)
$$\lambda_h \to \tilde{\lambda} \quad \text{and} \quad \lambda_h^{1-p'} \to \lambda^{1-p'} \quad \text{in } L^1(Q_0)\text{-weak}$$

REMARK 1.3. – If for every cube Q_0 of \mathbb{R}^n , the sequences $(\lambda_h)_h$ and $(\lambda_h^{1-p'})_h$ are bounded in $L^1(Q_0)$, then, by (1.6), (1.7) and by using a diagonal process, it can be proved (see [5]) the existence of two weights $\tilde{\lambda}$ and λ in $A_p(K)$ such that, up to subsequences, (1.6) and (1.7) hold respectively for a.e. x in \mathbb{R}^n and for every cube Q_0 .

We now prove the following «lower semicontinuity» type result.

LEMMA 1.4. – Let p > 1, K and $\tilde{K} \ge 1$; let Ω be a bounded open set with Lipschitz

boundary and let $(\lambda_h)_h$ be a sequence in $A_p(K)$. Let us assume that there exist two weights $\tilde{\lambda}$ in $A_p(\tilde{K})$, λ in $A_p(K)$ and a positive constant c_0 such that

(1.8)
$$\lambda_h \to \tilde{\lambda} \quad and \quad \lambda_h^{1-p'} \to \lambda^{1-p'} \quad in \ L^1(\Omega_0)$$
-weak,

(1.9)
$$\frac{1}{c_0}\lambda(x) \leq \tilde{\lambda}(x) \leq c_0\lambda(x) \quad \text{for a.e. } x \in \Omega$$

Then

(i) if $(u_h)_h \subseteq W_0^{1, p}(\Omega, \lambda_h)$ is a sequence such that $\int_{\Omega} |Du_h|^p \lambda_h dx \leq c_1 \forall h, u_h \rightarrow u$ in $W_0^{1, 1}(\Omega)$ -weak, it follows that

$$u \in W_0^{1, p}(\Omega, \lambda)$$
 and $\int_{\Omega} |Du|^p \lambda dx \leq \liminf_h \int_{\Omega} |Du_h|^p \lambda_h dx$.

(ii) If f is in
$$L^{n}(\Omega)$$
 it follows that there exist two positive constants $c_{i} = c_{i}(p, K, \Omega, c_{0}), i = 2, 3$, (depending only on p, K, Ω and c_{0}) such that
 $c_{3} \|f\|_{W^{-1, p'}(\Omega, \lambda)} \leq \liminf_{h} \|f\|_{W^{-1, p'}(\Omega, \lambda_{h})} \leq \limsup_{h} \|f\|_{W^{-1, p'}(\Omega, \lambda_{h})} \leq c_{2} \|f\|_{W^{-1, p'}(\Omega, \lambda)}$.

PROOF. - (i) By Hölder inequality and (1.8) it follows that

(1.10)
$$\int_{\Omega} |Du| |\varphi| dx \leq \liminf_{h} \left(\int_{\Omega} |Du_{h}|^{p} \lambda_{h} dx \right)^{1/p} \left(\int_{\Omega} |\varphi|^{p'} \lambda^{1-p'} dx \right)^{1/p'} \quad \forall \varphi \in C_{0}^{0}(\Omega).$$

By (1.10) and by exploiting the density of $C_0^0(\Omega)$ in $L^{p'}(\Omega, \lambda^{1-p'})$, we deduce that $|Du| \in L^p(\Omega, \lambda)$ and that

$$\int_{\Omega} |Du|^p \lambda \, dx \leq \liminf_h \int_{\Omega} |Du_h|^p \lambda_h \, dx \, ;$$

hence, being Ω regular, by (1.1) it turns out that u is in $W_0^{1, p}(\Omega, \lambda)$.

(ii) For every $\varepsilon > 0$ and $h \in \mathbb{N}$ there exists $v_h^{(\varepsilon)}$ in $W_0^{1,p}(\Omega, \lambda_h)$ such that

$$(1.11) \|v_h^{(\varepsilon)}\|_{W_0^{1,p}(\Omega,\lambda_h)} \leq 1, \|f\|_{W^{-1,p'}(\Omega,\lambda_h)} \leq \varepsilon + \|v_h^{(\varepsilon)}\|_{W_0^{1,p}(\Omega,\lambda_h)}^{-1} \left| \int_{\Omega} fv_h^{(\varepsilon)} dx \right|.$$

By Hölder inequality, (1.4) and (1.11) we get that there exists a positive constant σ such that $(v_k^{(\varepsilon)})_k$ is bounded in $W_0^{1,1+\sigma}(\Omega)$ and therefore, up to subsequences, there exists $v^{(\varepsilon)}$ in $W_0^{1,1+\sigma}(\Omega)$ such that

$$v_h^{(\varepsilon)} \to v^{(\varepsilon)}$$
 in $W_0^{1,1}(\Omega)$ -weak.

On the other hand by (i) passing to the limit in (1.11) we get

(1.12)
$$\limsup_{h} \|f\|_{W^{-1,p'}(\Omega,\lambda_h)} \leq \varepsilon + \left(\int_{\Omega} |Dv^{(\varepsilon)}|^p \lambda \, dx\right)^{-1/p} \left|\int_{\Omega} fv^{(\varepsilon)} \, dx\right|.$$

By (1.5), (1.12) it follows that there exists a positive constant $c_2 = c_2(p, K, \Omega)$ for which the inequality in the right hand side in (ii) holds.

Finally, by (1.8) we have

$$\left| \int_{\Omega} f v \, dx \, \right| \, \|v\|_{W^{1,p}_{0}(\Omega,\,\overline{\lambda})}^{-1} \leq \liminf_{h} \, \|f\|_{W^{-1,p'}(\Omega,\,\lambda_{h})} \quad \forall v \in C^{1}_{0}(\Omega) \, ;$$

therefore, by (1.9) and by density of $C_0^1(\Omega)$ in $W_0^{1, p}(\Omega, \lambda)$, it follows that there exists a positive constant $c_3 = c_3(p, K, c_0)$ for which the left side in (ii) holds.

Finally we recall the following result (see Lemma 7.8 in [9]).

LEMMA 1.5. – Let δ , ρ , ϑ be real positive numbers such that $\delta + \rho + \vartheta \leq 1$. Let us assume that $(t_h)_h$, $(s_h)_h$, $(z_h)_h$ and $(w_h)_h$ are sequences in $L^1(\Omega)$ such that

$$\begin{split} (s_h)_h, \ (z_h)_h \ and \ (w_h)_h & are \ non \ negative, \\ |t_h| \leq s_h^{\beta} z_h^{\beta} w_h^{\beta} & a.e. \ in \ \Omega, \ for \ every \ h, \\ t_h \to t, \quad s_h \to s, \quad z_h \to z, \quad w_h \to w, \quad in \ \Omega'(\Omega), \end{split}$$

for some functions t, s, z and w in $L^{1}(\Omega)$. Then

$$|t| \leq s^{\delta} z^{\circ} w^{\delta} \quad a.e. in \ \Omega.$$

2. - A notion of convergence for a class of degenerate elliptic operators.

DEFINITION 2.1. – Let p, α, β, L and K be positive constants with

(2.1)
$$p > 1$$
, $0 < \alpha \le \min\left\{\frac{p}{2}, p-1\right\}$, $\beta \ge \max\left\{2, p\right\}$, $L \ge 1$ and $K \ge 1$.

If Ω is an open set, we denote by $\mathfrak{M}_{\Omega}(p, \alpha, \beta, L, K)$ the class of the Carathéodory functions a: $\Omega \times \mathbb{R}^n \to \mathbb{R}^n$ for which there exists a positive functions λ in $A_p(K)$ and m in $L^1_{\text{loc}}(\Omega)$ such that, if

(2.2)
$$H \equiv H(x, \xi_1, \xi_2) := m(x) + (a(x, \xi_1)|\xi_1) + (a(x, \xi_2)|\xi_2)$$

the following structure conditions hold:

When $\Omega = \mathbb{R}^n$ we denote $\mathfrak{M}_{\mathbb{R}^n}(p, \alpha, \beta, L, K)$ simply by $\mathfrak{M}(p, \alpha, \beta, L, K)$.

Since p, α and β will remain fixed in the whole paper, sometime we will write simply $\mathfrak{M}_{\Omega}(L, K)$ and $\mathfrak{M}(L, K)$ instead of $\mathfrak{M}_{\Omega}(p, \alpha, \beta, L, K)$ and $\mathfrak{M}(p, \alpha, \beta, L, K)$.

LEMMA 2.2. – Let a be in $\mathfrak{M}_{\Omega}(L, K)$ verifying conditions $(S_1) \div (S_3)$ with functions λ in $A_p(K)$, m in $L^1_{loc}(\Omega)$ and let H be the function in (2.2). Then there exist positive constants $c_i = c_i(p, \alpha, \beta, L)$ (i = 1, ..., 5) (depending only on p, α, β, L) such that

$$(2.3) \quad |a(x,\xi_1)-a(x,\xi_2)| \leq c_1 \lambda^{1/(p-\alpha)} H^{(p-1-\alpha)/(p-\alpha)} |\xi_1-\xi_2|^{\alpha/(p-\alpha)},$$

a.e. in Ω , $\forall \xi_1, \xi_2 \in \mathbb{R}^n$,

(2.4) $|a(x,\xi)| \leq c_2(|a(x,0)| + m^{1/p'}(x)\lambda^{1/p}(x) + \lambda(x)|\xi|^{p-1}),$

(2.5)
$$H \leq c_3 \{ m + |a(x, 0)|^{p'} \lambda^{1-p'} + \lambda(|\xi_1|^p + |\xi_2|^p) \}, \quad a.e. \ in \ \Omega, \ \forall \xi_1, \xi_2 \in \mathbb{R}^n,$$

(2.6)
$$(a(x,\xi)|\xi) \ge c_4\lambda(x)|\xi|^p - c_5(|a(x,0)|^{p'}\lambda^{1-p'}(x) + m(x)),$$

for a.e. $x \in \Omega$ for every ξ in \mathbb{R}^n .

PROOF. – The proof of the above estimates can be obtained in a standard way by using Young inequality (see, for instance [8] and [12]). \blacksquare

The following characterization of $\mathcal{M}_{\mathcal{Q}}(L, K)$ holds.

PROPOSITION 2.3. – Let Ω be an open set and let $a: \Omega \times \mathbb{R}^n \to \mathbb{R}^n$ be a Carathéodory function. Then the following facts hold:

(i) If a verifies $(S_1) \div (S_3)$ with constants p, α, β, L, K satisfying (2.1) and functions λ in $A_p(K)$ and m in $L^1_{loc}(\Omega)$ it follows that

$$(\mathbf{S}_1^*) \quad \left| a(x,\,\xi_1) - a(x,\,\xi_2) \right| \leq$$

$$\leq L_1 \lambda_*^{(1+\gamma)/p}(x) [m_*(x) + \lambda_*(x)(|\xi_1|^p + |\xi_2|^p)]^{(p-1-\gamma)/p} |\xi_1 - \xi_2|^{\gamma},$$

 $(\mathbf{S}_{2}^{*}) \quad (a(x,\,\xi_{1}) - a(x,\,\xi_{2}) | \xi_{1} - \xi_{2}) \geq$

$$\geq L_2 \lambda_*^{\beta/p}(x) [m_*(x) + \lambda_*(x)(|\xi_1|^p + |\xi_2|^p)]^{(p-\beta)/p} |\xi_1 - \xi_2|^{\beta},$$

for a.e. x in Ω , for every ξ_1 and ξ_2 in \mathbb{R}^n , where

(2.7)
$$\lambda_* := \lambda, \qquad m_* := m + |a(\cdot, 0)|^{p'} \lambda^{1-p'}, \qquad \gamma = \frac{\alpha}{p-\alpha}$$

and $L_i = L_i(p, \alpha, \beta, L)$ (i = 1, 2) are suitable positive constants depending only on p, α , β , L.

(ii) If a verifies (S_1^*) and (S_2^*) with functions λ_* in $A_p(K)$ and m_* in $L^1_{loc}(\Omega)$ and positive constants γ , β and L_i (i = 1, 2) such that $0 < \gamma \le \min\{1, p - 1\}, \beta \ge \max\{2, p\}$ and $K \ge 1$, then a verifies $(S_1) \div (S_3)$ with $\lambda = c_1 \lambda_*, m = c_2 m_* + 1$ $+c_3 |a(\cdot, 0)|^{p'} \lambda_*^{1-p'}, \alpha = p\gamma/\beta, L \ge 1$, being $c_i (i = 1, 2, 3)$ and L suitable positive constants depending only on p, γ, β and L_i .

PROOF. - i) Let us assume that $a \in \mathcal{M}_{\Omega}(L, K)$ verifies $(S_1) \div (S_3)$. By (2.3), (2.5) it follows that there exists a positive constant $L_1 = L_1(p, \alpha, \beta, L)$ such that

$$(2.8) \quad |a(x,\,\xi_1) - a(x,\,\xi_2)| \leq$$

$$\leq L_1 \lambda^{1/(p-\alpha)} [m + |a(x,0)|^{p'} \lambda^{1-p'} + \lambda(|\xi_1|^p + |\xi_2|^p)]^{(p-1-\alpha)/(p-\alpha)} |\xi_1 - \xi_2|^{\alpha/(p-\alpha)},$$

for a.e. $x \in \Omega$, for every ξ_1 and ξ_2 in \mathbb{R}^n .

Therefore, if we choose λ_* , m_* and γ as in (2.7), we get that (S_1^*) is satisfied at once.

On the other hand by (2.5) it follows that there exists a positive constant $L_2 = L_2(p, \alpha, \beta, L)$ such that

(2.9)
$$H^{(p-\beta)/p} \ge L_2[m+|a(x,0)|^{p'}\lambda^{1-p'}+\lambda(|\xi_1|^p+|\xi_2|^p)]^{(p-\beta)/p}$$

a.e. in $\Omega, \ \forall \xi_1\xi_2 \in \mathbb{R}^n,$

then, by (S_3) and (2.9), (S_2^*) follows.

(ii) By (S_2^*) , by means of Young inequality, we deduce

$$L_{2}^{p/\beta}\lambda_{*}\left|\xi\right|^{p} \leq \frac{p\varepsilon^{-\beta/p}}{\beta}\left[\left(a(x,\,\xi)\left|\xi\right)+\left|a(x,\,0)\right|\left|\xi\right|\right]+\frac{(\beta-p)}{\beta}\varepsilon^{(\beta-p)/\beta}\left(m_{*}+\lambda_{*}\left|\xi\right|^{p}\right)\right]$$

a.e. in Ω , $\forall \xi \in \mathbb{R}^n$.

If ε is small enough, by the previous inequality, we deduce the existence of a suitable positive constant $c_* = c_*(p, \beta, L_1, L_2)$ for which the following estimate holds

(2.10)
$$c_* \lambda_* |\xi|^p \le m_* + |a(x,0)|^{p'} \lambda_*^{1-p'} + (a(x,\xi)|\xi)$$
 a.e. in $\Omega, \ \forall \xi \in \mathbb{R}^n$.

Let us now define $m(x):= (2 + c_*) m_*(x) + 2 |a(x, 0)|^{p'} \lambda_*^{1-p'}(x)$ and let *H* be as in (2.2), then by (2.10) (S₁) follows at once.

On the other hand by (S_2^*) it follows that

(2.11)
$$L_{2}\lambda_{*}^{\beta/p} [m_{*} + \lambda_{*} (|\xi_{1}|^{p} + |\xi_{2}|^{p})]^{(p-\beta)/p} |\xi_{1} - \xi_{2}|^{\beta} \ge$$
$$\ge L_{2}c_{*}^{(\beta-p)/p}\lambda_{*}^{\beta/p} H^{(p-\beta)/p} |\xi_{1} - \xi_{2}|^{\beta} \quad \text{a.e. in } \Omega, \ \forall \xi_{1}\xi_{2} \in \mathbb{R}^{n}.$$

so, if we choose $\lambda(x) := L_2^{p/\beta} c_*^{(\beta-p)/\beta} \lambda_*(x)$, by (S^{*}₂) and (2.11) we get (S₂). Finally by (S^{*}₁) it follows that

$$(2.12) \quad |a(x,\,\xi_1) - a(x,\,\xi_2)| \leq L_1 c_*^{(1+\gamma-p)/p} \lambda_*^{(1+\gamma)/p} H^{(p-1-\gamma)/p} |\xi_1 - \xi_2|^{\gamma}$$

a.e. in Ω , $\forall \xi_1 \xi_2 \in \mathbb{R}^n$,

and by (S_2^*) that

(2.13)
$$|\xi_1 - \xi_2| \leq \frac{1}{L_2} \lambda_*^{-1/p} H^{(\beta - p)/p\beta}(a(x, \xi_1) - a(x, \xi_2) | \xi_1 - \xi_2)^{\beta}$$

a.e. in Ω , $\forall \xi_1 \xi_2 \in \mathbb{R}^n$.

Therefore, by (2.12) and (2.13), (S₃) holds if we choose $\alpha = p\gamma/\beta$ and a suitable constant L.

REMARK 2.4. – Let a be in $\mathcal{M}_{\Omega}(L, K)$ and let us assume that $(S_1) - (S_3)$ hold with functions λ_i in $A_p(K)$, m_i in $L^1_{loc}(\Omega)$ (i = 1, 2); then (see Remark 3.1 in [6]) it can be proved that the weights λ_i are comparable, that is there exists a positive constant $c_0 = c_0(p, \alpha, \beta, L)$ for which (1.9) holds.

REMARK 2.5. – Let Ω be a bounded open set and let a be in $\mathcal{M}_{\Omega}(L, K)$. Let us suppose that $(S_1) \div (S_3)$ hold with functions λ in $A_p(K)$, m in $L^1(\Omega)$ and that $|a(x, 0)|^{p'} \lambda^{1-p'}$ is in $L^1(\Omega)$; then by Corollary 1.8, Chapter III in [10] and by Proposition 2.3 we deduce that, for every $f \in W^{-1, p'}(\Omega, \lambda)$ the Dirichlet problem

(P_a)
$$- \operatorname{div} (a(x, Dv)) = f \text{ in } \Omega, \quad v \in W_0^{1, p}(\Omega, \lambda)$$

has a unique solution.

REMARK 2.6. – Let a be a function verifying $(S_1) \div (S_3)$ for some functions λ in $A_p(K)$ and m in $L^1(\Omega)$; if λ' and m' are other functions for which $(S_1) \div (S_3)$ still hold, then, by virtue of Remark 2.4, the weights λ and λ' are comparable and therefore $W_0^{1, p}(\Omega, \lambda)$ turns out to be equal to $W_0^{1, p}(\Omega, \lambda')$; this implies that problem (P_a) depends effectively on a and not on the particular choice of λ .

We now prove some properties of the operator $-\operatorname{div}(a(x, D \cdot))$ with a in $\mathfrak{M}_{\Omega}(L, K)$.

PROPOSITION 2.7. – Let Ω be a bounded open set, let a in $\mathfrak{M}_{\Omega}(p, \alpha, \beta, L, K)$ and let A be the following operator

A:
$$W_0^{1, p}(\Omega, \lambda) \to W^{-1, p'}(\Omega, \lambda), \quad A = -\operatorname{div}(a(x, D \cdot)).$$

Then A is continuous and invertible. Moreover the following estimates holds: there exists a positive constant $c = c(p, \alpha, \beta, L, \Omega)$ (depending only on p, α, β, L and Ω) such that, if m_* is as in (2.7) and belongs to $L^1(\Omega)$, it results

 $(2.14) \quad \|Au - Av\|_{W^{-1, p'}(\Omega, \lambda)} \leq$

$$\leq c(\|m_*\|_{L^1(\Omega)} + \|u\|_{W^{1,p}_0(\Omega,\lambda)}^p + \|v\|_{W^{1,p}_0(\Omega,\lambda)}^p)^{(p-1-\gamma)/(p-1)} \|u-v\|_{W^{1,p}_0(\Omega,\lambda)}^{\gamma/(p-1)},$$

for every u and v in $W_0^{1, p}(\Omega, \lambda)$ with $\gamma = \alpha/(p - \alpha)$;

$$(2.15) \|A^{-1}f - A^{-1}g\|_{W_0^{1,p}(\Omega,\lambda)} \le$$

$$\leq c(\|m_*\|_{L^1(\Omega)} + \|f\|_{W^{-1,p'}(\Omega,\lambda)}^{p'} + \|g\|_{W^{-1,p'}(\Omega,\lambda)}^{p'})^{(\beta-p)/(p(\beta-1))}\|f - g\|_{W^{-1,p'}(\Omega,\lambda)}^{1/(\beta-1)}$$

for every f and g in $W^{-1, p'}(\Omega, \lambda)$.

PROOF. – In order to get (2.14) we first observe that by Proposition 2.3 (i) there exists a positive constant $c = c(p, \alpha, \beta, L, \Omega)$ such that

$$(2.16) \|Au - Av\|_{W^{-1,p'}(\Omega,\lambda)} \leq \left(\int_{\Omega} |a(x, Du) - a(x, Dv)|^{p'} \lambda^{1-p'} dx \right)^{1/p'} \leq \\ \leq c \left(\int_{\Omega} \left[m + |a(x,0)|^{p'} \lambda^{1-p'} + \lambda(|Du|^{p} + |Dv|^{p}) \right]^{(p-1-\gamma)/(p-1)} |Du - Dv|^{\gamma p'} \lambda^{\gamma/(p-1)} dx \right)^{1/p'},$$

for every u and v in $W_0^{1, p}(\Omega, \lambda)$ with $\gamma = \alpha/(p-\alpha)$.

Then, by (1.5), Hölder inequality and (2.16), (2.14) follows at once.

By (S_1^*) , (S_2^*) of Proposition 2.3 and by (2.14) A turns out to be continuous, monotone and coercive, then, by applying, for instance, Corollary 1.8, Chapter III in [10], we get at once that A is invertible.

In order to prove (2.15) let us preliminarly observe that, in general, by Hölder inequality, we have

$$(2.17) \quad \int_{\Omega} |Du - Dv|^{p} \mu \, dx \leq \left(\int_{\Omega} \mu^{\beta/p} \left[r + \mu (|Du|^{p} + |Dv|^{p}) \right]^{(p-\beta)/p} |Du - Dv|^{\beta} \, dx \right)^{p/\beta} \cdot \left(\int_{\Omega} r + \mu (|Du|^{p} + |Dv|^{p}) \, dx \right)^{(\beta-p)/\beta},$$

for every u, v in $W_0^{1, p}(\Omega, \mu)$ every positive function r in $L^1(\Omega)$ and every weight μ .

Moreover by (2.6) and Poincaré inequality in (1.5) there exists a positive constant $c_1 = c_1(p, \alpha, \beta, L, \Omega)$ such that

$$\int_{\Omega} |DA^{-1}f|^p \lambda \, dx \leq c_1 \bigg(\|f\|_{W^{-1,p'}(\Omega,\lambda)} \|DA^{-1}f\|_{W^{1,p}(\Omega,\lambda)} + \int_{\Omega} (m+|a(x,0)|^{p'} \lambda^{1-p'}) \, dx \bigg).$$

By applying Young inequality to the previous estimate we get the existence of a

positive constant $c_2 = c_2(p, \alpha, \beta, L, K, \Omega)$ such that

$$(2.18) \quad \|A^{-1}f\|_{W_0^{1,p}(\Omega,\lambda)}^p \leq c_2 \left(\int_{\Omega} (m+|a(x,0)|^{p'}\lambda^{1-p'}) dx + \|f\|_{W^{-1,p'}(\Omega,\lambda)}^{p'} \right),$$

for every f in $W^{-1, p'}(\Omega, \lambda)$.

On the other hand, by condition (S^{*}₂), (1.5) and by applying (2.17) with $u = A^{-1}f$, $v = A^{-1}g$, $r = m + |\alpha(x, 0)|^{p'}\lambda^{1-p'}$ and $\mu = \lambda$, we deduce that there exists a positive constant $c_3 = c_3(p, \alpha, \beta, L, K, \Omega)$ such that

$$(2.19) \quad \|A^{-1}f - A^{-1}g\|_{W_{0}^{1,p}(\Omega,\lambda)} \leq \\ \leq c_{3} \left(\int_{\Omega} (m + |a(x,0)|^{p'} \lambda^{1-p'} + \lambda |DA^{-1}f|^{p} + \lambda |DA^{-1}g|^{p}) dx \right)^{(\beta-p)/(p(\beta-1))} \\ \cdot \|f - g\|_{W_{1,p}^{(\beta,-1)}(\Omega,\lambda)}^{(\beta-p)/(p(\beta-1))},$$

for every f and g in $W^{-1, p'}(\Omega, \lambda)$.

By (2.18) and (2.19), (2.15) follows at once.

Now we introduce the following notion of G-convergence (see also [3], [12], [14], [15] and [16]).

DEFINITION 2.8. – Let p, α, β, L and K be positive numbers satisfying (2.1) and let Ω be a bounded open set.

Let a_h (h = 1, 2, ...) and a be functions in $\mathfrak{M}_{\Omega}(p, \alpha, \beta, L, K)$ verifying $(S_1) \div (S_3)$ respectively with weights λ_h and λ in $A_p(K)$ and functions m_h and m in $L^1(\Omega)$ and such that $|a_h(x, 0)|^{p'} \lambda_h^{1-p'}$ and $|a(x, 0)|^{p'} \lambda^{1-p'}$ are in $L^1(\Omega)$.

We say that the sequence (a_h) G-converges to a in Ω , and we write

$$a_h \xrightarrow{G} a \quad in \ \Omega$$
,

if for every f in $L^{n}(\Omega)$, being u_{h} and u the solutions of the Dirichlet problems

$$\begin{cases} -\operatorname{div} (a_h(x, Dv)) = f \quad in \ \Omega \\ v \in W_0^{1, p}(\Omega, \lambda_h) \end{cases} \quad and \quad \begin{cases} -\operatorname{div} (a(x, Dv)) = f \quad in \ \Omega \\ v \in W_0^{1, p}(\Omega, \lambda), \end{cases}$$

it results that

 $u_h \to u$ in $W_0^{1,1}(\Omega)$ -weak and $a_h(x, Du_h) \to a(x, Du)$ in $(L^1(\Omega))^n$ -weak.

The following locality property holds for G-convergence.

PROPOSITION 2.9. – Let Ω_i (i = 1, 2) be two bounded open sets with $\Omega_1 \subseteq \Omega_2$ and let $(a_h)_h$ be a sequence in $\mathcal{M}_{\Omega_2}(L, K)$.

Let us assume that a_h satisfies $(S_1) \div (S_3)$ with functions λ_h in $A_p(K)$, m_h in $L^1(\Omega_2)$ and that:

(i) there exists a cube Q_0 of \mathbb{R}^n with $\overline{\Omega}_2 \subseteq \Omega_0$ such that the sequences $(\lambda_h)_h$ and $(\lambda_h^{1-p'})_h$ are bounded in $L^1(Q_0)$;

(ii) there exists m in $L^1(\Omega_2)$ such that $m_h \to m$ in $L^1(\Omega_2)$ -weak.

Then, if

$$a_h \xrightarrow{G} b_i$$
 in Ω_i $(i = 1, 2)$

for some functions b_i in $\mathfrak{M}_{\Omega_i}(L, K)$, it follows that

 $b_1(x,\xi) = b_2(x,\xi)$ for a.e. $x \in \Omega_1$ and every $\xi \in \mathbb{R}^n$.

PROOF. – By (i) it is not restrictive to assume the existence of two weights λ and λ in $A_p(cK)$ (where c = c(n) is the constant appearing in (1.6)) verifying (1.6) and (1.7).

Let us suppose that $(S_1) \div (S_3)$ hold for b_i (i = 1, 2) with $\lambda^{(i)}$ in $A_p(K)$ and $m^{(i)}$ in $L^1(\Omega_i)$ (i = 1, 2) and set

$$\begin{split} A_{h}^{(i)} &= -\operatorname{div}\left(a_{h}(x, D \cdot)\right): \ W_{0}^{1, p}(\Omega_{i}, \lambda_{h}) \to W^{-1, p'}(\Omega_{i}, \lambda_{h}), \\ B^{(i)} &= -\operatorname{div}\left(b_{i}(x, D \cdot)\right): \ W_{0}^{1, p}(\Omega_{i}, \lambda^{(i)}) \to W^{-1, p'}(\Omega_{i}, \lambda^{(i)}). \end{split}$$

By Definition 2.8 we get that

(2.20)
$$\begin{cases} (A_h^{(i)})^{-1} f \to (B^{(i)})^{-1} f, & \text{in } W_0^{1,1}(\Omega_i) \text{-weak}, \\ a_h(x, D(A_h^{(i)})^{-1} f) \to b_i(x, D(B^{(i)})^{-1} f), & \text{in } (L^1(\Omega_i))^n \text{-weak}, \end{cases}$$

for every f in $L^n(\Omega_i)$ (i = 1, 2).

For every i = 1, 2, f and g in $L^n(\Omega_i)$ let us set $u_h^{(i)} = (A_h^{(i)})^{-1}f$, $v_h^{(i)} = (A_h^{(i)})^{-1}g$, $u^{(i)} = (B^{(i)})^{-1}f$, $v^{(i)} = (B^{(i)})^{-1}g$ and denote by H_h (respectively $H_{(i)}$) the functions in (2.2) with $m \equiv m_h$, $a \equiv a_h$ (respectively with $m \equiv m^{(i)}$, $a \equiv b_i$). By $(S_1) \div (S_3)$ we get

$$(2.21) \quad (a_{h}(x, Du_{h}^{(i)}) - a_{h}(x, Dv_{h}^{(i)}) | Du_{h}^{(i)} - Dv_{h}^{(i)}) \ge \\ \ge \lambda_{h}^{\beta/p} H_{h}^{(p-\beta)/p}(x, Du_{h}^{(i)}, Dv_{h}^{(i)}) | Du_{h}^{(i)} - Dv_{h}^{(i)} |^{\beta},$$

 $(2.22) \quad \left| a_{h}(x, Du_{h}^{(i)}) - a_{h}(x, Dv_{h}^{(i)}) \right| \leq$

$$\leq L\lambda_{h}^{1/p}H_{h}^{(p-1-\alpha)/p}(x, Du_{h}^{(i)}, Dv_{h}^{(i)})(a_{h}(x, Du_{h}^{(i)}) - a_{h}(x, Dv_{h}^{(i)})|Du_{h}^{(i)} - Dv_{h}^{(i)})^{\alpha/p},$$

a.e. in Ω_i , for every h and i.

If we set $\delta = (p-1)/p$, $\rho = (\beta - p)/p\beta$, $\vartheta = 1/\beta$ and $t_h \equiv Du_h^{(i)} - Dv_h^{(i)}$, $s_h \equiv \lambda_h^{1-p'}$, $z_h \equiv H_h(Du_h^{(i)}, Dv_h^{(i)})$, $w_h \equiv (a_h(x, Du_h^{(i)}) - a_h(x, Dv_h^{(i)}) | Du_h^{(i)} - Dv_h^{(i)})$, the assumption

tions of Lemma 1.5 are satisfied, therefore taking the limit in (2.21), we get (2.23) $(b_i(x, Du^{(i)}) - b_i(x, Dv^{(i)} | Du^{(i)} - Dv^{(i)}) \ge$

$$\geq \lambda^{\beta/p} H_{(i)}^{(p-\beta)/p}(x, Du^{(i)}, Dv^{(i)}) |Du^{(i)} - Dv^{(i)}|^{\beta} \quad \text{a.e. in } \Omega_i,$$

for every $u^{(i)}$ and $v^{(i)}$ in $(B^{(i)})^{-1}(L^n(\Omega_i))$ (i = 1, 2).

Analogously, by applying again Lemma 1.5 with $\delta = 1/p$, $\rho = (p - 1 - \alpha)/p$, $\vartheta = \alpha/p$ and $t_h \equiv a_h(x, Du_h^{(i)}) - a_h(x, Dv_h^{(i)})$, $s_h \equiv \lambda_h$, $z_h \equiv H_h(x, Du_h^{(i)}, Dv_h^{(i)})$, $w_h \equiv (a_h(x, Du_h^{(i)}) - a_h(x, Dv_h^{(i)}) | Du_h^{(i)} - Dv_h^{(i)})$, we can take to the limit in (2.22) and get

$$\begin{aligned} (2.24) \quad & \left| b_i(x, Du^{(i)}) - b_i(x, Dv^{(i)}) \right| \leq \\ & \leq L\lambda^{1/p} H_{(i)}^{(p-1-\alpha)/p}(x, Du^{(i)}, Dv^{(i)}) (b_i(x, Du^{(i)}) - b_i(x, Dv^{(i)}) | Du^{(i)} - Dv^{(i)})^{\alpha/p} , \\ & \text{a.e. in } \Omega_i, \end{aligned}$$

for every $u^{(i)}$ and $v^{(i)}$ in $(B^{(i)})^{-1}(L^n(\Omega_i))$ (i = 1, 2).

By the density of $(B^{(i)})^{-1}(L^n(\Omega_i))$ in $W_0^{1,p}(\Omega_i,\lambda^{(i)})$ and by the continuity of $b_i(x,\cdot)$ we deduce that (2.23) and (2.24) hold on the whole $W_0^{1,p}(\Omega_i,\lambda^{(i)})$.

Therefore b_i (i = 1, 2) satisfies $(S_1) \div (S_3)$ with λ and m, so, by Remark 2.4, there exist positive constant c_i (i = 1, 2) such that

(2.25)
$$\frac{1}{c_i} \lambda(x) \leq \lambda^{(i)}(x) \leq c_i \lambda(x) \quad \text{a.e. in } \Omega_i \ (i = 1, 2);$$

moreover by (2.25) we deduce that

(2.26)
$$W_0^{1, p}(\Omega_i, \lambda^{(i)}) = W_0^{1, p}(\Omega_i, \lambda) \quad (i = 1, 2)$$

Now let us set $u_h = (A_h^{(1)})^{-1} f$, $v_h = (A_h^{(2)})^{-1} g$, $u = (B^{(1)})^{-1} f$ and $v = (B^{(2)})^{-1} g$ with $f \in L^n(\Omega_1)$ and $g \in L^n(\Omega_2)$, then by (S₂) it follows that

$$(2.27) \int_{\Omega_1} (a_h(x, Du_h) - a_h(x, Dv_h) | Du_h - Dv_h) \varphi \, dx \ge 0 \quad \forall \varphi \in \mathcal{O}(\Omega_1), \ \varphi \ge 0.$$

Since $W_0^{1, p}(\Omega_1, \lambda_k) \subseteq W_0^{1, p}(\Omega_2, \lambda_k)$, by Theorem 1.2, (2.20) and (2.23), passing to the limit in (2.27), we have

(2.28)
$$\int_{\Omega_1} (b_1(x, Du) - b_2(x, Dv) | Du - Dv) \varphi \, dx \ge 0 \quad \forall \varphi \in \mathcal{Q}(\Omega_1), \ \varphi \ge 0.$$

for every u in $(B^{(1)})^{-1}(L^n(\Omega_1))$ and v in $(B^{(2)})^{-1}(L^n(\Omega_2))$.

Then, by $(2.21) \div (2.26)$ and by the density of $(B^{(i)})^{-1}(L^n(\Omega_i))$ in $W_0^{1,p}(\Omega_i, \lambda)$, it follows that

(2.29)
$$(b_1(x, Du) - b_2(x, Dv) | Du - Dv) \ge 0$$
 a.e. in Ω_1 ,

for every u in $W_0^{1, p}(\Omega_1, \lambda) (\subseteq W_0^{1, p}(\Omega_2, \lambda))$ and v in $W_0^{1, p}(\Omega_2, \lambda)$.

For every t > 0, u, v in $W_0^{1, p}(\Omega_1, \lambda)$ let us set w := (1/t)(u - v), then by (2.29) we have $(b_1(x, Dv + tDw) - b_2(x, Dv) | Dw) \ge 0$ a.e. in Ω_1 and, as $t \to 0^+$, that

(2.30) $(b_1(x, Dv) - b_2(x, Dv) | Dw) \ge 0$ a.e. in $\forall v, w \in W_0^{1, p}(\Omega_1, \lambda_1)$.

For every fixed bounded open set $\omega \subset \Omega_1$, let Φ in $C_0^1(\Omega_1)$ be such that $\Phi \equiv 1$ in ω and let $v(x):=(\xi|x)\Phi(x), w(x):=(\eta|x)\Phi(x)$ with ξ, η in \mathbb{R}^n . By (2.30) it follows that

$$(b_1(x,\xi) - b_2(x,\xi)|\eta) \ge 0$$
 a.e. in ω , for every ξ and η in \mathbb{R}^n

and hence the thesis. \blacksquare

3. – A G-compactness result.

In this section we want to prove that from every sequence $(a_h)_h$ in $\mathcal{M}(L, K)$ it can be selected a subsequence $(a_{h_r})_r$ that G-converges to a function a in $\mathcal{M}(L', K)$ for some $L' \ge 1$.

Let Ω be a bounded open set of \mathbb{R}^n with Lipschitz boundary, let p, α, β, L and K be positive constants verifying (2.1) and let, for every $h \in \mathbb{R}$, a_h be in $\mathcal{M}_{\Omega}(p, \alpha, \beta, L, K)$ verifying $(S_1) \div (S_3)$ with functions λ_h in $A_p(K)$ and m_h in $L^1_{loc}(\Omega)$.

Let us assume that

(3.1)
$$(\lambda_h)_h$$
 and $(\lambda_h^{1-p'})_h$ are bounded in $L^1(Q_0)$ for some cube $Q_0 \supset \Omega$;

(3.2)
$$\sup_{h}\left(\int_{\Omega} |a_{h}(x, 0)|^{p'} \lambda_{h}^{1-p'} dx\right) < +\infty;$$

(3.3) $m_h \to m$ in $L^1(\Omega)$ -weak, for some function m in $L^1(\Omega)$.

Let us preliminarly observe that by (3.1) and (1.8) \div (1.10) there exist c = c(n) and two weights $\tilde{\lambda}$ and λ in $A_p(cK)$ such that, up to subsequences,

(3.4)
$$\lambda_h \to \widetilde{\lambda} \quad \text{and} \quad \lambda_h^{1-p'} \to \lambda^{1-p'} \quad \text{in } L^1(Q_0)\text{-weak};$$

(3.5)
$$\lambda(x) \leq \tilde{\lambda}(x) \leq K\lambda(x)$$
, for a.e. $x \in Q_0$.

LEMMA 3.1. – Let $A_h = -$ div $(a_h(x, D \cdot): W_0^{1, p}(\Omega, \lambda_h) \to W^{-1, p'}(\Omega, \lambda_h)$, then there exist a subsequence $(A_{\sigma_h})_h$ of $(A_h)_h$ and a continuous and invertible operator $A: W_0^{1, p}(\Omega, \lambda) \to W^{-1, p'}(\Omega, \lambda)$ such that

(3.6)
$$A_{\sigma_h}^{-1}f \to A^{-1}f \quad in \ W_0^{1,1}(\Omega) \text{-weak}, \ for \ every \ f \in L^n(\Omega).$$

PROOF. – By (2.18) it follows that there exists a positive constant c_1 , independent

on h, such that

$$(3.7) \|A_h^{-1}f\|_{W_0^{1,p}(\Omega,\lambda_h)}^p \leq c_1 \left(\int_{\Omega} (m_h + |a_h(x,0)|^{p'} \lambda_h^{1-p'}) dx + \|f\|_{W^{-1,p'}(\Omega,\lambda_h)}^{p'} \right)$$

for every f in $L^{n}(\Omega)$ for every h.

By (1.2), (1.4), (3.4), (3.5), (3.7) we deduce that $(u_h)_h$, where $u_h := A_h^{-1} f$, is weakly compact in $W_0^{1,1}(\Omega)$, therefore, given f in $L^n(\Omega)$, there exists u(f) in $W_0^{1,1}(\Omega)$ such that, up to subsequences, $(u_h)_h$ converges to u(f) in $W_0^{1,1}(\Omega)$ -weak.

By (3.4), (3.5) and Lemma 1.4 (i), it follows that $u(f) \in W_0^{1, p}(\Omega, \lambda)$; moreover, by Lemma 1.4 (ii), passing to the limit in (3.7), there exists a positive constant c_2 such that

(3.8)
$$\|u(f)\|_{W_0^{1,p}(\Omega,\lambda)} \leq c_2 (1 + \|f\|_{W^{-1,p'}(\Omega,\lambda)}^{1/(p-1)}) \text{ for every } f \in L^n(\Omega).$$

Let X be a countable and dense subset of $L^{n}(\Omega)$; then, by means of a diagonal process, the existence of an increasing sequence $(\sigma_{h})_{k}$ can be deduced such that, for every f in X, $(A_{\sigma_{h}}^{-1}f)_{h}$ converges in $W_{0}^{1,1}(\Omega)$ -weak to some function in $W_{0}^{1,p}(\Omega, \lambda)$. Let us define the operator

$$B: X \to W_0^{1, p}(\Omega, \lambda), \qquad Bf:=\lim_h A_{\sigma_h}^{-1}f \qquad (\text{in } W_0^{1, 1}(\Omega)\text{-weak}),$$

we want to prove that there exists an operator (that for simplicity we still denote by B) B: $W^{-1, p'}(\Omega, \lambda) \to W_0^{1, p}(\Omega, \lambda)$ such that:

 $(3.9) \qquad \|Bf - Bg\|_{W^{1,p}(\Omega,\lambda)} \leq$

$$\leq c_{3}(1+\|f\|_{W^{-1,p'}(\Omega,\lambda)}+\|g\|_{W^{-1,p'}(\Omega,\lambda)})^{(\beta-p)/((p-1)(\beta-1))}\|f-g\|_{W^{(\beta,-1)}(\Omega,\lambda)}^{1/(\beta-1)}$$

for every f and g in $W^{-1, p'}(\Omega, \lambda)$ and some constant c_3 ;

(3.10)
$$Bf = \lim_{h} A_{\sigma_h}^{-1} f \quad (\text{in } W_0^{1,1}(\Omega) \text{-weak}), \text{ for every } f \text{ in } L^n(\Omega);$$

$$(3.11) B is invertible$$

Let f and g be in X, we clearly have that

(3.12)
$$\langle f-g, Bf-Bg \rangle = \lim_{h} \langle f-g, A_{\sigma_h}^{-1}f - A_{\sigma_h}^{-1}g \rangle.$$

On the other side let us observe that, by (2.18), (2.19), (3.2) and (3.3), it follows that there exists a positive constant c_4 , independent on h, such that

$$\begin{split} \|A_{\sigma_{h}}^{-1}f - A_{\sigma_{h}}^{-1}g\|_{W_{0}^{1,p}(\Omega,\lambda)}^{\beta} \leq \\ & \leq c_{4}\left(1 + \|f\|_{W^{-1,p'}(\Omega,\lambda_{h})} + \|g\|_{W^{-1,p'}(\Omega,\lambda_{h})}\right)^{(\beta-p)/(p-1)} \langle f - g, A_{\sigma_{h}}^{-1}f - A_{\sigma_{h}}^{-1}g \rangle \end{split}$$

for every f and g in X, for every h in \mathbb{N} .

By (3.4), (3.5), (1.5) and Lemma 1.4 (ii), taking to the limit in the previous in-

equality we get that there exists a positive constant c_5 such that

$$(3.13) \|Bf - Bg\|_{W_0^{1,p}(\Omega,\lambda)} \leq \\ \leq c_5^{1/(\beta-1)} (1 + \|f\|_{W^{-1,p'}(\Omega,\lambda)} + \|g\|_{W^{-1,p'}(\Omega,\lambda)})^{(\beta-p)/((p-1)(\beta-1))} \|f - g\|_{W^{-1,p'}(\Omega,\lambda)}^{1/(\beta-1)},$$
for every f and g in X

for every f and g in X.

Since X is dense also in $W^{-1, p'}(\Omega, \lambda)$, by (3.13) it follows that B can be extended to the whole $W^{-1, p'}(\Omega, \lambda)$ and that (3.13) still holds on the whole $W^{-1, p'}(\Omega, \lambda)$, hence (3.9) follows.

Let us now prove (3.10).

Let f and g be in $L^{n}(\Omega)$, by (1.4) and (3.12) it follows that there exists a positive constant c_{6} , independent on h, such that

$$(3.14) \qquad \|A_{\sigma_{h}}^{-1}f - A_{\sigma_{h}}^{-1}g\|_{W_{0}^{1,p}(\Omega,\lambda_{\sigma_{h}})} \leq c_{6} \left(\int_{\Omega} \lambda_{\sigma_{h}}^{1-p'} dx\right)^{1/(p'(\beta-1))} \cdot \left[1 + (\|f\|_{L^{n}(\Omega)} + \|g\|_{L^{n}(\Omega)}) \left(\int_{\Omega} \lambda_{\sigma_{h}}^{1-p'} dx\right)^{1/p'}\right]^{(\beta-p)/((p-1)(\beta-1))} \|f - g\|_{L^{n}(\Omega)}^{1/(\beta-1)},$$

for every f and g in $L^n(\Omega)$, for every h.

Moreover let us observe that, if $f \in L^n(\Omega)$ and $g \in X$, we can write $Bf - A_{\sigma_h}^{-1}f = (Bf - Bg) + (Bg - A_{\sigma_h}^{-1}g) + (A_{\sigma_h}^{-1}g - A_{\sigma_h}^{-1}f)$, then by (3.1), (3.8), (3.14), being X dense in $L^n(\Omega)$, (3.9) follows at once.

Let us now prove (3.11).

Let f and g be in $L^n(\Omega)$ and set $u_h = A_{\sigma_h}^{-1} f$, $v_h = A_{\sigma_h}^{-1} g$. By (2.16) and (2.17) it follows that there exists a positive constant c_7 , independent on h, such that if $m_h^*(x) := m(x) + |a_h(0, x)|^{p'} \lambda_h^{1-p'}(x)$, $\gamma = \alpha/(p-\alpha)$, then

$$(3.15) ||f - g||_{W^{-1,p'}(\Omega,\lambda_h)} = ||A_{\sigma_h}u_h - A_{\sigma_h}v_h||_{W^{-1,p'}(\Omega,\lambda_h)} \leq \leq c_7 \bigg(\int_{\Omega} [m_h^* + \lambda_h (|Du_h|^p + |Dv_h|^p)] dx \bigg)^{(p-1-\gamma)/p} \bigg(\int_{\Omega} |Du_h - Dv_h|^p \lambda_h dx \bigg)^{\gamma/p}$$

for every h.

On the other side, by (2.19), (S_2^*) of Proposition 2.3 and by (3.15), we get that there exists a positive constant c_8 , independent on h, such that

$$(3.16) \quad \|f - g\|_{W^{\tau_{1,p'}}(\Omega,\lambda_{h})}^{\mathscr{W}^{\tau_{1,p'}}(\Omega,\lambda_{h})} \leq \\ \leq c_{8}(1 + \|f\|_{W^{-1,p'}(\Omega,\lambda_{h})} + \|g\|_{W^{-1,p'}(\Omega,\lambda_{h})})^{\mathscr{P}'} \langle f - g, A_{\sigma_{h}}^{-1}f - A_{\sigma_{h}}^{-1}g \rangle^{p/\beta},$$

for every f and g in $L^n(\Omega)$, for every h,

with $\delta = (p - 1 - \gamma)/\gamma + (\beta - p)/\beta$.

By (3.4), (3.5), (3.9) and by Lemma 1.4, taking the limit in (3.16), we get that for some positive constant c_9 , independent on h,

$$(3.17) ||f - g||_{W^{-1,p'}(\Omega,\lambda)} \leq c_9 (1 + ||f||_{W^{-1,p'}(\Omega,\lambda)} + ||g||_{W^{-1,p'}(\Omega,\lambda)})^{\delta p'} \langle f - g, Bf - Bg \rangle^{p/\beta},$$

for every f and g in $L^n(\Omega)$.

Moreover, by the density of $L^{n}(\Omega)$ in $W^{-1, p'}(\Omega, \lambda)$ and by the continuity of B, it follows that (3.17) holds on the whole $W^{-1, p'}(\Omega, \lambda)$.

Therefore, since $B: W^{-1, p'}(\Omega, \lambda) \to W_0^{1, p}(\Omega, \lambda)$ is continuous, monotone and coercive, (3.11) soon follows, for instance, from Corollary 1.8, Ch. III in [10].

Finally if we take $A := B^{-1}$: $W_0^{1, p}(\Omega, \lambda) \to W_0^{1, p'}(\Omega, \lambda)$ the thesis follows.

LEMMA 3.2. – Let $(A_h)_h$ and $(\sigma_h)_h$ be as in Lemma 3.1. Then there exist a subsequence $(\delta_h)_h$ of $(\sigma_h)_h$ and a continuous operator M: $W^{-1, p'}(\Omega, \lambda) \to (L^{p'}(\Omega, \lambda^{1-p'}))^n$ such that

$$(3.18) \quad a_{\delta_h}(x, DA_{\delta_h}^{-1}f) \to Mf \quad in \ (L^1(\Omega))^n \text{-weak}, \ for \ every \ f \ in \ L^n(\Omega)$$

PROOF. – Let us set for simplicity $\lambda_h \equiv \lambda_{\sigma_h}$, $m_h \equiv m_{\sigma_h}$, $a_h \equiv a_{\sigma_h}$, $A_h \equiv A_{\sigma_h}$ and define the operators $M_h: W^{-1, p'}(\Omega, \lambda_h) \rightarrow (L^{p'}(\Omega, \lambda_h^{1-p'}))^n$, $M_h f := a_h(x, DA_h^{-1}f)$.

Then, by (2.4), (1.4), (3.2), (3.3) and (3.7), it follows that, given $f \in L^n(\Omega)$, the sequence $(M_h f)_h$ is weakly compact in $(L^1(\Omega))^n$. Therefore, if X is a countable and dense subset of $L^n(\Omega)$, by means of a diagonal process, we can assume that, for every $f \in X$, the sequence $(M_h f)_h$ converges, up to subsequences, in $(L^1(\Omega))^n$ -weak to a function Mf.

Let us prove that

(3.19)
$$Mf \in (L^{p'}(\Omega, \lambda^{1-p'}))^n \quad \text{for every } f \in X.$$

By Hölder inequality and (3.4) we get

$$(3.20) \quad \int_{\Omega} |Mf| |\varphi| dx \leq \liminf_{h} \left(\int_{\Omega} |M_{h}f|^{p'} \lambda_{h}^{1-p'} dx \right)^{1/p'} \left(\int_{\Omega} |\varphi|^{p} \lambda dx \right)^{1/p} \quad \forall \varphi \in C_{0}^{0}(\Omega),$$

hence, by (3.5) and (3.20), (3.19) follows at once.

We now want to prove that M can be extended to a continuous operator on the whole $W^{-1, p'}(\Omega, \lambda)$ and that

(3.21)
$$Mf = \lim_{h} a_h(x, DA_h^{-1}f)$$
 (in $(L^1(\Omega))^n$ -weak), for every $f \in L^n(\Omega)$.

By $(2.16) \div (2,19)$, (3.2), (3.3), (3.14) and by (3.4), (3.5) and Lemma 1.4 it follows that there exists a positive constant c_3 , independent on h, such that, if

$$\begin{split} \delta &= (p(\beta - \gamma - 1))/((p - 1)(\beta - 1)) \text{ and } \gamma = \alpha/(p - \alpha), \\ (3.22) \quad \liminf_{h} \left(\int_{\Omega} |M_{h}f - M_{h}g|^{p'} \lambda_{h}^{1 - p'} dx \right)^{1/p'} \leq \\ &\leq c_{3} (1 + \|f\|_{W^{-1, p'}(\Omega, \lambda)} + \|g\|_{W^{-1, p'}(\Omega, \lambda)})^{\delta} \|f - g\|_{W^{-1, p'}(\Omega, \lambda)}^{\gamma p'/(\beta - 1)}, \end{split}$$

for every f and g in X.

On the other hand, by using arguments similar to the ones employed in the proof of (3.19), it can be proved that

(3.23)
$$||Mf - Mg||_{(L^{p'}(\Omega, \lambda^{1-p'}))^n} \leq \liminf_h \left(\int_{\Omega} |M_h f - M_h g|^{p'} \lambda_h^{1-p'} dx \right)^{1/p'};$$

hence, by (3.22) and (3.23), it follows that

$$(3.24) \qquad \|Mf - Mg\|_{(L^{p'}(\Omega, \lambda^{1-p'}))^n} \leq c_3 \left(1 + \|f\|_{W^{-1, p'}(\Omega, \lambda)} + \|g\|_{W^{-1, p'}(\Omega, \lambda)}\right)^{\beta} \|f - g\|_{W^{-1, p'}(\Omega, \lambda)}^{\gamma p'/(\beta - 1)},$$

for every f and g in X.

By the density of X in $W^{-1, p'}(\Omega, \lambda)$ and (3.24) M can be extended to an operator, still denoted by M, defined on the whole $W^{-1, p'}(\Omega, \lambda)$, moreover (3.24) holds on the whole $W^{-1, p'}(\Omega, \lambda)$.

Let us now prove (3.21). Let f be in $L^{n}(\Omega)$ and g in X; since we can write

$$Mf - a_h(x, DA_h^{-1}f) =$$

= $(Mf - Mg) + (Mg - a_h(x, DA_h^{-1}g)) + (a_h(x, DA_h^{-1}g) - a_h(x, DA_h^{-1}f))$

by (3.15), (3.24) and by the density of X in $L^{n}(\Omega)$, (3.21) follows at once and so the thesis follows.

Now we can prove a partial G-compactness result.

PROPOSITION 3.3. – Let Ω be a bounded open set of \mathbb{R}^n with Lipschitz boundary and let a_h be in $\mathfrak{M}_{\Omega}(p, \alpha, \beta, L, K)$ (h = 1, 2, ...) verifying $(S_1) \div (S_3)$ with functions λ_h in $A_p(K)$ and m_h in $L^1(\Omega)$.

Let us assume that $(3.1) \div (3.3)$ hold, then there exist a subsequence $(a_{h_r})_r$ of (a_h) and a function a in $\mathfrak{M}_{\Omega}(p, \alpha, \beta, (cK)^{1/p}L, cK)$ (where c = c(n) is a positive constant depending only on n) such that

$$a_{h_r} \xrightarrow{G} a \quad in \ \Omega$$
.

PROOF. – Let us first observe that by (1.6), (1.7), (3.1) we can assume that (3.4) and (3.5) hold.

Let A_h be as in Lemma 3.1, then by Lemma 3.1 and Lemma 3.2 we can assume that there exist two continuous operators $A: W_0^{1, p}(\Omega, \lambda) \to W^{-1, p'}(\Omega, \lambda)$ and $M: W^{-1, p'}(\Omega, \lambda) \to (L^{p'}(\Omega, \lambda^{1-p'}))^n$ with A invertible such that, up to subsequences, (3.6) and (3.18) hold with $h \equiv \sigma_h \equiv \delta_h$.

Moreover let us observe that by (3.9) it follows that

(3.25)
$$Y := A^{-1}(L^n(\Omega)) \quad \text{is dense in } W^{1, p}_0(\Omega, \lambda)$$

Let us define the operator $\widetilde{M} := M \circ A$ and, for given u and v in Y, let $u_h = A_h^{-1}Au$, $v_h = A_h^{-1}Av$ be in $W_0^{1, p}(\Omega, \lambda_h)$.

If H_h is the function in (2.2) with $m \equiv m_h$, $a \equiv a_h$, then by $(S_1) \div (S_3)$ we get

$$(3.26) |Du_h - Dv_h| \leq \leq \lambda_h^{-1/p} H_h^{(\beta - p)/p\beta}(x, Du_h, Dv_h) (a_h(x, Du_h) - a(x, Dv_h) |Du_h - Dv_h)^{1/\beta},$$

 $(3.27) \quad |a_h(x, Du_h) - a(x, Dv_h)| \leq$

$$\leq L\lambda_{h}^{1/p}H_{h}^{(p-1-\alpha)/p}(x, Du_{h}, Dv_{h})(a_{h}(x, Du_{h}) - a(x, Dv_{h})|Du_{h} - Dv_{h})^{\alpha/p},$$

a.e. in Ω , for every h.

Set $\delta = (p-1)/p$, $\rho = (\beta - p)/p\beta$, $\vartheta = 1/\beta$ and $t_h \equiv Du_h - Dv_h$, $s_h = \lambda_h^{1-p'}$, $z_h \equiv H_h(x, Du_h, Dv_h)$, $w_h \equiv (a_h(x, Du_h) - a_h(x, Dv_h)|Du_h - Dv_h)$, then by (3.4), (3.6), (3.19) and Theorem 1.2, the assumptions of Lemma 1.5 are fulfilled hence, taking the limit in (3.26) we get

$$(3.28) \quad |Du - Dv| \leq$$

$$\leq \lambda^{-1/p} \left[m + (\tilde{M}u | Du) + (\tilde{M}v | Dv) \right]^{(\beta - p)/p\beta} (\tilde{M}u - \tilde{M}v | Du - Dv)^{1/\beta} \quad \text{a.e. in } \Omega,$$

for every u and v in Y.

Analogously, by applying again Lemma 1.5 with $\delta = 1/p$, $\rho = (p-1-\alpha)/p$, $\vartheta = \alpha/p$, $t_h \equiv a_h(x, Du_h) - a_h(x, Dv_h)$, $s_h \equiv \lambda_h$, $w_h \equiv (a_h(x, Du_h) - a_h(x, Dv_h)|Du_h - Dv_h)$ and taking the limit as $h \to +\infty$ in (3.27), we get

$$(3.29) \quad |\tilde{M}u - \tilde{M}v| \leq \\ \leq L\tilde{\lambda}^{1/p} \Big[m + (\tilde{M}u | Du) + (\tilde{M}v | Dv) \Big]^{(p-1-\alpha)/p} (\tilde{M}u - \tilde{M}v | Du - Dv)^{\alpha/p} \quad \text{a.e. in } \Omega \,,$$

for every u and v in Y.

By (3.25) we get also that (3.28) and (3.29) hold on the whole $W_0^{1, p}(\Omega, \lambda)$; moreover from (3.5), (3.28) and (3.29) it follows that

$$(3.30) \quad |\tilde{M}u - \tilde{M}v| \leq \leq L^{p/(p-\alpha)} \tilde{\lambda}^{p-\alpha} [m + (\tilde{M}u|Du) + (\tilde{M}v|Dv)]^{(p-1-\alpha)/(p-\alpha)} |Du - Dv)^{\alpha/(p-\alpha)} \quad \text{a.e. in } \Omega,$$

for every u and v in $W_0^{1, p}(\Omega, \lambda)$.

We now construct a function a for which $A = -\operatorname{div}(a(x, D \cdot))$.

Let $(\omega_j)_j$ be an increasing sequence of open sets of \mathbb{R}^n such that $\overline{\omega}_j \subset \Omega$ for every jand $\bigcup_{j=1}^{\infty} \omega_j = \Omega$ and let $(\Phi_j)_j$ be a sequence of functions in $C_0^1(\Omega)$ such that $\Phi_j \equiv 1$ in ω_j for every j.

For every $\xi \in \mathbb{R}^n$ let us define the functions $\varphi_j^{(\xi)}$ by $\varphi_j^{(\xi)}(x) := \Phi_j(x)(\xi|x)$ $(x \in \mathbb{R}^n)$ and let a be the function defined by $a(x, \xi) := (\tilde{M}\varphi_j^{(\xi)})(x)$ if $x \in \omega_j$. By (3.30) it follows that a is well defined since $(\tilde{M}\varphi_j^{(\xi)}) \equiv (\tilde{M}\varphi_i^{(\xi)})$ a.e. in ω_j , if i > j. Moreover, by (3.5), (3.28) \div (3.30) it follows that $a \in \mathcal{M}_{\mathcal{Q}}((cK)^{1/p}L, cK)$.

In particular, by (3.30), $a(x, \cdot)$ turns out to be a continuous function on \mathbb{R}^n , for a.e. x in Ω .

Then, in order to get the thesis it is sufficient to prove that

 $\widetilde{M}u = a(x, Du)$ a.e. in Ω , for every $u \in W^{1, p}(\Omega, \lambda)$;

but this can be proved by the Minty trick (see, for instance, proof of the Theorem 1.1 in [8]). \blacksquare

REMARK 3.4. – If we replace condition (3.1) with the following one: for every cube Q of $\mathbb{R}^n(\lambda_h)_h$ and $(\lambda_h^{1-p'})_h$ are bounded in $L^1(Q)$, then, by Remark 1.3, it follows that $\lambda \in A_p(K)$ and that (3.5) holds on the whole \mathbb{R}^n . Therefore by (3.29) we get that $a \in \mathcal{M}_{\Omega}(K^{1/p}L, K)$.

Now we can prove the main result of this paper.

THEOREM 3.5. – Let p, α , β , L and K be constants verifying (2.1). Let a_h (h = 1, 2, ...) be functions in $\mathfrak{M}(p, \alpha, \beta, L, K)$ and assume that each a_h verifies $(S_1) \div (S_3)$ with functions λ_h in m_h and $L^{1}_{loc}(\mathbb{R}^n)$.

Moreover let us assume that:

(i) for every cube Q of \mathbb{R}^n the sequences $(\lambda_h)_h$ and $(\lambda_h^{1-p'})_h$ are bounded in $L^1(Q)$;

(ii) for every cube Q of \mathbb{R}^n there exists a positive constant c = c(Q) (depending only on Q) such that

$$\int_{Q} |a_h(x, 0)|^{p'} \lambda_h^{1-p'} dx \leq c(Q) \quad \text{for every } h;$$

(iii) there exists a function m in $L^1_{loc}(\mathbb{R}^n)$ such that $m_h \to m$ in $L^1(Q)$ -weak for every cube Q of \mathbb{R}^n .

Then there exist a subsequence $(a_{h_r})_r$ of $(a_h)_h$ and a function a in $\mathfrak{M}(p, \alpha, \beta, LK^{1/p}, K)$ such that

$$a_{h_r} \xrightarrow{G} a \quad in \ \Omega$$
,

for every bounded open set Ω of \mathbb{R}^n with Lipschitz boundary.

PROOF. – Let us begin to observe that, by Remark 1.3, we can assume that there exist two weights $\tilde{\lambda}$ and λ in $A_p(K)$ for which (3.4) and (3.5) hold for every cube Q.

For every $j \in \mathbb{N}$, let $Q_j = (-j, j)^n$, then by Proposition 3.3, Remark 3.4, it follows that there exist a subsequence $(a_h^{(1)})_h$ of $(a_h)_h$ and a function $a^{(1)}$ in $\mathcal{M}_{Q_1}(LK^{1/p}, K)$ such that $a_h^{(1)} \xrightarrow{G} a^{(1)}$ in Q_1 .

Analogously, by applying again Proposition 3.3 to the sequence $(a_h^{(1)})_h$, we get the existence of a subsequence $(a_h^{(2)})_h$ of $(a_h^{(1)})_h$ and of a function $a^{(2)}$ in $\mathcal{M}_{Q_2}(LK^{1/p}, K)$ such that

On the other side we have also that

(3.32)
$$a_h^{(2)} \stackrel{G}{\to} a^{(1)}$$
 in Q_1 ,

then, by Proposition 2.9, it follows that $a^{(1)}(x,\xi) = a^{(2)}(x,\xi)$ for a.e. $x \in Q_1$, for every $\xi \in \mathbb{R}^n$.

By repeating the above construction for every $j \in \mathbb{N}$, we get a sequence $(a_h^{(j)})_h$ and a function $a^{(j)}$ in $\mathfrak{M}_{Q_i}(LK^{1/p}, K)$ such that

(3.34) $a^{(j)}(x,\xi) = a^{(i)}(x,\xi)$ for a.e. $x \in Q_j$, every $\xi \in \mathbb{R}^n$, $j \in \mathbb{N}$ and every $1 \le i \le j$.

Therefore if we define $a: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ as

$$a(x,\xi) := a^{(j)}(x,\xi) \quad \text{if } x \in Q_j, \ \xi \in \mathbb{R}^n;$$

by (3.34) it follows that a is well defined and that $a \in \mathcal{M}(LK^{1/p}, K)$.

Now let us consider the diagonal sequence $\tilde{a}_h \equiv a_h^{(h)}$; clearly, it follows that

$$(3.35) \qquad \qquad \widetilde{a}_h \stackrel{G}{\to} a \quad \text{in } Q_j, \text{ for every } j.$$

On the other hand, if Ω is a regular bounded open set of \mathbb{R}^n , by Proposition 3.3 there exist a subsequence $(\tilde{a}_{h_r})_r$ of $(\tilde{a}_h)_h$ and a function $a^{(\Omega)} \in \mathcal{M}_{\Omega}(L(cK)^{1/p}, cK)$ such that

(3.36)
$$\widetilde{a}_{h_{\omega}} \xrightarrow{G} a^{(\Omega)}$$
 in Ω .

Let $j_0 \in \mathbb{N}$ be such that $\overline{\Omega} \in Q_{j_0}$, by (3.42), (3.43) and by Proposition 2.9 we get that $a(x, \xi) = a^{(\Omega)}(x, \xi)$ for a.e. $x \in \Omega$, for every $\xi \in \mathbb{R}^n$, hence the thesis follows.

As a particular case, by Theorem 3.5, we deduce the following corollary.

COROLLARY 3.6. – Let $p \ge 2$, $K \ge 1$ and let $a_h \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ (h = 1, 2, ...) be Carathéodory functions verifying (0.2) with $L \ge 1$ and μ_h in $A_p(K)$ for every h such that, for every cube Q, $(\mu_h)_h$ and $(\mu_h^{1-p'})_h$ are bounded in $L^1(Q)$.

Then there exist a subsequence $(a_{h_r})_r$ of $(a_h)_h$, a weight μ_{∞} in $A_p(K)$ and a Carathéodory function $a_{\infty} \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ verifying (0.3) with μ_{∞} and with a suitable positive constant L' such that, for every regular bounded open set Ω and for every f in $L^{\infty}(\Omega)$, the solutions u_r of the problems

(P_r)
$$- \operatorname{div} (a_h(x, Dv)) = f \quad in \ \Omega, \quad v \in W_0^{1, p}(\Omega, \mu_{h_r}) \quad (r = 1, 2, ...)$$

converge in $W_0^{1,1}(\Omega)$ -weak to the solution u_{∞} of the problem

$$-\operatorname{div}\left(a_{\infty}\left(x,\,Dv\right)\right)=f\quad in\ \Omega,\ v\in W_{0}^{1,\,p}\left(\Omega,\,\mu_{\infty}\right).$$

Moreover the weak convergence in $(L^1(\Omega))^n$ of the momenta $(a_{h_r}(x, Du_r))_r$ to the momentum $a_{\infty}(x, Du_{\infty})$ holds.

PROOF. – By Proposition 2.3 (ii) it follows that a_h verifies $(S_1) \div (S_3)$ with function

(3.37)
$$\lambda_h(x) = c_1 \mu_h(x), \quad m_h(x) = c_2 \mu_h(x), \quad \alpha = 1, \quad \beta = p \text{ and } L \ge 1,$$

being c_i (i = 1, 2) and \tilde{L} suitable positive constants independent on h; hence $(a_h)_h$ is contained in $\mathcal{M}(p, 1, p, \tilde{L}, K)$.

By (3.37), (1.6) and (1.7) we can apply Theorem 3.5 and get the existence of a subsequence $(a_{h_r})_r$ of $(a_h)_h$ and of a function a_{∞} in $\mathcal{M}(p, 1, p, \tilde{L}K^{1/p}, K)$ verifying $(S_1) \div (S_3)$ with functions λ in $A_p(K)$ and m in $L^1_{loc}(\mathbb{R}^n)$ such that

(3.38) $a_{h_x} \xrightarrow{G} a_{\infty}$ in Ω , for every regular bounded open set Ω .

Moreover, by Proposition 2.3 (i), it follows that a_{∞} verifies (S_1^*) and (S_2^*) with $\lambda_*(x) = c_4 \lambda(x), m_*(x) = c_5 \lambda(x), \gamma = 1/(p-1), \beta = p$ for suitable positive constants L_i (i = 1, 2).

For every $r \in \mathbb{N}$ and every regular bounded open set Ω , let w_r be the (unique) solutions of the problems in (P_r) relative to $f \equiv 0$; then, since by (0.2) $a_{h_r}(x, 0) \equiv 0$, it turns out that $w_r = 0$ a.e. in Ω . By (3.38) it follows that

$$0 \equiv a_{h_r}(x, Dw_r) \rightarrow a(x, 0) \quad \text{in } (L^1(\Omega))^n \text{-weak},$$

and, being Ω an arbitrary regular bounded open set, that a(x, 0) = 0 a.e. in \mathbb{R}^n . Finally, if we take $\mu_{\infty}(x) := (1/L_2)\lambda(x)$, the thesis soon follows.

REFERENCES

- [1] A. BENSOUSSAN J. L. LIONS G. C. PAPANICOLAU, Asymptotic Analysis for Periodic Structures, North-Holland, Amsterdam (1978).
- [2] L. BOCCARDO P. MARCELLINI, Sulla convergenza di disequazioni variazionali, Ann. Mat. Pura Appl. (4), 110 (1976), pp. 137-159.
- [3] V. CHIADÓ PIAT G. DAL MASO A. DEFRANCESCHI, G-convergence of monotone operators, Ann. Inst. H. Poincaré, 7 (1990), pp. 123-160.
- [4] R. R. COIFMANN C. FEFFERMAN, Weighted norm inequalities for maximal function and singular integrals, Studia Math., 51 (1974), pp. 241-250.
- [5] R. DE ARCANGELIS, Compactness and convergence of minimum points for a class of nonlinear nonequicoercive functionals, Nonlinear Anal., Th., Meth. and Applic., 15 (1990), pp. 363-380.
- [6] R. DE ARCANGELIS F. SERRA CASSANO, On the homogenization of degenerate elliptic equations in divergence form, J. Math. Pures Appl., 71 (1992), pp. 1-20.
- [7] E. DE GIORGI S. SPAGNOLO, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine, Boll. Un. Mat. Ital. (4), 8 (1973), pp. 391-411.
- [8] T. DEL VECCHIO, On the homogenization of a class of pseudomonotone operators in divergence form, Boll. Un. Mat. Ital. (7), 5-B (1991), pp. 369-388.
- [9] E. FABES C. KENIG R. SERAPIONI, The local regularity of solutions of degenerate elliptic equations, Comm. Part. Diff. Eq. (1), 7 (1982), pp. 77-116.
- [10] D. KINDERLEHRER G. STAMPACCHIA, An Introduction to Variational Inequalities and their Applications, Academic Press (1980).
- [11] B. MUCKENHOUPT, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), pp. 207-226.
- [12] F. MURAT, *H-convergence*, Seminaire d'Analyse Fonctionnelle et Numerique de l'Université d'Alger, 1977/78.
- [13] F. MURAT, Compacité par compensation, Ann. Sc. Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), pp. 489-507.
- [14] F. SERRA CASSANO, Un'estensione della G-convergenza alla classe degli operatori ellittici degeneri, Ricerche Mat., 38 (1989), pp. 167-197.
- [15] S. SPAGNOLO, Convergence in energy for elliptic operators, Proc. Third Symp. Numer. Soc. Part. Diff. Eq. (College Park, 1975), pp. 468-498, Academic Press, San Diego (1976).
- [16] L. TARTAR, Cours Peccot au Collège de France.