
Algorithmica (1991) 6:840-858 Algorithmica
@) 1991 Springer-Verlag New York Inc.

Divided k-d Trees

Marc J. van Kreveld I and Mark H. Overmars 1

Abstract. A variant of k-d trees, the divided k-d tree, is described that has some important advantages
over ordinary k-d trees. The divided k-d tree is fully dynamic and allows for the insertion and deletion
of points in O(log n) worst-case time. Moreover, divided k-d trees allow for split and concatenate
operations. Different types of queries can be pertbrmed with equal or almost equal efficiency as on
ordinary k-d trees. Both two- and multidimensional divided k-d trees are studied.

Key Words. k-d tree, Divided k-d tree, Range searching, Dynamization, Splitting, Concatenating.

1. Introduction. k-d trees were defined by Bentley [2], [3-1 as an alternative for
quad-trees [5-1 for storing points (and other objects) in the plane and higher-
dimensional space. The structure is based on a division of the space into rectangles
of decreasing size. Both quad- and k-d trees are often used in computer graphics.
See Samet [15] for a bibl iography of over 250 papers written on these and related
structures.

A k-d tree is a binary tree that is constructed as follows: Choose a value v that
will be stored at the root of the tree. It splits the set of points to be represented
in two subsets, based on the value of the first coordinate of the points. The two
subsets will be stored in the two subtrees below the root. In both subsets a value
is again taken with which the set is split, but this time with respect to the second
coordinate. The four subsets that are obtained are split on the first coordinate
again, and the alternation continues until there is only one point in the set. Then
a leaf with this point is added. Thus the root node splits the point set on the first
coordinate, the two nodes on the second level on the second coordinate, the four
nodes on the third level on the first coordinate and so on. Figure 1 gives an
example of a point set and how it can be split for a k-d tree.

k-d trees are used in particular for part ial-match and range-searching problems.
In this paper we concentrate on the more general range-searching problem:

DEFINITION 1. Given a set S of points in the plane~ and an axis-parallel rectangle
R = [a l : b l] x [a2: b2] (a range), an (orthogonal) range query with R asks for all
points p = (Pl,P2) in S with al -< Pl -< bl and a z <_ P2 < b2.

1 Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The
Netherlands.

Received December, 1988; revised November, 1989. Communicated by David Dobkin.

Divided k-d Trees 841

� 9

3 � 9

�9 1

5 �9

2 �9

I0 �9
11 @

9 o
o 7

~

o 6

3 4 6 7 8

\ 10 11

9

Fig. 1. A k-d tree.

In graphics terms, a range query corresponds to a windowing problem in which
we ask which part of a scene is visible inside a rectangle. In windowing problems
the scene normally consists of more general objects than points. In this paper
however we concentrate on sets of points (although k-d trees can also store other
types of objects).

On k-d trees, range queries can be answered in O(,~nn + k) time, where n is the
number of points in the k-d tree and k is the number of answers to the query. The
structure uses only linear storage. Other structures have been proposed for
solving range queries (see, e.g., [4], [9], [13], [16], and [-17]) but all these structures
require more than linear storage. Moreover, these structures and their algorithms
are much more complicated.

A major problem of quad- and k-d trees is that it seems time consuming to keep
them balanced when points are inserted or deleted. Unfortunately, the query time
grows quickly when the structure gets out of balance. Some partial solutions
to this problem are given in [6] and [14]. In [12] Overmars and van
Leeuwen introduced pseudo k-d trees, on which for any ~, 0 < e < 1, updates
can be performed in O((1/~)log 2 n) amortized time, and range queries take
O(nl/(21~ w o r s t - c a s e time. (For decreasing e, this approximates

o(,f + k).)
In this paper we introduce another variant of k-d trees, the divided k-d tree, that

is fully dynamic and allows for insertions and deletions of points in �9 n)
worst-case time. The time for range queries in the worst case becomes

O(x/n log n + k), which is better than the pseudo k-d tree.
The divided k-d tree as we describe it is based on a 2-3 tree rather than a binary

tree (although, e.g., an AVL-tree could be used as well). We assume the reader is
familiar with 2-3 trees (see, e.g., [1] or [7] for a description). It again divides the
plane in rectangles but the splitting is performed in a different way. First only the
second coordinate is split. Later only the first coordinate is split. This gives the
structure flexibility that can be used when performing updates.

The paper is organized as follows.

842 M.J. van Kreveld and M. H. Overmars

In Section 2 the two-dimensional divided k-d tree is introduced, and the
algorithms for exact-match queries, range queries, insertions, and deletions are
given. Also, time and storage bounds are proved.

In Section 3 we concentrate on split and concatenate operations. By introducing
a concatenable environment we can perform such operations efficiently. Splits and
concatenates can be performed on both coordinates. In this way we can, for
example, obtain a k-d tree of the points inside a window, a useful operation if we
want to perform further queries on such a subset.

In Section 4 we generalize the two-dimensional divided k-d tree to multi-
dimensional space. It is shown that again updates can be performed in O(log n)
time.

In Section 5 a concatenable environment is described such that higher-dimen-
sional divided k-d trees can be split and concatenated on all coordinates.

Finally, in Section 6 we give concluding remarks and open problems.

2. Two-Dimensional Divided k-d Trees. In a normal k-d tree, levels that split on
the first coordinate and levels that split on the second coordinate alternate. In a
divided k-d tree, the upper levels split on the second coordinate only and the lower
levels split on the first coordinate only. We call these upper levels the upper
tree, and a subtree in the lower levels is called a lower tree. In the plane, the upper
tree divides the point set in a number of horizontal slabs, of which the points are
stored in the lower trees, every lower tree being sorted on the first coordinate (see
Figure 2).

If there are many points with equal-valued second coordinates, a balanced
division in horizontal slabs may not always be possible. This problem can be
solved by using the lexicographical ordering to split in the upper tree (with the
second coordinate as the most-significant coordinate). In this way the tree becomes
balanced again and all operations described below can be performed in exactly
the same way. Hence, in the following we can assume that no two points have
equal-valued first or second coordinates.

DEFINITION 2. A two-dimensional tree, representing a set S of n points in the
plane, is a divided k-d tree if and only if the tree consists of an upper tree, which
divides the point set on the second coordinate, and with each leaf of the upper

0 9

�9 10

O l l

�9 12

0 6

0 5 0 7 O 8

0 1 0 3

0 2 0 4

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2

Fig. 2. A divided k-d tree.

Divided k-d Trees 843

tree a lower tree, which divides the point set on the first coordinate, and which
stores the points of the set S in the leaves. Furthermore, the following balancing
conditions must hold:

�9 The upper tree is a balanced search tree and contains at most 2 ~ leaves.

�9 Every lower tree is a balanced search tree and contains at-most 2x/~ log n leaves.

From this definition it follows that the upper tree has size | n), and

lower trees have size O(x/n log ni, but it is possible that a lower tree contains only
one point. It may seem strange to use an unequal division in upper and lower
trees, but as we will show, it leads to the best results. For the upper and lower
trees we use 2-3 trees.

2.1. Queries. We first show how to perform exact-match and range queries on
a divided k-d tree.

Exact match query(T, p)

1. Search with P2 in the upper tree of T, ending in a leaf 6 of the upper tree.
2. Continue the search with Pa at ~ through the corresponding lower tree, ending

in a leaf 7.
3. If ~ contains p, then p is present, otherwise it is not.

LEMMA 1. On a divided k-d tree, storing n points in the plane, an exact match query
can be performed in O(log n) time.

PROOF. Because both the upper tree and the lower tree we visit are balanced
trees, the path we follow is of length O(log n), which proves the lemma. []

Next the algorithm for a range query with range [a l :b l] x [a2: b2] is given.

Range query(T, [a l : bl] • [a2: b2])

1. Search with a 2 and b 2 in the upper tree of T, ending in two leaves 6a2 and 6b~
of the upper tree.

2. Traverse the lower trees corresponding to 6az and 662, and report every point
that lies in the range.

3. For all leaves 6 of the upper tree that lie between 6~2 and 6b~ (possibly none),
perform a one-dimensional range query with [a l :b l] on the corresponding
lower tree.

LEMMA 2. On a divided k-d tree, storing n points in the plane, a range query

can be performed in O(x/n log n + k) time, where k is the number of points
reported.

PROOF. We first prove the correctness of the algorithm. For all lower trees
stored with leaves to the left of 6,2 or to the right of 662, the points they store

844 M.J. van Kreveld and M. H. Overmars

do not have their second coordinate in the range. For the lower trees stored
with 6a, and 6b2, we do not know whether the second coordinate of the points
they contain lies in the range, thus we perform a complete traversal and report
the correct answers. For all lower trees stored with leaves between 6,2 and 662,
the second coordinate of the points they contain lies in the range, thus we can
perform a one-dimensional range query on the first coordinate on them.

Following the paths through the upper tree takes O(log n) time, because the

upper tree is balanced. The complete traversal of the lower tree(s) takes O(x/-n- ~ n)
time, because this is a bound on the maximal size of a lower tree. Performing a
one-dimensional range query on a lower tree takes O(log n + k') time, because we
only follow one path and then start reporting answers. As there are at most

2 ~ n leaves in the upper tree, we perform at most 2 ~ n - 2 one-

dimensional range queries, giving a total time of O(x/nlog n + k). []

REMARK. Notice that for any other division in upper trees and lower trees a
range-query time bound would be obtained that is worse than the one proved
above.

REMARK. We have seen that the range-query time for well-balanced k-d trees is
slightly better than for divided k-d trees. However, for a dynamic k-d tree the

range-query time is O(n 1/(21~ + k)= O(,,/nl+e + k) for a small positive 6,

and this is asymptotically worse than O(x/n log n + k) for any positive 6.

REMARK. A disadvantage of the method described above is that the query time

will generally be f~(xfn log n) because we always traverse one or two lower trees
completely. An easy improvement is to search in these lower trees with the
range [al: bl] and for each answer found check whether it lies in the whole range.
For small ranges especially this improves the query time considerably (although
the worst case remains the same).

2.2. Insertions and Deletions. Next we show that divided k-d trees allow for
insertions and deletions in O(log n) time amortized, which is superior to the
update time bounds of range trees (see, e.g., [17]), quad-trees, and normal k-d
trees. The amortized time bounds can be changed into worst-case time bounds,
as we will show.

The insert and delete algorithms are given below.

Insert(T, p)

1. Search with P2 in the upper tree to determine the lower tree in which p must
lie.

2. Insert p in this lower tree using the standard algorithm for inserting in 2-3 trees.
3. If necessary, rebalance.

Divided k-d Trees 845

Delete(T, p)

1. Search with P2 for the lower tree of T in which p must lie.
2. Delete p from this lower tree using the standard deletion algorithm for 2-3 trees.
3. If the lower tree has become empty, then delete the corresponding leaf from

the upper tree using the standard deletion algorithm.
4. If necessary, rebalance.

Inserting a point and deleting a point without rebalancing can be done in
O(log n) time, because the standard insertion and deletion algorithms on 2-3 trees
take O(log n) time.

To keep the tree balanced two different methods of rebalancing are used
simultaneously. When a lower tree becomes large, the point set it represents is
split in two subsets and two new lower trees are made.

Divide lower tree(L)

1. Read all points from L maintaining the order on the first coordinate, and
dispose of L.

2. Find the median of the second coordinates of the points, and divide the set
accordingly in two ordered sets of equal size.

3. For each ordered set, build a lower tree and add it to the upper tree.

Clearly, the operation will take time O(x/n log n) (because the number of points

involved is O(x/n log n) and the algorithm takes linear time in the number of
points).

The second way in which we rebalance is rebuilding the whole tree. In this case

we reconstruct the tree such that the upper tree has ~ n leaves and each lower

tree contains x/n log n points.

Rebuild(T)

1. Read all points from T and dispose of T.
2. Sort all points on the second coordinate.

3. Let n be the total number of points. Repeatedly take the first [- ~ n 1 points
of the sorted set, and build a lower tree of the subset (ordered on first
coordinate). Do the same with the remaining points.

4. Build an upper tree on the lower trees, choosing the correct splitting values for
the internal nodes.

Rebuilding takes O(n log n) time.
Next we show when rebalancing is performed, and that this choice leads to

divided k-d trees which are always balanced. Assume at some moment in time we
reconstruct the whole tree and let n o be the number of points in the set at that
moment. We rebuild the whole tree after �89 o insertions or �89 o deletions have
taken place. Moreover, we split a lower tree when, as a result of an insertion in
it, its size becomes larger than ~x~o log n o.

846 M.J. van Kreveld and M. H. Overmars

LEMMA 3. Each lower tree will have size at most 2 ~ n.

PROOF. Each lower tree will have size < ~ x / n 0 ~ n o . Moreover n > 2n o, i.e.,
s 3 2x/-n log n. n o < ~n. Hence, the size will be < ~ / ~ n log(3n) < []

LEMMA 4. The upper tree will have at most 2 x / ~ n leaves.

PROOF. The upper tree had ~ n o leaves after rebuilding. There have been

at most �89 insertions since. Each lower tree had size x/no log no. To add a leaf to

the upper tree there must have been -s5 ~ no - ~ no = ~x~oo log no in-

sertions in some lower tree. As a result there can be at most (� 8 9 0 log no) =

5x/no/log no new leaves in the upper tree. Hence, the upper tree will have less than

(1 + ~) ~ n o _ < (1 + ~ -) ~ < (1 + ~) x ~ 2 - 3 2 ~ < 2 ~ leaves.
[]

These two lemmas show that the tree indeed remains balanced. It remains to
show that the amortized rebuilding time is small.

LEMMA 5. The amortized rebuilding time is O(log n) per insertion and deletion.

PROOF. There are two types of rebuilding, rebuilding of the whole tree and
rebuilding of a lower tree. When we rebuild the whole tree f)(no) = f~(n) updates
have taken place since the last rebuilding. We charge the rebuilding cost to these
updates. As rebuilding takes time O(n log n) this is O(log n) per update. When we

rebuild a lower tree, at least -~x~oo log no insertions have taken place on it. As

rebuilding takes time O (~ o log no) this is O(1) per insertion. []

This leads to the main result of this section:

THEOREM 1. There exists a two-dimensional tree, the divided k-d tree, for storin9 a
set of n points in the plane, such that exact match queries take O(log n) time, range

queries take O (x / - ~ n + k) time (where k is the number of points reported), and
insertions and deletions can be performed in O(log n) amortized time. The tree uses
O(n) space to store and it takes O(n log n) time to build.

PROOF. Follows from Lemmas 1, 2, and 5. []

2.3. Worst-Case Bounds. The amortized insertion and deletion time bounds of
Theorem 1 can be changed into worst-case time bounds with the general technique
of global rebuilding, introduced by Overmars and van Leeuwen in [11], also
described in [10]. We do not describe the technique here, but we give the theorem
that we use to obtain worst-case time bounds.

Divided k-d Trees 847

THEOREM 2. Given a tree T representing n points with rebuilding time bounded by
O(n log n) that allows for weak insertions and for weak deletions, we can dynamize
it into a structure T' such that

�9 the insertion time on T' is O(WI r (n) + log n);
�9 the deletion time on T' is O(WD r (.n) -t- log n);
�9 the query time and amount o f storage space used do not change asymptotically.

(WI T (n) and WD T (n) are the weak insertion time and weak deletion time for a tree
T representing n points. An update is called weak if there exists an c~, 0 < a < 1,
such that after ~. n updates, all time and storage bounds of the structure have not
increased asymptotically.)

We cannot apply this theorem directly, because lower trees can become large

within o(n) updates. Remember that it took f~(x/n log n)updates in a lower
tree before it could become large. We first apply Theorem 2 to each lower tree,
so that an update on a lower tree will be a weak update on the whole tree. Now
we can apply Theorem 2 to the divided k-d tree, and obtain the following result.

THEOREM 3. There exists a two-dimensional tree, the divided k-d tree, for storing
a set o fn points in the plane, such that exact-match queries take O(log n) time, range

queries take O(x~l l~g n + k) time (where k is the number of points reported), and
insertions and deletions can be performed in O(log n)-time worst case. The tree uses
O(n) space to store and it takes O(n log n) time to build.

3. A Concatenable Environment for Divided k-d Trees. We now concentrate on
splitting and concatenating divided k-d trees on the second and first coordinate
(or equally, with horizontal and vertical lines, respectively). It is clear from the
structure that splitting and concatenating on the second coordinate will mainly
involve the upper trees, because the nodes in the upper tree divide the point set
in the plane on the second coordinate. Likewise, splitting and concatenating on
the first coordinate mainly involves the lower trees.

As the upper and lower trees of divided k-d trees are 2-3 trees we can use the
standard algorithms for splitting lower and upper trees in O(log n) time. Splitting
on the second coordinate would require splitting the upper tree and rebuilding
one lower tree completely, namely the lower tree that corresponds to the leaf of
the upper tree in which the search path to the splitting value ended. Splitting on
the first coordinate requires splitting all lower trees. These can be added to two
copies of the upper tree. Concatenating on the second coordinate only requires
concatenating the top trees. But concatenating on the first coordinate is not that
simple. The problem is that the upper trees of the two divided k-d trees to be
concatenated are not necessarily equal, and consequently the lower trees of the
two divided k-d trees do not correspond one to one such that they can be
concatenated. Figure 3 illustrates the problem that occurs when the horizontal
slabs that arise from the upper trees do not coincide.

848 M.J . van Kreveld and M. H. Overmars

o

Fig. 3. Problem with concatenating on first coordinate.

Besides this problem, another difficulty arises in keeping the upper and lower
trees balanced. Splitting on the second coordinate, for example, can divide the
upper tree in two upper trees of size 1/k and (k - 1)/k times the number of nodes in
the original upper tree, for any k. This implies that for every divided k-d tree with
n points, there is a way to split on second coordinate such that the resulting tree
has f~(n) points and is out of balance. Restoring the balance will take too much
time to make splitting efficient.

To overcome these difficulties, we require that all upper trees of divided k-d
trees that can be involved in splitting and concatenating, will divide the plane in
the same horizontal slabs. To impose balance, we relax the balance conditions
and let n be the total number of points in all divided k-d trees rather than in an
individual k-d tree. We construct one balanced divided k-d tree (called MAIN)
that contains all the points. This tree defines the way in which the upper trees of
all the other k-d trees split the plane. (The points stored in the lower trees of course
differ from tree to tree.) As a consequence, time bounds will not be expressed in
the number of points in the tree itself, but in n, the number of points in all divided
k-d trees. If a tree to be split has | points, it does not matter that the time
bounds are expressed in n, because this is also a tight bound on the size of the
tree itself. But for small trees time bounds can be rather bad. We call the collection
of divided k-d trees that can be split and concatenated with each other a
concatenable environment for divided k-d trees.

DEFINITION 3. A concatenable environment for two-dimensional divided k-d
trees, representing a set S of n points (in the plane) in k trees, consists of the
following:

�9 A balanced divided k-d tree MAIN, representing all n points. Let the lower
trees of M A I N be B1 B,,.

�9 Divided k-d trees T 1 , Tk, for which the lower trees are 2-3 trees, the upper
trees are 2-3 trees, but the divided k-d trees themselves are unbalanced. The
trees form a partition of the n points. Every tree Tj, 1 _< j _< k, has lower trees

Divided k-d Trees 849

Blj , Bmj, such that a point p is in a lower tree Bij if and only if p is in both
Bi and Tj (1 < i _< m). Only nonempty lower trees B~i are stored.

�9 With every lower tree B~ of MAIN (1 < i _< m), an extra tree C~ is stored with a
reference to every lower tree Bij that is not empty.

Thus every divided k-d tree is partitioned in the same lower trees as MAIN
is. We could also say that every lower tree B~ is partitioned in the lower trees
Bil B~k, situated in the trees T 1 Tk, respectively. Because we keep MAIN
balanced with the balancing conditions of divided k-d trees, the unbalanced divided
k-d trees Tj are also in a way balanced (they can never be worse than MAIN).

The extra trees C will not influence the bound on the amount of memory
used by the environment, because the extra tree cannot be larger than the lower
tree of MAIN it is stored with.

See Figure 4 for an example of a concatenable environment.

LEMMA 6. An exact match query on a divided k-d tree in a concatenable environ-

ment with n points takes O(log n) time, and a range query takes O(x/n log n + k)
time, where k is the number o f points reported.

PROOF. This follows easily because no divided k-d tree in the concatenable
environment can have a lower tree or upper tree bigger than the corresponding
lower tree or upper tree of MAIN, and MAIN is balanced. []

~ 3 1
B21

/ ~ C3 C 4

Bll B12 B13 B21 B22 B23 B31 B32 B42 B43
B32

B 13 BZ3 B43

Fig. 4. Example of a concatenable environment.

850 M.J. van Kreveld and M. H. Overmars

When we update a tree Tj, we also perform this update on MAIN. Only the
updating of MAIN may cause rebuilding. The algorithms for inserting, deleting,
and rebalancing are given below.

Insert(Tj, p)

1. Insert p in MAIN as described in the previous section, but without rebalancing.
Let the updated lower tree of MAIN be Bi.

2. If there is no lower tree Bij yet in Tj, then add a leaf for this lower tree to the
upper tree and add a reference to B~j in C~.

3. Insert p in the lower tree B~j.
4. If necessary, rebalance.

Delete(Tj, p)

1. Delete p from MAIN as described in the previous section, but without
rebalancing.

2. Delete p from Tj. as described in the previous section, but without rebalancing.
If the lower tree Bij has become empty, then delete the corresponding leaf from
the upper tree and delete the reference to this lower tree from C~.

3. If necessary, rebalance.

Divide lower tree(Bi)

1. Divide B i as described in the previous section, obtaining lower trees B'i and
B'i'. Let z be the median found.

2. For every lower tree B~j to which there is a reference in C~, divide Bij using z as
the splitting value into B'zj and B'i}.

3. Build new trees C'~ and C'~' with references to the lower trees B'zj and B~} (if they
are not empty), respectively.

Rebuild(MAIN)

1. Rebuild MAIN as described in the previous section.
2. Make C 1 , Cm, empty.
3. For every tree Tj, 1 < j < k, do the following:

�9 Let T~ be an initially empty tree (for the points in Tj).
�9 For every point p in T j, search in the upper tree of MAIN to decide in

which lower tree B~j of T~ it must be stored. If this lower tree is not present
yet, then add a leaf to the upper tree of T~ for this lower tree, and add to C i
a reference to this lower tree. Insert p in the lower tree B'i;.

�9 Dispose of Tj.

LEMMA 7. Insertions and deletions on a divided k-d tree in a concatenable
environment with n points take O(log n) time.

PROOF. As in the previous section, a lower tree is divided when the corresponding

lower tree of MAIN, as result of an insertion, contains more than ~x/noo log n o
points (again, n o is the number of points with which the concatenable environment

Divided k-d Trees 851

was rebuilt the last time). Also, rebuilding takes place after �89 insertions or �89
deletions. The amortized rebalancing time is again constant. In the same way as
in the previous section, the amortized bounds can be changed into worst-case
bounds. []

Next we show how divided k-d trees in a concatenable environment can be split
and concatenated both on the first and the second coordinate.

Split2(Tj, T), T~', s) (split Tj on the second coordinate with splitting value s)

1. Split the upper tree of Tj with s using the standard splitting algorithm for 2-3
trees, resulting in the upper trees for T) and T].

2. Let B~ be the lower tree corresponding to the leaf in which the splitting path
ended. Divide Bq with splitting value s by traversing it completely, and build
two new lower trees B'ij and B'i~.

3. Add B'ij as the rightmost lower tree of T) and add BI} as the leftmost
lower tree of T'~}.

4. Delete the reference to Bij from C~, and add references to B'~j and B'~} (if
they are not empty).

Coneatenate2(Tj, Tz, Tq) (concatenate T i and T I on the second coordinate, where
Tj contains the points with the smaller values for the second coordinate)

1. Concatenate the upper trees of Tj and Tz using the standard concatenating
algorithm for 2-3 trees, resulting in the upper tree for T o.

2. Let B~j be the rightmost lower tree of Tj, and let B~,z be the leftmost lower tree
of T~. If i = i', then make one new lower tree by merging the points in B~j and
Bi,~, delete from C~ the references to B~j and B~,~, and add to Cg a reference to
the new lower tree.

LEMMA 8. A divided k-d tree in a concatenable environment, containing n points,

can be split on the second coordinate in time O(x/n log n), and two divided k-d trees

can be concatenated on the second coordinate in time Ox/n log n).

PROOV. Splitting the upper tree with the standard algorithm takes O(log n) time,
the deletion and insertions on Ci take O(log n) time, and dividing the lower tree

can be done in O(x/n log n) time. The time bound for concatenating can be proved
in a similar way. []

Splitl(Tj, T~, T~', s) (split Tj on the first coordinate with splitting value s)

1. Split all lower trees of Tj with s using the standard splitting algorithm, resulting
in a number of lower trees for T~. and a number of lower trees for T~'.

2. Build new upper trees for T) and T~'.
3. For every tree Ci, 1 < i < m, delete the reference to the lower tree of Tj (if it was

not empty), and add references to the resulting lower trees of 7") and T~'
(if they are not empty).

852 M.J. van Kreveld and M. H. Overmars

Concatenatel(Tj, Tt, Tq) (concatenate T~ and Tl on the first coordinate)

1. For every two corresponding lower trees Bij and Bit of Tj and Tz, respectively,
concatenate them using the standard concatenating algorithm.

2. Build a new upper tree for all lower trees (either resulting from concatenation
or not).

3. For every tree Ci, 1 N i _< m, delete the references to the lower trees of Tj. and T~,
and add a reference to the lower tree of Tq (if it is not empty).

LEMMA 9. A divided k-d tree in a concatenable environment, containing n points,

can be split on the first coordinate in time O(x/n log n), and two divided k-d trees

can be concatenated on the first coordinate in time O(x/n log n).

PROOF. There are O (~ n) lower trees to be split, which takes in total

O (~ n) x O(log n) = O(x/n log n) time. Building the upper tree can be done in

O (~) time, and the updates on the extra trees take O(,,/n log n) time. The
bound for concatenating can be proved in a similar way. []

We summarize the main results of this section in the following theorem.

THEOREM 4. In a concatenable environment for divided k-d trees, containing in
total n points, insertions and deletions on a divided k-d tree can be performed in
O(logn) time, exact-match queries take O(logn) time, range queries take

O (x / ~ ~ + k) time (where k is the number of points reported), and divided k-d

trees can be split and concatenated on the first and second coordinate in O(x/n log n)
time. The environment uses O(n) space to store.

PROOF. Follows from Lemmas 6-9. []

4. Higher-Dimensional Divided k-d Trees. The d-dimensional divided k-d tree is
a generalization of the two-dimensional divided k-d tree. The first levels split the
point set to be represented on the last coordinate, the next levels on the penultimate
coordinate, and so on to the last levels, which split the point set on the first
coordinate.

DEFINITION 4. A d-dimensional tree (d > 1), representing a set S of n points in
d-dimensional space, is a (d-dimensional) divided k-d tree if and only if the tree con-
sists of an upper tree, which is a balanced search tree with at most 2n lid log- lid n
leaves, and in which the internal nodes split the point set on the last (dth)
coordinate. Each leaf corresponds to the root of a (d - 1)-dimensional divided
k-d tree with at most 2n ~ -~/d 1ogl/a n points, restricted to their first d - 1 co-
ordinates.

Divided k-d Trees 853

A one-dimensional divided k-d tree is an ordinary balanced search tree.
As in the two-dimensional case, we use an unequal division in layers. The

one-dimensional divided k-d trees of d-dimensional divided k-d tree with n points
have size O(n lid log 1-1/d n), and the upper trees of all c-dimensional divided k-d
trees (1 < c _< d) are of size O(n lid log- 1/~ n). A subtree rooted at the root of a
c-dimensional divided k-d tree contains O(n old log ~ -c/e n) points. For all balanced
search trees we use 2-3 trees.

An exact-match query on a d-dimensional divided k-d tree (d > 2) can easily
be performed by searching in the upper tree to find the lower tree that may contain
the query point, and continuing the search in that lower tree.

To perform a d-dimensional range query with [al : bl] x ... x [-ad: bd'], we follow
the paths through the upper tree to a d and bd, ending in the leaves La~ and Lbd. If
La~ = Lb~, then we traverse the whole lower tree rooted at this leaf and report
the points that lie in the range. Otherwise, we traverse the whole lower trees rooted
at the leaves L,d and Lb~, and report all points that lie in the range. Also, for all
leaves L that lie between L,~ and Lb~, we perform a (d - 1)-dimensional range
query with I-a1: bl] x " " • [aa-a: bd-17 on the lower tree corresponding to L.

LEMMA 10. On a d-dimensional divided k-d tree, storing n points in d-dimensional
space, an exact-match query can be performed in O(log n) time, and a range query
can be performed in O(n l - 1/~ log~/en + k) time, where k is the number of points
reported.

PROOF. An exact-match query can be done by following only one path through
the tree, which obviously has length O(log n). Here and in the following we consider
d to be a constant. (If not, the query time would be O(d. log n).)

Let RQ(d, n) denote the range-query time on a d-dimensional divided k-d tree
with n points. Because a lower tree of a d-dimensional divided k-d tree with n
points has size O,(n I - l ie logl/d n), we obtain the following recurrence: RQ(d, n) =
O(n 1- lid 1ogl/d n) + O(n TM log- lid n) " RQ(d - 1, c " n 1- lid 1ogl/d n) for d > 1 and

some constant c, and RQ(1, n) = O(log n + k). The first term is the time needed
for a complete traversal of the lower trees corresponding to the leaves in
which we end, and the second term is the time needed for all (d - 1)-dimensional
range queries. Solving the recurrence proves the time bound. []

4.1. Insertions and Deletions. The insert and delete algorithms on two-dimen-
sional divided k-d trees generalize immediately to higher dimensions. We first give
the insert and delete algorithms, then we describe how rebalancing is done.

To insert a point p = (Pl Pd) in a d-dimensional divided k-d tree (d > 1),
we follow the path through the upper tree using the last coordinate of p to a leaf
of the upper tree. Then we insert a point in the lower tree corresponding to this
leaf (an insertion in a (d - 1)-dimensional divided k-d tree). When the balancing
conditions are violated, we rebalance.

To insert a point p in a one-dimensional divided k-d tree we use the standard
insertion algorithm.

854 M.J. van Kreveld and M. H. Overmars

To delete a point from a d-dimensional divided k-d tree we use the same
approach.

There are two ways in which the balance in a d-dimensional divided k-d tree
will be restored. When a lower tree becomes large, we divide the point set stored
in that lower tree in halves using the median of the last coordinate of the point
set, and two new lower trees are built in O(n ~ - lid log~ + ~/a n) time. These two lower
trees are put in the upper tree, involving an insertion of a leaf in the upper tree.
Next, suppose that after an update the upper tree has too many leaves. Then we
rebuild the whole (d-dimensional) tree in O(n log n) time.

LEMMA 11. On a d-dimensional divided k-d tree, storing n points in d-dimensional
space, insertions and deletions can be performed in O(log n) amortized time,

PROOF. Suppose a d-dimensional divided k-d tree has just been rebuilt. As in the
two-dimensional case, it is easy to show that it takes f~(n 1 - i/a log~/d n) insertions
in a lower tree before it must be split, provided that there have been no more
than c. n deletions in the whole tree, for a suitably chosen constant c. Furthermore,
it takes f~(n) insertions or f~(n) deletions in the whole tree before the number of
leaves in the upper tree becomes too large. Finally, O(log n) time is spent for each
update to follow the path through the upper tree. Let the update time of a
d-dimensional divided k-d tree with n points be U(d, n). Then U (d , n) =
O(log n) + O(n log n)/f~(n) + O(n 1-1/a log l+l/a n)/f~(n ~- l/a log 1/a n) + U(d - 1 ,
c" n 1- x/a logl/a n) _< O(log n) + U(d - 1, c. n), and because U(1, n), is O(log n),
U(d, n) is O(log n) amortized. []

The performance of the d-dimensional divided k-d tree is summarized in the
following theorem.

THEOREM 5. There exists a d-dimensional tree, the d-dimensional divided k-d tree,
for storing a set of n points in d-dimensional space, such that exact-match queries
take O(log n) time, range queries take O(n 1-1/a logl/d n + k) time (where k is the
number of points reported), and insertions and deletions can be performed in O(log n)
time amortized. The tree uses O(n) space and it takes O(n log n) time to build it.

In this theorem the amortized update time bounds can be changed into
worst-case bounds by applying Theorem 2 on every lower tree. We obtain the
same results as in Theorem 5, but with worst-case insertion and deletion time
bounds instead of amortized time bounds.

5. A Coneatenable Environment for d-Dimensional Divided k-d Trees. In this
section we make a concatenable environment for d-dimensional divided k-d trees,
such that they can be split and concatenated on every coordinate. To be able to
do this, the upper trees of all divided k-d trees in the concatenable environment
must divide d-dimensional space in the same way.

Divided k-d Trees 855

DEFINITION 5. A concatenable environment for d-dimensional divided k-d trees
(d > 3), representing a set S of n points (in d-dimensional space) in k nonempty
sets Tx , . . . , Tk, consists of the following (let MAIN be a d-dimenslonal divided
k-d tree representing the set S of all points):

�9 The upper tree of MAIN, partitioning the point set S in subsets S~ ,
Sin. The leaves in the upper tree correspond to the subsets S~, . . . Sin.

�9 The upper trees for the sets T1 , . . . , Tg. The upper tree for Ti! 1 < j < k, is
defined as tollows. Let Tj be partitioned in subsets T~j Tmj~ such that
T/j = Tj ~ Si for 1 < i < m. Every nonempty subset T/j corresponds to a leaf in
the upper tree for the set Tj.

�9 A concatenable environment for (d - 1)-dimensional divided k-d trees, re-
presenting a set Si of points in the nonempty sets of T/~, . . . , Tgk~ for all i,
l < i < _ m .

�9 A balanced tree C~ for every leaf in the upper tree of MAIN (1 < i < m), of which
the leaves correspond to the leaves of the upper trees for the sets T i Tk
that correspond to the subsets T / l , . . . , T/k, if such a leaf exists (or equally,
if Tij is nonempty).

This is a generalization of the two-dimensional concatenable envlronment
defined in Definition 3.

Exact-match queries, range queries, insertions, and deletions are performed in
a way similar to the operations on a tree in a concatenable environment for
two-dimensional divided k-d trees. Details are left to the reader.

To split a divided k-d tree Tj (in a concatenable environment for d-dimensional
divided k-d trees) on the zth coordinate, we do the following.

If z = d, we split the upper tree with the standard algorithm for splitting 2-3
trees. For the leaf in which we end, we divide and reconstruct the corresponding
lower tree. Also, we adjust the trees C. Finally, we pass back the roots of the two
resulting upper trees.

If z < d, we split every lower tree of Tj recursively on the zth coordinate,
obtaining two groups of lower trees. For both of these two groups we build a new
upper tree. Furthermore, we adjust the trees C, and pass back the roots of the two
upper trees obtained.

LEMMA 12. In a concatenable environment with n points, a d-dimensional divided
k-d tree can be split on the f i r s t and second coordinate in O(n I - ~/~ log lid n) time,
and on the other coordinates in O(n 1-1/d log1+ lid n) time.

PROOF. Let the split time of a divided k-d tree in a concatenable environment
for d-dimensional divided k-d trees with n points on the zth coordinate be S(z, d, n),
and its rebuilding time R(d, n). Then we have the following recurrence. S(d, d, n) <
O(log n) + R(d - 1, c" n I - 1/d logl/d n) for some constant c. (The first term is the
time taken to split with the standard split algorithm and to adjust the tree C~ aiid
the second term is the time taken to rebuild a lower tree.) For z < d, S(z, d, n) ~_

O(n ~/~ log- ~/d n) . S(z, d - 1, c . n 1 - I/d 1og~/d n) + O(n lid log- 1/d n) for some constant
c. (The first factor is a bound on the number of lower trees, the second factor is the

856 M.J. van Kreveld and M. H. Overmars

split time of the lower trees, and the second term is the time needed to build new
upper trees and to adjust the tree C.) For the rebuilding time we have R(0, n) = 0
because in this case there is nothing to rebuild, R(1, n) = O(n) because we have
the points in sorted order, and R(d, n) = O(n log n) for d > 2. Solving the recurrence
leads to the time bounds stated. []

To concatenate two divided k-d trees Tj and T t on the zth coordinate, we do
the following.

If z = d, we concatenate the upper trees of Tj and T t with the standard algorithm
for concatenating 2-3 trees. If the rightmost lower tree of T~ must be taken together
with the leftmost lower tree of Tl (because the points they contain are in the same
lower tree of MAIN), then we rebuild these two lower trees as one. Also, we adjust
the trees C. Finally, we pass back the root of the resulting upper tree.

If z < d, we concatenate every two corresponding lower trees of T; and Tz
recursively on the zth coordinate, obtaining one group of lower trees. For this
group we build a new upper tree. Furthermore, we adjust the trees C, and pass
back the root of the upper tree obtained.

LEMMA 13. In a concatenable environment with n points, two d-dimensional divided
k-d trees can be concatenated on the first and second coordinate in O(n 1 - lid logl/d n)
time, and on the other coordinates in O(n ~- 1/~ log1 + lie n) time.

PROOF. This can be proved in a way similar to Lemma 12. []

We summarize the main results of this section in the following theorem.

THEOREM 6. In a concatenable environment for d-dimensional divided k-d trees,
containin9 n points, insertions and deletions on a divided k-d tree can be performed
in O(log n) time, exact match queries take O(log n) time, range queries take
O(n 1- lid logl/a n + k) time (where k is the number o f points reported), and divided
k-d trees can be split and concatenated on the first and second coordinate
in O(n 1 - lid logl/,l n) time, and on the other coordinates in O(n 1 - lid log1 + lid n) time.

The concatenable environment uses O(n) space.

6. Concluding Remarks and Open Problems. In this paper a variant of the k-d
tree, called a divided k-d tree, has been described for storing two-dimensional
objects, in particular, points, in the plane. It allows for insertions and deletions in
O(log n) worst-cast time, which is superior to the insertion and deletion time
bounds of normal k-d trees, quad-trees, and other data structures for range queries
such as range trees. Also, its update and rebalance algorithms are simpler than
for the other trees. The divided k-d tree allows for exact match queries in O(log n)

time and range queries in O (~ , f ~ n + k) time. Because dynamic quad- aPd k-d
trees cannot be kept well-balanced without permitting high update time bounds,
the range-query time for divided k-d trees is better than for dynamic quad- and
k-d trees. Like quad- and k-d trees, the divided k-d tree uses linear space and can
be built in O(n log n) time.

Divided k-d Trees 857

Also, an environment for divided k-d trees has been constructed in which they
can be split and concatenated on both coordinates. This can be useful in graphics
packages and database systems if we want to work on a subset (orthogonal range)
of the complete set of points (items) in the structure.

The divided k-d tree generalizes to higher dimensions, in which case only the
range query time bound increases. Range queries on d-dimensional divided k-d
trees take O(n 1-1/~ logL/~ n + k) time. Also, a concatenable environment can be
made such that we can split and concatenate on every coordinate. Again, the
multidimensional divided k-d tree is far superior to other dynamic versions of
quad- or k-d trees.

In particular, in graphics applications k-d trees are often used to store other
objects than points. For many such applications divided k-d trees can be used as
well, improving the (dynamic) behavior.

A number of open problems do remain. An important question is whether

O (~ n) bounds for split and concatenate can be obtained, where n is the
actual number of points in the tree rather than the size of all trees in the
environment. Another question which could be asked is whether there are
two-dimensional trees for which better bounds for split and concatenate can be
found. In particular, it could be wondered whether range trees could be split and
concatenated efficiently. Some general solutions to this problem can be found
in [81.

References

[1] Aho, A. V., J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Mass., 1974.

[2] Bentley, J. L., Multidimensional binary search trees used for associated searching, Comm. ACM,
18 (1975), 509-517.

[3] Bentley, J. L., Multidimensional binary search trees in database applications. IEEE Trans.
Software Engrg., 5 (1979), 333-340.

[-4] Bentley, J. L., Decomposable searching problems. Inform. Process. Lett., 8 (1979), 244-251.
[-5] Finkel, R. A., and J. L. Bentley, Quad-trees; a data structure for retrieval on composite keys,

Acta Inform., 4 (1974), 1-9.
[6] Kersten, M. L., and P. van Erode Boas, Local optimizations of quad-trees, Technical Report

1R-52, Free University Amsterdam, 1979.
[7] Knuth, D. E., The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, Mass., 1973.
[8] van Kreveld, M. J., and M. H. Overmars, Concatenable structures for decomposable problems,

Technical Report RUU-CS-89-16, Utrecht University, 1989.
[-9] Lueker, G. S., A data structure for orthogonal range queries. Proc. 19th IEEE Symp. on

Foundations of Computer Science, 1978, pp. 28-34.
[10] Overmars, M. H., The Design of Dynamic Data Structures, Lecture Notes in Computer Science,

Vol. 156, Springer-Verlag, Berlin, 1983.
[i1] Overmars, M. H., and J. van Leeuwen, Worst-case optimal insertion and deletion methc;ds for

decomposable searching-problems. Inform. Process. Lett., 12 (1981), 168-173.
[12] Overmars, M. H., and J. van Leeuwen, Dynamic multi-dimensional data structures based on

quad- and k-d trees, Acta Inform., 17 (1982), 267-285.
[13] Preparata, F. P., and M. I. Shamos, Computational Geometry, An Introduction, Springer-Verlag,

New York, 1985.
[-14] Samet, H., Deletion in two-dimensional quad-trees, Comm. ACM, 23 (1980), 703-710.

858 M.J. van Kreveld and M. H. Overmars

[-15] Samet, H., Bibliography on quad-trees and related hierarchical data structures, in: L. Kessenaar,
F. Peters, and M. van Lierop (Eds.), Data Structures for Raster Graphics, Springer-Verlag, Berlin,
1986, pp. 181-201.

[16] Willard, D. E., Predicate-Oriented Database Search Algorithms, Garland, New York, 1979.
[17] Willard, D. E., and G. S. Lueker, Adding range restriction capability to dynamic data structures,

J. Assoc. Comput. Math., 32 (1985), 597-617.

