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On a Penrose-Fife Model with Zero Interfacial Energy 
Leading to a Phase-Field System of Relaxed Stefan Type (*). 

PIERLUIGI COLLI - JURGEN SPREKELS 

Abstract .  - In this paper we study an initial-boundary value Stefan-type problem with phase re- 
laxation where the heat flux is proportional to the gradient of the inverse absolute tempera- 
ture. This problem arise naturally as limiting case of the Penrose-Fife model for diffusive 
phase transitions with non-conserved order parameter i f  the coefficient of the interracial en- 
ergy is taken as zero. It is shown that the relaxed Stefan problem admits a weak solution 
which is obtained as limit of solutions to the Penrose-Fife phase-field equations. For a spe- 
cial boundary condition involving the heat exchange with the surrounding medium, also 
uniqueness of the solution is proved. 

1. - I n t r o d u c t i o n .  

In this paper, we study the initial-boundary value problem 

(1.1) c o O t - ) ~ ' ( Z ) z t + k d ( 1 ) = g  i n Q ,  

~'(z) 
(1.2) t~Zt + fl(Z) 3 s '(z) + ~ in Q,  

80 
(1.3) k ~ n  + ~(0 - 0r) = 0 in Z ,  

(1.4) 0(., 0) = 0o, Z(' ,  0) = Zo in t~. 

Here, t~ r R 3 denotes a bounded domain with smooth boundary F; T > 0 is some f inal  

time, and Q:=t~ x (0, T), 2 : = I ' x  (0, T). In addition, Co, k, ~, ~ denote positive 
physical constants. 

(*) Entrata in Redazione il 4 maggio 1994. 
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Alberto 10, 10123 Torino, Italy; J. SPREKELS: Weierstraf3-Institut filr angewandte Analysis und 
Stochastik (WIAS), Mohrenstra~e 39, D-10117 Berlin, Germany. 
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Equations (1.1)-(1.2) may be regarded as the system of phase-field equations gov- 
erning the kinetics of a phase transition with non-conserved order parameter  Z that 
occurs in the three-dimensional container t~. In this connection, the variable 0 repre- 
sents the absolute (Kelvin) temperature, while g and Or stand for the density of dis- 
tributed heat sources and the outside temperature, respectively. Typically, Z repre- 
sent a volume density of one of the phases. In an ice-water system, for instance, Z 
may be identified with the liquid fraction. 

Concerning the nonlinearities s, ~, 3 occuring in (1.1)-(1.2), we make the following 
assumptions: s and ~ are smooth, and 3 = aI, i.e. 3 denotes the maximal monotone 
graph representing the subdifferential of the indicator function I of the interval [0,1] 
(cf. formula (2.1)). The variational inequality (1.2) then entails that the variable Z is 
forced to attain only values in the physically meaningful range [0, 1]. We should re- 
mark at this place that the whole analysis of this paper remains true (with obvious 
modifications) for much more general maximal monotone graphs 3. 

The phase-field equations (1.1)-(1.2) are closely connected to two models for phase 
transitions that have been the subject of intense mathematical research in recent 
years, namely the Penrose-Fife model and the Stefal model. Indeed, if the local free 
energy density F = F(X, 0) is assumed in the form 

(1.5) F(X, O) = - coo ln(0) + O(I(Z) - s(Z)) - 2(Z), 

then (1.1)-(1.2) coincide with the phase-field equations resulting from the Penrose- 
Fife approach (cf. [12]) if no interracial energies are present. On the other hand, if we 
make the particular choice (cf. [4]) 

L 
(1.6) ~(Z) = - LZ, s(z) = -2- Z, 

vc 

where L and Oc represent latent heat and a critical temperature (of melting, say), 
then (1.1)-(1.2) becomes 

(1.7) (1) 
coOt + L z t  + kA --~ = g  in Q, 

1 1)  i n Q .  
(1.8) ~zt + 3(z) ~ L  Oc 0 

The latter system may be considered as a Stefan-type problem with phase relaxation, 
where the heat flux q is given by 

instead of by the usual Fourier law. This becomes more evident in the case ~ = 0, be- 
cause then (1.8) can be equivalently written as (if 0 > 0, which ought to be true since 
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represents the absolute temperature) 

(1.10) Z e H(O - Oc) , 

with the Heavis ide graph H. Substitution of (1.10) in (1.7) indeed leads to the en- 

thalpy formula t ion  of the Stefan problem, but with the heat flux given by 
(1.9). 

From the mathematical point of view, the phase-field equations (I.i)-(1.2) are 
considerably more difficult to handle than both the Stefan problem with phase relax- 
ation and usual Fourier-type heat flux and the (usual) Penrose-Fife system. In partic- 
ular, the appearance of the inverse temperature 1/0 in both (1.1) and (1.2) is a possi- 
ble source of singularities which is not present in the standard Stefan problem; on the 
other hand, in contrast to the Penrose-Fife system with non-zero interfacial energy, 
where the second equation has the form 

;~'(Z) 
(1.11) t~Zt + ~(Z) - eAZ 9 s'(z) + 

instead of (1.2), the diffusive term - sA Z is missing, which entails less spatial regular- 
ity for the order parameter field. 

Our line of argumentation to overcome the above-mentioned difficulties will be 
the following. Assuming the function ~ concave, we regard the system (1.1)-(1.4) as 
limiting case of the Penrose-Fife model with non-zero interracial energy (i.e. for 

> 0). For the Penrose-Fife system, a general existence result (cf. LAUREN~OT [8, 9]) 
is know, yielding solution pairs (0r, X~) for r > 0. We shall derive a priori bounds, in- 
dependent of r for these solutions, and then use compactness arguments and a pas- 
sage-to-the-limit procedure for s ~ 0 to establish the desired existence result for weak 
solutions to (1.1)-(1.4). 

The remainder of this paper is organized as follows. In Section 2, we define our 
notion of a weak solution to (1.1)-(1.4), specify the general assumptions for the data of 
the system and introduce the approximating Penrose-Fife system. Section 3 brings 
the derivation of global a priori estimates for the approximating solutions, and in SeS- 
tion 4 the passage to the limit is performed. Finally, in Section 5, we argue on other 
boundary conditions than (1.3), and we study a special case, namely 

(1.12) a0 k ~  +~0(0-0r)=0 inS. 

If one substitutes (1.3) with (1.12), then not only existence but also uniqueness of the 
weak solution to the resulting problem can be established. By this uniqueness result, 
we can conclude that the system (1.1)-(1.2), (1.12), (1.4) is indeed the natural asymp- 
totic limit of the analogous Penrose-Fife system (which has been investigated in [7]) 
when the interfacial energy tends to zero. 

We should remark at this place that a corresponding analysis is possible for the 
system (1.7), (1.10), i.e. for the unrelaxed Stefan problem with heat flux by (1.9). 
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Since the employed techniques and, in particular, the obtained regularity results, are 
considerably different, this will be the subject of a forthcoming paper. 

2. - M a i n  r e s u l t .  

In order to state precise assumptions on the data and to introduce a variational 
formulation of the problem (1.1)-(1.4), which henceforth will be called (P) for simplic- 
ity, we first fix some notations. Let (., �9 ) represent either the scalar product in L 2 (t)) 
or the duality pairing between Y' (the dual space of Y:= Hl(t~)) and V, and let I1" II 
stand for the norms in both L 2 (tg) and (L 2 (t))) ~ . The trace of a function v e H 1 (~) on 
the boundary/" is denoted by vlr ~ H1/2(F) or, if no confusion may arise, just by v. 
Furthermore, the notations for Sobolev spaces are the same as in [10], for in- 
stance. 

Recalling that co, k, ~, ~ are positive constants and that fl is the maximal monotone 
graph from R to R defined by 

( - c r  i f r = O  

Z(r)= {0} i f O < r < l  
[0, + ~ )  f f r = l  

(2.1) 

with domain [0,1], the problem (P) is analyzed under the additional assumptions 

Z, s u C2([0, 1]), 

2 is a concave function, 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

g e L ~ (Q), 

0 p e L ~ ( Z ) ,  0 r > 0  a.e. i n 2 ,  l e L |  
Or 

at 0r e L | (Z), 

0 0 e L  ~(~) ,  0 o > 0  a.e. i n t ) ,  l e L  ~(t~), 
0o 

(2.8) 00 e H 1 (t~), 

(2.9) Zo e L ~ (~2), 0 ~< Zo < 1 a.e. in t~. 

REMARK 2.1. - Observe that, owing to (2.5) and (2.7), 

(2.10) O r i>c a.e. in2],  0o/>C a.e. in t) ,  

for some constant c > 0. Moreover, it is a standard matter to verify that (2.7) and 
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(2.16) 

(2.17) 

satisfying 

(2.8) imply that  

(2.11) 0~ �9 H 1 (t~) Vr �9 F~, 

as well as 

(2.12) 0~o I; �9 H1/2 (F) • L ~ (F) Vr �9 R .  

Let us specify our notion of a weak solution to problem (P). 

DEFINITION 2.2. - A couple of functions (0, X) is called a weak solution to (P) if 

(2.13) Oe W 1' ~(0,  T; V') ;3L~(O,  T; L2( t ) ) ) ,  

(2.14) X e W ~' ~ (0, T; L2(t~)),  

(2.15) 0 > 0 ,  0 < 9 / ~ < 1  a.e. in Q,  

and if there exist functions 

u e H ~ ( O ,  T; L2 ( t~ ) ) (3L~(O ,  T; H ~ ( t ~ ) ) N L ~ ( Q ) ,  

~ . � 9  ~ (0, T; L 2 ( ~ ) ) ,  

(2.18) U =  1 ~�9 a.e. in Q,  
0 '  

such that the following equations and conditions hold 

(2.19) (at (Co 0 - 2(Z))(' ,  t), v) = k ~ Vu(.,  t)" Vv + ~ [(O~u 2 - u) ( . ,  t) v + (g( . ,  t), v) 
Q F 

V v e H I ( t ~ ) ,  for a.e. t � 9  T) ,  

(2.20) 

(2.21) 

REMARK 

t~Xt + ~ = s'(y.) + 2'(X) u a.e. in Q,  

0(-, O) = 0o, Z(' ,  0) = Z o .  

2.3. - Due to (2.14)-(2.15) and (2.2), it turns out that )~(Z)�9 
�9 W 1' ~ (0, T; L2(t))) and ate(Z) = 2'(Z)Xt a.e. in Q. From (2.16) one easily infers the 
following regularity property for the trace of u, 

(2.22) ulr  �9 L ~ (0, T; H1/2(F)) A L :~ (2) ,  

and (2.22) also provides a meaning to the boundary integral in (2.19). By virtue of 
(2.13), one can check that 0 is a weakly continuous function from [0, T] into L 2 (~), so 
that the initial conditions (2.21) make sense in the space Le(~) .  

REMARK 2.4. - The conditions 0 > 0 and u = 1/0, holding a.e. in Q, can be rewrit- 
ten in terms of maximal monotone operators. Indeed, letting ~ denote the maximal 
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monotone graph specified by 

1 p ( r ) = - ~  i f 0 < r <  + ~  

such conditions reduce to - u  �9 ~(0). Alternatively, one can prescribe that - 0  �9 ~(u) 
a.e. in Q and consider 0 as an auxiliary unknown (say, playing the same role as ~). 
This is precisely the approach followed by KENMOCm and NIEZGODKA in [7]. 

REMARK 2.5. - As ~ e fl(Z) a.e. in Q and ~ = OI, it is well-known (cf., e.g., [3, 
p. 54]) that the variational inequality 

(2.23) ,~z~(x, t ) ( x (x ,  t) - r) <. (s'(z) + ~ ' ( z ) u ) ( x ,  t ) ( z ( x ,  t) - r)  

Yr �9 [0, 1], for a.e. (x, t) �9 Q, 

gives an equivalent formulation of (2.20). 

The main result of this paper states the existence of solutions to the problem 
(P). 

THEOREM 2.6. - Assume that (2.1)-(2.9) hold. The problem (P) has a weak 
solution. 

To prove the theorem, we approximate (P) by the initial boundary value problem 
arising from the phase-field model proposed by PENROSE and FIFE [12]. The method 
of approximation consists of mollifying the equation (2.20) by adding the term - ~LI Z 
(~ > 0), supplied with homogeneous Neumann boundary conditions. Then one can use 
the available solutions found by LAUREN~OT [8, 9] for the resulting system, derive es- 
timates independent of ~, and finally pass to the limit as ~ ~ 0. This is essentially our 
procedure. However, in order to exploit the results of Laurengot, we first have to 
regularize the data g and Xo. 

For any ~ > 0, we introduce the function g~: Q ~ F~ defined by 

t 

1 I g~(x, t) = -[ e-(t-~)/~g(x, v)d~, 
0 

(x, t) e Q. 

Recalling (2.4), it is not difficult to see that 

(2.24) g~,3tg~ e L ~ (Q), 

(2.25) li~II~o(Q) ~ IIgL]~o(Q) W > o, 

(2.26) g~---->g strongly in L2(Q) as ~'~0. 
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On the other hand, let Zos �9 H i ( ~ )  denote the solution to the elliptic variational 
problem 

(Zoo, v) + ~ ~ Vzos' Vv = (Zo, v) Vv �9 V. 
t~ 

In view of (2.9), from a (weak) maximum principle argument  we deduce that 

(2.27) 0 ~< Zo~ ~< 1 a.e. in t~, Vs > 0.  

Since -sAZo,  = Z o -  Zoo, it is straightforward to conclude that 

0Zos 
(2.28) an - 0 and Zo~ �9 H ~ ( ~ ) ,  

(2.29)  llVzo H + H  zo l? -< 21 1, 

where [~] denotes the Lebesgue measure of the domain ~2. In addition, the conver- 
gence proper ty  

(2.30) Zo~ ~ Zo strongly in L 2 (/2) as e x~ 0,  

can be shown, for instance, via singular perturbations techniques (see [11]). 
Now we have all the necessary ingredients to be able to apply the existence result  

in [8, 9]. 

PROPOSITION 2.7. - Under the assumptions (2.1)-(2.2), (2.5)-(2.8), (2.24), (2.27)- 
(2.28), there exists a quadruple (0~, us, X~, ~)  satisfying 

(2.31) O~eH~(O, T; Le(t~)) ,qL2(O, T; Hi( t ) ) )  A L ~ ( Q ) ,  

(2.32) u~ e H~(0,  T; L2(~) )  N L2(0,  T; H~(~9)) n L ~ (Q),  

(2.33) z~ e H 1 (0, T; H 1 (/2)) n L ~ (0, T; H2(D)) ,  

(2.34) ~ �9 L ~ (0, T; L~(~) ) ,  

1 (2.35) 0 ~ > 0 ,  u~ = ~ a.e. in Q, 

(2.36) 0 ~ Zs ~< 1, ~ �9 fl(Z~) a.e. in Q, 

(2.37) at (Co o~ - 2(z~)) + k du~ = g~ a.e. in Q, 

(2.38) /zatZ~ - ~AZ~ + ~ = s'(z~) + 2'(Z~)u~ a.e. in Q, 

au, aZ~ 
(2.39) k ~ n  + ~(Oru~ - us) = O, an - 0 a.e. in Z ,  

(2.40) 0~(-, 0) = 0o, Zs(', 0) = Zoo. 

For  the proof of this theorem we refer the reader  to [8, 9]. Nonetheless, let us ac- 
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knowledge that in his procedure Laurenqot considers a suitable regularization of the 
problem (2.37)-(2.40) as well, and then makes use of very general results on quasilin- 
ear parabolic problems due to AMANN [2]. 

REMARK 2.8. ~ In the above statement we have not expressed all the regularity 
properties of 0~, u~ and Z~. For instance, the additional properties (2.13) and (2.14) fol- 
low from a comparison in (2.37) and (2.38). Moreover, u~e C~ T]; Hi(t]))  and 
X~e C~ because of known interpolation or embedding theorems for Sobolev 
spaces. Let us also observe that, since u~(., t), Z~(', t ) e  H2(/2) ( r  L ~ (t))) for a.e. 
t e (0, T), the boundary conditions in (2.39) hold even in H1/2(F), a.e. in (0, T) (cf. 
Remark 2.t). 

Henceforth we shall denote the problem (2.37)-(2.40) by (P~). Multiplying (2.37) 
and (2.38) by a test function v E H ~ (f2) and accounting for (2.39), we obtain the varia- 
tional equalities 

(2.41) (at (Co 0~ - ~(Z~))(',  t), v) = k I Vu~ ( . ,  t) .  Vv + 
D 

+ a I ( O r u ~ - u ~ ) ( ' , t ) v + ( g ( ' , t ) , v )  Y v e H l ( D ) ,  for a.e. t e ( 0 ,  T) ,  
2" 

(2.42) t~(atZ~(', t), v) + s I V x ~ ( . ,  t ) .Vv  + ( ~ ( . ,  t), v) = 

= ( ( s ' ( x~ )+~ ' (X~)u~) ( ' , t ) , v )  V v e H I ( D ) ,  for a.e. rE(0 ,  T),  

which will be employed in the sequel. 

3. - U n i f o r m  es t imates .  

In this section, we show estimates, independent of ~, for the solution to problem 
(P~) determined by Proposition 2.7. We start by summarizing some inequalities satis- 
fied by y~. In fact, the next lemma is addressed to a general problem of the 
form 

(3.1) a'wt - b,Jw + ~2 = f a.e. i~ Q, 

(3.2) 0 ~ < w ~ l ,  ~efl(w) a.e. in Q, 

(3.3) ~w = 0 a.e. in Z ,  
~n 

(3.4) w(' ,  0) = w0 , 
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where a > 0, b > 0, and 

(3.5) feH~(O, T; L2(D))OLe(O, T; H~(t~)), 

(3.6) w o � 9  e(t)), 8Wo _ 0  a.e. i n F ,  0~<Wo~<l i n t ) .  
8n 

LEMMA 3.1. - A s s u m e  that (2.1) and (3.5)-(3.6) hold. Then the system (3.1)-(3.4) 
admits one and only one solution 

(3.7) w �9 W 1' :r (0 ,  T ;  L e (t~)) A H 1 (0, T; H ~ (~9)) V) L ~ (0, T; H 2 (~)) 

satisfying 

t t 

0 0 

for a.e. t e (0, T), 

(3.9) 
t 

I1~(, t)H 2 <- 2hf(  , t)ll ~ + 21If( ,  o) + b~ol l  ~ + 4a f ~f ,w, 
0 ~2 

for a.e. t e (0, T), 

(3.10) 
t t 

a 
allvw (. t)ll2+bfllAw( .,z)[]2dz <<. ~l lVwoHe+]  fVf .Vw V t e [ 0 ,  T] .  g , 

0 0 ~1 

PROOF. - The uniqueness of w follows easily from the monotonicity of fi via a stan- 
dard contradiction argument (else one can see, for instance, [3, Theorem 2.1, p. 189]). 
In order to prove (3.8)-(3.10) rigorously, we replace in (3.1)-(3.2) the graph fi by its 
Yosida approximation 

f mr f i r < 0 ,  
(3.11) f i n ( r )=  0 i f 0 ~ < r ~ < l ,  m e N .  

r e ( r - l )  if r > l ,  

Hence, denoting by wm the solution to 

(3.12) aatw m -  b~w,~ +tim(win) =f  a.e. in Q, 

subjected to the conditions (3.3)-(3.4), it turns out that wm is more regular than w. 
More precisely, for any m e N one has (cf., e.g., [7, Lemma 4.1]), in addition to 
(3.7), 

(3.13) wme H2(3, T; Le(t))) N H 1 (8, T; He(t~)) ~'~e (0, T), 

(3.14) wme C1([0, T]; L2(t)))N C~ T]; H2(t))).  
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Note that also 

(3.15) Otw,~(', O) = 1 (f(.,  O) + bAwo), 

because of (3.6) and (3.11). Now let us just sketch the deduction of (3.8)-(3.10) for w~ 
and ~ = ~ ( w ~ ) .  First, we differentiate (3.12) with respect to time, multiply by 
atw,~, and integrate over Q > (~, t) for 0 < ~ < t (we are allowed to do this by virtue of 
(3.14)). As/3" ~> 0 a.e. in R, the estimate 

t t 

a Hatw,,(, t)ll + b f IIv(atw, )(., z)li d : g 
2 

holds for any Ce (0, T) and any t e (~, T). Then, taking the limit as ~ 0  and recalling 
(3.7), (3.14), and (3.5), the inequality (3.8) is a straightforward consequence of (3.15). 
To derive (3.9), it suffices to test (3.12) by V~, integrate only in space, and use 
Young's inequality 

(3.16) ABe< ~ I A I  p+ 
p - 1  

p~ 1/(p - 1) I B I P/(P - 1) , A, B e R ,  ~ > 0 ,  l < p <  

(when p = 2) along with (3.8). On account of (3.3)-(3.7), the inequality (3.10) can be 
found after multiplication of (3.12) by -Aw~ and integration by parts in space and 
time. Therefore, as w~ and V~ satisfy (3.8)-(3.9), with the help of (3.3)-(3.6) and (3.12) 
it is not difficult to infer that 

where the constant C1 > 0 depends only on a, b, T, ]IflIHI(O,T;L~(~)), and I]WolIH~(~)" 
Hence, there are two functions w, ~ such that, possibly extracting subsequences, 
wm--* w and V~--~ ~ weakly star in the abovenamed spaces, as m t 00. Moreover, by 
compactness we have w~ ~ # strongly, for instance, in C O ([0, T]; Le(t))), which en- 
sures that 

T T 

lira f (vm(', t), win(', t))dt = ~(~(' ,  t), ~(., t))dt. 
m - ~  

o o 

Then, passing to the limit in the approximating system and recalling [3, Prop. 1.1, 
p. 42], we conclude that ~,  ~ fulfil (3.1)-(3.4), and, consequently, that ~ must coincide 
with the unique solution w to the limit problem. Finally, the estimates (3.8)-(3.10) are 
satisfied by the limit functions w and 7, thanks to the weak-star lower semicontinuity 
of norms. [] 

Now, we work directly on the problem (P,) and derive uniform estimates for the 
quadruple (0~, u~, ~(~, ~). Throughout the remainder, we let (2.1)-(2.9) and (2.24)- 
(2.30) hold. 
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LEMMA 3.2. - There exists a constant C2 such that 

(3.17) II ln(u~)ll.~,(o, ~; ~(~)) +/lu~llL~<o, ~; .~(~)) + llu~,.ll~o<o, T; L~) )  + 

V~ e (0, 1]. 

PROOF. - We multiply (2.37) by - 3t u~ and integrate in space and time. On account 
of (2.35), (2.39)-(2.40), and (2.6)-(2.8) (cf. also Remark 2.1), a formal Green formula al- 
lows us to deduce the identity 

ft ] ] atu~ I ~ k t)[]2+ ~ f (Oru~)(', t) = (3.18) Co ~ + g l / V u ~ ( ,  g 
0 D /" 

= - ~'(z~)(~z~)(~u~) + VOo~/7 + ~ ~~ ~ 
0 ~ F 

+ 

t t 

+ fu2(- , t )+ 3 ff(a oF)u:-Ifg a u  
F 0 1" 0 n 

for a.e. t e (0, T) .  

A rigorous justification of (3.18) needs some regularization of (P~) or, at least, of (2.37) 
(however, concerning this mat te r  we refer, e.g., to [13] or [8]). Let  now ~o denote a 
constant fulfilling 

(3.19) 

Observe that  (efr. (2.10)) 

~ I  t)>>'~cl -~ (o~u~)(., -T u~(., t), 
F F 

and, thanks to (3.16), 

u~(., t) <~ -~ -~-~ (~), 
F F 

where ~e  (F) indicates the bi-dimensional measure of F. Moreover, in view of (2.25), 
we have 

( ( I ( t t Co t atu~ 2 1 Iu2 

0 D 0 f2 0 ~ 

Then recalling (2.4)-(2.8) and (2.11)-(2.12), by (3.18)-(3.19) and (3.16) it is not difficult 
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to find a constant C3, independent of ~, such that 

r  ~C 
(3.2o) ~- f f ~ + ~l lvu,( . , t ) t l~+ -~ fu2(.,t)<. 

o D r 

(f)(f ~< C~ 1 + ]lVu~(-, "r)ll2d'r + u~ - 2'(Z~)(atZ~)(atu~) for a.e. t E (0, T).  
o o r  6 a  

On the other hand, owing to Proposition 2.7 along with (2.2) and (2.27)-(2.28), it turns 
out that Lemma 3.1 holds for X~- Hence, from (3.8) it follows that 

(3.21) 
t 

f ~lla~x~(., t)ll ~ + ~ IIvca~x~)(., ~)ll~d~ ~ 
o 

-< ~ tls'(x0~) 
t t 

,~ X,)[~tx~12u, + 
OQ OQ 

t 

o D 

for a.e. t e ( 0 ,  T).  

Since 

because of (2.3) and (2.35), adding (3.20) to (8.21) and accounting for (2.2), (2.7), and 
(2.29), we infer that the sum of the left-hand sides is bounded from above by 

(/( s )) C4 1 + IVu~( . ,  ~)11 ~ + up(-, ~) + Ila~z~(,, ~)112 dr , 

F 

where C4 is a constant independent of e. Therefore, applying Gronwall's lemma, it is 
easy to determine another constant C5, depending only on co, k, ~, c, ~, C4, and T, 
such that 

t 

f f ,a,(ln(uo))l 2 + Ilvu ( 
o Q 

, t)ll 2 § fu2(., t) § Ilo, z~( ,  t)ll 2 § 
F 

t 

o 

for a.e. t e ( 0 ,  T).  

Then, as ln(0~ -~) e L  = (D) (cf. Remark 2.1), the estimate (3.17) is a straightforward 
consequence of (3.19), (2.27) and (2.29). [] 



P. COLLI - J. SPREKELS: On a Penrose-Fife Mode~ etc. 281 

LEMMA 3.3. - There is a constant Ce such that 

Vr �9 (0, 1]. 

PROOF. - By virtue of Lemma 3.1, using now (3.9) and arguing as above, it is not 
difficult to show that 

r 2 (3.23) l l ~ ( ,  t)ll ~ ~< 41ls'll~,~(o,, I~I + 4113~ HL~(O, ~)]lu~llZ~<o, ~, ~(~)) § 
t 

+c~(1 + lla~x~llb(Q)) + 4t~ f f 2'(Z~)(Stu~)(StZ~) 
o 

for a.e. t �9 (0, T),  

C7 being a constant independent of ~. Hence, multiplying (3.20) by 4~ and adding the 
result  to (3.23), by (3.17) one concludes that  also Ill, IlL ~ (0, T; L~(~)) is uniformly bound- 
ed with respect  to ~. Next, a comparison of the terms in (2.38) allows us to control 
llSZiZ~IILO(0, T;L~(a)), whence (3.22) follows in view of the boundary condition in 
(2.39). �9 

LEMMA 3.4. - There is a constant C8 such that 

(3.24) I[0~ ll~,~ (o, T; L~(~)) + I[ ln(u~)ll~,o (o, T; H~(~)) < Cs V~ �9 (0, 1]. 

PROOF. - Choosing v = 0~ in (2.41) and integrating in time, with the help of (2.35), 
(3.16), (2.5), and (2.25), we deduce that 

3 f I 12 Co Co 11o~(-, t)ll ~ § k - -  § ~ t ~ ( r )  ~ Ilooll ~ § 
u~ 

t t 

o F 0 

t 

f +~l t~ l l l g ] [~ (Q)+  II0~(.,z)[l~dz Y t e [ 0 ,  T] .  
0 

Therefore, on account of (3.17), an application of Gronwall's lemma yields 
(3.24). �9 

LEMMA 3.5. - There exists a constant C9 such that 

(3.25) I[u~ IlL ~ (Q) ~< C9 Vs e (0, 1]. 

PROOF. - Due to (2.2), (3.17), and to Sobolev's embedding theorems, 
118t(~(Z~))IIL~(O,T;L2(~)) and IlU~IIL~(O,T;L6(~-2))are bounded independently of s. Then, 
thanks to (2.5) and (2.7) as well, we can make use of the result  states in [6, Lem- 
ma 2.3] (a more general version is given in [9, Lemma 4.1]) to obtain (3.25). We point 
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out that the argument is based on the Moser technique and consists of testing (2.37) 
by u~ and estimating the n o r m s  I]Us][Lp(Q)(uniformly with respect to s and p) for a di- 
vergent sequence of exponents p. [] 

Let us note that (3.25) and (2.35) entail 

1 (3.26) 0~ I> ~ a.e. in Q, 

whereas (3.25) and (3.17) ensure that (cf. Remark 2.3 and especially (2.22)) 

(3 .27 )  

for any ~ e (0, 1]. Owing still to (3.25), we can finally derive a bound for the time 
derivatives of u, and 0~. 

LEMMA 3.6. - There is a constant C10 such that 

(3.28) Ilu.ll.,(o, T; lie, I1 ,, o(o,,,; C,o V~ e (0, 1]. 

PROOF. - Since Otu~ = u, at(ln(u,)), by (3.17) and (3.25) we infer that Ila, u.II ~< 
~< c9 v~2. Hence, recalling also (2.2), (2.5), (3.27), and (2.25), the estimate (3.28) follows 
from (2.41). [] 

Now, we are in the position to pass to the limit, at least for a subsequence, in the 
problem (P~) when r tends to 0. In the next section, we will show that any weak-star 
limit of (0r, Z~) yields a weak solution of (P), thus proving Theorem 2.6. 

4. - P a s s a g e  to  the  l imit .  

Lemmas 3.2 to 3.6 imply the existence of functions 0, u, X, ~ such that, possibly 
taking subsequences, 

(4.1) 0 ~ 0  weakly star in WI'~(0,  T; V ' )NL~(O ,  T; L2(D)), 

(4.3) u~ --, u weakly star in H 1 (0, T; L 2 (D)) A L ~ (0, T; H 1 (~)) N L ~ (Q), 

(4.3) )~--*x weakly star in WI'~(0, T; L2(~)) ,  

(4.4) $ ~ $  weakly star in L~(0,  T; L2(~)) ,  

as z'~0. Moreover, it turns out that (cf. (3.17) and (3.22)) 

~Z~ ~ 0 strongly in H 1 (0, T; H 1 (~)),  
(4.5) 

and weakly star in L ~ (0, T; He(~)) .  

Thanks to (4.2), by standard compactness arguments, including the Aubin lemma 
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(see, e.g., [10, p. 58]), we deduce that 

(4.6) u ~ - o u  strongly in C~ T]; L2(t)))A L2(0, T; H~-~(t~)), for ~ > 0. 

In order to verify that the quadruple (0, u, Z, $) solves the problem (P), we note that 
the initial conditions (2.21) result easily from (2.40), (2.30), (4.1), and (4.3) (cf. also 
Remark 2.3). In addition, due to (3.26) and (2.36), the properties (2.15) are satisfied. 
The relationship u = 0 -1 holds a.e. in Q by virtue of (2.35), (4.1), and (4.6). Indeed, 
O~u~ = 1 for any e > 0 and O~u~---) Ou weakly in L ~ (Q) as ~ "~ 0. To complete the proof 
of (2.18) and to prove (2.19)-(2.20), we need to state some strong convergence for the 
sequence {Z~}. 

LEMMA 4.1. - For ~ ~ O, we have 

(4.7) Z~--)X strongly in C~ T]; L2(D)). 

PROOF. - We multiply (2.38) by y~ - X and integrate in space and time. On account 
of (2.39)-(2.40) and (2.21), we obtain 

(4.8) 

where 

t t 

0 0 .0 

t 

f 
0 

t 

( s ' ( z ~ )  - s'(z))(z~ - z) + f f ( ~ ' ( z ~ )  - ~ ' ( z ) ) u ~ ( z ~  - z ) ,  
0 t~ 

t t 

rlXo - Zorl f f( Ax )z+ f 
Ol~ 0 l~ 

for any t e [0, T]. Observe that 

~ (X~ - Y~) ~> 0 a.e. in Q 

because of (2.36), (2.1), and (2.15), 

18'(Ze) -- 8'(Z)] ~ HS"]]L~(O, 1) IZ~-- Zl 

because of (2.2), and 

a.e. in Q 

u~ ()~'(X~) - ~'(Z))(X~ - Z) ~< 0 a.e. in Q 

because of (2.3) and (2.35). Therefore, it follows from (4.8) that 

t 

( 4 . 9 )  ] I ( ~ s  - -  Z ) ( ' ,  t ) ] ]2  ~ 2 R e ( t ) - { - C l l f H ( z ~ - ~ ) ( .  , T)H2dT, 
0 

with Cll = 2Hs"l]L~(O. 1)/tz. But, owing to (2.30), (4.5), (4.3), and (4.6), R~(t) tends to 
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zero, as s"~0, for any t~  [0, T], and i]R~llw,.~(0, r ) i s  bounded independently of s. 
Then, by compactness, 

On the other hand, (4.9) and Gronwall's lemma yield 

2 [iR~[[c0([0, T])exp(C11t), I I ( z o  - z)( ,  t)? -< 

for any t e [0, T]. Thus (4.7) is completely proved. �9 

As a first consequence, (4.7) and (4.4) imply that ~Z~--~Z weakly in L~(Q), 
whence (cf. (2.36) and (2.1)) 

~.(x, t)(z(x, t) - r) t> 0 V,r e [0, 1], for a.e. (x, t) ~ Q, 

that is, ~ e 3(Z) a.e. in Q (one may see Remark 2.5). Mso, using just the continuity of 
~', s' in [0,1] and the Lebesgue dominated convergence theorem, from (4.7) we de- 
duce that, at least for subsequences, 

(4.10) ; ( ' (Z~) - ,~ ' (Z)  and s ' ( z ~ ) ~ s ' ( z )  a.e. in Q and strongly in LP(Q), 

for any p c [ l ,  ~ ) .  

Thanks to (4.10) and (4.3)-(4.6), a passage to the limit in (2.42) yields (2.20). It re- 
mains to show (2.19). Note that (4.6) (with ~ < 1/2) and (3.27) entail 

(4.11) u~l~---~ulr strongly in LP(Z), for any p e [ 1 ,  ~ ) .  

Now, it suffices to recall (2.41), (4.1)-(4.3), (4.10), (2.5), and (2.26) for realizing that 0, 
Z, u fulfil (2.19). This concludes the proof of Theorem 2.6. �9 

REMARK 4.2. - Let us point out that the assumption (2.2) can be replaced by the 
weaker conditions 

(4.12) ~ e C l ( [ 0 ,  1]), s e C l ' l ( [ 0 ,  1]) (=- W2,~(0, 1)), 

without affecting the existence result. Indeed, in our argumentation we have only ex- 
ploited the properties (4.12) and (2.3) of ~ and s (cf., in particular, Lemma 3.2 and 
Lemma 4.1). However, in this setting one should take regularizing sequences {2~} 
and {st} in the approximation procedure (cf. Proposition 2.7). 

REMARK 4.3. - In the case when the initial datum Zo lies in H 1 (t~), the solution 
component Z belongs to L ~ (0, T; H t (t))), besides (2.14). This additional regularity 
can be proved by working on the inequality (3.10) written for Z~. One checks that  
IIZ0~IIH~(a) is bounded independently of ~ and makes use of (4.12), (2.3), (3.16), and 
(3.17), to estimate the right-hand side, finally applying Gronwall's lemma. Observe 
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also that this further a priori bound would allow to skip the details of Lemma 4.1, the 
convergence (4.7) being easily established by compactness. 

5. - R e m a r k s  o n  t h e  b o u n d a r y  c o n d i t i o n .  

The boundary condition considered in our approach, 

~0 (5.1) - k  ~ = ~(0 - Or) in Z ,  

is quite usual in the framework of the Fourier heat flux law. In fact, if one assumes 
that q = - k V0, then (5.1) says that the heat flux is directly proportional to the differ- 
ence between inside and outside temperatures at the boundary. But, ff one takes an- 
other heat flux law, then the meaning of (5.1) is no longer the same. In our framework 
q is defined as 

(5.2) q=kv(+), 
so that (5.1) reads 

q . n  = ( 0  - 

and the rate factor has become a decreasing function of the absolute temperature, 
namely ~/0 2. In this connection, one could think of a general boundary condition of 
the form 

(5.3) q . n  = ~(0)(0 - 0~) in Z ,  

where q is prescribed once and for all by (5.2) and where ~ denotes some given func- 
tion. Now, one expects that ~ is non-negative and possibly decreasing. Some exis- 
tence (and regularity) results have been shown for the regularized problem (P~) with 
(5.1) replaced by (5.3), for alternative choices of ~. The case ~(0) = ~/0 has been exam- 
ined by KENMOCHI and NIEZGODKA in [7] and is particularly interesting, since it can 
be proved that  there is a unique solution (cf. also the later Theorem 5.1). The model 
with the natural condition a(0) --~ (constant) is discussed in [5], but there the exis- 
tence of solutions relies on the additional (and somehow unphysical) requirement that 
the sourse term g be non-negative. We also quote another investigation by LAUREN- 
~OW[9] dealing with the situation ~(0)=~/0  m+l (with 0 < m < 1), though it came 
from (5.1) via the heat flux law q = kV(1/om) .  

Next, taking again (5.2) into consideration, we claim that our analysis of the actu- 
al problem (P), as well as the related existence result (i.e., Theorem 2.6), can be ex- 
tended to functions ~ of the following type 

~ ( 0 ) -  0 p , p 1 > 1 ,  
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in the boundary condition (5.3). More precisely, arguing in terms of u = 1/0 (cf. 
(2.18)) and following the same technique, it is possible to t reat  the following set  of 
conditions 

k ~u = r~pl _ ~uP~ in Z ,  (5.4) - 

where the data ],, ~: Z - o  R and Pl,  P2 E R satisfy (cf. (2.5)-(2.6)) 

(5.5) y � 9  ~(Z) ,  y > 0  a.e. i n Z ,  I � 9  ~ ( 2 ) ,  

(5.6) ~ e L ~ (2:), ~ i> 0 a.e. in 2 ,  

(5.7) Yt, ~t e L ~ (2) ,  

(5.8) Pl >t 1, P2 I> 0 ,  P~ > P2 �9 

Note that  (5.4) is a generalization of (5.1). Regarding the formulation, the variational 
equality (2.19) changes into 

(5.9) (at (co 0 - ~(X))(', t), v) = k ~ Vu(., t)" Vv + 
~2 

+ [(yuPl - (uP2)( ' , t )v+(g( ' , t ) , v )  VveHI(t)) ,  for a.e. t e ( O , T ) ,  

and the approximating solution u~ needs to satisfy (5A). The suitable modifications of 
the proof are left to the interested reader. 

Instead, we want to show here that  in the case Pl = 1 ,  P 2  = O a uniqueness result  
can be deduced for problem (P). This case corresponds to the choice made in [7] and 
has the advantage that the boundary condition is linear with respect  to u. 

THEOREM 5.1. - A s s u m e  that (2.1), (2.3)-(2.4), (2.7)-(2.9), (4.12), and (5.5)-(5.7) 
hold. Let Pl = 1, P2 = 0, and consider the problem (P) with (2.19) replaced by (5.9). 
Then, there exists a unique weak solution. 

PROOF. - Suppose that  there are two solutions (01, X1) and (02, X2). Take ui and ~ ,  
i ~ 1, 2, as in (2.18), in order that  (5.9) and (2.20) are satisfied. In view of (2.16), we 
set 

(5 .1o)  M : - -  max(tl lllL o(Q), 
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First we integrate the difference of the two equations (5.9) from 0 to z E [0, T]. 
Thanks to (2.21) (same initial values for both solutions), we obtain 

( 5 . 1 1 )  Co((01 - -  0 2 ) ( ' ,  T) ,  V) - -  ( ( ) t ( 7 . 1 )  - -  ) t ( 7 . 2 ) ) ( "  , T) ,  V)  ---- 

T 

= kfVf(ul-~2)( . , t )dt .Vv+ f f(~(u,-u2))(.,t)dt~, 
f2 0 F 0 

for any v e Hl(t~). Next, we choose v = ( u l -  u2)(', z) as test function in (5.11). 
Since 

- -  (01  - -  0 2 ) ( U  1 - -  U2)  - -  
lUl-U212 lu,-u212 I> a.e. in Q, 

Ul u2 M 2 

because of (2.18), (2.15), and (5.10), accounting also for (5.5) and (4.12), from (5.11) we 
infer that 

1 k (5.12) ~-~ II(u, - u2)(., ~)112 + ~- f ~ 
~9 

1 8~ 
+ f 2 r ( . ,  ~----~ 

F 

12 V u l - u 2 ) ( ' ,  t) dt + 
0 

f (]'(ul - u2))(', t) dt <. 
0 

~< Ilzl l~(o,,l l(x,-7.2)(., =) l l l l (u,-~)( . ,  ~)11 v ~ [ o ,  T]. 

On the other hand, due to (2.15), (2.18), and to the monotonicity of the graph/~, we 
have 

ff.(7.~ - 7.2)t(7.1 - 7.2) <~ (s ' (7 .1)  - s ' (7.2)) (7.~ - y.2) + 

+ ( ' ~ ' ( Z l )  --  ' ~ " (7 .2 ) )U l  (7.1 --  Z 2 )  -{- '~" (7 .2) (Ul  --  U2)(7.1 - -  Z 2 ) ,  

with (cf. (2.3)) 

(~'(7.1) -- )~'(Z2))Ul (7.1 -- 7.2) ~ 0 

a.e. in Q. Hence, integrating over ~2 and recalling (4.12) again, we easily fred 
that 

(5.13) 2 a~H(x, - 7.2)(', ~)112 -< ]ls"NLo(o,,)fl(7., - 7.2)(', ~)[]2 + 

+ N~'llL~(O,,)ll(Ul- u2)( ,  v)]lll(z1- z2)(', v)l[ for a.e. r e ( 0 ,  T).  
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Therefore, adding (5.12) and (5.13), integrating in time, and setting 

t t 2 
i f k Vf(Ul-U2)(. ,~:)dT + S(t) := M2 o II(u~ - u2)(, ~)ll2dz + ~ o 

we see that 

f 1 (~,(,/tl __ U2))(. 
+ 2r( . ,  t) 

F 
, z )  d z  + I I (z ,  - t)}} 

0 F 

t t 
~-]Istq]L~(O'I) III(Zl--Z2)(" T)II 2dT ~- 211~'llL~(O, 1) f II(Ul--~t2)( ' ,  T)H ] ] (Z1--~2)( ' ,  T)]] 2d2", 

0 0 

for any t e [0, T]. Using Young's inequality, with the help of (5.5) and (5.7) we deduce 
that 

t 

(5.14) S(t) <~ C121 S(v) dz Vt e [0, T l, 
0 

where C12 depends only on t~, M, IIJ~'IIL~(0,1), [18"[IL| 1) and IIyt/),llL~(X). Now, (5.14) 
and Gronwall's lemma imply that S(t) = 0 for any t e [0, T], whence us = ue, Z~ -- Z~, 
and the uniqueness result is completely proved. " 

REMARK 5.2. - Under the assumptions of Theorem 5.1, the convergence proper- 
ties stated in (4.1)-(4.7) are valid for the whole sequence {(0~, us, Z~, $~)}, and not 
only for some subsequence. At the same time, the uniqueness result implies that 
there are no other solutions to the relaxed Stefan problem (P) besides the one which 
arises as limit for ~ x~ 0 of solutions to the Penrose-Fife system (P~). In this sense, the 
relaxed Stefan problem (P) is the natural asymptotic limit of the Penrose-Fffe model 
if the contribution of the interfacial energy density to the total free energy density 
tends to zero. 
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