
Structural Optimization 4, 128-131 (1992) 

Structural 0ptimization 
© Springer-Verlag 1992 

A c c u r a c y  o f  s e m i - a n a l y t i c a l  s e n s i t i v i t i e s  a n d  i t s  i m p r o v e m e n t  b y  

t h e  " n a t u r a l  m e t h o d "  

H.P.  Mle jnek  

Institute for Computer Application I, University of Stuttgart, Pfaffenwaldring 27, D-7000 Stuttgart 80, Germany 

A b s t r a c t  The semi-analytical method is a very convenient 
tool for the computation of sensitivities in shape design. It was, 
however, shown in the past that this method may have serious 
accuracy problems, e.g. in the shape design of beams. In this paper 
the natural method is employed to locate the decisive defect in the 
incremental stiffness and to develop an alternative procedure that 
provides nondefective incremental stiffnesses. This approach is 
then extended to the more common Cartesian element description. 
Examples demonstrate that the error of th~ sensitivities in critical 
cases can be almost totally removed, if we employ the nondefective 
incremental stiffness formulation in the sensitivity computation. 

1 Introduct ion  

One of the main drawbacks in the semi-analytical method for 
the computation of shape sensitivities is the fact that in some 
applications large errors occur, which may even increase with 
a finer discretization. This was impressively demonstrated 
by Barthelemy and Haftka (1988). A very ingenious idea for 
the error elimination in these critical applications was put 
forward by Olhoff and Rasmussen (1990). They developed 
and applied correction factors for the results derived via a 
simple forward difference scheme and thereby obtained very 
accurate sensitivities. Cheng et al. (1990) tried to improve 
the accuracy by employing second order information. Most 
inspiring to the author was a paper by Cheng and Olhoff 
(1991), who used rigid body displacements to detect and cor- 
rect sensitivity information. It was, in fact, this last paper 
and its close relation to the natural FEM-approach which has 
brought about the idea of employing the natural method in 
this field. 

2 T h e  na tu r a l  F E M  a p p r o a c h  

Whereas the classical Cartesian finite element formulation is 
based on displacement modes w, which are related to Carte- 
sian element nodal displacements p so that local displace- 
ments u are given by 
u = wp,  (1) 

the natural formulation makes use of rigid body modes w 0 
and straining modes WN, which are related to the generalized 
displacements PO and PN 
u = [w ¢ON]{p 0 PN} : J p t .  (2) 
Of course, it is always possible to compute pl from p and vice 
v e r s a  

PN aN p = aep , (3) 

P = [ A o A N ] [  PNPO ] pt = Aepl " (4) 

Obviously A 0 contains Cartesian element nodal displace- 
ments related to rigid body modes. The traditional Cartesian 
element stiffness matrix k may be also transformed to gener- 
alized displacements 

k, = AtekAe = [ A~}kA0 A~)kA N 0 0 
A~vkA0 A~vkAN ] =  [ 0  kN ] '(5) 1. 

Here 0 is a zero matrix and k N denotes the so-called natural 
stiffness, which may be directly derived from the straining 
modes and then used to compute the Cartesian element stiff- 
ness, 

k = a k'ae = (6) 
More information on this approach can be found in a book 
by Argyris and Mlejnek (1986). 

3 P r o p e r t i e s  of  ana ly t i ca l  stiffness sensit ivit ies 

For simplicity we restrict our considerations to one design 
parameter s. A function g may explicitly depend on s and 
the nodal displacements of the assembled structure r which 
again depend implicitly on s. The sensitivity is then given 
by 
~_~ Og Og Or 

[g(s, r(s))] = G + Or 0s" (7) 

The explicit derivatives Og/Os and Og/Or are usually triv- 
ial. The displacement derivative is obtained from 

Or _ _ _ K - 1  ~-'~ Okg p , (8) 
g=l  

where g denotes one of the m elements in the structure, K 
is the stiffness matrix of the assembled structure and ag is a 
Boolean matrix relating the element displacements pg to the 
global displacements r 

pg - agr .  (9) 

Finally, we need the element stiffness derivative Ok/Os 
(as in Section 2, we omit for simplicity the element number 
g). In the semi-analytical approach (SA) this expression is 
replaced by Ak/As .  By (6) this derivative becomes 

Ok OatN t OkN + a~vk N OaN (10) 
~s : Os kNaN + aN--~s aN Os 

From (3) and (4) we obtain readily 

[ a 0 A 0 = I  a 0 A N - - 0  ] = I ,  (11) 
a e A e = I - - -  a N A  0 = 0  aNA N = I  



where I denotes the unit matrix. Obviously 

0k ~ s  N (121 ~ s A o  = a~vk N AO, 

does not vanish, in general, unless OaN/OS is zero. However 
if we form 

0k 
At  ~-sA0 = 0, (13) 

then we always obtain a zero matrix. This property was also 
derived by Cheng and Olhoff (1991) in a different context. 

4 Defec ts  o f  semi-ana ly t ica l  sensi t ivi t ies  a n d  a sim- 
ple r e m e d y  

In the SA approach we simply replace Ok/Os by Ak /As ,  
where ~ 

Ak = k(s + As) - k(s) = k + - k .  (14) 

By applying the test (13) to the incremental stiffness (14) we 
have 

A t A k A 0  t + t + ' +  = A0(aN) k N a N A 0 ,  (15) 

where the top index + again indicates the modified state. 
Note however that now in general 

a~rA0 = aN(s + As)A0(s) # 0.  (16) 

The traditional SA approach does not satisfy property 
(13). This was also stated by Cheng and Olhoff (1991) who 
used this result for error detection and used the rigid body 
forces arising from the incremental stiffness to correct the 
traditional SA-sensitivities. 

A look at (10) reveals a simple alternative possibility 
to generate directly nondefective incremental stiffnesses and 
subsequently accurate sensitivities. Due to (10) we have as 
stiffness increment 

Ak* = Aa~vkNa N + a~rAkNa  N + a~rkNAa N . (17) 

Obviously this new stiffness increment, which is based on the 
natural formulation, satisfies automatically the property (13) 

A~Ak*A 0 = 0. (18) 

This improvement also gives dramatic benefits with respect 
to the sensitivity error, as we will demonstrate later. 

5 Ex t ens ion  to  Ca r t e s i an  fo rmu la t i on  

The direct computation of the Cartesian element stiffness is 
based on the relation 

= / a ~ o ~ d e t  J dVp, (19) k 

where a denotes the strain displacement matrix for the com- 
putation of the strains ~ from the element nodal displacement 
P, 

e = a p ,  (20)  

and the matrix ~; contains the coefficients of tIooke's law 
('material stiffness'). The integration is performed over the 
parameter volume Vp, which is related to the real volume by 

dVp = det J dVp , (21) 

where J is the Jacobian relating global coordinate derivatives 
to parameter coordinate derivatives. It is usual to perform 
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(19) numerically 

nip 
k = ~ wk[~(~ det J)k~k], (52) 

k=l 
where nip indicates the number of integration points, w k the 
associated weight for the integrand function at integration 
point Pk in the parameter space. Note now the direct corre- 
spondence with the natural approach: 

k N ~ d e t J ,  a N ~ a .  (53) 

If  we apply a set of rigid body element nodal displace- 
ments as A0, the product a N A  0 is zero, i.e. we have no nat- 
ural displacements PN and subsequently no strains. This is 
also the case for oLA0, since this expression gives the strains e 
directly. The natural stiffness matrix k N is positive definite 
like the expression ~ det J.  Therefore, we may immediately 
write the improved incremental formulation in Cartesian de- 
scription as 

nip 

A~** = E wk[A°~(~ det J ) a  + ~ A ( ~  det J ) a  + 
k=l 

+c~(~ det J ) A a ] k .  (24) 

In the next section we demonstrate that this approach 
gives results which are as accurate as those obtained by the 
natural method. 

6 I l lus t ra t ive  example  

As an introductory example we consider a plane straight 
beam in pure bending. Cartesian and natural displacements 
are shown in Fig. 1. From this figure we may easily deduce 
the matrix 

aN = + 2  , 

and the associated stiffness matrix is diagonal, 

k N = - ~ [  1 3 J ,  

where E I  denotes the bending stiffness and £ the element 
length of the beam. Using (6) we may verify the traditional 
Cartesian element stiffness. 

We employ this simple element in the analysis of a can- 
tilever beam loaded by an end moment (Fig. 2 / and compute 
the derivative of the end displacement v E with respect to the 
total length L of the beam. This example was also used by 
Cheng and Olhoff (19911. For this case we have by (7) 

Ov E Ore 
os =o ,  or = [ °  0 ... 0 0 1 0 ] = ~  t, 

where tZ represents the adjoint load vector. If we substitute 
(8) into (7), we may term 

F =  K - 1 R ,  

as "adjoint" structural displacements and 

~g ----- a g F ,  

as "adjoint" element displacements. Noting that our shape 
parameter s is given by 

s = L = m £ ,  
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Fig. 1. Plane beam element in pure bending: Cartesian and nat- 
nral displacements 

where m is the number of equal elements, we have from (7) 
and (8) the considerably simplified expression 

Ore 1 ~ _ t  Ok 
- ° g T f  °g" OL m = 

t E I  = 1 

~ l g = l  0 = 2  g = m  t M =  1-" ITI 

I z l  t l  • : 
2 .3 m 1 z 

Fig. 2. Cantilever beam under end moment 

In our application, the discretization error for the compu- 
tation of displacements is zero. We also a t tempt  to remove 
the solution error and to operate with exact nodal displace- 
ments just  to have clear testing conditions. For this reason 
we use analytical results to generate the nodal displacements 
v i (transverse deflection) and ¢i (rotation) at node i. The 
position of this node i is for element length g = 1 is 

z i : i - 1 .  
For the adjoint load case (transverse unit load at the free 

end, EI  = 1, £ = 1, L = m), we have 

VE = ( amz2 - x~)/6,  ¢i = ( 2 m z i -  x2)/2,  
and for the real load case (moment M = 1 /m at free end, 
E I =  1, f =  1, L = m )  

v i = z~/ (2m) ,  ¢i  = z i /m .  
By now computing the sensitivity using analytical deriva- 
tives, we have 

bv E c9 ( 1 M L 2  ~ 
O L = O--'L k 2 - - 'E f  ] = 1, 

which is independent of the number of elements m. 

If  we now use the tradit ional  incremental stiffness as ob- 
tained by direct differentiation in the SA-method, then the 
errors increase rapidly with the element number m and end 
up with 250% error for 100 elements (see Table 1). This error 
occurs in spite of a very small modification (0.0001L) and ex- 
act nodal displacements, which is of course now a well-known 
fact. If we, however, employ the natural  method as proposed 
in (17) for the computation of Ak*, we obtain almost ex- 
act sensitivities (the rounding-off error is still inherent in the 
result). 

Finally, we test the Cartesian approach. In our case we 
have only one strain component (exz) and the material stiff- 
ness is simply given by Young's modulus E. Further it is 
usual to pre-integrate over the cross-sectional area of the 
beam. After this operation the strain is replaced by the cur- 
vature and the material  stiffness by the bending stiffness. 
Introducing the parameter  coordinate ¢ 

2~ 

(=T' 
by (19) we have (Fig. 3) 

+1 

k = / ~ttcoL2£-- de ,  

- 1  
with 

~ =  E I , .  
a n d  

4 d2w 1 [ 6 ( £ ( 3 ¢ - 1 )  - 6 ¢  £ ( 3 ¢ + 1 ) ]  
a -  g2 d¢-----2- - 2i2 

Numerical integration with a two point scheme will employ 
the integration points (Fig. 3) 

(k = 

We now form Ak** as proposed in (24) and again obtain very 
accurate sensitivities, as can be seen in Table 1. 

wz = 1  ~ w2 = 1  
U m Q ..,,,,lm~ m t,1 

(1 = -v /a = 

Fig. 3. Local coordinates and integration points for plane beam 
element 

7 C o n c l u s i o n s  

In the SA approach for the computation of sensitivities, we 
usually employ incremental Cartesian stiffnesses, which are 
obtained by direct differentiation. If the design variable af- 
fects the shape, e.g. the length of a beam, this incremental 
stiffness is defective and leads to errors which increase with 
the number of elements. This defect in the incremental stiff- 
ness can be verified by the natural  approach. The natural 
method also leads to a new formula for the computation of 
an incremental stiffness that  is not defective. The same ap- 
proach can also be extended to the more common Cartesian 
element description. I t  is demonstrated, that  the use of these 



131 

Table 1. Cantilever beam under end moment: sensitivities of tip deflection with res 

Number 
of 

elements value 
1 0.999650 
5 0.993652 

10 0.974908 
15 0.943667 
20 0.899930 
25 0.843697 
30 0.774967 
35 0.693742 
40 0.600020 
45 0.493802 
50 0.375087 
55 0.243877 
60 0.100170 
65 -0.056033 
70 -0.224733 
75 -0.405928 
80 -0.599620 
85 -0.805808 
90 -1.024493 
95 -1.255673 
100 -1.499350 

z~k (traditional) 
error[%] 

-0.03 
-0.63 
-2.51 
-5.63 

-1021 
-15.63 
-22.50 
-30.63 
-40.00 
-50.62 
-62.49 
-75.61 
-89.98 

-105.60 
-122.47 

-140.59 
-159.96 
-180.58 
-202.45 
-225.57 
-249.94 

Semi-analytic sensitvities with 
Ak* (natural) Ak** (Cartesian) 

value 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 
0.999900 

l error[%] 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 
-0.01 

value 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.9998O0 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
0.999800 
O.999800 
0.999800 

error[%] 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-O.O2 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 
-0.02 

new incremental stiffnesses almost completely removes the 
above error in sensitivities. Although specific and detailed 
considerations are given only for the simple case of a plane 
beam, the theory presented is general and should apply also 
to other element types. Further examples willl be presented 
in a forthcoming paper. 
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