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O. - In troduct ion  and s t a t e m e n t  o f  resul ts .  

1. Let C be a complex curve (compact Riemann surface) of genus g I> 2. We shall 
be primarily dealing with holomorphic automorphisms ~ of prime order p such that 
the quotient surface C/('~} is isomorphic to p1. 

If p = 2 the curve is said to be hyperelliptc and r which is then called the hyperel- 
Iiptic involution, is known to be the unique automorphism of order 2 such that 
C/(r} - P~. The situation is quite different when p >  2, for then well-known curves 
such as Klein's and Fermat's provide examples of curves admitting different auto- 
morphisms of same prime order with quotient p1 (Examples 1.1, 1.2, 1.3). However, 
in all these examples we easily see that groups generated by such automorphisms are 
conjugate. The first part of this article is devoted to prove that this holds always; 
namely we shall prove. 

THEOREM 1. - If the automorphism group of a Riemann surface S Aut (S), contains 
automorphisms r l ,  r2 of same prime order and such that the quotient surfaces S/(z~) 
(i = 1, 2) are isomorphic to g l ;  then (zl} and {r are conjugate in Aut (S). 

This result can be viewed as a generalisation of the uniqueness of the hyperelliptic 
involution. We shall also provide examples to show that our assumptions on the order 
and the quotient are necessary (Examples 1.9, 1.10). 

2. In the rest of the paper we shall investigate the implications of Theorem 1 in 
the geometry of moduli (and Teichmtiller) space. In order to describe our results we 
need to introduce some notation. 

Let pn (Fp) denote the projective space over the field with p elements Fp, and de- 
fine the following subset D~ of P~-I(Fp),  

{ /=~lT)$i I ~[ } D~ = m = (ml, ...,m~.) = 0 and mi ~ 0 . 
i i = 1  
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The symmetric group Zr acts on D~ in the obvious way; we write D(p ~) for D~/Z,., rh 
for the class of m modZr and Zr(m) for the stabilizer of the point m e D~. 

Let now z: C ~  C be an automorphism of prime order p, having r fLxed points and 
such that C/(T} - P~. We can associate to z a point rot (z) in D~ ~) by putting rot (r) = r- 
tuple with consists of the inverse of the local rotation angles of z at the fLxed 
points. 

Let g, p, r be positive integers, with p prime and g t> 2, related by the formula 
2g = ( p -  1 ) ( r -  2), this is Riemann-Hurwitz formula for the projection C--~C/(z) 
above; let Mg stand for the moduli space of curves of genus g, M~ for the subset of Mg 
of points representing curves C which admit an automorphism z of prime order p such 
that C/(z} - P~, and for each ~h e D(p ~) let M~ (~h) be the subset of M~ defined by im- 
possing the automorphisms ~ occuring in M~ the extra requirement rot (z) = rh. 

Finally, let us denote by d the diagonal subset of C ~- 3 defined as follows 

~= {x~C~-~ /l-[ x~(xi -  e ) (x~-x i )=O} .  
t i~ j  

We shall define a natural MSbius action of Z~ on C r-3 - ~ (see w 2 (2.4)). Building 
on previous work of the author ([Gon], see also [Gon-Harv]) Theorem 1 will allow us 
to prove the following result. 

THEOREM 2 .  - i) M~ is the disjoint union of the sets M~ (~h); where ~h ranges in the 

whole set of points of D(p r). 

ii) Each set M~(~h) is an irreducible subvariety of Mg isomorphic to 
(cr-3-J)/Z~(m); the isomorphism being given by the rule which associates to each 
point ()~1, . . . ,)~-~) in (C~-~-~)/Zr(m), the point in M~(~h) representing the curve 

yp = x ~ - 2 ( x  - 1) '~-  l(x - ~i)  "~ ... (x - ~._3) ~ - 3  

where m = ( ml , m2 , ..., m~ ). 

iii) In particular the subvarieties M~(~h) are all normal, affine and unira- 

tional. 

When p = 2, the hyperelliptic case, this is classical. The result had also been pre- 
viously settled for p = 3, by DUM~. and RADTKE [D-R]. 

3. We shall work within the framework of the analytic Teichmfiller theory-, for 
which we refer to [Nag]. In the process of proving Theorem 2 we will have to consider 
the preimage of the subvarieties M~ (~h) via the projection p: T~ ~ Mg = Tg/Mod o . As 
usual we shall denote by To, r (with Tg, 0 = To) the Teichmfil!er space of a comp- 
act Riemann surface of genus g with r punctures, and by Modg, r (with 
Modg, 0 = Modg) its modular group. 

It is a fundamental result of Bers that Tg, r admits a canonical representation as a 
bounded don~ain in C 3g- ~ § r on which Modg, r acts properly discontinuously by bi- 
holomorphic transformations; the quotient moduli space Mg = Tg/Modg therefore 
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carries and induced structure of complex analytic V-manifold, for which the canonical 
projection p: T g ~ M g  is holomorphic. Let us write [S, 0] for the point of Tg given by 
a (quasi-conformal) homeomorphism 0: So ~ S, and let H0 ~ be any subgroup of Mod g 
(we shall be interested in the case when H0 ~ is induced by a subgroup H0 of automor- 
phisms of the reference surface S0); we can introduce the relative Teichmi~ller space 
Tg(H~) and the relative modular group Mod g(Ho ~) as follows. 

(0.I) Tg (H0 ~ ) is the analytic subspace of Tg representing points left fLxed by the ac- 
tion of H~.  

It is known that when Ho ~ is induced by Ho < Aut (So), Tg (H0 ~ ) consists of Teich- 
miiller points [S, 0] such that S possesses a group of automorphisms H < Aut (S) con- 
jugate to H0 by means of the homeomorphism 0: So ~ S ([Harv]). Moreover, denoting 
by V the genus of the quotient surface Ro = So/Ho and by r the number of points over 
which the projection So~Ro is ramified, Tg(H~) is a complex subvariety of Tg iso- 
morphic to the Teichmfiller space Ty, r ([Harv], [Krav]). 

(o.II) Mod g(Ho ~ ) is the normaliser of H0 ~ in Mod g. The modular group permutes 
the Teichmiiller spaces Tg(Ho ~ ) corresponding to the various subgroups of Mod g con- 
jugate to Ho, by the rule h(T~(Hf))=Tg(h.Ho.h-~), where h ~ M o d g  and 
Modg(Ho ~) is precisely the stabiliser of Tg(Ho~). ([Mac-Harv]). In w 3 we shall 
prove. 

THEOREM 3. - Let m be a fixed element of D(p r) and let Co be an arbitrary automor- 
phism of a Riemann surface of genus g I> 2 with rot (Zo)= ~h. If g = 2, assume 
p ~ 2 .  

Then the inverse image of M~ (~h) in Tg is the following union of distinct isomor- 
phic subvarieties 

where h ranges over a set of representatives of the cosets of Modg/Modg(z~). 
Moreover, the following three equivalent statements hold 

i) The topological surface of genus g possesses infinitely many mapping clas- 
ses (topologically) conjugate to c0. 

ii) In Tg there are infinitely many distinct Modg-transforms of Tg(r~), 

iii) Modg(z~) has infinite index in Modg. 

We would like to comment on this result. When p = 2, this is Theorem 6.5 of the 
famous paper of Kravetz [Krav], and in fact we have to use his theorem to settle ours 
since our proof fails to work in this case. As a compensation it does work in any other 
case, i.e. when instead of prime coverings of P1 we consider any Galois covering of 
any Riemann surface. In particular we obtain. 

COROLLARY 3.I. - Except for the hyperelliptic covering in genus 2, there does not 
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exist any Galois covering of any Riemann surface with the property that its relative 
modular group coincides with the entire modular group. 

This result was conjectured, and proved for cyclic coverings of P~, by BIRMAN and 
HILDEN in [Bir-Hill]. 

The author is grateful to Drs. W. J. HARVEY and C. MACLACHLAN for generous 
discussions on the subject of this article. 

1. Prime Galois coverings of the Riemann sphere. 

The main goal of this section is to prove Theorem 1. We begin by showing some 
curves admitting autom0rphisms ~ ,  z2 of same prime order p, generating distinct 
groups (rl},(v2} and having the same quotient S/ (z~}-  p1 (i = 1, 2). We refer to 
[F-K], [J-S] or [Nar] for the standard techniques to identify algebraic curves and Rie- 
mann surfaces. 

EXAMPLE 1.1. - Klein's curve y7 = x(x - 1) 2. 
The group generated by the automorphism v(x, y) = (x, ~TY) with ~p = e 2'~/p is 

different from some conjugate of itself because the automorphism group of this curve 
is known to be simple; in fact the simple group of order 168. 

EXAMPLE 1.2. - Fermat's curve Fp of equation x p + yP = 1. 
The groups generated by r l(x,  Y) = (x, ~py) and r2(x, y) = (~px, y) are clearly 

different, but as in the previous example rl and z2 are conjugate (now by means of the 
coordinate interchanging involution z(x, y) = (y, x)). 

There is another automorphism of Fp which has order p and quotient surface P1, 
namely 

r(x, y) = (~p x, ~p y). 

We note that (z) too is conjugate to (.71) and (7"2} , for we have ~ - l ' z ' z  = z~ - 1; 
being the automorphism ~(x, y) = (1/x, - y / x ) .  

It can be easily seen (by working as in Example 1.4 below) that these three ac- 
count for all the proper subgroups of H = (Zl, z2} with quotient surface p1. 

EXAMPLE 1.3. - The eurves Dp of equation 

yp = (x p _ 1)(x p _ ~p)p 1; )~ E C, ZP ~ 1 (see [D-R] for p = 3). 

Again we take zl(x, y) = (x, Cpy) and ~2(x, y) = (r y). 
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Now the involution which conjugates (z~} and (z2} is 

~(x 'Y )=(  xp-~py ' x P - ~ ( 1 - 1 P ) ) x  p - 1  

in fact one easily checks that ~-1.z1-~ = z~- 1. 
In the next example we see that the exponent p - 1 in the equation defining D~ is 

crucial. 

EXAMPLE 1.4. - a) Let S be the Riemann surface defined by the equation 

y P = ( x  p _ l ) ( x  p _ ~ s ) k ,  2 P ~ 1 ,  k < p - 1 .  

Now zl(x, y) = (x, ~.py) and *2(x, y) = (~px, y) cannot be conjugate since z~ has 
~:i 2p frxed points, namely ( ~  0), (~s2, 0), i = 1, . . .p, whereas z2 has only p, namely 

(o, 
In order to show that the points at infinity are not fixed by re, we make the stan- 

dard representation of S as the p-sheeted covering S~S / ( r l }  =-p1, which is repre- 
sented by the x-projection, 

S ~ P  1, (x, y ) ~ x .  

We need to understand this projection at ~ ,  so we take the usual parameter x = 
= 1/t where t is any parameter near the origin, and then we see that S has p points ~ i 
(i = 1, ... ,p) above ~ e P~, corresponding to the p roots 

Y = ~ ~/(1 - tF (1  - 2PtP) ~ 
t l+k 

i = 1  . . . .  , p .  

The action of the automorphism re, d (x, y) = ( ~  x, ~ y) at these points is given by 
Ts, d( ~ i )  = ~d-s(l +k) ~p ~i  as we see by replacing the parameter t by t '  = ~p ~.t; thus z~d �9 
fL~eS ~i  if and only if d = s(1 + k)(mod.p); in other words z2 = Zl, o does not fix any 
point at infinity when k < p - 1. 

In fact this computation shows that (~}  is the only proper subgroup of H = 
= (~1, z2} which has 2p fixed points. 

b) (p = 3, k = 1). With a little more work we can see that when p = 3 (Zl} is in 
fact the only subgroup in the whole Aut(S), having this property. This will follow 
from the following observations 

1) the divisor of the function x (the x-projection) is 

(0, z).(0,  ~sz).(o, ~ , )  
(x) = ~1  ~2  ~176 = U/D; 
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2) the divisor of the differential ( 1 / y 2 ) . d x  is 

3 

0) (~3)~, 0) 2 
: z =  . 

17 0) "(~.3~, 0) 
i = 1  

The fact that the degree of the canonical divisor Z is 6 means that the genus of S is 
4, and the fact that D 2 = Z implies ([F-K], p. i09; see also[D-R]) that x is, up to a MS- 
bius transformation, the only function of degree 3 on S. This is equivalent to saying 
that (T1} is the only subgroup of order 3 in Aut(S) such that S/ (z~)  = Pa. 

REMARK 1.5. - For later use, we record here that the Theorem in [F-K], p. 109, 
mentioned above, also implies that the curves D~ of Example 1.3 with p = 3, (~1> and 
(z2) are the only subgroups of order 3 with quotient P< 

We start now looking for general results. 

LEMMA 1.6. - Let S be a Riemann surface and let ~, v �9 Aut (S) have same prime 
order p. Assume further that ~ and r commute and that (~} ~ (r}. Then ~ permutes the 
fLxed point set of ~, Fix (z), dividing it into a number of orbits of length p, and the ro- 
tation angles of r at the p points in the same orbit coincide. In particular the number 
of points fLxed by z is a multiple of p. 

PROOF. - Clearly since v and ~ commute, they permute the fLxed point set of 
each other. Moreover, since the stabiliser of any point is a cyclic subgroup of Aut (S) 
([F-K], p. 100), z and ~ cannot have fixed points in common for otherwise we would 
have (z) = (z}. From these facts, the proof of the lemma follows. 

LEMMA 1.7. - Let S be a Riemann surface of arbitrary genus possessing commut- 
ing automorpohisms ~, ~ of same prime order p such that S / ( J  - p1 and ~ ~ (~>. Then, 
S is isomorphic to the surface determined by an algebraic equation of the form 

yp = (x p - 1)(x p - ~ ) m  ... (x p - )~)'~ 

where the complex numbers 1, :~,  ..., ~ are all distinct and the numbers mi are inte- 
gers 1 ~< mi < p with ~ mi --- 0 (modp). 

Moreover, in this model of S z(x, y) = (x, Spy) and ~(x, y) = (~.~x, $~y) for cer- 
tain integers 1 ~< i ~< p - 1 and 0 <~ j ~< p '  1. 

PROOF. - The hypothesis clearly imply that S admits an algebraic model of the 

form 

y P = ( x - - a ~ ) d ~ . . . ( x - a ~ ) d ' ~ ;  l <<.di<p 

in which ~ is expressed as ~(x, y) = (x, ~ y ) ,  the points (ai, 0), i = 1 ... n are the flied 
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points of z and d~ is the inverse of the rotation angle of z at the i-th fixed point (see 
e.g. [Gon],w 1). 

By performing a birational transformation, we may assume that  dl = 1; and by  
Lemma 1.6 we have n = r p  for some integer  r. 

On the other  hand, since S / ( z }  - P~-via the map x - z induces an automorphisms 
~: p~ ~_>p1 of order  p. B y  normalising x so that  0, ~ are the fixed points of ~ and 

al = 1, we can assume that  ~ is the rotation Y(x) = ~ "x for some integer  1 ~< i < p .  1 
(see [J-S]). 

Le t  us suppose now that  the fixed points of ~ are numbered so that  

{(a(k- 1)p + 1, 0), ... ,(akp, 0)}, k = 1 , . . .  r 

are the r ,--orbits as discussed in Lemma 1.6. Then we must  have d(k _ ~)p + 1 = ... = dkp 

and also a(k - 1)p + 2 --~ ~(a(k - ~)p + 1 ) ~_ %~i . a(k - ~)p + ~ etc. 
Our algebraic model of S becomes 

P P P 

YP l-I (x ~i ---- - -  ~ p )  ~ [ ( X - - ~ ) ~ 2 ) r r ~ 2 . . .  ~ (X -- ~p~r)i mr, 
i = 1  i = 1  i = 1  

which is the one we were looking for. 

Finally we observe that  ~ is necessarily of the form a(x, y) (5i x = ~.p , ~Jy) for some 
integer 1 < j ~< p. This concludes the proof  of our lemma. 

PROPOSITION 1 . 8 .  - Let  S be a Riemann surface of a rb i t rary  genus and p > 2 a 
prime number; then Aut (S) possesses a p-group H of order  i> p2 genera ted  by auto- 
morphisms ~1, z2 of same prime order  p and same quotient surface S / ( z i } -  p1  

(i = 1, 2), if and only if S is isomorphic to one of the following Riemann surfaces 

Fp : yP = x P - 1 ,  

D p : y P = ( x P - 1 ) ( x P - ) , P )  p - l ,  for some ~ e C , ) ~ P ~ I .  

Moreover in both cases H is the group of order  p2 consisting of the following 
automorphisms 

v(x, y) = (E~x, ~ y )  with 1 ~< s, d ~< p .  

PROOF. - We observe that  since p-groups have non-trivial center  there  exists 
z e H,  which we can assume of order  p, commuting with r l  (and ~2). By the preceding 
lemma then, we know that  S is a surface of the form 

yp = (x p _  1)(x p _  ~ ) - ~ . . .  ( x p _  2~)mr, 

with r l ( x ,  y) = (x, ~py), ~(x, y) = ($~x, ~Jy). 

Our next step is to show that  ~2 cannot have more than 2p fixed points. In order  to 
do that, we consider on S the meromorphic function x ' z2  (composition of r2 followed 
by the x projection); since the function x has degree p, it is not hord to prove (see 
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[F-K], p. 245) that if z2 had more than 2p fLxed points, then x'~2 = x which means 
that z2(x, y) = (x, ~ y )  for some integer j; in other words we would have ~2 E (r~} and 
hence IHI = p < p2 in contradiction with our hypothesis. 

We also observe that zl and v2 have the same number of fLxed points because Rie- 
mann-Hurwitz formula is the same for both automorphism; thus by Lemma 1.6. zl 
has either p or 2p fixed points and therefore our surface S is of one of the two follow- 
ing forms 

Fp: yP = x p - 1, 

D~: yP = (x p - 1)(x p - )~p)k. 

Next assume p > 3, we claim that H = (T1 ,  o-}, that is we claim that z2 e (z~, ~}. If 
not, zl and r2 would induce on S = S/(z) automorphisms :~, ~2 which again satisfy the 
hypothesis of our Proposition for same prime number p; since the genus t7 of S has to 
be strictly smaller than the genus g of S, we must necessarily have S = Fp and S = D~ 
for some integer k (and some )~ e C). The desired contradiction is provided by the fact 
that for p > 3 the genera do not match in Riemann-Hurwitz formula for the projection 

S~SI(~)=S. 
This formula states that 

2 g -  2 -- p ( 2 ~ -  2) + (p - 1) . (#Fix(a))  

which is incompatible for p > 3 with 

2 g -  2 = p ( - 2 )  + ( p -  1)2p, 

2 g -  2 = p ( - 2 )  + (p - 1)p, 

which are Riemann-Hurwitz formulas for the projections ~ k Dp ~Dp/('~l) and Fp--~ 

rp/( 1) respectively. 
Thus we have already proved that when p > 3 the group H = (vl, v2} consists of 

the elements 

s ~zd z(x, y) = (~px, ~py) with 1 ~< s, d ~< p ; 

but by Example 1A.a in order for H to possess two distinct proper subgroups with 
quotient surface p1, we must have k =p - 1 i.e. D~ = Dp. 

As for the remaining case p = 3, the result follows from Example 1.4.b and Re- 

mark 1.5. 

We are now in position to prove Theorem 1. 

PROOF OF THEOREM 1 .  - By the uniqueness of the hyperelliptic involution (see e.g. 
[F-K], p. 102) we can assume from the begining that p >I 3. 

Let Zl, r2 be automorphisms of same prime order p, such that ( z l / ~  (z2) and 
S/(z~} - p1 (i = 1, 2), then each (z~) is contained in some p-Sylow group Hi (i = 1, 2). 
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But Sylow groups are conjugate, so there is p eAut (S)  such that v{= 
= |  . 

Now if <r;} ;~ <re> Proposition 1.8 says that S is either Fp or Dp and H = (z{, re} is 
the group described there; moreover by Examples 1.2 and 1.3 v{ and re are conjugate, 
hence v~ and re must also be conjugate. This ends the proof. 

We close this section by producing two examples showing that if in Theorem 1 the 
order of vi is not prime, or the quotient surface S/{v~} is not p1 ; then z~ and v2 need 
not be conjugate. In fact, it can be seen by using deformation theory of Riemann sur- 
faces, that this is a general phenomenon (see [Gon-Harv]). 

EXAMPLE 1.9. - Consider the hyperelliptic curve of genus 5 defined by the equa- 
tion y2 = x12 + x 6 + 1 and the following automorphisms of order 6 

vl(x, y) = (~6x, y) and v2(x, y) = (~3x, - y ) .  

One ckecks by hand that Vl, v~ and v~ have the same fLxed point set, namely 

{(0, 1),(0, -1), ~1, ~2}; 

whereas v2 has no fixed points, r~ has the same fixed point set as vl, and v~, which is 
the hyperelliptic involution, fixes the following 12 points 

{(~s, O)/k prime to 3}. 

Clearly <vl> and (z2> cannot be conjugate. On the other hand Riemann-Hurwitz 
formula implies that S/<rl> K S/<T2> ~ P~. 

Our next example is a translation of computations on reduction of abelian inte- 
grals due to Hermite (but that, in fact, going back to Jacobi and Legendre ([Her] see 
also [Kraz], p. 477)), into the language of algebraic curves. 

EXAMPLE 1.10. - Consider the hyperelliptic curve C of genus 2 with equa- 
tion 

w 2 = z(1 - z)(1 + az)(1 + bz)(1 - abz) 

and the automotphisms ~1 (z, w) = (1/abz, w/(ab)3/2z3) and v2 = J ' r l  where J stands 
for the hyperelliptic involution. Then, zl and v2 have both the same order 2 and the 
same number 2 of fLxed points. 

The quotient surfaces S/<zi> (i = 1, 2) are the elliptic curves of equations 

y2 = x(1 - x)(1 - K2x) 

respectively; where 

K =  
~g/( 1 + a)( 1 + b-) 

and y2 = x(1 - x)(1 - 12x) 

and l =  
~/(1 + a)(1 + b) 
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One sees by looking at the j-invariant that these two elliptic curves are in general 
non-isomorphic; thus ~1 and ~2 cannot be conjugate. 

2. - Moduli of prime Galois coverings of  P~. 

In this section we derive Theorem 2 from Theorem 1. First we quote from [Gon] 
some results we need; we employ the same notation as in the introduction. 

If G is a subgroup of the group of automorphisms of a Riemann surface So, we de- 
note by Mg (G) the subset of M~ consisting of points representing curves which admit 
a group of automorphisms topologically conjugate to G. We denote by/~g (G) the quo- 
tient variety lt~g (G) = Tg (G #)/Modg (G # ). One has the following results. 

(2.1) The natural surjection /14g (G) ~ Mg (G) c Mg is generically injective, and 
hence /~g (G) is the normalisation of the irreducible subvariety Mg (G). 

(2.2) Mg(G) ~ ~Ig(G), that is to say Mg(G) is not normal, if and only if there exists 
a Riemann surface S of genus g possessing subgroups G~, G2 of Aut (S), which are 
topologically conjugate to G, but not analytically conjugate to each other. 

These two facts were proved in [Gon] for the relevant case here, namely when 
G = (v0} has prime order and quotient surface P~, but clearly the proof works for the 
general case (see [Gon-Harv]). In our article [Gon] we also proved the two following 
statements. 

(2.3) Two automorphisms z~: Si ~ Si (i = 1, 2) with the same prime order p, same 
number r of fixed points, and same quotient surface S / ( z i } -  p1, are topologically 
conjugate if and only if they have same rotation angles, that is to say if and only if 
rot (Zl) = rot (z2) e D(p r). 

(2.4) Assume G = (~0} has prime order p, r fixed points, quotient surface p1 and rota- 
tion data rot (zo)= rheD(p *'). Then there exists rational functions on the 1/2p-theta con- 
stants hi: Tg(z~)~C-{O,  1} such that the curve represented by a point teT~(v~) 
is precisely (isomorphic to) yP = x'~-2(x - 1)'~-1(x - )~l(t)) "~I ... (x - ) ~ r _ 3 ( t ) )  mr-3, 

where m = ( m l ,  . . . ,  m r ) .  

Moreover the functions hi behave with respect to Modg (z~) in such a way that the 

rule 

t ~-> (Al(t), ..., A~(t)) 

induces an isomorphism/~g (zo) -2> ((C ~- 3 _ A)/Zr (m)), thus these functions hi gener- 
alise in a natural way the classical A-function of elliptic modular theory. 

Here the symmetric group S , ,  and hence the subgroups Z,(m),  acts on C " - 3 -  

as follows. 
For given ~e2:~ and ( ) , ~ , . . . , ; ~ _ 3 ) e C  ~ - 3 - A ,  form first the r-tuple 

(0, 1, ~ ,  )~1, ..., )~-8); then apply ~ to obtain (~(0), ~(1), ..., ~()~r-3)). Finally, let T: 
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C ~  C be the unique MSbius transformation that sends ~(0), ~(1), ~( oo ) to 0, 1, oo re- 
spectively. Then 

~- ( ;~1 ,  . . .  , ~ - 3 )  = ( T ( : ( ; , ~ ) ) ,  . . . ,  T(~-(;(~ ~ ) ) ) .  

We observe that ff m, m '  e D~ differ by a permutation, then the corresponding 
subgroups Z,.(m), Zr(m') are conjugate, thereby inducing natural isomorphisms 
((C r=~ -A)/2~(m))-7~((C ~-3 - J ) / Z ~ ( m ' ) ) ;  thus in Theorem 2 part ii), it is irrele- 
vant which representative m of ~t e D(p ~) we choose. 

PROOF OF THEOREM 2. - Part i) By (2.3) M~(m) = Mg(vo) for ~h = rot (~o) and by 
Theorem 1 all these varieties are disjoint. 

Part ii) Theorem 1 along with (2.1) and (2.2) implies that M~(m)= ff/l~(zo)= 
= Tg(~) /Modg( r~)which  by (2.4) is isomorphic to ((C ~ - 3 -  A)/Zr(m)). 

Finally Part  Hi) is a consequence of Parts i) and ii). 

REMARKS. - 1) In those terms the meaning of Example 1.9 is that if we do not re- 
quire the order p to be prime, two subvarieties Mg ((zl)), Mg ((v2}) may intersect with- 
out coinciding. In fact it can be seen using 0.I and 2.1 that in this case Mg((zl}) = 
= Mg((~l, z2)) has dimension 1, Mg((z2)) has dimension 3 and Mg((z~)) c_M~((~2)). 

2) On the other hand Example 1.10 provides according to (2.2) an instance in 
which Mg (z) ~ 7t~g (z) because although zl and z2 are not analytically conjugate, they 
are by (a generalisation of) (2.3)-see [Gue]-topologically conjugate. In fact (see [Gon- 
Harv]) this is a general phenomenon. 

3) The number of irreducible (or even connected) components of M~ ~ = 
/)(r)  = U M~ (~h), that is to say the integer ar = - - -p  , can be read of from Lloyd's ([Llo]) 

generating function 

p 1 [  [ ( 1 - x ) p  -1 ( 1 - x p )  zt'=p-i ( l - x / ) / '  ' 
1~1 

where ~ is the Euler function. For instance for p = 2, we obtain 

as it should be. 

ar 
f0, for r odd | 

l 1, for r even 

4) While the language adopted throughout this paper is that of complex ana- 
lytic geometry, it may be noted that since Mg is known to be a quasi-projective vari- 
ety, our results remain valid within the framework of complex algebraic geometry. 
Namely, each M~ (m) is also an irreducible algebraic subvariety of Mg by Chow's The- 
orem ([Gra-Rem], p. 184). 
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3. - The re la t ionship  between Modg(G) and  Modg. 

The aim of this final section is to prove Theorem 3. Clearly the subgroups of Mod~ 
conjugate to (z0 ~ > are in one-to-one correspondence with the cosets of Modg module 
Modg (z~), hence the three statements in Theorem 3. are equivalent and it is enough 
to prove that  the family { f . z ~ . f - ~ / f ~  Modg} contains infinitely many elements. 

N O T A T I O N .  - Let  z be an automorphism of a Riemann surface S of genus g I> 2; we 
denote hy z* and z .  the induced automorphisms of the complex vector spaces 
H ~  ~ )  and H1 (S, C) respectively. We denote by E . . ( r .  ) the eigenspace of some 
t~ e C previously fixed. 

LEMMA 3.1. - Let  ~, z '  be automorphisms of Riemann surfaces S, S '  conjugate by 
means of a homeomorphism f: S ~ S '. Then for any t~ e C, f ,  : H1 (S, C) ~ H1 (S, C) 
maps E ~ , ( z . )  onto E~( r , ) .  

PROOF. - The result is a consequence of the identity f . . r . . f , ~  = ~ , .  

LEMMA 3.2. - If  z has prime order and z* has only one eigenvalue ,~ ~ C; then ei- 
ther ~ = I and r is the identity, or ,~ = - 1 and T is the hyperelliptic involution. 

PROOF. - Let  v ~ identity have order p, then it is known (see e.g. [F-K]. V) that  z* 
can be diagonalized and that  its eigenvalues are p-th roots of unity. Now if v* has only 
one eigenvalue t~, that  is to say if the complex dimension of the vector space E ,  (z*) is 
g, then Lefschetz Fixed Point Theorem reads (see [F-K]. V) 

g(/z + ~) = 2 - N ,  

where ~4 is the complex conjugate of f~ and N is the number of fixed points of r, hence 
an integer; we see that  this equation is only possible if the p-th root of unity t~ is 1, 

-1 ,  or a cubic root of unity. 
Now, it is known that  the dimension of E1 ( r*)  is precisely the genus ~ of the quo- 

tient surface S = S/<~} ([F-K], V, p. 254). 
Since for g I> 2 we must  have t~ < g, we conclude that  the case t~ = 1 is impossible 

(this conclusion can be also derived directly from Lefschetz's Formula above). 
On the other hand if ~ = - 1, then p = 2, N = 2g + 2, and hence z is the hyperet- 

liptic involution ([F-K], p. 245). : 
Finally we consider the case in which p = 3 and ~ a cubic root of unity. Clearly, we 

must have ~ = 0, for otherwise 1 would also be an eigenvalue. Thus, writing matters  
in algebraic terms as we did in w 1, we find that, S has algebraic equation 

y3 = (x  - c, ) ... (x  - c~)(x - c~ +1) ~ ... ( x  - cl + ~) 2, 

where we can assume that  1 + 2s is prime to 3 so that  the curve has preciselly one 
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point at infinity; and that the automorphism z has the expression z(x, y ) =  
= (x, ~ y). 

Moreover, it is not hard to check that the divisors of the differentials d x / y  and 
(x  - c ~ §  

... (x - c~+~)dx/y ~, are (c~, 0) ... (ct, 0) ~ t + ~ - 4  and (c~+ ~, 0)...  (c~+ ~, 0) ~ + ~ - ~  re- 
spectively. Since we are assuming that g = l + s - 1 t> 2 and 1 + s ~ 3, we must have 

+ s i> 4 which implies that both 1-forms are holomorphic. Not only that; we also ob- 
serve that these l-forms are eigenvectors of ~* with distinct eigenvalues ~ and ~ re- 
spectively. This completes the proof of the lemma. 

PROOF OF THEOREM 3 .  - By Lemma 3.1 it is enough to construct a sequence of home- 
omorphisms f~: S o ~  So, n e Z ;  such that for some lz ~ C, fj~l. "fn. (E~(zo.)) ;~ E~(':o) 
wherever n ~ m. 

We can assume that our automorphism Zo: So ~ So is not the hyperelliptic involu- 
tion because in this case the result is known ([Krav]). 

Let {ai, bi } i = 1, ... g; be a symplectic basis of i l l  (S, Z) and let z = ~ ziai + wibi 
be an eigenvector of r0. with eigenvalue/z ~ C. Here zi, wi are complex numbers with, 
say, Wl ~ 0. 

We note that for at least one of the a-loops we have ak r E ,  (Zo.) for otherwise all 
the elements of the dual basis for the holomorphic l-forms v~, ..., vg, would satisfy 
z*(v i )  = [~v.~ in contradiction ith Lemma 3.2. We assume that k is the first index for 
which this occurs. 

For each n e Z, let fn be a homeomorphism of So such that fn.  acts on the cycles 
ai, bi ; i = 1, ... g; as follows fn. (bl) = nak + bl, f~. (bk) = n a l  + b~, and fn.  is the identi- 
ty for the other cycles of the canonical basis. Such a homeomorphism exists because 
f~, is symplectic and it is wellknown that the natural map from Modg into the sym- 
plectic group Sp (g, Z) is surjective (see e.g. [Bir-Hil 2]). We observe that the follow- 
ing relations are satisfied fro. "f~. = f~ + m. and f j .1  = f_~.. 

Therefore we have f,~.l.f~. (z) = c r + w l ( n - m ) a k + w k ( n - m ) a l ,  and z0. (f~l..f~:.~ (or)) = 
= l.~z+ Zo.((n - m ) w l a k  + (n - m)wka~).  

We would like to show that f,~, 1 .f~. (~) does not lie in E~ (to.), or equivalently that 
= (wlak + wkal)  ~ E~ (~o,). 

Now if k = 1, al ~t E~ (zo,) and therefore ~ = 2wl al ~t E~ (zo,), and if k > 1 then 
a l e  E~ (Zo,) but ak ~t E~ (Zo,) and the same argument works. This completes the proof 
of Theorem 3. 

REMARKS. - 1) We have shown that the index of Modg(z0 ~ ) in Modg is infinite for 
z0 of prime order, without any restriction on the quotient surface S/(zo}; since any 
non-trivial finite group G contains elements of prime order, we have proved that the 
same statement holds for all Modg (G) except for the case, of course, when S has genus 
2, and G is the group generated by the hypere]liptic involution J (for in this case, it is 
wellknown that Mod2(J #) = Mod2), and also when g = 2 and G is such that J is the 
only element of prime order in G. 
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Now one sees (see e.g. [Rau]) that  the only occurrence of the last phenomenon is 
when S is one of the two curves w e = z 6 - 1 or w 2 = z 5 - z for which the 1-forms dz/w,  
dz /w 2 afford a basis for H ~ (S, t~), and it can be checked by hand that  in both cases all 
possible automorphisms z such tha t  ~2 is the hyperetliptic involution have again dis- 
tinct eigenvalues. Thus the s ta tement  of Corollary 3.I. holds. 

2) When p = 2, the uniqueness of the hyperelliptic involution implies that  two 
copies hi(Tg(z0~)), h i e M o d g  (i = 1, 2) are either disjoint or coincide and in fact 
Kravetz ([t@av]) uses this observation to prove that  in this case there  are infinitely 

many of them. This does not happen again; the fact tha t  for p > 2 a Riemann surface 
may admit two distinct subgroups (z0), (r~} analytically conjugate by means of ~, 
means that  the subvarieties Tg(z~) and ~#(Tg( r~ ) )  do intersect. 
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