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A b s t r a c t  First the fundamentals of neurologically motivated 
computing are briefly discussed. This is followed by presenting two 
of the many possible applications in structural mechanics. Both 
of these are oriented towards structural optimization. In the first 
mode a neural net model of the structural response is created and 
then attached to any conventional optimization algorithm. In the 
second mode a neural net model of an experienced designer is cre- 
ated knowledgeable within a narrow class of structural concepts. 

1 I n t r o d u c t i o n  

There has been considerable recent activity in the develop- 
ment and application of a certain class of trainable network 
paradigms, namely the biologically motivated artificial neu- 
ral nets (ANN). This upsurge of developmental activities is 
expected to contribute to the availability of powerful new 
capabilities in the near future. It appears that  only a few 
structural design applications of neural nets have been pre- 
sented. Examples dealing with simple oscillators and a beam 
design can be found in the book by McCauley (1988) and in 
the paper by Rehak at al. (1989). As will be discussed in sub- 
sequent sections, there are many other potentially productive 
applications. 

Software for artificial neural network simulations are now 
available in a wide range of capabilities and can also be ac- 
companied by accelerator boards for PC-s and workstations. 
Dedicated machines with capabilities based on the concept of 
virtual nets, an idea similar to virtual memory, can accom- 
modate very large net architectures. The number of artificial 
neurons, and the number of their connections that can be 
implemented will be in the millions in the near future. 

The history of computational structures technology 
(CST) is closely linked to the history of utilization of devel- 
opments of increasing capabilities in computer science and 
technology. More recently, this includes the utilization of ar- 
tificial intelligence (AI) capabilities, mostly in the form of 
rule-based expert systems. 

• ArtificiM neurM nets are also a class of AI paradigms, 
and provide new opportunities for applications of computer 
science developments in CST. This brief note proposes a few 
potentially profitable applications and presents results of fea- 
sibility studies associated with automated structural design. 

*Presented at the CISM Course "Shape and Layout Optimization in 
Structural Design", Udlne, Italy, July 1990 

Applications in other areas of structural  mechanics are now 
also being investigated. The fundamental ideas of artificial 
neural nets are presented to aid in the discussions that  fol- 
low. The feasibility studies were conducted using well-known 
"toy" problems. Research is underway to explore the limits 
of applicability. This includes increasing problem complex- 
i ty and dimensionality as indicated by the number of input- 
output variables, and the nature of nonlinearities in their 
functional dependence. 

2 Bas ic  c o n c e p t s  o f  artif ic ial  neura l  n e t s  

Only a brief and incomplete introduction is given here, and 
the papers by Rumelhart et al. (1988) and Pao (1989) are 
suggested as introductory reading. Many other texts are 
available in any good technicM library, and the body of avail- 
able publications is increasing very rapidly• 

Figure l a  shows a simplistic representation of a biological 
neuron with the following components of interest: a cell body 
with the mechanism which controls cell activity, the "axon" 
that  transmits stimulus from one neuron to others, the "den- 
drites" which also receive electrical signals from connected 
neurons or from an external source, and the "synapses" which 
define interconnections and their respective strengths. In a 
human brain the number of neurons approaches a trillion, 
each connected to perhaps to tens of thousands of other neu- 
rons forming an immense network. Figure lb  shows a small 
segment of this network in the cerebral cortex. 

Artificial neural nets were conceived as very simple mod- 
els of certain brain activities. Of interest for us here are 
those aspects of biological neural net activities that  are as- 
sociated with learning, memory, and generalization from ac- 
cumulated experience. Learned information is thought to be 
represented by a pat tern of synaptic connection strengths 
that  modify the incoming stimuli, strengthening or inhibit- 
ing them. When the accumulation of the received stimuli in 
the neuron reaches a certain threshold, it "fires", sending out 
an electrical stimulus to all connected neurons. Learning in 
turn is thought to be associated with the development and 
retention of a pat tern of the connection strengths in vari- 
ous regions of this immense network, somewhat similarly to 
holograms that  also contain complex information in a vast 
arrangement of simple patterns. 

Artificial neural nets simulate the above activities in brain 
tissue through very simple concepts. An artificial neuron re- 
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Fig. 2. Artificial neuron and neural net 

Fig. 1. Biological neuron and neural net 

ceives information labeled x I through the incoming n con- 
nections from other neurons as indicated in Fig. 2a. Such 
neurons and their connections can be assembled in principle 
into any architecture of connectivities as indicated in Fig. 2b. 
The information x I sent out by the connecting neurons, and 
received by the j - t h  neuron of a net, are modified by connec- 
tion strengths Wlk. The j - th  neuron performs a summation 
of the modified information as also indicated in Fig. 2a, and 
processes the value r k of the sum through an activation func- 
tion producing an output z k .  This output is then sent as a 
stimulus to all connecting neurons and determines, in turn, 
the activity of those neurons. Figure 3 shows some activation 
functions, with the sigmoid function being the most popular. 
More complex neuron activation functions can be devised for 
various special purposes. 

The training of neural nets involves the establishment or 

evolution of the connection strengths Wlk everywhere in the 
net. Once trained, the network responds to a new input 
within the domain of its training by "propagating" it through 
the net and producing an output.  This output is an estimate 
within certain error, of the output that  the actual computa- 
tional or physical process would have produced. 

Several neural net paradigms have emerged as a result 
of over four decades of research, each with its own purpose 
and capabilities. The particular class of neural nets that are 
of interest to us here fall in the category of "feed forward" 
nets because the input da ta  given to the network is propa- 
gated forward towards the output nodes. The "delta-error 
backpropagation" algorithm (see Rumelhart  et al. 1988; Pao 
1989) is used usually for its "supervised" learning. It is essen- 
tially a special purpose steepest descent algorithm to adjust 
the Wlk connection strengths, and other additional internal 
parameters that  are sometimes added to increase flexibility, 
to reproduce the output of given input-output  training sets 
within a required error tolerance. In principle other opti- 
mization methods can also be used, and the development of 
efficient learning algorithms is an active area of research. 

Most currently available neural net capabilities are simu- 
lations of the distributed parallel processing concept on serial 
machines, and such simulations were also used in this study. 
Neural nets present premier applications for parallel machines 
or for the developments of special purpose hardware. These 
approaches are all being investigated, and neural nets enjoy 
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vigorous funding and developments worldwide. I t  is this fact 
that served as motivation for the present study, and other 
CST applications should also be vigorously investigated in 
view of expected increases in capabilities. 
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To start  out with an application one requires a set of 
known input and output pairs that  must be generated by 
the "real" process one is planning to simulate. The number 
of training pairs, and how they span the intended domain 
of training, is part  of what is still an art in ANN requiring 
experimentation and experience. The same statement is also 
valid for the architecture of the neural net one intends to 
use. The examples given later will provide some idea of what 
is required for a successful application. For the engineering 
applications presented here, it  is perhaps worthwhile to think 
of neural nets as a peculiar automated hypersurface fitting 
capability. What  one would accept as a representative input- 
output set to produce a useful surface fit, is most likely a good 
start  to determine the training pairs for the neural nets. 

For the present application it is sufficient to discuss the 
simplest forms of net architectures. A single layer net is called 
a "fiat" net and is of little interest here in its basic form. 
It has limited capabilities to represent nonlinearities unless 
these are specifically captured in the input. An example of 
this is the use of reciprocal variables in problems involving 
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structural stiffness, a case to be discussed later. Pao (1989) 
provides a powerful generalization of this concept referred to 
as "functional links". In general, other nets have an input 
and output layer with the number of neurons in each of these 
matching the number of input and output variables, respec- 
tively. As an example, Fig. 4 has two nodes in its input layer, 
three nodes in its single hidden layer, and one node in its out- 
put layer. In later discussions this net will be designated a 
(2, 3, 1) net signifying the number of nodes in its three layers. 
A net can provide an n- to-m mapping, which, for the case of 
Fig. 4, is a 2-to-1 mapping. 

The number n and m of nodes in the input and output 
layer is determined by the number of input and output vari- 
ables in the training set. I t  is however, important  to de- 
termine the necessity of one or more "hidden" layers in the 
network. A single hidden layer with nodes numbering some- 
where between the average and the sum of the input and 
output nodes is suggested in the literature as a good first 
start.  To add more layers for added flexibility is a tempta- 
tion which must be resisted in the simple cases addressed in 
this note. A general suggestion is to try to use as few nodes 
as possible; as in any optimization problem one should avoid 
needless increase in the number of optimization variables. 

Once an architecture has been selected, the training starts 
out with a random set of connection weights Wlk usually gen- 

erated automatically by the particular capability used. These 
connection weights are then adjusted by the error backpropa- 
gation learning algorithm to minimize the difference between 
the training output values and the values produced by "prop- 
agating" the associated input through the net. The training 
is sensitive to the choices of the various net learning parame- 
ters. The principal parameters are the "learning rate" which 
essentially governs the "step size", a concept familiar to the 
optimization community, and the "momentum coefficient" 
which forces the search to continue in the same direction 
so as to aid numerical stability, and furthermore, to go over 
local minima encountered in the search. 

Table 1. Summary of training results with no hidden layer 

~umber 
of 

training 
sets 
5O 

Network description 

(5,2) - five areas as inputs, 
two vertical displacements 

as outputs 
50 (10,2) - five areas and five 

reciprocal areas as inputs - 
two vertical displacements 

as outputs 
50 (15,2) - five areas and ten 

area products of type AIA i 
(i # j) as inputs, two vertical 

displacements as 
outputs 

50 (20,2) - five areas, five 
reciprocal areas and ten 

values of type sin(AdAm~x ) 
used as input - two vertical 

displacements as outputs 

Cycles Error 
of description 

training 

1500  e----0.087 
error not 

decreasing 
50000 e---0.03927 

error decreasing 
slowly 

50000 e=0.05235 
error decreasing 

slowly 

50000 e--0.0398 
error decreasin~ 

slowly 

(xx, yy) denotes xx input nodes and yy output nodes 

During supervised learning these parameters are adjusted 
periodically based on the changing convergence trend dur- 
ing iterations. In the "ten-bar truss opt imum design expert" 
example discussed later, a publicly ~vailable NASA devel- 
oped capability NETS 2.0 was used. Its user's manual (Baffes 
1989) provides a good introduction for someone who would 
like to experiment with neural nets. NETS 2.0 has a number 
of other learning parameters and provides good default val- 
ues for them, including some adaptive features during train- 
ing iterations. A few possible applications within CST are 
suggested next, followed by a representative set of the results 
obtained in preliminary feasibility studies. 

3 N e u r a l  n e t s  in c o m p u t a t i o n a l  s t r u c t u r e s  t echno l -  
ogy  

The history of the exploitation of computer technology by 
CST can be viewed as a t tempted simulations of the brain 
processes of an expert designer at higher and higher levels 
of abstractionl Procedural codes, expert systems, and neu- 
ral nets represent this higher and higher levels of abstraction 
from number "crunching", "expert judgements" and finally 
a "feel" for a problem area, respectively. These three levels 
represent increasing intellectual levels and ability to provide 
quick expert estimates for solutions with less participation re- 
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quired of the human user. The final aspiration of researchers 
in CST is the development of automated expert design ca- 
pability; neural nets perhaps provide an intriguing approach 
towards that goal. 

Table 2. Optimal design for five-bar truss using trained neural 
net for analysis 

Network Design variables Objective 
description X1 I X2 X3 X4 X5 functions 
(5-7-4) 
200 training sets, initial 1.0 1.0 1.0 1.0 1.0 58.28 
all four output 
displacements final 2.1312.032 2.679 2.766 1.0 128.626 
mapped 

(5-7-4) 
500 trainings sets, initial 1.0 1.0 1.0 1.0 1.0 58.28 
all four output 
displacements final 1.952!2.013 2.763 2.760 1.0 127.759 
mapped 

(5-7-2) 
100 trainings sets, initial 1.0 1.0 1.0 1.0 1.0 58.28 
two vertical 
displacements final 1.535 1.778 2.29 2.265 1.0 107.56 
mapped 

(5-7-2) 
100 trainings sets, initial 1.O 1.0 1.0 1.0 1.0 58.28 
two vertical 
displacements final 1.505 1.584 2.138 2.211 1.0 102.399 
scaled as con- 
straints and 
mapped 

exact 
solu- 1.5 1.5 2.121 2.121 1.0 100.0 
tion 

(xx-yy-zz) denotes a three layer architecture with xx input layer 
nodes, yy hidden layer nodes, and zz output layer nodes 

On a philosophical level one can view the application of 
neural nets as an attempt to experiment with simple models 
of the very complex brain activity of accumulating, general- 
izing, and retaining expert knowledge. As described earlier, 
artificial neural nets perform these functions by developing 
specific "patterns" of their connection weights. These pat- 
terns, and not any individual value serves as the storage of the 
knowledge. It would be naive to make much of this supposed 
similarity, but as will be shown, the feasibility of the concept 
is easy to illustrate through a few examples. Much has been 
learned about the electrochemical activities of brain cells and 
of the vast neural nets they form. What all that means is 
poorly understood if at all, and the functioning of the brain 
remains largely unknown. A somewhat negative view of the 
class of neural nets employed in the present study would be 
that they are essentially glorified curve fitting capabilities. It 
still remains an intriguing proposition that, as opposed to es- 
tablished mathemetical curve fitting procedures, an entirely 
different concept of a pattern of connection weights produces 
the same results. Further, this process is somewhat similar 
to accumulation of human expert feel for a problem solution. 

The major advantage of a trained neural net over the 
original (computational) process is that results can be pro- 

Table 3. Optimal design for ten-bar truss using trained neural 
net  for analysis 

des. 
war. 

(10- 6-- 6-- 2)* 
100 training sets 
used in a range 
of 4-25% about 

optimum 

X1 30.774 
X2 0.112 
X3 17.40 
X4 11.425 
X5 0.108 
X6 0.487 
X¢ 5.593 
Xs 22.953 
X9 20.886 

X10 0.100 
obj: 4692.49 
func.I 

network description 

( 1 0 - 6 - 6 - 2 ) *  ( 1 0 - 6 - 6 - 2 )  solution 
400 training sets from 
used in a range exact 
of -4-25% about analysis 

optimum 

30.967 30.508 30.688 
0.100 0.100 0.100 
19.136 26.277 23.952 
14.279 11.415 15.461 
0.100 0.103 0.100 
0.434 0.413 0.552 
5.593 5.593 8.421 
20.031 21.434 20.606 
19.966 22.623 20.554 
0.100 0.100 0.100 

4666.71 5010.22 5063.81 

* Lower bound of design 
infeasible 

100 training sets 
used in a range 

of 
0.01-55.0 in 2 
output scaled 

to reduce 
range of variation 

variables used as initial design - was 

duced in orders of magnitude less computational effort than 
the original process. This effort, once the net is trained, is 
also insensitive to the effort it takes to generate an output by 
the original process. Consequently benefits can be higher for 
those problem areas that are computationally very intensive, 
such as optimization, especially in multidisciplinary settings. 
There is, of course, a catch, namely that in those cases the 
generation of sufficient training data is also more expensive. 
Practical applications can be envisioned where a problem is 
frequently solved within limited variations of the input pa- 
rameters. Organizations with specific products for slightly 
changing applications could develop or evolve trained neural 
nets based on sets of past solutions. New solutions could then 
be obtained with negligible efforts. Machine components that 
are of a certain basic configuration slightly changing from ap- 
plication to application could be good practical examples. A 
neural net could be trained to capture past design variations 
and provide the design for new applications. 

In CST, a number of applications can be envisioned that 
could prove profitable in the long run. One obvious applica- 
tion would be to train neural nets to produce the element 
stiffness coefficients of frequently used sophisticated finite 
element models, within some range of their input parame- 
ters. Frequently used codes that produce (nonlinear) com- 
posite material properties could be simulated by trained neu- 
ral nets. Constitutive relations could be captured by neural 
nets trained either with test data or with input-output sets 
produced by running available codes for a set of load con- 
ditions of interest. Life prediction or fracture mechanics are 
other possible areas to capture trends by neural nets. The 
Wlk weights, as they develop, may contain information con- 
cerning hidden functional relationships between the variables 
for some of these applications providing "feature extraction" 
capabilities. A version of neural nets designed for "unsu- 
pervised learning" has such feature extraction capabilities. 
Multidisciplinary design optimization provides particularly 
intriguing possibilities. For example, nets could be trained 
for each of the participating disciplines, and hard connected 
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Fig. 7. Neural nets for five-bar truss problem 

to represent appropriate coupling or to use an additional net 
that develops the important coupling functionalities through 
feature extraction. Initial efforts are now underway in all 

these areas of research. 
The feasibility of two particular applications at two dis- 

tinct levels of abstraction were studied in some detail and the 
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results are presented next.  The  first one involved training a 
neural net  to replace analyses of given structural  configura- 
tions during opt imizat ion iterations. The  second exercise was 
to train a neural  net to provide estimates of the actual op- 
t i m u m  structures directly, circumventing the usual analysis- 
opt imizat ion iterations. 

4 N e u r a l  n e t  a s s i s t e d  o p t i m i z a t i o n  

This first feasibility s tudy to simulate analysis with the quick 
response of neural nets was mot ivated  by the approximat ion 
concepts in s t ructural  optimization.  The  idea here was to 
train a neural net to provide computat ional ly  inexpensive es- 
t imates  of analysis output  needed for sensit ivity evaluations, 
which in turn is needed by most  opt imizat ion codes. The  
numerical  exper imentat ion also served to gain initial experi- 
ence with neural nets. For a detailed description of the effort, 
see the paper  by Hajela  and Berke (1990). The neural net 
capability used in these studies was a research level code. 

The  familiar f i v e - b a r a n d  ten-bar truss "toy" problems, 
shown in Figs. 5 and 6, respectively, were used for this init ial  
feasibility study. First ,  various sets of input-output  t raining 
pairs and network configurations were examined to find the 
combination that  reduced the training effort and produced 
trained nets which yielded good results as measured by their 
ability to generalize. 

Once an acceptable trained neural net  was obtained, i t  
was at tached to an optimizer,  and all analysis information 
Was obtained f rom it  instead of invoking a conventional anal- 
ysis capability. Mixing neural  net  predictions with occasional 
conventional analyses was not explored, but  it is an approach 
that  could possibly exploit  the advantages of both. 

Table  4. Ten-bar truss optimum designs with H as design condi- 
tion 

I H A1 A2 A3 A4 A 5 A 6  A7 A8 A9 A10 Wt 
300 9.53 .1 9.67 4.73i .1 .1 6.34 6.15 6.15 .1 L749.6 
305 9.37 .1 9.51 4.65 .1 .1 6.28 6.09 6.09! .1 1733.2 
310 9.22 .1 9.36 4.57 .1 .1 6.22 6.03 6.03 .1 1717.4 
315 9.07 .1 9.21 4.50 .1 .1 6.16 5.98 5.98 .1 1702.3 
320 8.93 .1 9.07 4.43 .1 .1 6.115.9215.92 .1 1687.9 
325 8.79 .1 8.92 4.36 .1 i.1 6.05i5.87 5.87 .1 1673.5 
3308.66 .1 8.79 4.29 .1 .1 6.00 5.835.83 .1 1660.9 
335 8.53 .1 8.66 4.23 .1 .1 5.96 5.78 5.78 .1 1648.3 
340 8.40 .1 8.54 4.16 .1 .1 5.92 5.73 5.73 .1 1635.9 
3458.28 .1 8.41 4.10 .1 .1 5.87 5.68 5.68 .1 1624.5 
350 8.16 .1 8.29 4.05 .1 .1 5.82 5.65 5.65 .1 1613.5 
355 8.05 .1 8.17 4.00 .1 .1 5.78 ;.60 5.60 .1 1603.2 

I 

360 7.93 .1 8.06 3.931 .1 .1 5.74 5.68 5.68 .1 1593.1 
365 7.83 .1 7.95 3.88 .1 .1 5.70 ;.53 5.53 .1 1583.5 
370 7.72 .1 7.84 3.83 .1 .1 5.665.50 5.50 .1 1574.3 
375 7.61 .1 7.73 3.77 .1 .1 5.63 5.45 5.45 .1 1565.2 
380 7.51 .1 7.63 3.73 .1 .1 5.60 5.42 5.42 .1 1557.1 
385 7.42 .1 7.53 3.68 .1 .1 5.56 5.39 5.39 .1 1549.1 
390 7.32 .1 7.44 3.63 .1 .1 5.53 5.36 5.36 .1 1541.4 
395 7.23 .1 7.34 3.58 .1 .1 5.49 5.32 5.32 .1 1534.1 
400!7.14! .1 7.25 3.54 .1 .1 5.46 5.30 5.30 .1 1527.1 

To create the t raining sets, op t imum designs were ob- 
tained first for two reasons. Firstly, op t imum designs were re- 
quired for comparisons wi th  designs obtained using neural net 
simulation of the analyses. Secondly, analyses were to be per- 
formed with random sets of the values of the design variable, 

in this case the bar areas, within certain preset variations of 
their op t imum values. The  opt imizat ion involved constraints 
on the nodal  displacements.  Consequently, the input-output  
training pairs consisted of the bar  areas as inputs and the 
nodal  displacements as ou tput  variables, respectively. How 
many pairs to use, and within what  range of variations, is it- 
self a research question. Because of the nature  of the sigmoid 
function at least the ou tput  variables are to be scaled by the 
user or automatical ly  by the neural  net  code, to within the 
most  active range of the sigmoid function. Scaling minimum 
and max imum values to 0.1 and 0.9 is usually suggested. 

At  this point  one has to prescribe the number of i terations 
for which the network must  be trained to obtain desired lev- 
els of accuracy. A number  f rom a few hundred to tens of 
thousands is routinely accepted in neural  net applications, 
even for small  nets as in this study. For this level of experi- 
mentat ion one often init iates a run on a PC  or a workstation 
and lets it run to a large number  overnight in somewhat of 
an overkill. 

Some of the net configurations examined for the five-bar 
truss exercise are shown in Fig. 7. A 5-to-4 mapping with 
a (5, 4) net  and no hidden layer is shown in Fig. 7a. The 
four output  variables were the four nodal  displacements indi- 
cated in Fig. 5. Since the active constraints were essentially 
related to displacements d 2 and d4, the rest of the nets con- 
sidered only these two displacements as output .  Figure 7b 
consequently is a (5, 2) net  with reduced training effort. Fig- 
ure 7c is a (10, 2) net  with the reciprocals of the bar areas 
also included to help the net  capture the inverse relation be- 
tween bar areas and nodal  displacements. Table 1 contains 
data  on the results of these init ial  t raining efforts with other 
functional relationships also included to try to capture non- 
linearities. These a t t empts  wi th  flat nets were not total ly 
satisfactory in terms of obtained accuracy or number of re- 
quired training cycles. 

Table  5. Traimng accuracy with (1, 6, 3) net 

Training pairs 

Input Output 
H A1 A2 Wt 

300 9.53 .1 1749.6 
310 9.22 .1 1717.4 
320 8.93 .1 1687.9 
330 8.66 .1 1660.9 
340 8.40 .1 1635.9 
350 8.16 .1 i613.5 
360 7.93 .1 1593.1 
370 7.72 .1 1574.3 
380 7.51 .1 1557.1 
390 7.32 .1 1541.4 
400 7.16 .1 1527.1 

Training accuracy 
(RMS= 0.9%) 

A1 % A2 W t  % 
9.543 .14 .101 1744.4 .30 
9.240 .23 .101 1721.0 .21 
8.955 .28 .100 1693.4 .33 
8.668 .11 .100 1665.6 .28 
8.401 ,01 .100 1640.3 .27 
8.159 .012 .100 1618.1 .29 
7.930 .00 .100 1597.2 .26 
7.711 .12 .100 1577.2 .19 
7.507 .07 .100 1558.2 .07 
7.326 .08 .100 1542.1 .05 
7.187 .38 .100 1529.3 .14 

Including a hidden layer, as shown in Fig. 7d, produced 
acceptable results. Table 2 presents the results of optimiza- 
t ion using various net  and t raining set combinations. Using 
the (5, 7, 2) net  and scaled variables, an op t imum design was 
obtained within 2.4% of the exact op t imum design proving 
the feasibility of the basic concept of neural  net assisted op- 
t imization.  Table 3 presents the results of similar experimen- 
ta t ion for the ten-bar truss support ing the same conclusion. 
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Haje la  and Berke (1990) also present similar results for a 
higher dimensionali ty wing box problem. 

5 N e u r a l  n e t  as  e x p e r t s  f o r  d i r e c t  o p t i m u m  d e s i g n  
e s t i m a t e s  

The  next  set of experiments  were conducted to explore the 
idea of t ra ining a neural  net  to es t imate  op t imum designs 
directly for given design conditions and bypass all the analy- 
ses and opt imizat ion  i terat ions of the conventional approach. 
It  is conceivable in practice that  successful similar designs 
could be collected Within some domain  of design conditions, 
input -output  pairs defined, and then a neural  net  t rained to 
serve as "intelligent corporate  memory"  that  can provide a 
new design for different design requirements.  

Table  6. Test set of neural net estimates 

i Input Optimum N-N estimates 
I t  A1 A2 W t  A1 ~ A2 W t  

305 9.37 .1 1733.2 9.364 .11 .101 1733.5 .00 
315 9.07 .1 1702.3 9.097 .30 .100 1707.1 .28 
325 8.79 .1 1673.5 8.801 .12 .100 1679.0 .33 
335 8.53 .1 1648.3 8.529 .01 .100 1652.8 .27 
345 8.28 .1 1624.5 8.283 .04 .100 1629.5 .31 
355 8.05 .1 1603.2 8.043 .09 .100 1607.5 .27 
365 7.83 .1 1583.5 7.818 .15 .100 1587.0 .22 
375 7.61 .1 1565.2 7.604 .08 .100 1567.4 .20 
385 7.42 .1 1549.1 7.361 .79 .100 1550.2 .07 
395 7.23 .1 1534.1 7.252 .30 .100 1535.4 .08 

Now let us suppose tha t  we work in a company that  mar-  
kets equipment  tha t  is mounted  in all cases on ten-bar trusses 
as shown in Fig. 6. These trusses have to carry the equip- 
ment  weight (2 x 100 K) at the two lower free nodes while 
these suppor t  points  cannot deflect more than  2 in. The  di- 
mensions L1, L2 and H of the trusses can vary between 300 
and 400 inches, depending on the part icular  installation. The  
engineer who was designing the trusses for the past  30 years 
and could simply tell  the op t imum bar  areas for any combi- 
nat ion of those dimensions has jus t  retired. Can we create 
an accurate s imulat ion of this departed expert?  Yes we can, 
and rather simply! 

To exper iment  wi th  various t raining sets, op t imum de- 
signs were generated by conventional  methods  for varying 
first only H in 5 inch increments.  The  results are given in 
Table 4. There  are three kinds of ou tput  numbers in the set. 
These are the bar areas tha t  change, areas tha t  are at the pre- 
selected m i n i m u m  value of .1 for all designs, and the weight, 
which is of a different order of magni tude.  A representat ive 
A1, A2, and the op t imum weight W T  were considered in the 
first numerical  experiments .  The  neural  net  code NETS 2.0 
(Baffes 1989) was used for all of the direct op t imum ten-bar 
truss design exercises. 

A number  of small  net  configurations were tr ied for these 
14o-3 mappings.  Table 5 shows the results of t raining with 
a (1, 6, 3) net,  a probable overkill wi th  too many nodes in the 
hidden layer. Table 6 gives the results of design est imates 
of the t rained net  for the remaining check cases of Table 4 
that  were not  included in the t raining set. The  training was 
performed to 1% RMS accuracy within  200 hundred itera- 
tions. As can be seen, bo th  the t raining accuracy and the 
estimates for the new eases is around a third of one percent  

Table  7. Ten-bar truss optimum designs for training with L1, L2, 
and H as design conditions 

Input 
L1 L2 H A1 A2 
310 350 380 6.89 .1 
345 326 360 7.40 .1 
371 329 310 8.95 .1 
360 300 340 7.69 .1 
315 340 340 7.64 .1 
380 355 390 7.47 .1 
322 319 400 6.35 .1 
400 300 400 9.25 .1 
300 400 300 9.27 .1 
311 350 315 8.33 .1 

Output 
A3 A4 A5A6 A7 A8 A9 A10 W t  
7.00 3.62 .1 .1 5.24 5.08 5.35 .1 1356.7 
7.50 3.56 .1 .1 5.62 5.45 5.31 .1 1456.4 
9.10 4.17 .1 .1 6.33 6.14 5.74 .1 1684.5 
7.83 3.47 .1 .1 5.91 5.73 5.25 .1 1492.6 
7.76 3.93 .1 .1 5.53 5.36 5.56 .1 1407.6 
7.60 3.58 .1 .1 i5.67 5.50 5.32 .1 1605.7 

I 
6.46 3.13 .1 .1 ~5.21 5.05 5.03 .1 1314.2 
9.41 3.93 .1 .1 6.77 6.56 5.56 .1 1780.9 
9.39 5.25 .1 .1 5.73 5.57 6.57 .1 1593.8 
8.45 4.36 .1 .1 15.70 5.53 5.88 .1 1464.6 

for the individual  values and can be considered quite satis- 
factory. It  is also of some interest  to note  tha t  the net  had to 
evolve its Wlk connection weights and other internal  param- 
eters provided by N E T S  2.0 in such a manner  that  it could 
also reproduce a constant  .1 value for any input  while also 
producing accurate values of variables or different orders of 
magni tude  for the same inputs.  

Table  8. Ten-bar truss optimum designs for checking estimates 
of the trained neural net 

Input Optimum solutions 
L1 L2 H A1 A2 A3 A4 A5A6 A7 A8 A9 A10 Wt 
342 351 !383 7.18 .1 7.29 3.60 .1 .1 5.44 5.27 5.34 .1 1466 
360 3603607.93 .1 8.06 3.93 .1 .1 5.74 5.56 5.56 .1 1593 
320 350 360 7.38 .1 7.50 3.82 .1 .1 5.43 5.26 5.49 .1 i1417 

I 

340 370 340 8.29 .1 8.41 4.28 .1 .1 5.74 5.56 5.82 .1 !1578 
310 350 380 6.89 .1 6.99 3.62 .1 .1 5.24 5.08 5.35 .1 1356 
345 326 360 7.39 .1 7.51 3.56 .1 .1 5.62 5.45 5.30 .1 i1456 
371 329 310 8.95 .1 9.16 4.17 .1 .1 6.33 6.14 5.74 .1 !1684 

After  the above l imited exercise, the 3 - t o - l l  mappings 
were finally performed with  a (3, 14, 11) net  between L1, L2, 
H and the ten bar areas A 1 , . . . ,  A10 and the op t imum weight 
W t ,  creating the "ten bar  op t imum design expert" to replace 
our retired expert  designer. A rather  l imited training set was 
created as the op t imum designs for only ten random sets of 
L1, L2 and H.  It  is interest ing to note that  only ten training 
pairs were used, and tha t  they proved adequate.  Of  course, 
in this problem only three variables are varied to cover a do- 
main.  The  ten op t imum designs providing the training pairs 
are given in Table 7. O p t i m u m  designs were then obtained 
for another  seven random sets of L1, L2 and H,  as checks 
on the est imates to be obtained f rom the trained network. 
Table 8 shows these seven op t imum designs. 

During exper imenta t ion  with various options during 
training, i t  was found that  it is beneficial to code the 0.1 
min imum sizes as 0.5. The  active midpoint  of the sigmoid ac- 
t ivat ion funct ion is the explanat ion.  This  value will be shown 
to represent net  accuracy in be t te r  detail.  NETS 2.0 worked 
very well, and 1% RMS accuracy was obtained with 200 it- 
erations in around 30 secs on a SUN 386i, and using only the 
default va lues  for the learning parameters .  Exercises were 
also condt~cted to overtrain the net  by le t t ing the training 
run for 5000 i terat ions to an RMS accuracy of .0062% was 
obtained.  Over t ra ining is to be avoided because the neural 
net  at tha t  point  becomes a memory  with lessened ability 
to generalize. The  overtrained net  actual ly reproduced the 
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t r a in ing  resul ts  exactly, bu t  i t  did a l i t t le  worse, if  anyth ing ,  
against  the  seven check condi t ions  t h a n  the  ne t  t r a ined  to 
only 1% RMS accuracy. 

Table  9 shows compar isons  and  the  percen tage  error of 
ne t  es t imates  for the  seven check cases of Table  8 for the  net  
t r a ined  to 1% accuracy. As can  be seen, the  resul ts  are quite 
sa t isfactory and  cer ta in ly  would be good enough in format ion  
to produce  the  t en -ba r  trusses.  The  ne t  p roduced  its esti- 
ma tes  by  comput ing  a few sums of p roduc t s  in  pract ica l ly  no  
computer  t ime.  The  m e n t a l  act ivi t ies  our  re t i red  exper t  de- 
signer employed to come up wi th  his o p t i m u m  designs have 
been  replaced by  a t r a ined  (3, 14,11) neura l  ne t  of s imilar  
capabi l i ty  for th i s  l imi ted  task.  

Table  9. Trained neural net estimates of ten-bar truss optimum 

designs 

A1 7.138 8.000 7 . 3 6 5  8.398 6.908 7.310 8.916 
% 0.580 0.780 0.200 1.300 0.260 1.080 0.380 

A2 0.503 0.505 0.502 0.507 0.502 0.501 0.504 
A3 7.245 8.160 7.485 8.558 7.013 7.448 9.089 

0.620 1.240 0.200 1.760 0.330 0.820 0.770 
A4 i 3.554 3.957 3.777 4.354 3.551 3.533 4.177 
% 1.230 0.690 1.130 1.730 1.900 0.760 0.170 

A5 : 0.499 0.499 0.500 0.499 0.500 0.500 0.500 
A6 0.501 0.501 0.500 0.501 0.500 0.500 0.500 
A7 5.456 5.783 5.461 5 . 7 8 1  5.309 5.586 6.359 

0.290 0.750 0.570 0.710 1.320 0.610 0.460 
i A8 5.293 5.594 5.301 5.598 5.164 5.416 6.157 

% 0.470 0.610 00.780 0.680 1.650 0.620 0.280 
A9 5.326 5.574 5.477 5.863 5.336 5.311 5.740 
% 0.260 0.250 0.240 0.740 0.260 0.210 0.000 

A10 0.499 0.500 0.499 0.499 0.497 0.503 0.500 
w t  1466.000 1598.00(3 1417.000 1585.000 1362.000 1451.000 1693.000 

0.000 0.310 o.ooo 0.440 0.440 0.340 0.530 

6 C l o s i n g  r e m a r k s  

It  has  been  shown t h a t  artificial  neura l  ne ts  have in t r iguing 
appl ica t ions  in  c o m p u t a t i o n a l  s t ruc tu res  technology. W h a t  

has  been  presen ted  are some of the  resul t s  of wha t  mos t  likely 
are the  first sys temat ic  explora t ions  of some of the  possibil- 
ities. There  are now efforts underway  to explore mult idisci-  
p l inary  design appl icat ions ,  to  "package" composi te  mate r ia l  
p rope r ty  genera t ion  codes as quick response  neura l  net  sim- 
ula t ions ,  and  to develop s t r u c t u r e / c o m p o n e n t  life predic t ion 
(see Troude t  an d  Merri l l  1990) capabil i t ies.  Appl ica t ions  to 
coupled mul t id isc ip l inary  design op t imiza t ion  problems  are 
par t i cu la r ly  in t r iguing  an d  inves t iga t ions  in th is  area have 
been  in i t ia ted .  
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