
Algorithmica (1991) 6:466-478 Algorithmica
,�9 1991 Springer-Verlag New York Inc.

Stochastic Neural Networks 1

Eugene W o n g 2

Abstract. The first purpose of this paper is to present a class of algorithms for finding the global
minimum of a continuous-variable function defined on a hypercube. These algorithms, based on both
diffusion processes and simulated annealing, are implementable as analog integrated circuits. Such
circuits can be viewed as generalizations of neural networks of the Hopfield type, and are called
"diffusion machines."

Our second objective is to show that "learning" in these networks can be achieved by a set of three
interconnected diffusion machines: one that learns, one to model the desired behavior, and one to
compute the weight changes.

Key Words. Neural network, Simulated annealing, Diffusion.

1. Hopfield Networks. It is well k n o w n [1], [2] that a neural network can be used

to compute a local m i n i m u m of a funct ion E(x) defined on a hypercube [0, 13" as
follows. Let vg(t) be the state at node i at time t and set

(1.1) vi(t) = g(ui(t)),

(1.2) dui(t) - Ei(v(t)),
dt

where Ei(v) = (c~/c~ vi) E(v) and g is an increasing function. The special case of a

quadrat ic funct ion

(1.3) E(v) = - � 8 9 ~, wijviv j - Z Oivi,
i , j i

where we a s s u m e wij ~ wjD results in

(1.4) El(V) = -- ~ wijvj - Oi,
J

which is part icularly well suited for realization as an analog integrated circuit.
As Hopfield and Tank [3] and others (e.g., [4]) have shown, a variety of

computa t iona l problems of considerable complexity can be reduced to comput ing
the global m i n i m u m of a quadra t ic function. With current technology, a network
with several hundred nodes and with the dynamics given by (1.1)-(1.3) can

J This research was supported in part by U.S. Army Research Office Grant DAAL03-89-K 0128.
2 Department of Electrical Engineering and Computer Science, University of California at Berkeley,
CA 94720, USA.

Received May, 1989; revised October, 1989. Communicated by Alberto Sangiovanni-Vincentelli.

Stochastic Neural Networks 467

probably be built on a single chip. The potential for simple and fast computation
thus created is exciting indeed.

However, (1.1) and (1.2) represent essentially a gradient-descent method for
minimization, and such methods do not usually reach a global minimum. To see
this we write, using (1.1) and (1.2),

d
(1.5) dt E(v(t)) = ~ Ei(v(t)) dvi(t)

dt

aug(t)
= ~" Ei(v(t))g'(ui(t)) dt

i

= - - ~ ' g ' (u i (t)) E Z (v (t)) < O,
i

which shows that E is decreasing in t but not strictly decreasing and any
equilibrium reached may only be a local minimum.

2. Boltzmann Machines. For some problems it is sufficient to restrict vi to binary
values, say vi = 0, 1. The collection of the states at all the nodes of the network
v(t) = {v~(t)} now takes values in {0, 1)", and v(t) is called the configuration of the
network at time t. A Boltzmann machine I-5] is a network where v(t) is a {0, 1}"
valued discrete-time Markov chain with state transitions defined as follows:

For each v �9 {0, 1} n define a neighborhood N(v) as a subset of {0, 1)". We assume
that v' �9 N(v) =~ v �9 N(v') and v r N(v). At time t + 1 we choose a v' �9 N(v(t)) at
random (say with equal probabilities) and set

(2.1) v(t+ 1)= v(t)
with probability p(AE),

with probability 1 - p(AE),

where AE is given by

(2.2) A E = E (v ') - F~(v(t))

and the acceptance probability p(AE) is of the form

(2.3) p(AE) = e-tl/2r)Ar'f(]AEI)

for some decreasing function f . Familiar examples include

p(AE) = min(1, e -tl/r)Ae)

_-- e - (1 / 2 T) A E e - (1 / 2 T) I A E I

468

and

E. Wong

p(Ae) -
1 e -(1/2T)AE

1 + e ~l/r)aE 2 cosh (AE/2T)"

It is clear that v(.) has a bias for moving in the direction of negative AE, but will
move with nonzero probabilities even for positive AE.

The one-step transition probability is given by

(2.4) P(vlvo) : Prob(v(t + 1) = vlv(t) = Vo)

(1 E ~ p((v) - e(Vo)),
/
1.0,

v e N(vo),

v # Vo, v r N(vo),

and

1
1 I N(vo)l v'~vo)(p(E(v') - E(vo)), v = Vo,

where IN(vo)l denotes the cardinality of N(vo). With p given by (2.3), we have

P(VlVo)e-<I/T)er176

= P(vlv)e-(1/T)Er + ~ P(vlvo)e-(1/r)~r176
vo e N (v)

= IN(v) le -(1/r)E(v>- ~ f (I E (v ') - E(v) l)e -(l/2r)tEr162
v" ~ N (v)

+ ~ f (l E (v) - E (v o) l) e -~l/2r)tE~~176
v o e N (v)

= IN(v) le-~l/r~e~).

It follows that a probability distribution of the form

P(v(t) = v) = K l N (v) le-tl/r)er

is left invariant by the transitions.
If, in addition, the Markov chain is irreducible, i.e., every v can be reached from

any initial configuration Vo, then

(2.5) P(v(t) = vlV(to) = Vo) --', K I N (v) l e -(1/r~~
(t - to) ~ oo

where K is the normalizing constant. If we assume I N(v) l is independent of v, then

Stochastic Neural Networks 469

the stationary distribution is simply

1
(2.6) P(v) = ~ e-(1/r)e(v),

where Z = ~ve -(1/T)r(v) is called the partition function in statistical mechanics.
Equation (2.6) is called the Gibbs or Boltzmann distribution, and the Markov

chain v(t) is called a Gibbs field. A network with such a v(t) has been called a
Boltzmann machine [5].

3. Simulated Annealing.
machine is given by

Because the stationary distribution of a Boltzmann

1 e_(1/T)E(v) (3.1) P(v) =

the peaks of P(v) coincide with the minima of E(v). As the parameter T
(temperature) decreases to zero, P(v) will approach a set of singularities at the
global minima of E(v). This is the principle on which simulated annealing is based
[6].

Suppose that we choose a sequence {Tk} decreasing to 0 sufficiently slowly so
that, for large k, v(k) is distributed approximately according to

Pk(v) = 1 e_(1/Tk)E(v)

Then we would expect v(k) to converge to a global minimum. This is indeed the
case for Tk of the form

(3.2) Tk - - -
ln(1 + k)'

where c is a "suff• large" constant [7], [8].
Simulated annealing can be extended to the continuous variable case. This is

done with the Langevin algorithm [9], [10], which is defined by a set of stochastic
differential equations of the form

(3.3) dvi(t) = - Ei(v(t)) dt + v / ~ d W ~ (t) ,

where E i = (d/Ovi) E as before and { W~} is a set of independent Wiener processes.
The goal, once again, is to get a stationary distribution for v(t) characterized by a
density function of the form

(3.4) 1 e_(1/T)E(v) eo(v) = ~

470 E. Wong

However, for v E ~" there may be no density function of this form since e (-(1IT)E)

may not be integrable. For v e [0, 1]", (3.3) also does not guarantee a stationary
density of the form (3.4). Intuitively, we can interpret v(t) as the position of a
particle undergoing random motion according to (3.3). To ensure a stationary
density of the form (3.4), we have to prevent the particle from escaping the
hypercube [0, 1]". This requires a set of boundary conditions known as the
"reflecting boundary" conditions at every boundary v~ = 0, 1 [9].

4. Diffusion Machines: Stochastic Hopfieid Networks. We propose a scheme that
is a modification of both the Langevin algorithm and the Hopfield network.
Suppose that we inject noise in a Hopfield network so that at the ith node the
equations of dynamics are now given by (see (1.1) and (1.2))

(4.1)

(4.2)

vi(t) = g(ui(t)),

dui(t) = - Ei(v(t)) dt + ~i(u(t)) dWi(t),

where (4.2) is a stochastic differential equation of the Ito type [11]. As in the
Langevin algorithm, { IV//} are independent Wiener processes.

The question we now pose is the following: Can ~[s be found so that v(t) is a
stationary Markov process with the following stationary density?

1 e_(1/T)E(v). (4.3) pO(V)=~

The answer is surprisingly simple. The required ~i is given by

(4.4) ~i(u(t)) =

so that (4.2) becomes

(4.5) dui(t) = - Ei(v(t)) dt +

Furthermore, if we denote

(4.6)

 , 2 r

(ui(t))

x/ ~ a w~(t).

f (x) = g ' (g- l(x)),

then v~(t) satisfies the stochastic differential equation

(4.7) ave(t) = -f(vi(t))Ei(v(t)) dt + Tf ' (vi(t)) dt + x / 2 T f (v i (t)) dWi(t).

As is explained in Section 6, if f (x) = 0 at x = 0, 1, then stationarity of v(t) is
assured. If not, a reflecting boundary is needed at each vi = 0, 1. Observe that f

Stochastic Neural Networks 471

depends only on the nonlinearity g. Hence, stationarity of the process v(t) can be
ensured by a proper choice of g. In this sense, we can understand the role of # to be
one of stabilizing the network.

To derive (4.4), we first note that with a smooth g we can use the Ito
differentiation formula 1-12] and derive a set of stochastic differential equations for
v~ which are of the form

(4.8) dvi(t) = mi(v(t)) dt + ai(v(t)) dW~(t).

The transition density p(v, t [Vo, to) of v(t) must satisfy the Fokker-Planck equation

(4.9) 8ps_f ~81182 ~ 1 = ~i (atP) -- mip .

It follows that if (4.3) is to be the stationary density, then we must have

8 [-1 8 2 m~po] = (4.10) ~ ~v~v~ L~ ~v (or, po) - 0

which is satisfied if rn i and a~ satisfy

1 z 1 d@/ (4.11) m, = :a, (- ~ E,(v)) + . (�89

Since (4.8) is derived from (4.1) and (4.2) using the Ito differentiation formula, we
have

(4.12) dvi(t) = 9'(ui(t)) dui(t) + �89 dt.

Comparing (4.12) and (4.8), we get

(4.13)

and

(4.14)

where f is given by

(4.6) f (x) = g'(g- l(x)).

Comparing (4.14) with (4.11) now yields

(4.15) �89 a~(v) = Tf(vi)

which is a relationship of great simplicity.

~(g (u)) = g'(u3z~(u)

mi(v) = - f (v) E i (v) + �89 f)'(vi)tr~(v),

[]

472 E. Wong

The simplicity of the coefficient of the noise term as given by (4.4) or (4.15)
cannot be overemphasized. It is both fortuitous and surprising. The required form
for ~(u) depends only on u~. Thus, the noise term at each node is local.

Furthermore, the noise term in no way depends on E(v) or the weights. Thus, any
weight adjustment procedure would not affect the nodes except through their
input.

A network with dynamics governed by (4.1) and (4.5) (equivalently (4.7)) is
called a diffusion machine. We propose that it be used as the basis for studying
simulated annealing and machine learning I-5]. As a neural computing system, it
has a number of important advantages. First, it is quite general. There is no need to
assume that the minimum occurs at a corner of the cube. Second, it allows the
nonlinearity g to play a stabilizing role in ensuring stationarity. Finally, and most
importantly, it is well suited for direct circuit implementation, thus providing
potentially much faster computation for both annealing and machine learning.

5. A n E x a m p l e . A favorite choice of g is

Its popularity is due to the fact that the tanh function is easy to realize in CMOS
circuits operating in subthreshold mode. This choice for g yields

= 1 (1 - t a n h 2 X) = l (c o s h X) - 2 (5.2) g'(x)

and

(5.3)
1

f (y) = g , (g - l(y)) = 2a [1 - (2y - 1) 2]

Equations (4.5) and (4.7) now become

(5.4)

(5.5)

2
= - y (1 - y) .

a

/u,Ct)\
dW#),

_ _ 2T[1
dvi(t) = 2 vi(t)[1 _ vi(t)]E~(v(t)) dt + - - - 2vi(t)] dt

a a

J; + 2 vi(t)[1 - vi(t)] dWi(t).

Stochastic Neural Networks 473

As a second example, consider the case

x, O < x < l ,

g (x)= 1, x > l ,

0, x < 0 .

This example corresponds to the Langevin algorithm as considered in [9]. Because
g-l(v) does not exist in this case, this example is not really a diffusion machine. If it
is to be considered at all, reflecting boundaries at vi = 0, 1 are required [9].

6. Rate of Convergence. A diffusion machine can be used with a cooling schedule
{ Tk} to achieve simulated annealing. For that purpose an estimate of the rate at
which

p(v, tlvo, to)~Po(V)

is needed. Diffusion theory provides a powerful approach to such estimates (see
[10]).

Because the coefficients a~ and mi in the Fokker-Planck equation (4.9) do not
depend on t, a separation-of-variables argument shows that p(v, t lvo, 0) can be
expressed in the form [12]

(6.1) p(v, t l Vo, O) = Po(V)Y', e - zt~b a(v)O z(Vo),

where 2 are the eigenvalues and ~ are the normalized eigenfunctions of the
equation

(6.2) T ~ ~ Po(V)f(vi) . + 2po(v)@,~(v) = O.

If f(vi) is zero at v~ = 0, 1, then, by multiplying each term in (6.2) by ~ and
integrating, we get

f f I ~] 2 2 to, 11" P~ dv = T ~ [o, 11" Po(V)f(vi) dr.

It is clear that 2 --- 0 is the smallest eigenvalue with ~bo(V) = 1, and the eigenvalues
can be ordered

0 = 20 < 21 < 22"" .

The corresponding eigenfunctions ~k are orthogonal for different k and can be

474 E. W o n g

normalized. These results show that f (x) = 0, x = 0, 1 is a sufficient condition for
stationarity.

Since ~k 1 is normalized and orthogonal to ~o = 1, we get

(6.3) f 21 = min T po(V) f(vi) dv
0 [o, 11 n �9

subject to the conditions

(6.4) f po(V)~k2(v) dv = 1
[0, 1] '~

and

f
,

(6.5) po(v)~k(v) dv = O.
[0, 1] '~

It is clear that 21 > 0, and its dependence on T and g can be studied via (6.3).
From (6.1) we get

If we denote

then for t > 1

(6.6)

Ip(v, tlVo, 0) - po(v)l = I ~ e-Zk'gJ~(v)~k(vo)l
k = l

= e-Z,, I ~ e-~Z'~-z')'tPl,(V)C'k(Vo)l.
k = l

k(v)=eZ'[p(v, llv, O)-po(v)l ,

I p(v, t l Vo, O) - po(v) l < e- ~ ' ' ~

< e -~'~ sup k(v),

which gives an estimate of the rate of convergence of the transition density to the
equilibrium distribution.

7. Analog Realization. Equations (4.5) and (4.7) are Ito equations. To realize
them in analog circuits using Gaussian wideband noise requires a correction term
[11]. The origin of the correction term is rather technical. It has to do with the fact

that dl4~t), the differential increment of a Wiener process, is proportional to x / ~ ,

Stochastic Neural Networks 475

rather than dt, and that stochastic differential equations are based on a forward-
difference approximation. It turns out that if W is the derivative of a Wiener
process, then F(W(t))W(t) dt is like F(W(t + �89 dl4(t). The correction term can

then be computed using Taylor series and the estimate Jdl4(t)l = x / ~ . With the
correction term, (4.5) and (4.7) can be rewritten as

T #"(ui(t)) 2 / ~
(7.1) ti~(t) = -Ei(v(t)) + 2 [g'(u~(t))] 2 ~- tit(t),

(7.2)
T

1)~(t) = -f(v~(t))E~(v(t)) + ~ f'(v~(t)) + x/2Tf(v~(t))rh(t),

where ~h = ~ is a Gaussian white noise.
For the example given in Section 5, we can write for (7.1)

(7.3) f~i(t) = -Ei(v(t)) -- 2 T sinh 2ui(t) + 2 x / ~ cosh ni(t) rh(t).
a a

A block diagram realization of (7.3) is given in Figure 1.

8. A Continuous Operating Learning System. Hinton et al. [5-1 defined a learning
problem for Boltzmann machines that can be extended to diffusion machines.
Suppose that the n nodes in the network are divided into two groups: visible nodes
and hidden nodes. The space [0, 1]" is correspondingly factored into the cartesian
product Vx H, where V = {vi: i visible} and H = {vi: i hidden}. Now, suppose
that a probability density function ~ is specified in V and we want to find a set of
weights w o so that the stationary distribution of v,(t) on the visible nodes will be as
close to ~ as possible.

We now modify our earlier notation to make the dependencies more explicit. Let
po(v, h; w) denote the stationary density of the entire network for v ~ V, h ~ H, and

w Or l~l '

v3 -E ' > Integrator I o l
Vn

in

Fig. 1. A node in a diffusion machine.

476 E. Wong

let w denote the weights. Let the density on V alone be denoted by

(8.1) po(v: w) = f po(v, h; w) dh.
H

The problem now is to find w so that po(v; w) approximates if(v).
Following [5], we use the asymmetric divergence

(8.2) G(w) = f v i(v) l n [p o ~)) l dr"

as a measure of approximation, and choose w to minimize G(w). Now,

1 po(v, h; w) = ~ e -(1/r)E(v' h; w)
I.tW)

and

(8.3) Z(w) = f e-(1/r)E(v, h; ~,) dv dh.
V x H

Hence,

f e-(1/T)E(v, h; ~) dh
H (8.4) po(V; w) =

f e-(1/r)E(v, h; w) dv dh
" V x H

and

1 f dE(v, h; w)
(8.5) OG(w) = T Jv •

~ W i j ~ W i j
[po(v, h; w) - p(v)po(hlv; w)] dv dh,

where

(8.6) po(hlv; w) -
po(v, h; w)

po(v; w)

If we denote by 80 the expectation with respect to po(v, h; w) and by ~ the
expectation with respect to p(v)po(h [v; w), then we can write

~C(w)
(8.7)

~3wij

Stochastic Neural Networks 477

Free-running
Network

E~ l w(t) l
Weight Machine

w (t)l E ~t
I Training Samples ~ Clamped Network

Fig. 2. A continuously operating learning system.

We first observe that if E is the quadratic function given by (1.3), then

dE _ J - v i v i for i # j ,
ff~w~j [-�89 for i = j .

Hence, we can estimate dG/dwlj by running the network in two modes: (a)a
free-running mode that yields 8o, and (b) a clamped mode where for the visible
nodes {v~} are found to have a distribution given by ~ to yield ~.

Next, we observe that we can use the Langevin algorithm to minimize G(w).
Specifically, we can set

dwij(t) = - Go(w(t)) dt + x / ~ dZ~j(t),

where G o = OG/dw~j comes from the two copies of the network running in two
different modes, Z o are independent Wiener processes, and S is the temperature for
the "weight machine" and is different from the temperature T of the networks used
to generate G w A block diagram of the "learning dynamics" is given in Figure 2.

Intuitively, if we change w(t) slowly in comparison to the dynamics of the two
networks, then we should expect the two networks to reach approximate equilibri-
um before the weights are changed significantly. The continously operating nature
of a diffusion machine in the learning mode makes it a most attractive system.

9. Conclusion. In this paper we consider a class of stochastic networks, which we
call diffusion machines, that result from a modification of continuous-variable
Hopfield networks. We show that by injecting white Gaussian noise in a specific
way at each node of a Hopfield network, we obtain a diffusion process with a
stationary density of the Boltzmann form. It follows that cooling of the noise
sources can be used to achieve annealing, which in turn can be used to obtain a
global minimum. As such it is closely related to both the Boltzmann machine and
the Langevin algorithm, but superior to both in terms of possible integrated circuit
realization [13].

478 E. Wong

Learning algorithms similar to those proposed for Boltzmann machines are a
particularly interesting problem for study. We propose an arrangement consisting
of three coupled diffusion machines that perform the functions of training, learning,
and weight-adjustment concurrently in continuous operation. This is in contrast to
learning in Boltzmann machines which alternates between a learning phase and an
"equilibriating" phase. A substantial speed advantage for diffusion machines is
likely.

References

[1] J.J. Hopfield, "Neurons with graded response have collective computational properties like
those of two-state neurons, Proc. Nat. Acad. Sci. USA, 81 (1984), 3088-3092.

[2] L.O. Chua and G. N. Lin, Nonlinear programming without computation, IEEE Trans. Circuits
and Systems, 31 (1984), 182-188.

[3] J.J. Hopfield and D. W. Tank, Neural computation of decisions optimization problems, Biol.
Cybernet, 52 (1985), 141-152.

[4] M. Takeda and J. W. Goodman, Neural networks for computation: number representations and
programming complexity, Appl. Optics, 25 (1986), 3033-3046.

[5] D.H. Ackley, G. W. Hinton and T. J. Sejnowski, A learning algorithm for Boltzmann machines,
Cognitive Sci. 9 (1985), 147-169.

[6] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, Optimization by simulated annealing, Science,
220 (1983), 671-680.

[7] D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, Convergence and finite-time behavior of
simulated annealing, Adv. in Appl. Probab., 18 (1986), 747-771.

I-8] B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res., 13 (1988), 311-319.
[9] S. Geman and C. R. Hwang, Diffusions for global optimization, SlAM J. Control Optim., 24

(1986), 1031-1043.
[10] B. Guidas, Global optimization via the Langevin equation, Proc. 24th IEEE Conference on

Decision and Control, 1985, pp. 774-778.
[11] E. Wong and M. Zakai, On the convergence of ordinary integrals to stochastic integrals, Ann.

Math Statist., 36 (1965), 1560-1564.
[12] E. Wong and B. Hajek, Stochastic Processes in Engineering Systems, Springer-Verlag, New York,

1984.
[13] J. Alspector and R. B. Allen, A neuromorphic VLSI learning system, in Advanced Research in

VLSI, Proc. 1987 Stanford Conference, P. Losleben, ed., MIT Press, Cambridge, MA, 1987, pp.
313-349.

