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On the Convergence of Solutions
of Degenerate Elliptic Equations in Divergence Form (*).

R. DE ARCANGELIS - F. SERRA CASSANO

Summary. - It is studied the convergence of solutions of Dirichlet problems for sequences of
monotone operators of the type — div (a,, (x, D)), where the functions a, verify the following
degenerate coerciveness assumption

(an (2, £1) — ap (%, E) |8 — &) Zu,(@)|E; — &P (p=22),

being (uy), @ sequence of function verifying a Muckenhoupt condition uniformly in h.

0. — Introduction.

Given a sequence of Carathéodory functions @,: R™ X R*— R", the asymptotic
behaviour, as % tends to + o, of the solutions of the equations

— div (a, (2, Du)) = f(»)
has been generally studied under equicoercive assumptions of the type
0.1) (ap(x, £)]&) = |£|?  for every h (p > 1),

see for instance[1], {3], [7], [8], [12], [15], [16].

In this paper we study the case in which, instead of (0.1), each function a,, verifies
a degenerate coerciveness condition depending on A.

One of the results proved (see Corollary 3.6) concerns, for example, the case in

(*) Entrata in Redazione il 10 luglio 1991, in versione riveduta il 7 agosto 1992.
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which the following conditions are assumed:

ah(m5 0) =05
0.2) lay, (2, &) ~ a5, (%, &)| < Ly, (@)1 + £, 7+ 8,02 |2~ 5| (p22),

(a,(m, &) — @y (@, &) |81 ~ £3) 2wy (@) |5 = £2]7,

for a.e. z in R, for every £, £, in R, and every & € N, where (u,), is a sequence of
functions in the Muckenhoupt class A,(K) (see (1.3)) such that, for every cube Q of
R", (), and (ui~7'), are bounded in L'(Q).

We prove the existence of a subsequence (ay, ), of (@), of a Carathéodory function
a,: R” X R"—>R"* and of a function . in A,(K) verifying

a.(x, 0)=0,
03) { oo @, &) —a, @, &) SLu, @)1+ [§]F+ |6 |P)F-2/0-D g — gy | VoD,
(aw (2, E]) - a, (2, 52)151 - 52) 2 Mw(x)lfjl - 52|p,

for a.e. x in R", for every &, £, in R", such that, for every regular bounded open set Q
and fin L*(Q) the unique solutions u, of the Dirichlet problems

~ div (ay, (x, Dv)) =f in 2, v=0 on 2
converge weakly in W} () to the unique solution u.. of the Dirichlet problem
—div(a,(x,Dv))=f inQ, wv=0 on Q.

Moreover the weak convergence in (L!(Q2))" of the momenta aj, (x, Du,) to the
momentum Q. (x, Du.) holds. '

The above convergence result is obtained as a particular and more readable case
from a general convergence result (see Theorem 3.5).

The techniques employed in this paper are classical and rely on a weighted com-
pensated compactness type result (Theorem 1.2) proved in [6].

We finally recall that the case of homogenization, in which @, (x, &) = a(ha, £
where a(-, £) is a l-periodic function in each variable x; (i =1, 2, ..., %) is studied
in [6] under less restrictive assumptions.

1. - Notations and preliminary results.

We denote by Q a generic (open or closed) cube of R" (n > 1) with faces parallel to

the coordinates planes.
The symbols (- |-), |E{, )[ fda, p' indicate respectively the scalar product of R”,

E
the Lebesgue measure of the set E, the mean value of fon & (z’.e. |E|! J fdoc) and
the conjugate of p (ie. p' =p/(p — 1). E
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Let p > 1 and let A be a weight on R™, that is a measurable function on R” such
that A>0 ae, A and X'77 are in L (R%), set LP(Q, ) = {ue L} (Q):
wurP e LY(Q)} and WVP(Q, 3) = {u e W' (Q): w and |Du| e L¥(Q, M)}

It is easy to verify that W17 (£, ») endowed with the topology induced by the
norm |[ullwirg 5:=|uA?| 1@ + | |Du|2 || sy is a reflexive and separable Ba-
nach space. :

We denote by Wi ?(Q, 1) the closure of C§ (Q) in the topology of Wh?(Q, 1), by
W52 (Q, a) its dual space and by (-, -) the duality bracket between W17 (Q, 1) and
WaP(Q, A).

We recall that (ef. Theorem 1.4 in[14] and Proposition 1.2 in[5])

(1.1 WEP@Q, A).=WhP@Q, 1. NWE(Q) for every bounded open set Q with
Lipschitz boundary, A in A, (see below for the definition of A,).

REMARK 1.1. - It easy to see that W7 (Q, 1) continuously embeds in W' (Q) and
compactly in L9(Q) for every qell,n/(n—1)), hence we have that
L™(Q)cW~1P(Q, ); moreover it can be easily proved that there exists a positive
constant ¢ = ¢(p, 2) (depending only on p and Q) such that

/ . 1/p/
(1.2) £l @, 2 < C( fﬁl r dx) [l s
\.Q

for every weight A, on R".
Given p > 1, K = 1 and a weight X we say that 2 is in the Muckenhoupt class A, (K)
(see[11]) if

p-1

(1.3) ][Adx )[AI‘P'dm <K for every cube Q.
Q Q

We set 4,:= KglAp (K).

A, weights verify the following higher summability property (see[4] and also [5]):
for every p>1 and K =1 there exist two positive constants ¢ = ¢(p, K) and ¢ =
= é&(p, K) (depending only on p and K) such that

1/(1+4) . 1/(1+4)
(1.4) ][A”adx sc]L)\dx, )[A(l"")(l”)dx sc][)kl‘p'doc,
Q Q Q

for every cube Q and 2 in A, (K); moreover, (cf.[9]) if Q is a bounded open set of R”*
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there exists a positive constant ¢ = ¢(p, K, Q) (depending only on p, K and Q) such
that

(1.5) flu|”AdecJ'{Du[p)\dx,
) 0

for every A in A,(K), u in Wg'?(Q, 2).
In[6] the following result of compensated compactness type is proved (compare
also with [12]).

THEOREM 1.2. - Let 1 be in A,, K = 1; let (1), be a sequence in A, (K) and let Q2 be a
bounded open set.

Consider a sequence of functions (uy), CWHP(Q, 1) and u in WHP(Q, ) such
that

[Qual? + |Dup | 2pdw Wh,  wy—w in L}Q)
g

and a sequence of vector functions (ay), € (LP (Q, A1 P )" and a in (L¥ (Q, A1 ~P))"
such that

j(laﬂ”'k}f”'deca Vh, —div(ay)=feL™@Q) on CHQ),
Q

a,—a n (L1(Q))"-weak .
Then
(a3 | Duy) — (a|Du) in @'(Q).

In[5] a weak compactness result for A, weights is proved: if @, is a fixed cube of
R* and (1), is a sequence in A4, (K) such that (1), and (1;~7'), are bounded in
L'(@Q), then there exist a positive constant ¢ = ¢(n) (depending only on #) and two
weights % and A such that

(1.6) % and 2 are in A,(cK), Ax) < Xx) < Kix) for ae. xe@y,
and, up to subsequences,

amn A=A and AP —=al7P in L1(Q,)-weak.

REMARK 1.3. — If for every cube @, of R”, the sequences (1;), and (A}~ 7), are
bounded in L!(Q,), then, by (1.6), (1.7) and by using a diagonal process, it can be
proved (see [5]) the existence of two weights X and 2 in A,(X) such that, up to subse-
quences, (1.6) and (1.7) hold respectively for a.e. z in R™ and for every cube @Q,.

We now prove the following «lower semicontinuity» type result.

LEMMA 14. - Let p > 1, K and K = 1; let Q be a bounded open set with Lipschitz



R. DE ARCANGELIS - F. SERRA CASSANO: On the convergence, etc. 5

boundary and let (A4), be o sequence in A,(K). Let us assume that there exist two
weights 2 in A, (K), A in Ay(K) and a positive constant ¢, such that

(1.8) An— A and A TP = A1P in LY(Q,)-weak,
(L.9) Elgx(x) < (@) S M®)  for ae. Q.

Then

() if () c W P(Q, A4) is a sequence such that J | Duy, [P Apda < ¢y Vhy wy,— u
in Wi H(Q)-weak, it follows that g

weWEP(@Q,2) and JfIDulpAdxslin}Linff|Duhjpxhdx.
Q Q

(i) If f is in L™(Q) it follows that therve ewxist two positive constants c; =
=¢;(p, K, Q, ), 1 =2, 3, (depending only on p, K, Q and c,) such that

sl fllw-rrio, S liminf 1 w17 @, 2 < thUP I w20, 30 < el fllw-17 0,29 -
Proor. - (i) By Holder inequality and (1.8) it follows that

. . 1/p
(1.10) f|DuH¢]delin}Linf(leuh]”Ahdx)l/p( j lo|? Al‘”dac) " VYoe Q).
Q Q A0

By (1.10) and by exploiting the density of Cj (Q) in L? (Q, 2 7), we deduce that
[Du| e LP(2, A) and that

f{DuI”)\dxslin}Lian | Dy | 2 ;

Q Q

hence, being Q regular, by (1.1) it turns out that % is in W7 (Q, 2).
(i) For every ¢ >0 and ke N there exists v\® in W}'?(Q, A,) such that

(1.11) !I”}EE)HWH(Q, w S 1, Hf”W‘I’P'(Q,A;L) Set [[of? HI;IO%”’(Q,)\}L)

(e)
Qf fode .

By Holder inequality, (1.4) and (1.11) we get that there exists a positive constant ¢
such that (v{9), is bounded in W} '*°(Q) and therefore, up to subsequences, there
exists v@ in Wg'!*°(Q) such that

¥ >0 in WP1(Q)-weak.

On the other hand by (i) passing to the limit in (1.11) we get

(1.12) limsup | fllw-1r @, 2 €€+ ( J [Dms)lmdx)’”’“ jﬁ,(e)dx .
b Q Q
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By (1.5), (1.12) it follows that there exists a positive constant ¢, = ¢, (p, K, Q) for
which the inequality in the right hand side in (ii) holds.
Finally, by (1.8) we have

J foda

1ol wgp 0, 5 < timin vy Yoo CEOD;

therefore, by (1.9) and by density of Cg (Q) in W' ? (2, 1), it follows that there exists a
positive constant c; = ¢s(p, K, cy) for which the left side in (ii) holds. =

Finally we recall the following result (see Lemma 7.8 in[9]).

LEMMA 1.5. — Let ¢, o, 4 be veal positive numbers such that 8 + o + & < 1. Let us as-
sume that (&), Sk, @u and (wy), arve sequences in L1(Q) such that

(S e and (wy),  are non megative,
[t,| < sizfwi e in Q, for every h,
b—t, 8,—s8, zZ,—z, w,—w, in ®Q),
for some functions t, s, z and w in L'(Q). Then

[t] <s%zfw?  ae in Q.

2. — A notion of convergence for a class of degenerate elliptic operators.

DEFINITION 2.1, — Let p, «, 8, L and K be positive constants with

2.1 p>1, 0<a$min{—£—,p——l}, gzmax{2,p}, L=1 and K=1.

If Q is an open set, we denote by My (p, =, B, L, K) the class of the Carathéodory
functions a: Q X R™— R" for which there exists a positive functions A in A,(K) and
m in Li.(Q) such that, if

2.2) H = H(x, &1, £2):= m(@) + (alx, £1)]E) + (o, £2)|E2)

the following structure conditions hold:

(S) H(zx, &,8)>0,

S (o, &) — alie, £)| &1 — &) Z AP () HP =7 (w, £, &) |51 — £2°,

So) lalx, &) —alx, &)| SLAVP () HO 2/ (2, 21, &) al, £1) — alx, £2)]&~ E)Y7,

for a.e. xel) for every &;, & tn R".

When Q = R* we denote Mpn(p, a, 8, L, K) simply by 7p, «, 8, L, K).
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Since p, « and 8 will remain fixed in the whole paper, sometime we will write
simply M, (L, K) and (L, K) instead of My (p, «, 8, L, K) and M(p, «, 8, L, K).

LEMMA 2.2. - Let o be in I (L, K) verifying conditions (S;)+(Sg) with functions A
m A, (K), min L. (Q) and let H be the function in (2.2). Then there exist positive con-
stants ¢; = c;(p, «, 8, L) (i =1, ..., 5) (depending only on p, «, 3, L) such that

23) alx, &) ~ ax, &)| S AV P-AHP-1-/ P g g |d P
ae in Q, V&, 5e R,
@4)  lalx, £)| < e (|alx, 0)] + m P (&) 2P (x) + A@)|£]P 1),
25) H<cg{m+ |alz, 0)|” 277 + 2(|&|P + &7}, ae in Q, V&, &eR”,
2.6)  (alx, £)[8) = 6, 2@) || ¢ (|alz, 0)[7 2177 (x) + m(w)),

for a.e. xel for every & in R".

ProoF. — The proof of the above estimates can be obtained in a standard way by
using Young inequality (see, for instance[8] and[12]). ®

The following characterization of 9%, (L, K) holds.

PROPOSITION 2.3. ~ Let Q be an open set and let a: Q X R*— R" be a Carathéodory
function. Then the following facts hold:

(@) If a verifies (S;) +(Sg) with constants p, a, 8, L, K satisfying (2.1) and func-
tions A in A,(K) and m in L. (Q) it follows that

S Jalw, &) - alx, &)| <
S L@ P @)me (@) + A @8 P + &[0 8 - g7,
S8 (ala, &) — alx, &)|& — &) =
2 LoAl? @)m o (0) + 2y @)(|21]7 + & |P)]P P |2, - 5512,
Jor ae. x in Q, for every £, and £, in R™, where

@7 Aei=2,  myei=m+ |aC, 0)[P A7, y=pfa

and L; = Li(p, a, 8, L) (i = 1, 2) are suitable positive constants depending only on p,
a, B, L.

(i) If a verifies (S¥) and (SF) with functions X, in A,(K) and m, in Lk (Q)
and positive constants v, f and L; (1=1,2) such that 0 <y <min{l,p—1},
B2z max{2,p} and K =1, then o verifies (S)+(Sg) with X =cihy, m=cym, +
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+¢5laC, 0)|P 27, a=py/B, L 2 1, being ¢; (i = 1, 2, 8) and L suitable positive con-
stants depending only on p, v, B and L;.

ProoF. - i) Let us assume that a e 3, (L, K) verifies (S +(Sy). By 2.3), (2.5) it
follows that there exists a positive constant L, = L, (p, «, 8, L) such that

28 |alx, &) — alx, &)| <
< Lm0 [m 4 Jale, 01737 + A&7 + [ [T gy — g7,
for a.e. x e Q, for every &, and &, in R™.

Therefore, if we choose A, m 4 and y as in (2.7), we get that (S§) is satisfied at
once.

On the other hand by (2.5) it follows that there exists a positive constant L, =
= Ly(p, a, B, L) such that

29) H®=Pz[L,[m+ |a(z, 0)|p’;\1~p' +A(J5 )P + |§2|p)](p—ﬁ)/p
ae. in Q, V&5 R™,

then, by (Sg) and (2.9), (S5) follows.
(i) By (S§), by means of Young inequality, we deduce

E-p) LB D)8
B

Lg’/ﬂz*lslps (a(x, £))e) + laz, 0] |1+ —— (my + Xy [E]P)

ae. in Q, Vee R".

If ¢ is small enough, by the previous inequality, we deduce the existence of a suit-
able positive constant c, =c.(p, 8, L1, L) for which the following estimate
holds

@10) cohy 6P Smy + |alz, 0|7 ALP + (alx, H|E)  ae in O, Ve R".

Let us now define m(x):= (2 + ¢, )M« (@) + 2|alz, 0)|7 1L 7 (x) and let H be as
in (2.2), then by (2.10) (S,) follows at once.
On the other hand by (S§) it follows that

@11) Lo [m, + AL (|61 |F + |62 |P) PP g - &)F 2
> Lyc$- PP HP-P |5 — 5,|°  ae in Q, V& &eR",

so, if we choose A(x):= L§fc¢ =P/ ), (x), by (S) and (2.11) we get (Sy).
Finally by (S¥) it follows that

(212) |z, &) — oz, &) S Ly P/ Qi =10 g — gy |7

a.e. in .Q, VflizeRn,
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and by (S§) that
2.13) |& — & | < LL)\;l/pH(ﬁ_p)/pﬂ(a(w, £) — alx, £5)| &) — £5)°
2

ae in Q, Vé & e R".

Therefore, by (2.12) and (2.13), (S;) holds if we choose « = py/B'and a suitable con-
stant L. @

REMARK 24. - Let a be in 3, (L, K) and let us assume that (S;)+(S;) hold with
functions A; in A,(K), m; in L. (Q) (i = 1, 2); then (see Remark 3.1 in[6]) it can be
proved that the Welghts A; are comparable, that is there exists a positive constant

¢ = ¢ (p, «, B, L) for which (1.9) holds.

REMARK 2.5. — Let £ be a bounded open set and let a be in 31, (L, K). Let us sup-
pose that (S;)+(S;) hold with functions A in A4,(K), m in L'(Q) and that
la(z, 0)]7 A1 77 is in L (£); then by Corollary 1.8, Chapter 111 in [10] and by Proposi-
tion 2.3 we deduce that, for every fe W17 (Q, A) the Dirichlet problem

P, —div (a(, Dv)) =f in Q, veW}PWQ,2)

has a unique solution.

REMARK 2.6. - Let ¢ be a function verifying (S;) + (S;) for some funetions 2 in A, (K)
and m in L1(Q); if )’ and m' are other functions for which (S;)+(Ss) still hold, then,
by virtue of Remark 2.4, the weights A and )’ are comparable and therefore
W P(Q, 2) turns out to be equal to WP (2, A'); this implies that problem (P,) de-
pends effectively on a and not on the particular choice of .

We now prove some properties of the operator — div (a(z, D)) with o in
Ty (L, K).

PROPOSITION 2.7. — Let Q be a.bounded open set, let a in My (p, a, B, L, K) and let A
be the following operator

WEP@Q, ) -WHP(Q, %), A= -—div(a(x, D).

Then A is continuous and invertible. Moreover the following estimates holds:
there exists a positive constant ¢ = c(p, «, B, L, 2) (depending only on p, a, B, L and
Q) such that, if my is as in (2.7) and belongs to L*(Q), it results

21  ||Au - Av|w-1r g, S
< ellmay | + lulfigra n + 10lfge@ )P 1P D ]y - v“%ﬁ’(};)") ’

for every w and v in Wy'P(Q, 2) with y=a/(p — a);
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@15 A7 f - A gllwpr a0 <
< clmu i@ + 1270+ gl g, )¢~ P/OE-D| F — 9”%@13’1()9, e
for every f and g in W17 (Q, )).

PrOOF. — In order to get (2.14) we first observe that by Proposition 2.3 (i) there
exists a positive constant ¢ = c(p, «, 8, L, £) such that

, , 1/
2.16) ||Au — Av|y-1r@, i S ( J |a(x, Du) — a(e, Dv)|P' 21 ~F dx) "<
g

1P (p=1-1/(p~1) , 1
sc( I[er la(x,0) |7 217 + (| Du|? + |Dv|p)]7’ /e lDu—D”VpN/("_de) ,
Q

for every u and v in W}P(Q, A) with vy = «/(p — a). -
Then, by (1.5), Hélder inequality and (2.16), (2.14) follows at once.
By (S7), (S%) of Proposition 2.3 and by (2.14) A turns out to be continuous, mono-
tone and coercive, then, by applying, for instance, Corollary 1.8, Chapter III in[10],

we get at once that A is invertible.
In order to prove (2.15) let us preliminarly observe that, in general, by Hélder

inequality, we have

2.17) f [Du — Dv|Pude < ( Jpﬁ/p[T + (| Du|? + |Dv|P)1® P | Dy — Dvlﬁdx)p/ﬁ-
g d

-p)
( jr+ﬂ(|pu|p+ leI”)dm)(ﬁ i
Q

for every u, v in WP (R, ) every positive function r in L'(Q) and every
weight .

Moreover by (2.6) and Poinearé inequality in (1.5) there exists a positive constant
¢ =c¢(p, « B, L, Q) such that

J |DAf|Pade < Cl(“f”W"LP'(Q, ol DA fllwg o, + f(m + latx, 0)|7 A1 ") da).
g )

By applying Young inequality to the previous estimate we get the existence of a
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positive constant ¢, = ¢ (p, «, 8, L, K, Q) such that

2.18) ”A_1f||’5v(}"”(9,a>scz( [(n+ latz, 017 31 =7)do + 717 .5
o]

for every fin W17 (Q, A).

On the other hand, by condition (S§), (1.5) and by applying (2.17) with u = A ~'f,
v=A"lg,r=m+ |alx, 0)|” A' "7 and p = ), we deduce that there exists a positive
constant ¢; = c3(p, «, 8, L, K, Q) such that

@219 AT -Agllwpean S

, , @E-p/(p(e-1)
scs(j(m+ la(z, 0)|? A1~% + A|DATf|? + A|DA g |P)dz| -

Q

f = gl e,
for every f and g in W17 (Q, A).

By (2.18) and (2.19), (2.15) follows at once. ®

Now we introduce the following notion of G-convergence (see also [3], [12], [14],
[15] and [16]).

DEFINITION 2.8. — Let p, «, 8, L and K be positive numbers satisfying (2.1) and let Q
be a bounded open set.

Let a;, (h=1, 2, ...) and a be functions in My (p, «, B, L, K) verifying (S;)+(Sy)
respectively with weights i, and 2 in A, (K) and functions my, and m in L'(Q) and
such that |a,(x, 0)[? 2377 and |alz, 0)|P 117 are in L1(Q).

We say that the sequence (a;) G-converges to a in Q, and we write

ahga n Q,
if for every fin L™(Q), being w, and u the solutions of the Dirichlet problems
{ —div (a, (2, Dv)) =f in Q and { - div (a(x, Dv)) =f in Q
ve WEP(Q, Ap) ve Wb (Q, ),
it results that
u,—>u in Wyl(Q)-weak and  a,(x, Du,) — alx, Du) in (L1(Q))"-weak .

The following locality property holds for G-convergence.

PROPOSITION 2.9. ~ Let 2, (i = 1, 2) be two bounded open sets with Q, ¢ Q, and let
(ap) be a sequence in Mg, (L, K).
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Let us assume that a;, satisfies (S;) + (Sg) with functions A, in A, (K), my, in L' (Q5)
and that:

(i) there exists a cube @y of R* with Q,cQ, such that the sequences (Ap), and
(AL=PY), are bounded in L*(Q,);

(i) there exists m in L'(Q,) such that m,— m in L'(Qy)-weak.
Then, if
0,50 inQ;(i=1,2)
for some functions b; in My, (L, K), it follows that
bi(x, &) = by(x, &)  for a.e. xeQy and every (e R".

PROOF. - By (i) it is not restrictive to assume the existence of two weights A and X
in A,(cK) (where ¢ = c¢(n) is the constant appearing in (1.6)) verifying (1.6) and
..

Let us suppose that (S,)+(Sy) hold for b; (i =1, 2) with A® in A,(K) and m® in
LY(Q;) (i=1,2) and set

A}(LZ) = div(ah(xy D.)): W(}yp(gh Ah)_')WQI,p’ ('Q'i,’ Ah),
B® = — div(b;(x, D*)): WEP(Q;, D) 5> W HF(Q;, 29).
By Definition 2.8 we get that

[ (A f— (B, in W 1(Q,)-weak,

2.20 . .
@20 i @, (@, DAY f) = by, DB '), in (L'(Qy)"-weak,
for every fin L"(Q;) (i=1,2).

For every i =1, 2, fand g in L"(Q,) let us set uf = (AP)7f, v = (AN g,
u® = (BD)~1f, p® = (B?) 'y and denote by H, (respectlvely H;) the funetions in
(2.2) with m =my,, a = a;, (respectively with m =m®, a = b). By (Sp)+(S) we get

@21) (0 (o, Duf?) — ap (e, Do) | Dufd — D) >
> 247 HP =PI (, Duf®, Duf)| Duf? — Du |,

222)  |ay(x, Duf?) — ay, (v, DviP | <
< LaYPHP =19/ (, Duf® , Duf®)ay (m, Dus?) — ay (z, DuiP) | Duf? — Duf)?

a.e. in Q;, for every & and i. . ,
Ifweseté=(p—1)/p,e=@~— p)/pﬁ, 4=1/8and t), = Du“) viP, s, = 2L7F,
= H, (Duf?, Do), w, = (o, (@, Duf?) — a5 (x, Dv®) | Dus® — (“), the assump-
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tions of Lemma 1.5 are satisfied, therefore taking the limit in (2.21), we get
223)  (b;(w, Du®) — b;(x, Dv? | Du® — Dv?) 2
> AP HP PP (g, Du®, Dv®)| Du® — Dv®|*  ae. in Q,
for every »¥ and v® in (BD)"1L™(Q,)) (i=1,2).
Analogously, by applying again Lemma 15 with ¢=1 [, e=(p—-1-a)/p,

d=afp and b, =@, Dud) — ap(x, Dv), 8= Ay, 2= Hy(x, Duf”, Dvi?),
wy, = (o, (0, Du®) — ay, (x, DvP)| Dus® — DvfP), we ean take to the limit in (2.22) and
get :

224)  |b;(x, Du®) ~ b;(x, Dv?)| < |
< LAPHET P (g, Du®, Dv®@)(b; (, Du®) — b;(x, Dv®)| Du® — Dy @) |
a.e. in Q;,

for every % and v in (B®)"1(L"(Q,)) (i=1, 2).
By the density of (B®) 1 (L™(Q,)) in W{P(Q;,A®) and by the continuity of
b; (%, -) we deduce that (2.23) and (2.24) hold on the whole W}?(Q;, 1®).
Therefore b; (i = 1, 2) satisfies (S;)+(S;) with A and m, so, by Remark 2.4, there
exist positive constant ¢; (i = 1, 2) such that

2.25) clix(.x) <AD(@) < Aw) ae in Q, ((=1,2);

moreover by (2.25) we deduce that
(2.26) WeP(Q;, 2 =WeP(Q;, 1) (1=1,2).

Now let us set u;, = (AV)71f, v, = (AP) g, u = (BY) fand v = (B®)1g with
feL™Qy) and g e L™(Q,), then by (S,) it follows that
2.27) j (ay, (%, Duy) — @, (%, D) | Duy, — D) odz 20 Vpe @(Q,), ¢=0.

@

Since W§'P(Q,, A) c WP (Q,, A,), by Theorem 1.2, (2.20) and (2.23), passing to

the limit in (2.27), we have

2.28) j (b (x, Du) — by (x, Dv)|Du — Dv)pdz 20 Voe d(Q,), 220.
()

for every w in (BW)"1(L"(Q,)) and v in (BP)"1(L"(Qy)).
Then, by (2.21)+(2.26) and by the density of (B®)"1(L™(Q;)) in WaP(Q,, A), it
follows that

(2.29) (b (x, Du) — by(x, Dv)|Du — Dv) 20 ae. in Q,,
for every w in W?(Q,, A)(c W3 P(Q,, 2) and v in WEP(Q,, A).
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For every t > 0, u, v in W}?(Q,, A) let us set w:= (1/t)(w — v), then by (2.29) we
have (b, (x, Dv + tDw) — by (, Dv)|Dw) = 0 a.e. in Q, and, as t— 0%, that

(2.30) (by(x, Dv) — by(x, Dv)|Dw) = 0 ae. in Yo, we WHP(Qq, Ay).

For every fixed bounded open set w cc 24, let ® in C}(Q2,) be such that $ =1in w
and let v(x):= (¢|x) B(x), w(x):= (n|x)P(x) with & » in R*. By (2.30) it follows
that

(by(x, &) — bo(x, &)|p) 20 ae. in o, for every £ and » in R"

and hence the thesis. %

3. - A (G-compactness result.

In this section we want to prove that from every sequence (ay), in (L, K) it can
be selected a subsequence (ay, ), that G-converges to a function a in JI(L’, K) for some
LI

Let Q be a bounded open set of R” with Lipschitz boundary, let p, «, 3, L and K be
positive constants verifying (2.1) and let, for every ke R, a; be in 3, (p, «, 8, L, K)
verifying (8;)+(S;) with functions A, in 4,(K) and m, in LL.(Q). ’

Let us assume that

3.1) (A, and (AL~P), are bounded in L!(Q,) for some cube Qg2 Q;

(32) Sup( [ lantz, o>;p’x,g—p'dx) <+
h
0

(88) m,—m in L'(Q)-weak, for some function m in L'(Q).

Let us preliminarly observe that by (3.1) and (1.8) +(1.10) there exist ¢ = ¢(n) and
two weights A and A in A,(cK) such that, up to subsequences,

(34) Ap—A and AP —alTF in L (Qy)-weak;
(3.5) M) < Mx) < Ka(x), for ae xe@.

LEMMA 3.1. — Let A, = — div (a, (x, D*): WP(Q, 1) = WP (Q, 1), then there
exist a subsequence (A,), of (A and a continuous and twvertible operator
WEP(Q, 1) > W™ LP(Q, 2) such that

(8.6) A=A in Wy ' (Q)-weak, for every fe L"(Q).

PrOOF. — By (2.18) it follows that there exists a positive constant c;, independent
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on h, such that

BN AT e, S cl( j (my + [ (e, O 2577 ) de + | fl-1r 0, 5,
Q

for every f in L"(2) for every A.

By (1.2), (1.4), (3.4), (8.5), (8.7) we deduce that (uy);, where u;,:= A; f, is weakly
compact in W' (Q), therefore, given f in L™ (), there exists u(f) in Wi *(Q) such
that, up to subsequences, (u,), converges to u(f) in W¢' ! (Q)-weak.

By (34), (3.5) and Lemma 14 (i), it follows that u(f) e W3'? (£, 2); moreover, by
Lemma 1.4 (ii), passing to the limit in (3.7), there exists a positive constant ¢, such
that

(3.8) luCH)llwgpra,n < 2+ IfIFEG, ) for every fe L™(Q).

Let X be a countable and dense subset of L™ (£2); then, by means of a diagonal pro-
cess, the existence of an increasing sequence (¢}),, can be deduced such that, for every
fin X, (A,;' ) converges in Wg' ' (2)-weak to some function in W ?(Q, 2). Let us de-
fine the operator

B:X—>Wpr(@,2), Bf=lmAJYf  (n W' (@-weak),

we want to prove that there exists an operator (that for s1mp11c1ty we still denote by
B) B: W™LP(Q, 1) > W P(Q, ) such that:

3.9) |Bf = Bglwge,n <
<o+ I flly-rrio p + Hg”w-l,pm, A})(ﬂ“ﬁ)/((p—l)(ﬁ— 1) “f_gw@fpigg, »

for every f and g in W57 (Q, ) and some constant c;

(8.10) Bf= li}rbn A'f  (in Wi '(Q)-weak), for every fin L™(Q);

3.11) B is invertible.
Let f and ¢ be in X, we clearly have that
(3.12) (f-9,Bf—Bg)= lim(f— 9, A f—AL'g).

On the other side let us observe that, by (2.18), (2.19), (3.2) and (3.3), it follows
that there exists a positive constant c,, independent on 4, such that

A L f- A, g”w(}’ﬂ(o, » S

S (U + [ fllw-rrgam + 19lwre@ ) PP D(f~g, A7~ Alg)

for every f and g in X, for every £ in N.
By (34), 3.5), (1.5) and Lemma 1.4 (ii), taking to the limit in the previous in-
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equality we get that there exists a positive constant c; such that

3.18)  |[Bf = Bg|wjr@,n <

< VA4 fllw-rrgn +lgllw-ur g )¢ PAE-DE-D £~ g”%)(é(‘ﬁlv_ﬁl&)' Y

for every f and g in X.

Since X is dense also in W17 (Q, 1), by (3.18) it follows that B can be extended to
the whole W17 (Q, ) and that (3.13) still holds on the whole W17 (Q, 1), hence
{3.9) follows.

Let us now prove (3.10).

Let f and g be in L"(Q), by (1.4) and (3.12) it follows that there exists a positive
constant ¢g, independent on h, such that

(3.14) HA,;lf——Ac;lguwé,mwscﬁ( J A de

/g —-1)
Q

L\ le-pie-ve-1y) B
-[1 + (f v + ngnm»( [3i0 dx) } I - g5,

Q

for every f and g in L™(2), for every h.

Moreover let us observe that, if fe L™(Q) and g € X, we can write Bf — A4,,'f=
= (Bf— Bg) + (Bg — A g) + (4., g — A'f), then by (3.1), (3.8), (8.14), being X
dense in L"(2), (3.9) follows at once.

Let us now prove (3.11),

Let f and g be in L"(Q) and set u, = A.,'f, v, = A,;'g. By (2.16) and (2.17) it fol-
lows that there exists a positive constant ¢;, independent on %, such that if mjf (x):=
=m(z) + |0, (0, ©)|F A} " (x), y = a/(p — a), then

315) |- glw-rr@ 0 = 14,0 — A, vullw-19 @, S

p-1-7)
< 07( [tm + 201D P + |Dvhl”)]dw)p n
0

J |D’u,h - D'Uh |p7\hd.%')y/p
Q

for every h.

On the other side, by (2.19), (8§) of Proposition 2.3 and by (3.15), we get that
there exists a positive constant cg, independent on %, such that

316) |f-glfraraan <
<c(1+ ”f”w—l-:f(g, w T ngw-lyﬂ'(n, A,,))m (f-9 Agllf—Aazlg)”/ﬁ,
for every f and g in L™(Q), for every &,

with 6= (p —1 - y)/y + (8 — p)/B.
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By (8.4), (8.5), (8.9) and by Lemma 1.4, taking the limit in (3.16), we get that for
some positive constant cy, independent on 4,

B1D |- glw-rran <o+ flw-rran+ lglw-1r@)* (f- g, Bf - BgP*,
for every fand g in L"™(Q).

Moreover, by the density of L™(Q) in W17 (Q, ) and by the continuity of B, it
follows that (3.17) holds on the whole W17 (Q, A).

Therefore, since B: W47 (Q, 1) » WP (Q, A) is continuous, monotone and co-
ercive, (3.11) soon follows, for instance, from Corollary 1.8, Ch. III in[10].

Finally if we take A:= B~!: W}P(Q, \) > WP (@, A) the thesis follows. ®

LEMMA 3.2. — Let (A), and (o), be as in Lemma 3.1. Then there exist a subse-
quence (81);, of (o4), and a continuous operator M: W17 (Q, 1) — (L7 (Q, A1 7P)H)*
such that

(3.18)  a, (x, DA ) >Mf in (L' (Q))"-weak, for every f in L™(Q).

PRroOF. - Let us set for simplicity 2, = 2,,, m, = m,,, @), = a,,, 4; = A,, and define
the operators M,: W17 (Q, A,) — (LP (Q, AL=P)", M, f:= a3, (x, DA;'f).

Then, by (2.4), (1.4), (3.2), (3.3) and (3.7), it follows that, given fe L"(Q), the se-
quence (M, f); is weakly compact in (L!(Q))". Therefore, if X is a countable and
dense subset of L"(Q), by means of a diagonal process, we can assume that, for every
fe X, the sequence (M, f), converges, up to subsequences, in (L!(Q))"-weak to a
function Mf.

Let us prove that

8.19) Mfe (LY (Q, A'"P)"  for every fe X.

By Holder inequality and (8.4) we get

320 | lellsnIdxslm}jIlf( | !thlp'ai“‘”'dw)l/p'( | Igol”)«dx)l/p Vo e CR(0),
Q Q Q

hence, by (3.5) and (3.20), (3.19) follows at once.
We now want to prove that M can be extended to a continuous operator on the
whole W17 (Q, A) and that

8.21) Mf= li}bn an(x, DAY (in (LY(Q))"-weak), for every fe L™(Q).

By (2.16)+(2,19), (3.2), (3.3), (3.14) and by (3.4), (3.5) and Lemma 14 it
follows that there exists a positive constant ¢;, independent on %, such that, if
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d=(p~y-1))/(p—-1)E~-1) and y = a/(p — a),

(3.22) lin}zinf( J | M, f~ thlprk}bwp,dx)l/lf <
aq

< (Lt Ifllw-ra,n +lglwrr@ ) If = glF45 0

for every f and ¢ in X.

On the other hand, by using arguments similar to the ones employed in the proof
of (3.19), it can be proved that
. . ' i/p
(3.23) HMf“ Mg”(Lp'(Q,Al—p‘))n = hn}me( J Ith— th!p A}L—p dx g 3
g

hence, by (3.22) and (3.23), it follows that
324)  |Mf-Mgllar vy <esQ+|flw-1r@ntlglw-rre, A>)°‘|!f—91|$'-/1‘?p2}}, Y
for every f and g in X.

By the density of X in W17 (Q, 1) and (3.24) M can be extended to an operator,
still denoted by M, defined on the whole W ™17 (@2, A), moreover (3.24) holds on the
whole W17 (Q, 2).

Let us now prove (3.21).

Let f be in L™(Q2) and ¢ in X; since we can write

Mf — a),(x, DA;'f) =
= (Mf — Mg) + (Mg — a,, (¢, DA; ) + (a,(x, DAy 'g) — a5, (2, DA, ')

by (8.15), (8.24) and by the density of X in L"(Q), (3.21) follows at once and so the the-
sis follows. ®

Now we can prove a partial G-compactness result.

PROPOSITION 3.3. — Let Q be a bounded open set of R" with Lipschitz boundary and
let a;, be in My (p, a, 8, L, K) (h=1,2, ...) verifying (Sy) +(S3) with functions A, in
A, (K) and my, in LY(Q).

Let us assume that (3.1)+(8.3) hold, then there exist a subsequence (ay ), of (@)
and o function a in My (p, , 8, (cK)/P L, cK) (where ¢ = c(n) is a positive constant
depending only on n) such that

G .
o, —e i Q.
T

PROOF. ~ Let us first observe that by (1.6), (1.7), (3.1) we can assume that (3.4) and
(8.5) hold.
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Let A; be as in Lemma 3.1, then by Lemma 3.1 and Lemma 3.2 we can as-
sume that there exist two continuous operators A: Wi'P(Q, 1) » W17 (Q, ) and
M: WP (Q, ) = (L*(Q, 2! ~7))" with A invertible such that, up to subsequences,
(3.6) and (3.18) hold with A =¢, = 4),.

Moreover let us observe that by (3.9) it follows that

(3.25) Y:=A"1(L"(Q)) is dense in W}P(Q, 2).

Let us define the operator M:= M oA and, for given » and v in Y, let u,, = A; ' Au,
v, =A; 1 Av be in WEP(Q, 1,).
If H; is the function in (2.2) with m = m,,, o = a;, then by (S))+(S;) we get

(826) |Duy, — Du,| <
< A7 YP HE PP (5, Duy,, Dv,)ay, (2, Duy) — a(x, Dvy)| Duy, — Do )8
827)  |ay(x, Duy) — oz, Dvy)| <
< LAYPHP ~1-9/P(x, Dw,, Dv,)a, (¢, Duy) — ale, Dvy,)| Duy, — D, )P,

a.e. in £, for every h.

Set ¢=(p—1)/p, o=@B-p)/p8, 9=1/8 and &, =Du,—Dv,, s=21,"",
z, = Hy (x, Duy,, D), wy, = (@, (¢, Duy) — ay, (¢, Dvy)| Duy, — Dwy,), then by (3.4), (3.6),
(8.19) and Theorem 1.2, the assumptions of Lemma 1.5 are fulfilled hence, taking the
limit in (3.26) we get

(8.28) |Du— Dv| <
< 2 7Y2[m + (Mu]Du) + (Mv|Dv)]®~ P/ (Mu — Mv|Du — Dv)'?  ae. in Q,

for every u and v in Y.

Analogously, by applying again Lemma 1.5 with §=1/p, o=(p—1-a)/p, 8=a/p,
b = o (x, Duy) — ay,(x, Dvy), 8, = Ap,, wy, = (@ (2, Duy) — ay (2, Dvy) | Duy, — Dvy,) and
taking the limit as A — + «© in (3.27), we get

(829) |Mu— Mv| <

_ — ~ p-1-a) ~ ~
< Lyr [m+(Mu|Du)+(Mv|Dv)]p /p(Mu—Mv|Du—Dv)“/p ae. in Q,

for every % and v in Y.
By (3.25) we get also that (3.28) and (3.29) hold on the whole W' ?(Q, A); moreover
from (3.5), (3.28) and (3.29) it follows that

(330) |Mu - Mv| <
< LP@=2 537~ [m + (Mu|Dw) + (My| Dv) P~ 1=/®=9 | Dy ~ Dy)/®=2  ge. in Q,

for every u and v in Wy ?(Q, 2).
We now construct a function o for which A = — div (a(x, D")).
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Let (e;); be an increasing sequence of open sets of R" such that w; c Q2 for every j
and U ;=@ and let (9,); be a sequence of functions in C§ (Q) such that §; =1 in o,
for every -

For every ¢e R" let us define the functions ¢{” by ¢° (x) P, (x)(&|x) (xe RY)
and let a be the function defined by a(x, £):= (M p( Ne) if x e ©;- By (8.30) it follows
that @ is well defined since (qu(’)) = (Mp®) ae. in wj, if i > j. Moreover, by (3.5),
(3.28) +(3.30) it follows that o e My ((cK)'/P L, cK).

In particular, by (3.30), a{x, ") turns out to be a continuous function on R", for a.e.
x in Q.

Then, in order to get the thesis it is sufficient to prove that

Mu = a(x, Du) ae. in Q, for every ue WHP(Q, A);

but this can be proved by the Minty trick (see, for instance, proof of the Theorem 1.1
in[8]). =

REMARK 8.4. - If we replace condition (8.1) with the following one: for every cube
Q of R"(X;), and (A} "), are bounded in L!(Q), then, by Remark 1.3, it follows that
X eA,(K) and that (3.5) holds on the whole R". Therefore by (3.29) we get that
a e My (KYPL, K).

Now we can prove the main result of this paper.

THEOREM 3.5. - Let p, «, 8, L and K be constants verifying (2.1). Let o, (h =
=1, 2, ...) be functions in M(p, «, B, L, K) and assume that each a;, verifies (S,) +(Sg)
with functions X, in m, and L, (R™).

Moreover let us assume that:

(i) for every cube Q of R" the sequences (1), and (L7, are bounded in
L*(Q);

(i) for every cube Q of R" there exists a positive constant ¢ = ¢(Q) (depending
only on Q) such that

J la, (2, 0)|F 2} P de <c(Q) for every h;
Q

(iii) there exists o function m in L, (R™) such that my, —m in LY(Q)-weak for
every cube @ of R™.

Then there exist a subsequence (ay), of (o), ond a function a in
M(p, «, 8, LK'?, K) such that

¢ .
a, —a inQ,
&

for every bounded open set Q of R" with Lipschitz boundary.
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ProoF. — Let us begin to observe that, by Remark 1.3, we can assume that there
exist two weights A and 2 in A, (K) for which (3.4) and (3.5) hold for every cube Q.

For every je N, let Q; = (—j, /)", then by Proposition 3.3, Remark 3.4, it follows
that there exist a subsequence (aj"), of (a;), and a function ¢ in 91y (LK'?, K)

e ,

such that a{’ >a® in Q.

Analogously, by applying again Proposition 3.3 to the sequence (aj"),, we get the
existence of a subsequence (a;>), of (af");, and of a function ¢® in g, (LK'?, K)
such that

(3.31) a?5a® i Q.
On the other side we have also that
(3.32) o 5a® i Q,
then, by Proposition 2.9, it follows that aV(x, £) = a®(x, £) for ae. xeQ,, for
every £e R".

By repeating the above construction for every j e N, we get a sequence (a,”), and
a function o in 9y (LK'?, K) such that

(3.33) o Sa® i@,
334) aP(x,&)=a"(x,¢) for ae. 2€Q;, every £eR", jeN and every 1<i<j.
Therefore if we define a: R" X R"— R” as
ax, &):=a?(x, &) fxreqQ, teR";

by (8.34) it follows that a is well defined and that a € I(LK'?, K).

Now let us consider the diagonal sequence a, = a;”; clearly, it follows that

(3.35) &hga in Q;, for every j.
On the other hand, if Q is a regular bounded open set of R", by Proposition 3.3

there exist a subsequence (@, ), of (@), and a function a9 e 91, (L(cK)'/?, ¢K) such
that

(3.36) i >e® Q.

Let j, € N be such that O ¢ Qj,, by (3.42), (3.43) and by Proposition 2.9 we get that
a(z, £) =aD(x, £) for ae. xeQ, for every £e R”, hence the thesis follows. ™

As a particular case, by Theorem 3.5, we deduce the following corollary.
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COROLLARY 8.6. —~ Let p=2, K=1 and let a;,: R*"XR*"->R" (h=1,2, ...) be
Carathéodory functions verifying (0.2) with L = 1 and w,, in A, (K) for every h such
that, for every cube Q, (u3), and (x}~ ), are bounded in L*(Q).

Then there exist a subsequence (ay), of (ax)y, a weight u, in A,(K) and o
Carathéodory function a.: R" X R*— R" verifying (0.3) with ¢, and with o swit-
able positive constant L' such that, for every regular bounded open set Q and for
every f in L (Q), the solutions u, of the problems

P, ~div (g, (2, DV)) =f in Q, wveW}?(Q, mp) (r=1,2,..)
converge in Wi (Q)-weak to the solution u. of the problem
—div (@ (&, DV)) =f in Q, ve WHP(Q, ).

Moreover the weak convergence in (L*(Q))" of the momenta (ay, (x, Du,)), to the
momentum Q. (x, Du.) holds.

Proor. - By Proposition 2.3 (i) it follows that a, verifies (S,)+(S;) with
function

B3N @) =crup @), my®) =cppy(x), «=1, f=p and L=1,

being ¢; (i = 1, 2) and L suitable positive constants independent on k; hence (a), is
contained in I(p, 1, p, L, K).

By (3.37), (1.6) and (1.7) we can apply Theorem 3.5 and get the existence of a sub-
sequence (a;), of (a3), and ‘of a function a., in M(p, 1, p, LKY? K) verifying
(Sy) +(Sy) with functions 4 in A,(K) and m in LL.(R™) such that

(3.38) ahT—G—> a, inQ, for every regular bounded open set (.

Moreover, by Proposition 2.3 (i), it follows that a, verifies (Sf) and (8f) with
2w () = Cu A &), M4 () = cs M), ¥ = 1/(p — 1), B = p for suitable positive constants L;
(i=1,2).

For every re N and every regular bounded open set £, let w, be the (unique) solu-
tions of the problems in (P,) relative to f = 0; then, since by (0.2) g, (2, 0) = 0, it turns
out that w, =0 a.e. in Q. By (3.38) it follows that

0 = a, (z, Dw,) > a(x, 0)  in (L'(Q))"-weak,

and, being Q an arbitrary regular bounded open set, that a(x, 0) =0 ae. in R™.
Finally, if we take . (2):= (1/Lg) A(x), the thesis soon follows. ™
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