
Algorithmica (1991) 6:466-478 Algorithmica 
,�9 1991 Springer-Verlag New York Inc. 

Stochastic Neural Networks 1 

Eugene W o n g  2 

Abstract. The first purpose of this paper is to present a class of algorithms for finding the global 
minimum of a continuous-variable function defined on a hypercube. These algorithms, based on both 
diffusion processes and simulated annealing, are implementable as analog integrated circuits. Such 
circuits can be viewed as generalizations of neural networks of the Hopfield type, and are called 
"diffusion machines." 

Our second objective is to show that "learning" in these networks can be achieved by a set of three 
interconnected diffusion machines: one that learns, one to model the desired behavior, and one to 
compute the weight changes. 

Key Words. Neural network, Simulated annealing, Diffusion. 

1. Hopfield Networks. It is well k n o w n  [1], [2] that  a neural  network can be used 

to compute  a local m i n i m u m  of a funct ion E(x )  defined on a hypercube [0, 13" as 
follows. Let vg(t) be the state at node i at time t and  set 

(1.1) vi(t) = g(ui(t)), 

(1.2) dui(t) - Ei(v(t)), 
dt 

where Ei(v) = (c~/c~ vi) E(v)  and  g is an increasing function. The special case of a 

quadrat ic  funct ion 

(1.3) E(v) = - � 8 9  ~, wijviv j - Z Oivi, 
i , j  i 

where we a s s u m e  wij  ~ wjD results in 

(1.4) El(V) = -- ~ wijvj - Oi, 
J 

which is part icularly well suited for realization as an analog integrated circuit. 
As Hopfield and  Tank  [3] and  others (e.g., [4]) have shown, a variety of 

computa t iona l  problems of considerable complexity can be reduced to comput ing  
the global m i n i m u m  of a quadra t ic  function. With current  technology, a network 
with several hundred  nodes and  with the dynamics  given by (1.1)-(1.3) can 
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probably be built on a single chip. The potential for simple and fast computation 
thus created is exciting indeed. 

However, (1.1) and (1.2) represent essentially a gradient-descent method for 
minimization, and such methods do not usually reach a global minimum. To see 
this we write, using (1.1) and (1.2), 

d 
(1.5) dt E(v(t)) = ~ Ei(v(t)) dvi(t) 

dt 

aug(t) 
= ~" Ei(v(t))g'(ui(t)) dt 

i 

= - - ~ ' g ' ( u i ( t ) ) E Z ( v ( t ) )  < O, 
i 

which shows that E is decreasing in t but not strictly decreasing and any 
equilibrium reached may only be a local minimum. 

2. Boltzmann Machines. For some problems it is sufficient to restrict vi to binary 
values, say vi = 0, 1. The collection of the states at all the nodes of the network 
v(t) = {v~(t)} now takes values in {0, 1)", and v(t) is called the configuration of the 
network at time t. A Boltzmann machine I-5] is a network where v(t) is a {0, 1}" 
valued discrete-time Markov chain with state transitions defined as follows: 

For each v �9 {0, 1} n define a neighborhood N(v) as a subset of {0, 1)". We assume 
that v' �9 N(v) =~ v �9 N(v') and v r N(v). At time t + 1 we choose a v' �9 N(v(t)) at 
random (say with equal probabilities) and set 

(2.1) v( t+ 1)=  v(t) 
with probability p(AE), 

with probability 1 - p(AE), 

where AE is given by 

(2.2) A E  = E ( v ' )  - F~(v(t)) 

and the acceptance probability p(AE) is of the form 

(2.3) p(AE) = e-tl/2r)Ar'f(]AEI) 

for some decreasing function f .  Familiar examples include 

p(AE) = min(1, e -tl/r)Ae) 

_-- e - ( 1 / 2 T ) A E e - ( 1 / 2 T ) I A E I  
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and 

E. Wong 

p(Ae) - 
1 e -(1/2T)AE 

1 + e ~l/r)aE 2 cosh (AE/2T)"  

It is clear that v(. ) has a bias for moving in the direction of negative AE, but will 
move with nonzero probabilities even for positive AE. 

The one-step transition probability is given by 

(2.4) P(vlvo)  : Prob(v(t + 1) = vlv(t) = Vo) 

( 1 E ~ p( (v )  - e(Vo)), 
/ 
1.0, 

v e N(vo), 

v # Vo, v r N(vo), 

and 

1 
1 I N(vo)l v'~vo)(p(E(v') - E(vo)), v = Vo, 

where IN(vo)l denotes the cardinality of N(vo).  With p given by (2.3), we have 

P(VlVo)e-<I/T)er176 

= P(vlv)e-(1/T)Er + ~ P(vlvo)e-(1/r)~r176 
vo e N (v )  

= IN(v) le  -(1/r)E(v>- ~ f ( I E ( v ' ) -  E(v) l )e  -(l/2r)tEr162 
v" ~ N ( v )  

+ ~ f ( l E ( v ) - E ( v o ) l ) e  -~l/2r)tE~~176 
v o e N ( v )  

= IN(v) le-~l/r~e~). 

It follows that a probability distribution of the form 

P(v( t )  = v) = K l N ( v )  le-tl/r)er 

is left invariant by the transitions. 
If, in addition, the Markov chain is irreducible, i.e., every v can be reached from 

any initial configuration Vo, then 

(2.5) P(v( t )  = vlV(to) = Vo) --', K I N ( v ) l e  -(1/r~~ 
(t  - to)  ~ oo 

where K is the normalizing constant. If we assume I N(v) l is independent of v, then 
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the stationary distribution is simply 

1 
(2.6) P(v) = ~ e-(1/r)e(v), 

where Z = ~ve -(1/T)r(v) is called the partition function in statistical mechanics. 
Equation (2.6) is called the Gibbs or Boltzmann distribution, and the Markov 

chain v(t) is called a Gibbs field. A network with such a v(t) has been called a 
Boltzmann machine [5]. 

3. Simulated Annealing. 
machine is given by 

Because the stationary distribution of a Boltzmann 

1 e_(1/T)E(v) (3.1) P(v) = 

the peaks of P(v) coincide with the minima of E(v). As the parameter T 
(temperature) decreases to zero, P(v) will approach a set of singularities at the 
global minima of E(v). This is the principle on which simulated annealing is based 
[6]. 

Suppose that we choose a sequence {Tk} decreasing to 0 sufficiently slowly so 
that, for large k, v(k) is distributed approximately according to 

Pk(v) = 1 e_(1/Tk)E(v) 

Then we would expect v(k) to converge to a global minimum. This is indeed the 
case for Tk of the form 

(3.2) Tk - - -  
ln(1 + k)' 

where c is a "suff• large" constant [7], [8]. 
Simulated annealing can be extended to the continuous variable case. This is 

done with the Langevin algorithm [9], [10], which is defined by a set of stochastic 
differential equations of the form 

(3.3) dvi(t ) = - Ei(v(t)) dt + v / ~ d W ~ ( t ) ,  

where E i = (d/Ovi) E as before and { W~} is a set of independent Wiener processes. 
The goal, once again, is to get a stationary distribution for v(t) characterized by a 
density function of the form 

(3.4) 1 e_(1/T)E(v ) eo(v) = ~ 
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However, for v E ~" there may be no density function of this form since e (-(1IT)E) 

may not be integrable. For v e [0, 1]", (3.3) also does not guarantee a stationary 
density of the form (3.4). Intuitively, we can interpret v(t) as the position of a 
particle undergoing random motion according to (3.3). To ensure a stationary 
density of the form (3.4), we have to prevent the particle from escaping the 
hypercube [0, 1]". This requires a set of boundary conditions known as the 
"reflecting boundary" conditions at every boundary v~ = 0, 1 [9]. 

4. Diffusion Machines: Stochastic Hopfieid Networks. We propose a scheme that 
is a modification of both the Langevin algorithm and the Hopfield network. 
Suppose that we inject noise in a Hopfield network so that at the ith node the 
equations of dynamics are now given by (see (1.1) and (1.2)) 

(4.1) 

(4.2) 

vi(t) = g(ui(t)), 

dui(t ) = - Ei(v(t)) dt + ~i(u(t)) dWi(t), 

where (4.2) is a stochastic differential equation of the Ito type [11]. As in the 
Langevin algorithm, { IV//} are independent Wiener processes. 

The question we now pose is the following: Can ~[s be found so that v(t) is a 
stationary Markov process with the following stationary density? 

1 e_(1/T)E(v). (4.3) pO(V)=~ 

The answer is surprisingly simple. The required ~i is given by 

(4.4) ~i(u(t)) = 

so that (4.2) becomes 

(4.5) dui(t) = - Ei(v(t)) dt + 

Furthermore, if we denote 

(4.6) 

 , 2 r  

(ui(t)) 

x/ ~ a w~( t ). 

f ( x )  = g ' (g-  l(x)),  

then v~(t) satisfies the stochastic differential equation 

(4.7) ave(t) = -f(vi(t))Ei(v(t)) dt + Tf ' (vi( t ))  dt + x / 2 T f ( v i ( t ) )  dWi(t). 

As is explained in Section 6, if f ( x )  = 0 at x = 0, 1, then stationarity of v(t) is 
assured. If not, a reflecting boundary is needed at each vi = 0, 1. Observe that f 
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depends only on the nonlinearity g. Hence, stationarity of the process v(t) can be 
ensured by a proper choice of g. In this sense, we can understand the role of # to be 
one of stabilizing the network. 

To derive (4.4), we first note that with a smooth g we can use the Ito 
differentiation formula 1-12] and derive a set of stochastic differential equations for 
v~ which are of the form 

(4.8) dvi(t) = mi(v(t)) dt + ai(v(t)) dW~(t). 

The transition density p(v, t [ Vo, to) of v(t) must satisfy the Fokker-Planck equation 

(4.9) 8ps_f ~81182 ~ 1 = ~i (atP) -- mip . 

It follows that if (4.3) is to be the stationary density, then we must have 

8 [-1 8 2 m~po ] = (4.10) ~ ~v~v~ L~ ~v (or, po) - 0 

which is satisfied if rn i and a~ satisfy 

1 z 1 d@/ (4.11) m, = :a, ( - ~ E,(v)) + . (�89 

Since (4.8) is derived from (4.1) and (4.2) using the Ito differentiation formula, we 
have 

(4.12) dvi(t) = 9'(ui(t)) dui(t) + �89 dt. 

Comparing (4.12) and (4.8), we get 

(4.13) 

and 

(4.14) 

where f is given by 

(4.6) f ( x )  = g'(g- l(x)). 

Comparing (4.14) with (4.11) now yields 

(4.15) �89 a~(v) = Tf(vi) 

which is a relationship of great simplicity. 

~(g (u ) )  = g'(u3z~(u) 

mi(v) = - f ( v ) E i ( v )  + �89 f)'(vi)tr~(v), 

[] 
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The simplicity of the coefficient of the noise term as given by (4.4) or (4.15) 
cannot be overemphasized. It is both fortuitous and surprising. The required form 
for ~(u) depends only on u~. Thus, the noise term at each node is local. 

Furthermore, the noise term in no way depends on E(v)  or the weights. Thus, any 
weight adjustment procedure would not affect the nodes except through their 
input. 

A network with dynamics governed by (4.1) and (4.5) (equivalently (4.7)) is 
called a diffusion machine.  We propose that it be used as the basis for studying 
simulated annealing and machine learning I-5]. As a neural computing system, it 
has a number of important advantages. First, it is quite general. There is no need to 
assume that the minimum occurs at a corner of the cube. Second, it allows the 
nonlinearity g to play a stabilizing role in ensuring stationarity. Finally, and most 
importantly, it is well suited for direct circuit implementation, thus providing 
potentially much faster computation for both annealing and machine learning. 

5. A n  E x a m p l e .  A favorite choice of g is 

Its popularity is due to the fact that the tanh function is easy to realize in CMOS 
circuits operating in subthreshold mode. This choice for g yields 

= 1 ( 1 - t a n h 2 X ) = l ( c o s h X ) - 2  (5.2) g'(x) 

and 

(5.3) 
1 

f ( y )  = g , (g -  l(y)) = 2a [1 - (2y - 1) 2] 

Equations (4.5) and (4.7) now become 

(5.4) 

(5.5) 

2 
= - y ( 1 - y ) .  

a 

/u,Ct)\ 
dW#), 

_ _ 2T[1 
dvi(t) = 2 vi(t)[ 1 _ vi(t)]E~(v(t)) dt + - -  - 2vi(t)] dt 

a a 

J; + 2 vi(t)[1 - vi(t)] dWi(t).  
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As a second example, consider the case 

x, O < x < l ,  

g (x )=  1, x > l ,  

0, x < 0 .  

This example corresponds to the Langevin algorithm as considered in [9]. Because 
g-l(v) does not exist in this case, this example is not really a diffusion machine. If it 
is to be considered at all, reflecting boundaries at vi = 0, 1 are required [9]. 

6. Rate of Convergence. A diffusion machine can be used with a cooling schedule 
{ Tk} to achieve simulated annealing. For that purpose an estimate of the rate at 
which 

p(v, tlvo, to)~Po(V) 

is needed. Diffusion theory provides a powerful approach to such estimates (see 
[10]). 

Because the coefficients a~ and mi in the Fokker-Planck equation (4.9) do not 
depend on t, a separation-of-variables argument shows that p(v, t lvo, 0) can be 
expressed in the form [12] 

(6.1) p(v, t l Vo, O) = Po(V)Y', e -  zt~b a(v)O z(Vo), 

where 2 are the eigenvalues and ~ are the normalized eigenfunctions of the 
equation 

(6.2) T ~ ~ Po(V)f(vi) . + 2po(v)@,~(v ) = O. 

If f(vi)  is zero at v~ = 0, 1, then, by multiplying each term in (6.2) by ~ and 
integrating, we get 

f f I ~ ]  2 2 to, 11" P~ dv = T ~ [o, 11" Po(V)f(vi) dr. 

It is clear that 2 --- 0 is the smallest eigenvalue with ~bo(V ) = 1, and the eigenvalues 
can be ordered 

0 = 20 < 21 < 22"" .  

The corresponding eigenfunctions ~k are orthogonal for different k and can be 
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normalized. These results show that f (x)  = 0, x = 0, 1 is a sufficient condition for 
stationarity. 

Since ~k 1 is normalized and orthogonal to ~o = 1, we get 

(6.3) f 21 = min T po(V) f(vi) dv 
0 [o, 11 n �9 

subject to the conditions 

(6.4) f po(V)~k2(v) dv = 1 
[0, 1] '~ 

and 

f 
, 

(6.5) po(v)~k(v) dv = O. 
[0, 1] '~ 

It is clear that 21 > 0, and its dependence on T and g can be studied via (6.3). 
From (6.1) we get 

If we denote 

then for t > 1 

(6.6) 

Ip(v, tlVo, 0) - po(v)l = I ~ e-Zk'gJ~(v)~k(vo)l 
k = l  

= e-Z,, I ~ e-~Z'~-z')'tPl,(V)C'k(Vo)l. 
k = l  

k(v)=eZ'[p(v, llv, O)-po(v)l ,  

I p(v, t l Vo, O) - po(v) l < e- ~ ' ' ~  

< e -~'~ sup k(v), 

which gives an estimate of the rate of convergence of the transition density to the 
equilibrium distribution. 

7. Analog Realization. Equations (4.5) and (4.7) are Ito equations. To realize 
them in analog circuits using Gaussian wideband noise requires a correction term 
[11]. The origin of the correction term is rather technical. It has to do with the fact 

that dl4~t), the differential increment of a Wiener process, is proportional to x / ~ ,  
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rather than dt, and that stochastic differential equations are based on a forward- 
difference approximation. It turns out that if W is the derivative of a Wiener 
process, then F(W(t) )W(t )  dt is like F(W( t  + �89 dl4(t). The correction term can 

then be computed using Taylor series and the estimate Jdl4(t)l = x / ~ .  With the 
correction term, (4.5) and (4.7) can be rewritten as 

T #"(ui(t)) 2 / ~  
(7.1) ti~(t) = -Ei(v( t ) )  + 2 [g'(u~(t))] 2 ~- tit(t), 

(7.2) 
T 

1)~(t) = -f(v~(t))E~(v(t)) + ~ f'(v~(t)) + x/2Tf(v~(t))rh(t), 

where ~h = ~ is a Gaussian white noise. 
For the example given in Section 5, we can write for (7.1) 

(7.3) f~i(t) = -Ei(v(t))  -- 2 T  sinh 2ui(t) + 2 x / ~  cosh ni(t) rh(t ). 
a a 

A block diagram realization of (7.3) is given in Figure 1. 

8. A Continuous Operating Learning System. Hinton et al. [5-1 defined a learning 
problem for Boltzmann machines that can be extended to diffusion machines. 
Suppose that the n nodes in the network are divided into two groups: visible nodes 
and hidden nodes. The space [0, 1]" is correspondingly factored into the cartesian 
product Vx H, where V = {vi: i visible} and H = {vi: i hidden}. Now, suppose 
that a probability density function ~ is specified in V and we want to find a set of 
weights w o so that the stationary distribution of v,(t) on the visible nodes will be as 
close to ~ as possible. 

We now modify our earlier notation to make the dependencies more explicit. Let 
po(v, h; w) denote the stationary density of the entire network for v ~ V, h ~ H, and 

w Or l~l ' 

v3 -E ' > Integrator I o l 
Vn 

in 

Fig. 1. A node in a diffusion machine. 
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let w denote the weights. Let the density on V alone be denoted by 

(8.1) po(v: w) = f po(v, h; w) dh. 
H 

The problem now is to find w so that po(v; w) approximates if(v). 
Following [5], we use the asymmetric divergence 

(8.2) G(w) = f v i(v) l n [ p o ~ ) ) l  dr" 

as a measure of approximation, and choose w to minimize G(w). Now, 

1 po(v, h; w) = ~ e -(1/r)E(v' h; w) 
I.tW) 

and 

(8.3) Z(w) = f e-(1/r)E(v, h; ~,) dv dh. 
V x H  

Hence, 

f e-(1/T)E(v, h; ~) dh 
H (8.4) po(V; w) = 

f e-(1/r)E(v, h; w) dv dh 
" V x H 

and 

1 f dE(v, h; w) 
(8.5) OG(w) = T Jv  • 

~ W i j  ~ W i j  
[po(v, h; w) - p(v)po(hlv; w)] dv dh, 

where 

(8.6) po(hlv; w) - 
po(v, h; w) 

po(v; w) 

If we denote by 80 the expectation with respect to po(v, h; w) and by ~ the 
expectation with respect to p(v)po(h [ v; w), then we can write 

~C(w) 
(8.7) 

~3wij 
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Free-running 
Network 

E~ l w(t) l 
Weight Machine 

w (t)l E ~t 
I Training Samples ~ Clamped Network 

Fig. 2. A continuously operating learning system. 

We first observe that if E is the quadratic function given by (1.3), then 

dE _ J - v i v  i for i # j ,  
ff~w~j [-�89 for i = j .  

Hence, we can estimate dG/dwlj by running the network in two modes: (a)a 
free-running mode that yields 8o, and (b) a clamped mode where for the visible 
nodes {v~} are found to have a distribution given by ~ to yield ~. 

Next, we observe that we can use the Langevin algorithm to minimize G(w). 
Specifically, we can set 

dwij(t) = - Go(w(t)) dt + x / ~  dZ~j(t), 

where G o = OG/dw~j comes from the two copies of the network running in two 
different modes, Z o are independent Wiener processes, and S is the temperature for 
the "weight machine" and is different from the temperature T of the networks used 
to generate G w A block diagram of the "learning dynamics" is given in Figure 2. 

Intuitively, if we change w(t) slowly in comparison to the dynamics of the two 
networks, then we should expect the two networks to reach approximate equilibri- 
um before the weights are changed significantly. The continously operating nature 
of a diffusion machine in the learning mode makes it a most attractive system. 

9. Conclusion. In this paper we consider a class of stochastic networks, which we 
call diffusion machines, that result from a modification of continuous-variable 
Hopfield networks. We show that by injecting white Gaussian noise in a specific 
way at each node of a Hopfield network, we obtain a diffusion process with a 
stationary density of the Boltzmann form. It follows that cooling of the noise 
sources can be used to achieve annealing, which in turn can be used to obtain a 
global minimum. As such it is closely related to both the Boltzmann machine and 
the Langevin algorithm, but superior to both in terms of possible integrated circuit 
realization [13]. 
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Learning algorithms similar to those proposed for Boltzmann machines are a 
particularly interesting problem for study. We propose an arrangement consisting 
of three coupled diffusion machines that perform the functions of training, learning, 
and weight-adjustment concurrently in continuous operation. This is in contrast to 
learning in Boltzmann machines which alternates between a learning phase and an 
"equilibriating" phase. A substantial speed advantage for diffusion machines is 
likely. 
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