
Algorithmica (1991) 6:346-366 Algorithmica 
,~ 1991 Springer-Verlag New York Inc, 

Analysis of Finite Length Annealing Schedules 

Philip N. Strenski 1 and Scott Kirkpatr ick 1 

Abstract. By constructing a master equation for the distribution of outcomes from simulated 
annealing, we are able to characterize this process exactly for arbitrary annealing schedules on 
extremely small problems. Two sorts of numerical experiments are reported, using this formalism. First, 
annealing schedules are found which minimize the cut cost of partitioning a highly symmetric weighted 
graph, using a fixed number of Monte Carlo search steps. The experiments yield some surprising results, 
which sharpen our understanding of the problems inherent in trying to optimize a stochastic search. For 
example, optimal annealing schedules are not monotone decreasing in temperature. Second, we 
construct configuration spaces of random energies and varying connectivity. These are used to compare 
different annealing schedules which are common in the literature. The experiments also provide an 
occasion to contrast annealing schedules derived from asymptotic, worst-case bounds on convergence 
to the global optimum with adaptive schedules which attempt to maintain the system close to 
equilibrium throughout the annealing process. 
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1. Introduction. Since its in t roduct ion [1], simulated annealing has become a 
recognized tool  for combinator ia l  optimization. In particular, the technique has 
been used successfully for chip placement [2], [3], image processing [4 ] - [7 ] ,  and a 
variety of other applications [8], [9]. This algori thm searches a configurat ion 
space using r andom moves which are accepted or  rejected based on their relative 
cost. The probabilistic criterion (the "Metropol is  rule" [1]) for accepting some 
uphill moves mimics the thermal excitations of  a toms and involves a parameter,  T, 
analogous to an external temperature.  The "anneal ing schedule" of these changing 
temperatures as functions of time must  be provided by the user. The final result 
may  be sensitive to the schedule chosen, so specification of an annealing schedule 
has become an impor tan t  practical issue in the application of simulated annealing. 

Using the theory of  Markov  processes, numerous  authors  [4], [10 ] - [12 ]  have 
demonstra ted the existence of schedules which are guaranteed to converge to the 
optimal solution in infinite time. These schedules have the form 

(1) T =  
b + log(t) '  

where a, b are positive constants  depending on the part icular  problem and t, the 
elapsed time, is the interpretat ion given to the number  of search iterations which 
have taken place. This result applies to any problem for which annealing can be 
formulated. 
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In practical applications, the time (or the amount of computation) available is 
not infinite. Instead one trades off increasing computational cost in order to obtain 
better solutions or increased robustness, the probability that a given computer run 
will lead to an acceptable solution. The geometric sequence 

(2) T = ab t, 

where a > 0 and 0 < b < 1, converges to zero more rapidly than (1) and has been 
used in applications since the first papers [1]. Although there is little theoretical 
basis for the form of (2), for the most common classes of optimization problems 
occurring in computer-aided design this schedule usually gives satisfactory results 
in limited amounts of time. It is normally employed with a host of subsidiary 
conditions, such as criteria to determine automatically an initial "melting" 
temperature, to estimate how many iterations are needed at each temperature, and 
to stop the annealing process when insufficient improvements are being found. 

Derivations of the logarithmic schedule (1) equate the constant, a, to the height of 
a critical energy barrier separating regions which contains only local optima from 
the region in which the global optimum is found. Hajek's paper [12] gives a clear 
example of this argument. On the other hand, the geometric annealing schedule is 
at least consistent with the observation that many difficult optimization problems 
possess an implicit hierarchical structure, in which large energy barriers separate 
large valleys in the solution space and small barriers separate the many small 
valleys within each large valley [13]-[16]. This second view suggests that an 
efficient annealing schedule will spread its efforts across a wide range of energy 
barriers, rather than concentrating on one critical barrier size. 

Recently several workers have proposed adaptive annealing schedules, which 
adjust the rate of decrease of the temperature by measuring the rate of change of 
the objective function or other, more local, measures of the rate at which the 
solution space is being searched, in order to cool slowly when important changes 
are taking place, and more rapidly when little additional improvement is obtained 
[17]-[20]. The most elaborate adaptive schedule has been introduced by Lam and 
Delosme [19]. They vary the inverse temperature at step i,/~i, using 

(3) 

where al is the actual fraction of moves accepted at step i, C is the specific heat in 
equilibrium at this temperature, and 2 is a control parameter. Their approach relies 
upon adjusting the move generation strategy to keep ai close to 0.44, the value 
which maximizes its contribution to (3), and knowing or measuring C. The first 
step is not possible for every problem, and measuring C in the course of an 
experiment is often very difficult. While the approach is intuitively reasonable, 
there are several unproven assumptions. Lam and Delosme assume that the system 
begins in equilibrium at some initial temperature, and that the best schedule keeps 
the system as close to equilibrium while cooling as possible. However, a system 
may not start in equilibrium, and it is not clear whether it is better to bring it into 
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equilibrium quickly at a high temperature or more slowly at a low temperature. 
Finally, in the late stages of annealing, equilibration may be unnecessary, if the 
region of solution space that remains accessible has only one minimum. 

The purpose of this paper is to test some of the assumptions and intuitions 
behind these annealing schedules. We explore the behavior of simulated annealing 
with finite-time resources. In order to get a more precise handle on the character of 
simulated annealing, we take a different approach than most authors. Rather than 
use the simple algorithm of simulated annealing to give us information about 
complicated state spaces, we use trivial state spaces to probe the complex character 
of simulated annealing. 

The central idea in this analysis is the restriction to state spaces of small size 
( < about 200 states) whose structure (energies and connectivity) is known before- 
hand. It is then a simple matter to calculate exactly many properties of the Markov 
chains associated with simulated annealing on this state space. We average over all 
annealing runs with the same temperature schedule. This average then provides a 
probability density of states after each annealing step. This probability density can 
then be used to calculate various quantities such as average energy, probability of 
being in the ground state, or average transition rate. 

Note that for real problems the size of the state space is at least exponential in the 
problem size, so that even a simple problem such as the equal bipartioning of a 
graph of 20 nodes has a space of nearly 200,000 states. The simulation of such a 
large problem is outside our computational ability. However, many of the features 
of larger spaces are found in smaller ones and the exact evaluation of annealing 
schedules on these smaller cases can be used to test ideas about annealing on their 
larger counterparts. In particular from the results of these comparisons we can test 
our assumptions about the efficacy of various schedules on state spaces of differing 
structure, about the behavior of optimal schedules, and about the importance of 
thermodynamic quantities such as the specific heat. 

The exact evaluation of an annealing schedule as applied to a specific problem is 
straightforward. Let the number of states be N. The configuration of the system 
after any number of annealing steps i is represented by a column vector P(i) of 
length N whose entries are the relative probabilities of finding the system in any 
given state at that step. The evolution of this vector by one annealing step at 
temperature T is simply a multiplication by the N x N transition matrix A(T).  The 
relation P(i) = A(T(i))P(i  - 1) is conventionally referred to in statistical mechanics 
as a master equation. The final configuration of states (after L multiplications for a 
schedule of length L) is evaluated by applying some measure to produce a single 
number. 

The starting vector P(0) is typically the uniform vector P with Pi = 1IN for each 
state i, since the initial state is usually chosen at random. The transition matrix 
A(T)  is typically specified by 

= S0 if the states i , j  are not connected, 
(4) A(T)  ij 

MIN(1, et~-E~)/T)/C otherwise, 

where El is the energy of state i and C is the number of connecting states. The final 
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state measure is typically the average final state energy, which can be found by 
multiplying the final column vector by the row vector of energies E. For example, 
an annealing schedule of length L with temperatures T 1 . . .  TL has a value given by 
EA(TL) . . .  A ( T O P  for the usual choices. Note also that since the configuration of 
relative probabilities is known at each step, it is also possible to measure other 
quantities which depend on this, such as the specific heat and acceptance ratio, as 
functions of time. 

In the following sections we present a number of experiments involving a variety 
of small state spaces and parametrized annealing schedules. In the first experiment 
the bipartition of a particular small graph is the test case and the schedule of 
temperatures is completely arbitrary. We find the optimal schedule of a particular 
length for this problem. 

In the latter sections we restrict our attention to one-parameter families of 
annealing schedules applied to state spaces of uniformly distributed random 
energies. We investigate how the characteristics of each family influence the success 
of annealing. We adjust the connectivity of the state space while leaving the energy 
levels fixed. This separates the effects of connectivity from other quantities such as 
specific heat which depend only on the density of states. 

Note that in our analysis we restrict ourselves to static annealing schedules, that 
is, an average is performed over many annealing runs with the same temperature 
schedule. This can be contrasted with the idea of adaptive schedules in which the 
temperature schedule varies from run to run. However, an underlying assumption 
in most adaptive schemes is that the system is near equilibrium at the current 
temperature and that quantities such as specific heat measured during the run are 
near to equilibrium values at the current temperature. Since the equilibrium values 
are known for our test cases we can test these assumptions and comment on the 
merits of adaptive schedules, although we cannot analyze them directly. 

Finally, we summarize our conclusions and suggest areas of further research. 

2. A Partitioning Experiment. The first case we study involves the bipartition of a 
special complete graph of 2 K nodes motivated and described in more detail in [21]. 
Although each pair of nodes in the graph is connected the weights on the edges will 
vary in a hierarchical fashion. In particular, consider a binary tree of depth K 
whose 2 K leaf nodes correspond with the nodes of the complete graph (Figure 1). 
The weight of the edge between any two nodes will be ~* where k is the depth of the 
least common ancestor of the two nodes in the binary tree, and ~ is a constant 
greater than one. Thus any two nodes whose least common ancestor is the root 
have the smallest edge weight of 1, and two nodes with the same parent have the 
largest edge weight of ~K- 1. A correspondence with the Rent exponent suggests the 
restriction 2 __< ~ _< 4 [21], and we observe this further restriction in this paper as 
well. 

The partitioning problem will be to split this graph into two sets of 2 K- 1 nodes 
each, such that the weight of the cut edges is minimized. By construction this 
minimum is clearly obtained by dividing the nodes into the left and right branches 
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Fig. 1. Hierarchical weights for a graph with eight nodes. 

of the tree, since then all cut edges will have the minimum weight of 1. The set of 
valid partitions will constitute the state space, and the set of pairwise swaps will 
serve as the move set. 

We restrict ourselves to the simple case K = 3 involving a graph of eight nodes. 
A valid partition is an assignment of four nodes to the first partition and the 
remaining four nodes to the second. A valid move is the interchange of one of the 
four nodes in the first partition with one of the four in the second. There are thus 70 
valid partitions in the state space and 16 possible moves from each state. Because of 
the symmetries of the problem, the states can be grouped into five equivalence 
classes. The connectivity and energies for this set of equivalence classes are 
indicated in Figure 2. Most of the experiments use the value ~ = 3 for simplicity, 
although some of the theoretical results apply more generally. Note that the system 
contains local as well as global minima, and that most  of the states are at higher 
energies initially. 
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Fig. 2. Transition diagram for equivalence classes for a specific bipartioning problem. Arrows indicate 
number of moves between states (total 16 per state). Energy and number of states per class are indicated. 
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We use the average final state energy as the measure of the effectiveness of a 
given annealing schedule. The final state energy is given by 

(5) F(T1 . . . . .  TL) = E A ( T L ) . . .  A(Ta)P,  

where E is the row vector of energies, A ( T )  is the transition matrix at temperature 
T, and P is the column vector of initial probabilities (not uniform because of the 
merging into equivalence classes). We wish to minimize F with respect to the 
variables T1 . . . . .  TL subject to the constraints Ti > 0. Expressed in this fashion the 
task of determining the optimal schedule of a fixed length for this problem is a 
simple application of constrained nonlinear optimization. Although A ( T )  involves 
some exponentials, it is fairly inexpensive to compute F ( T I ,  T2 . . . . .  TL) and its 
derivatives for use with an optimization program. There are some fine points which 
are discussed in the next section, but basically this procedure allows us to construct 
optimal annealing schedules of length L < 70 for this problem using a standard 
optimization package [22]. 

3. Results. The transition matrix for annealing schedules is highly nonlinear 
in the temperature parameter. It is often useful to scale to another variable of 
the form e c/r where C is some constant. This change of variables is necessary to 
make many optimization packages operate correctly. For example, in our case, 
the transition array (4) may be simplified by rewriting it in terms of the variable 
U = exp[(2 - 2~)/T], namely 

(6) A ( U ) =  

1--W 3 0 !16 0 0 1  

,/ 0 1 - l U g -  1 - 1 U ~  116 81 0 
u +3 1 _ 

o  -�88 

0 0 �88 ~+1 �88 ~ ~ .  

For ~ > 2, the lowest power of U present is 1 (other than constants) so the first 
derivative of A(U) with respect to U is defined and nonsingular for all U > 0. This 
assures that the optimization routine is well behaved. Note that values of U > 1 
correspond to unphysical negative temperatures. Although these were permitted to 
the optimization package they were not utilized and may be ignored. Also note that 
the value U = 0 corresponds to the value T = 0. 

Since the objective function for schedules is quite nonlinear, it is not surprising 
that there may be more than one locally optimal solution. In fact a schedule of all 
zeros (iterative improvement) is locally optimal among schedules of any length for 
this problem (for ~ > 2). This statement is equivalent to showing that, for 
1 <_i<_L, 

~F 
(7) 

0Ui 
- -  (0, 0 . . . . .  O) = [EA(O)L-~]A'(O)[A(O) ~- ~P] > O. 
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The last bracketed expression is just the vector of state probabilities after i -  1 
steps. From the transition diagram of Figure 2, every state has a nonzero 
probability of going nowhere at any temperature, and since each state is initially 
occupied with some probability, this vector has strictly positive entries. In 
particular the third element is positive. A'(0) is zero except for A'(0)(3, 3) = - � 8 8  and 
A'(0)(4, 3) = �88 Therefore if we define Xp = EA(O) p, then (7) reduces to showing 
that (Xp(4) - Xp(3))/4 > 0 for 0 _< p < L. Since A(0) has a simple form this can be 
proved by induction. The recursion formulas are 

Xp+ 1(1) = Xp(1) = E(1), 

Xp+ 1(2) = Xp(2) = E(2) > E(1), 

Xp+l(3 ) = 14Xp(3) + Xp(2) + Xp(1) 
16 

Xp+ 1(4) = 3Xp(4) + 4Xp(3) + Xp(2) 
8 

SO 

(8) Xv+ 1(4) - Xp+ 1(3) = 6(Xp(4) - Xp(3)) + (Xv(2) - Xp(1)) 
16 

> 0 ,  

where the final inequality follows inductively from E(4) > E(3). 
In a similar fashion we can also prove that any locally optimal schedule must 

terminate with a number of zero temperatures. In particular it is simple to check 
that if, for some k, Xk(1) < Xk(3) < Xg(4) < Xk(5) and Xk(2) < Xk(4), then the 
entries of XkA'(U) are nonnegative for all U > 0 and the third entry is always 
positive. It follows that ?F/?UL-k>O for all UL-k>O regardless of 
U1 . . . . .  UL-k- 1 provided that UL_k+ 1,..., UL are all zero. In this case for a locally 
optimal schedule Ur-k = 0 is the only possible solution. In particular the elements 
of X o = E are so ordered for all 2 < c~ < 4, namely 16 < 10 + 4~ + 2~ 2 < 8 + 
67 + 2~ 2 < 8 + 4a + 4C~ 2 and 8 + 8a < 8 + 6a + 262, and thus optimality re- 
quires UL = 0. Knowing UL = 0 for a locally optimal schedule and that the 
elements of X1 = EA(O) are again ordered for all 2 < a < 4, shows that for a locally 
optimal schedule UL- 1 = 0. Continuing this process we can show that at least the 
last five temperatures must be zero for any locally optimal schedule with 2 < a < 4. 
Also 2.4119 < cr < 4 implies at least the last six temperatures are zero, 2.8993 
< a < 4 implies at least the last seven temperatures are zero, and 3.4564 < a < 4 
implies at least the last eight temperatures are zero. Note that these bounds are not 
tight, weaker conditions may in fact suffice. 

For the remainder of the results we fix c~ = 3. The optimal schedules for lengths L 
from 15 to 70 are shown in Figure 3. For  schedules of length less than 14 the only 
locally optimal schedules consist of all zeros. For  L = 14 other locally optimal 
schedules are possible but the all-zero schedule still has the best average final state 
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Fig. 3. Optimal annealing schedules for ~ = 3.0 partit ioning problem. The total numbers of steps are 
15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70. The first four and the final eight to ten temperatures are 
always zero. 

energy. For  L > 14 there are typically about ten locally optimal schedules, and the 
one with the best average final state energy is shown in Figure 3. Some reasons for 
believing we have located all the optimal schedules will be given later. 

The most striking feature of these results is that every locally optimal schedule 
begins with some number of zero temperatures. The global optima all begin with 
four zero temperatures and local optima begin with from two to five. After this 
initial segment the schedules closely follow a decreasing envelope which is 
relatively independent of the length. The envelope is consistent with the theoretical 
infinite-time schedule (3) but the evidence is certainly not conclusive. However, 
since the derivation of this schedule is based on tunneling across a single barrier, 
and this is effectively the situation in our problem, we would expect this result to 
apply here. When the schedules near the end, the temperature rapidly falls to zero 
and the last set of temperatures are all zero. There are from eight to ten final zeros 
for the global optima (recall that for ~ = 3 we proved a lower bound of seven). The 
energies and standard deviations for locally optimal schedules of various lengths 
are shown in Figure 4 along with those for iterative improvement (schedule of all 
zeros). Note that the nonzero schedules of each length have energies which are 
visually indistinguishable, but all are well below the value for iterative improve- 
ment. The probability that the final state is a ground state is presented in Figure 5 
for the same conditions. Note that the high probability of finishing in the ground 
state again supports the conclusion that the system is dominated by single-barrier 
tunneling for longer schedules. 

To aid in the convergence of the optimization, a number of initial and final 
temperatures were fixed at zero. Then the remaining nonzero temperatures were 
obtained using a double precision constrained optimization program from the 
Harwell package [22]. The user provides the function to be evaluated (the average 
final energy F(O . . . .  , O, Ui . . . .  , U j ,  0 . . . .  ,0)) and its derivatives with respect to the 
variables Ui . . . . .  U j  as well as any linear constraints (Uk > 0). These functions are 
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Fig. 4. Average final state energy and standard deviation as a function of length of schedule for locally 
optimal schedules for the ct = 3 partitioning problem. Curves are provided for iterative improvement as 
well as other locally optimal schedules (where they exist) with four initial zeros and eight, nine or ten 
final zeros. The three curves for nonzero locally optimal schedules are visually indistinguishable but 
different. The curve for iterative improvement is noticeably poorer for longer schedules. 
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Fig. 5. Probability that the final state is the ground state as a function of length of schedule for both 
optimal schedule and iterative improvement. The problem is e = 3 partitioning. 
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simple matrix multiplications involving the arrays E, P, A(U), and A'(U). Note that 
for ~ = 3 the array elements are simple polynomials in U. The initial guess was 
typically a decreasing linear sequence of U values. The convergence to the solution 
was quite rapid and independent of the initial guess (although poor guesses 
resulted in convergence to a different local optimum having more zeros). The 
number of initial and final zeros was varied until no further locally optimal 
schedules were found and the one with the best value of the average final state 
energy was selected as the optimal annealing schedule of that length. There were 
typically about ten schedules from which to choose. Accuracy was sufficient to 
distinguish between local optima which sometimes had energies differing by 1 part 
in 10 6 . 

Although there is always the possibility that more locally optimal schedules 
exist, there is good reason to believe that the set we have found is complete. First it 
is unlikely that zero temperatures would appear other than at the extremes of the 
schedules. Initial guesses with middle zeros were tried and either resulted in the 
forcing of other (typically all) temperatures to zero, or else the temperatures simply 
moved away from zero toward their preferred value. Multiple optimal schedules 
with the same number of initial and final zeros are possible and were tested for by 
trying different starting configurations. Again the results involved convergence to 
the same solution or forcing of other temperatures to zero. Some numbers of initial 
and final zeros resulted in the forcing of the other temperatures to zero regardless of 
the starting schedule. Although no locally optimal schedules were found for these 
values, it is possible that some were missed due to sensitivity to initial conditions. 
However the energies of the optimal schedules that were found formed a simple 
parabolic surface as a function of the number of initial and final zeros, which 
changed slowly and smoothly with the length of the schedule. Any locally optimal 
schedules with small basins that were missed would presumably be at higher energy 
values anyway. 

4. Interpretation. A number of the features observed in these schedules need 
further explanation. It has already been noted that the schedule of all zeros 
(iterative improvement) is always a local minimum in the space of schedules. It is 
also apparent that at some schedule length there is a transition after which this is 
no longer the global optimum. This transition simply reflects the idea that 
traditional annealing should not be used unless a reasonable amount of time is 
allocated. 

The presence of the initial segment of zeros deserves more attention since 
virtually everyone (including the authors) had assumed that a correct annealing 
schedule should be monotonically decreasing. Unfortunately no proof is yet 
available for this phenomenon as there is for the section of final zeros. However 
with some hindsight this segment of the schedule becomes understandable. First 
notice that the length of this segment is basically independent of the length of the 
total schedule. Next note that although the initial configuration is random (infinite 
temperature), any real problem has a finite temperature scale. Finally, the 
temperature that appears in the annealing schedule is not an internal temperature 
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of the system unless the annealing temperature remains constant for long enough. 
From these points it is reasonable that when studying a system whose internal 
energies are bounded but whose initial temperature is infinite, the first order of 
business is to bring the nonequilibrium internal temperature down to a reasonable 
value. The most efficient way to do this is to use the lowest bath temperature, 
namely zero. Once the system has cooled down to the order of its internal energies, 
the intuitive picture of gradually decreasing schedule is valid. Also note that the 
segment of initial zero temperatures is closely tied to the random starting 
condition. A different starting configuration (for example, one obtained via some 
heuristic) could easily lead to a different initial segment. In particular, if only the 
local minima are initially populated, it is simple to show that a schedule of length 
two must not have an initial zero temperature. 

The final temperatures in the schedule are also interesting. Although the number 
of zeros at the end decreases from ten to eight with increasing length of schedule 
this is probably due to the discrete nature of the schedule. When more tempera- 
tures are available a smoother approach to zero is possible, so fewer finite 
temperatures near the end are forced to zero. This viewpoint is consistent with the 
observation that the form of the decrease for differing lengths is quite similar. 

The observation of an envelope for the annealing curves may also be surprising, 
since, given more annealing time, besides extending the schedule to lower tempera- 
tures, it would also be possible to allow more time at higher temperatures. This is 
apparently not optimal, however. This property could easily be an artifact of the 
small size of the current problem and the presence of only a single barrier. 

5. Random Energies and a Variety of Schedules. The second group of experiments 
tested the performance of the various types of annealing schedules in common use. 
In each case, we have left one free parameter to be optimized for a given model and 
available number of iterations, rather than adjusting each temperature individu- 
ally. In the introduction we gave an example of each type of schedule as a 
continuous function of time, t. Our model used discrete schedules, in which T is a 
function of an index variable, i, which are specified here. Besides the logarithmic 
and geometric schedules already described, we also considered a linear cooling 
schedule for its simplicity. This takes the form 

(9) T,i~(t ) = To(1 - t/tm~x) 

o r  

(10) Tl in( i  ) = T o ( N i t e r - / ) / N i t e r  , 

where the annealing extends up to time tma x (or for Niter iterations), 
A logarithmic cooling schedule was implemented discretely as 

(11) Tiog(i) 1 + log(i)' 

O, 

i < Ni te r  - 10, 

Nite r  - -  10 < i < Ni te r .  
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The value of final steps at zero temperature was shown in the preceding section. 
They also proved important with the logarithmic cooling schedule because the first 
formula of (11) leaves the temperature at intermediate values as i approaches Niter.  

This implies that there is a significant probability of the Markov chain being in an 
excited state. The small number of final steps at T(i) = 0 fixes this, driving the 
probability density down into the nearby local minima. Our linear annealing 
schedule decreases continuously to zero, and does not need this extra "cleanup" 
phase. The geometric schedule, described next, does not terminate precisely at 
T(Niter ) = 0. It does end, however, at a sufficiently low temperature that a few final 
steps at T = 0 gave only a small additional improvement in the expected energy. 
We could perhaps have improved or accelerated our annealing schedules by 
adding initial steps at very low temperatures, as was found in the previous section. 
However, we did not study this effect in this series of experiments. 

A geometric annealing schedule of the form (2) was created by choosing a final 
temperature, Tfi.a~, and interpolating logarithmically between T O and Tfin~ l for Niter 

steps: 

(12) Tgeo(/) : To( Tfinal/ Zo) (i/Niter). 

Geometric annealing schedules have two parameters, To and Tfina 1. In order to 
compare with the other, one-parameter annealing schedules, we used the same 
Tfjna I for all values of Niter.  We selected the value Tfina I = 0 .02 ,  which gave the best 
result for Niter  = 1000 with the models used. Note that the factor b used in (2) can 
be identified as b = (Tfinal/To)UNiteL Thus b ~ 1 as  Niter  increases. 

We consider several model configuration spaces in these experiments, but most 
of our observations can be related to one of these--a set of 200 random energies 
created by a standard random number generator which produces a sequence of 
numbers uniformly distributed between 0.0 and 1.0. If we assume that transitions 
occur between adjacent states in the sequence, the "potential surface" drawn in 
Figure 6 is obtained. We can study other connectivities, for example by allowing 
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0.0 
0 50 1 O0 150 200 

Sequence number 

Fig. 6. Energy sequence used in the 200-random-states model. Used with nearest neighbor (200-2) and 
nearest plus next nearest neighbor (200-4) move sets. 
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Fig. 7. Equilibrium energy, acceptance rate, and specific heat for the 200-state-random-energy model 
(dashed lines) are compared with the predictions of a uniform continuous distribution of states (solid 
lines). The acceptance rates for both the 2 and 4 neighbor versions of the random-state model are 
plotted (the 200-4 curve is higher). E(T) and C(T) are the same for the two models. 

transitions between states separated by two (or more) steps along the sequence. 
Adding connections while keeping the state energies in the model unchanged will 
not change the equilibrium properties, such as the average energy or its derivative 
with respect to temperature, the specific heat 

(13) C(T) = dE(T)/dT,  

since these quantities are determined by averages over all states, weighted by 
Boltzmann factors, which are functions of energy and temperature only. However, 
transport and relaxation properties tend to be dominated by "critical" barriers, the 
highest energies through which a Markov chain must pass to move from one part 
of the state space to another distant part. These barriers will be affected by changes 
in connectivity. 

In Figure 7 we show the equilibrium properties of this model--energy, specific 
heat, and Metropolis move acceptance rate--evaluated by a Boltzmann-weighted 
average over the 200 energies used. As a check, and for comparison, we also 
evaluated and show the limiting expressions which a larger model would give. 
These are obtained by replacing the Boltzman sums with integrals over a 
continuous uniform distribution of energies. With only 200 energies, our model 
varies noticeably from the uniform distribution limit. The average energy is 
roughly 0.45, there are 15 energies less than 0.05 (ten are expected), and four states 
with energies less than 0.01 (two are expected). The smallest energy present is 0.004. 

For a very large number of states, thermodynamic properties in equilibrium 
would take the "exact" limiting forms obtained by substituting the uniform density 
of states (from 0 to 1) into the expressions which define the partition function Z(T).  

(14) Z(T)  =- dE e -€ = f l - 1 ( 1  - e - ~ ) ,  



Analysis of Finite Length Annealing Schedules 359 

where fl = 1/T, and for the energy, E(T), 

(15) E(T) ~ Z - 1  dE Ee -pg 

1 - e - P ( 1  + r)  

f l (1  - e - a )  

Note that E(T)  in (15) tends to �89 as T ~ 0% and has the limit E(T) ~ T as T ~ 0. 
The specific heat, C(T), is given by 

(16) C(T) = Z- I[2 f l2E(T)  - fie -at] - Z-2f l2E(T)  2. 

This complicated-looking expression is plotted in Figure 7. It reduces to 1 at T = 0, 
and decreases monotonically with increasing T. Boltzmann-weighted averaging 
over the 200 random energies gives an E(T)  and C(T) which are in reasonable 
agreement with the "exact" limits, except at the lowest temperatures. 

The average rate, a(T), at which transitions are accepted under the Metropolis 
rule is an input to adaptive annealing schedules. In equilibrium, it depends only 
upon the initial and final energies and the temperature. Since the energies in our 
model are uncorrelated, a(T) is obtained by averaging (4) over initial and final state 
energies. Summing over the number of final states which can be reached from a 
given initial state simply removes the factor 1/C in (4). Using the continuous 
distribution for both initial and final states, we obtain 

(17) a(T) = 2E(T), 

for the uniform distribution. The actual rates of transitions predicted for the 200 
random energies in equilibrium are shown by dotted lines in Figure 7 for the cases 
with connectivity 2 and 4. These cases are denoted models 200-2 and 200-4 for 
brevity. The differences between the two cases are small, and both agree fairly well 
with the estimate (17) from the uniform distribution. 

The method of the previous section was now applied to the 200-energy models, 
using each of the annealing schedules and starting with the probability distribution 
uniform over the 200 states. Figures 8-10 show the expected energies achieved as 
functions of the adjustable parameter T o for the inverse logarithmic, geometric, 
and linear annealing schedules, respectively. None of the expected results ap- 
proaches very closely the exact minimum energy in the model, 0.004. Inspection of 
the limiting probability distributions achieved showed that five to ten low-lying 
local minima participated in the result. The best value of T o is indicated on each 
curve by a data point. Results are shown for connectivities 2 and 4, and for values 
of Niter increasing by factors of 5: 40, 200, 1000, and 5000. The curves with 
connectivity 4 roughly overlap those with connectivity 2 and 25 x more search 
steps. That is, doubling the number of moves available in this particular structure- 
less search space is equivalent to searching for 25 x as long. Note that To varies 
strongly with Niter in both the inverse logarithmic and geometric schedules (Figure 
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Fig. 8. Average final state energy as a function of temperature parameter To, using the inverse 
logarithmic cooling schedule defined in (11), for the 200 2 (solid lines) and 200-4 (dashed lines) models. 
Results for Niter = 40, 200, 1000, 5000 are shown for each model. The longer schedules correspond to 
lower energies. Values of T O for which best results were obtained are marked with a diamond (for 200-2) 
or a circle (200-4). 

8 and 9), but in the opposite direction. There is little dependence on total annealing 
time in the linear schedule results (Figure 10). In all three cases, the best value of To 
for a given Niter decreases when the connectivity is increased from 2 to 4. 

The inverse logarithmic schedule obtains better results than the linear or 
geometric schedule when Niter ----- 40,  but is the poorest of the three for Niter _> 200. 
This schedule also requires the most careful tuning of the three, and thus would be 
the least robust in practice. As a measure of robustness, we compared the expected 
energy at twice the best T O with the best expected energy. For the inverse 
logarithmic schedule, the increase was 15 % at Niter = 40, increasing to about 40 

at Niter = 5000. 
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Fig. 9. Average final state energy as a function of 
temperature parameter T O for the geometric cool- 
ing schedule defined by (12). Conventions are as 
in Figure 8. 
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Fig. 10. Average final state energy as a function of 
temperature parameter T O with the linear cooling 
schedule defined by (10). Conventions are as in 
Figure 8. 
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Fig. 11. Three optimized annealing schedules for Niter = 1000: inverse logarithmic cooling (solid line), 
geometric (long-dashed line), and linear (short-dashed line). 

It is hard to choose between the linear and geometric schedules for this model 
problem, since their results are consistently close. The geometric schedule is the 
least sensitive to the choice of To, since the energy expected at twice the best choice 
of T O is only about 1 ~o higher than the minimum. For the linear schedule, this 
increase was approximately 5 ~ at all values of Niter. However, the best results 
obtained with the linear annealing schedule were about 3~ better than with the 
geometric annealing. On the other hand, the geometric annealing schedule has two 
free parameters. If we vary T f i n a  I a s  well as To, for Niter = 5000, the best expected 
energy obtained was 0.5 ~ below the linear schedule's result. 

The three schedules we studied all spend most of their time at temperatures 
below 0.3, but that time is allocated quite differently. Figure 11 shows the best 
annealing schedule of each type, for Niter = 1000. The inverse logarithmic schedule 
keeps its temperature above 0.12 until the final iterations at zero temperature. The 
optimal value of To for the inverse logarithmic schedule increases with increasing 
Niter and this has the effect of keeping the temperatures reached in most of the 
schedule from becoming small. The geometric schedule has a form intermediate 
between the linear and the inverse logarithmic. It also ends at nonzero temperature, 
and thus benefits from having a short period of zero temperature iterations added 
at the end to permit final local improvements. The average energies resulting as 
functions of time (iteration count), using the schedules shown in Figure ! 1 are 
shown in Figure 12. The energy curves in Figure 12 have the same shape at 
intermediate temperatures as the temperature curves, although there seems to be 
no reason to expect this in more general problems. 

Figures 13-15 show the average energy at each temperature during the schedule 
for the best schedule of each type (logarithmic, geometric, and linear cooling), with 
connectivity 2 and several values of Niter. The equilibrium value of the energy at 
that temperature is also given for comparison. In all cases the annealed energy 
stays strictly above the equilibrium value. In both the geometric and linear cases 
the energy rapidly closes with its equilibrium value, follows it until lower 
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Fig. 12. Energy as a function of time (iteration number) for the three annealing schedules shown in 
Figure 11. 

temperatures and then diverges. In contrast the logarithmic schedules do not seem 
to approach the equilibrium value until quite late in the schedule. The logarithmic 
schedules have the peculiarity that an appreciable reduction in energy occurs 
during the ten final iterations, which are taken at a very low temperature. This gives 
rise to the points which are isolated on the left-hand side of the graph. 

We observe that none of the annealing procedures produces thermal equilib- 
rium, even at intermediate temperatures. Furthermore, the inverse logarithmic 
schedule, which gave the best results when only a limited number of iterations is 
allowed, stays further from equilibrium during the course of its annealing than the 
less effective schedules, so it is not clear that equilibrium is desirable, except at the 
completion of the process. This challenges the basic assumption made in proposing 
and analysing adaptive annealing schedules, namely that equilibrium properties of 
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Fig. 13. Average energy at each temperature during the best logarithmic schedule for the 200-2 model 
for Niter = 40, 200, 1000, and 5000, compared with the equilibrium energy (dashed line). Longer 
schedules correspond to lower energies. The cluster of points at T = 0 result from the multiple zero 
temperatures used at the ends of the schedules. 
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Fig. 14. Average energy at each temperature during the best geometric schedule for the 200-2 model for 
Nite, = 200, 1000, and 5000, compared with the equilibrium energy (dashed line). Longer schedules 
correspond to lower energies. 
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Fig. 15. Average energy at each temperature during the best linear schedule for the 200 2 model for 
Niter = 200, 1000, and 5000, compared with the equilibrium energy (dashed line). Longer schedules 
correspond to lower energies. 
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Fig. 16. Average acceptance rate at each temperature with the best linear schedules of 200 and 1000 steps 
(dots) compared with their equilibrium predictions for the 200-2 (solid) and 200-4 (dashed) models 
(also shown in Figure 7). 
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the system will be measured during simulated annealing and can be used in the 
analysis. We cannot measure the specific heats that would be observed during 
actual simulated annealing runs, adaptive or otherwise, because our method does 
not give access to averages restricted to a single Markov chain. However, we can 
observe the rate at which moves are accepted. Figure 16 shows the acceptance rates 
as a function of the temperature during linear annealing, plotting both connectivi- 
ties and two values of Niter. Although the annealed energy stays above the 
equilibrium value, the rate of acceptance closely follows the equilibrium value. 
Equilibrium acceptance rates, calculated with a Boltzmann distribution, are 
probably, therefore, a good estimate of the rates that will be seen with the actual 
out-of-equilibrium distribution that occurs when annealing. 

6. Conclusions. This paper has provided the first results on optimal finite-time 
annealing schedules, employing a new technique to evaluate exactly the probability 
distribution of outcomes of the annealing process. Although this technique is 
limited to problems with very small solution spaces, for some nontrival problems 
wc find interesting results. We find that several locally-optimal annealing schedules 
may exist, including iterative improvement. When a sufficiently long schedule is 
employed, annealing replaces iterative improvement as the globally best solution. 

The initial segment of zeros found at the beginning of each schedule (leading to 
nonmonotonic behavior) was unexpected, but we suggest a physical motivation for 
the phenomenon. A final segment of zeros is expected and observed. A theoretical 
lower bound for the numbcr of final zeros is provided. The curves for different 
length schedules seem to follow an envelope consistent with a theoretical infinite- 
time schedule, but this evidence is not conclusive. 

We have also compared the performance of three types of annealing schedules on 
an artificial system--200 random energies with limited conectivity providing a 
"white noise" potential surface. Both the linear and geometric annealing schedules 
studied outperformed an inverse logarithmic schedule when sufficient computing 
effort was allowed, and both were reasonably robust in giving good results for a 
range of parameter settings. The inverse logarithmic schedule is known to 
maximize the probability that the system ends up on the better side of a given large 
"critical" barrier. This may be why it gives a good approximation to the schedule 
envelope found for our first model. In the second model, with random energies, 
multiple low-lylng solutions are reached, and presumably there are multiple critical 
barriers. It might be expected that a heuristic which blends several barrier- 
dependent schedules would take a form more like the linear or geometric schedule. 

Our experiments did not distinguish strongly between linear and geometric 
forms of annealing schedule, but they do show that the geometric schedules are not 
degraded seriously by setting the initial temperatures too high. Having a second 
parameter, Tfin, 1, may make the geometric more powerful in practice, since the two 
temperatures affect different portions of the schedule. They can be determined 
independently, one from the observed high-temperature rearrangements of the 
system (its "melting" behavior) and the other from the reduced transition rates 
seen at low temperatures (its "freezing"). 
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Since our master equation technique does not permit simulating adaptive 
annealing schedules, we have concentrated on checking the underlying assump- 
tions of these schedules. Adaptive schedules are tuned by continously measuring 
specific heat and move acceptance rate. We constructed two models (200-2 and 
200-4) which have the same equilibrium specific heat and almost the same local 
transition rates, yet the best annealing schedules found were rather different for the 
two models. If an adaptive technique could really access equilibrium values, it 
would produce identical schedules for these two cases, so at least one of them 
would be quite suboptimal. We find that our best heuristic schedules produce 
annealing trajectories which are never in equilibrium. The rate at which moves are 
accepted, however, appears to be insensitive to the degree to which the system is 
not in an equilibrium distribution. Adaptive annealing schedules do seem effective 
in practice, though our results challenge their usual derivations. We suggest that 
more work is needed to determine when quantities such as specific heat, estimated 
out of equilibrium by averaging over only a portion of the system's phase space, 
will nonetheless contain the proper information to identify "interesting" tempera- 
ture regions over which to anneal more slowly. 
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