
Algorithmica (1991) 6:207-221 Algorithmica
�9 1991 Springer-Veflag New York Inc.

An O(n log n) Plane-Sweep Algorithm for L 1 and Loo
Delaunay Triangulations

Gary M. Shute, 1 Linda L. Deneen, 1 and
Clark D. Thomborson (a.k.a. Thompson) 1' 2

Abstract. The Delaunay diaorarn on a set of points in the plane, called sites, is the straight-line dual
graph of the Voronoi diagram. When no degeneracies are present, the Delaunay diagram is a
triangulation of the sites, called the Delaunay triangulation. When degeneracies are present, edges must
be added to the Delaunay diagram to obtain a Delaunay triangulation. In this paper we describe an
optimal O(n log n) plane-sweep algorithm for computing a Delaunay triangulation on a possibly
degenerate set of sites in the plane under the L 1 metric or the Lo~ metric.

Key Words. Delaunay triangulation, Plane-sweep algorithm, Voronoi diagram, L 1 metric, L~ metric,
Computational geometry, Minimal spanning tree.

1. Introduction. The Voronoi diagram on a set of points in the plane, called
sites, is a subdivision of the plane into regions, each site corresponding to a single
region consisting of all points in the plane that are closer to that site than to
any other [,8], [,21]. The Delaunay diagram is the straight-line dual graph of the
Voronoi diagram [-9]. When no degeneracies are present, the Delaunay diagram
is a triangulation of the sites, called the Delaunay triangulation. Degeneracies are
discussed carefully in Section 2.

Many problems that are described as applications of the Voronoi diagram are, in
fact, solved by using the Delaunay triangulation, so algorithms that compute the
Delaunay triangulation directly are useful in their own right [5], [93, [,15], [,,19].
Among these applications are minimal spanning tree [10], [-21], [-233, all nearest
neighbors [213, relative neighborhood graph [133, [--233, [--243, and heuristics for
various optimization problems [33, [183. Although the original work on Voronoi
and Delaunay diagrams was done for the Euclidean (L2) metric, it has since been
extended to convex distance functions [-4], including the Lp metrics [43, [,10], [,12],
[,,14], [,,16]. The L1 metric is of special interest to those developing heuristics for
approximating the rectilinear minimal Steiner tree, a problem arising in the design
of VLSI circuits [-23, [113, [17], [-223.

Three computational techniques have been used to compute Voronoi and
Delaunay diagrams. The incremental technique, where sites are added to the
diagram one at a time, has a worst-case complexity of O(n 2) [8], [15], [19]. The

iDepartment of Computer Science, University of Minnesota, Duluth, MN 55812, USA.
ZSupported by the National Science Foundation, through its Design, Tools and Test Program, under
Grant Number MIP 87-06139.

Received December 10, 1987; revised November 11, 1988. Communicated by Leonidas J. Guibas.

208 G.M. Shute, L. L. Deneen, and C. D. Thomborson

divide-and-conquer technique has a worst-case complexity of O(n log n) [4], [5],
[9], [101, [121, [14]-[161. Most recently Fortune has developed an O(n log n)
plane-sweep algorithm for computing the L 2 Voronoi diagram and Delaunay
triangulation [7]. His algorithm avoids the difficult merge step of the divide-and-
conquer technique.

In this paper we describe an 0 (n log n) plane-sweep algorithm for computing L1
and L~ Delaunay triangulations on sets of sites in the plane. We prove our
algorithm's correctness by direct geometrical argument. An alternative method of
proof might be through a generalization of Fortune's hyperbolic transformation *
[71, although this proof would be complicated by the fact that * is singular for L 1
and Lo~. In fact, the transformation * is singular even in L2 whenever the point set is
degenerate. Nevertheless, it appears that our algorithm is a natural extension of
Fortune's in which substantial simplifications can be seen. First, we are not faced
with the problem of inverting a singular transformation. Second, our calculations
are simple arithmetics as opposed to the quadratic forms required in L2. Third, we
do not compute Voronoi edges, which streamlines our data structures. Finally, we
compute a Delaunay triangulation even when degeneracies are present.

Another interpretation of our triangulation algorithm is as an extension of
Fortune's algorithm for polygon containment [6]. Viewed in this light, we have
extended Fourtune's definition of a polygonal obstacle to allow point obstacles.
The problem here is that in [6] an obstacle must have a set of edges upon which
normal vectors can be erected. We allow the sides of our square object to be
parallel to the coordinate axes, something that is specifically excluded from
Fortune's treatment. Finally, we can handle degenerate point sets.

.

and

Fundamentals. The L~ and Lo~ distance functions are given by

d~((x~, Yl), (x2, Y2)) = Ix1 - x21 + lY~ - Y21

do~((xl, Y0, (x2, Y2)) = max(Ix1 - Xzl, lYl - Y21).

Distances in both of these metrics are dependent upon the location of the
coordinate axes. Circles in the L 1 metric are squares with diagonals parallel to the
coordinate axes, and circles in the L~ o metric are squares with sides parallel to the
coordinate axes.

The L1 and L~ metrics have a useful relationship to one another, as noted in
[151. When points in the plane under the L1 metric are transformed by using

then

u * - x + y , v ~ y - x ,

d~((ul, vl), (u2, v2)) = dl((xi,yi), (x2, Y2)).

It follows that an algorithm that computes an L~ Delaunay triangulation on a set
of sites by reporting an appropriate set of edges between pairs of sites can also be used

An O(n log n) Plane-Sweep Algorithm for La and L~ Delaunay Triangulations 209

Fig. 1

to report an L 1 Delaunay triangulation on a set of sites by adding a preprocessing
step in which the sites are transformed by the preceding transformation. Through-
out the remainder of this paper, we concentrate on the Lo~ problem.

It is well known that two sites in a L2 Delaunay diagram have an edge between
them if and only if there is a circle through the two sites containing no other sites in
its interior or on its boundary. If k > 4 sites lie on the boundary of a circle with
empty interior, their respective Voronoi regions meet in a single point, and the face
in the corresponding Delaunay diagram containing this point is a k-gon. Such
degeneracies prevent the Delaunay diagram from being a triangulation, and extra
edges between sites on this empty circle must be added to make it one. See [9] for a
careful discussion of these degeneracies in L2.

In L~ the analogue of the Lz circle is a square with sides parallel to the
coordinate axes. Let us define the concept of an L~o Delaunay edge: following [9]
we say that an edge between two sites p and q is an (L~) Delaunay edge if there is a

�9 square with sides parallel to the coordinate axes containing p and q on its boundary
and having no sites in its interior. We call such a square an empty square through
p and q. If there is an empty square through p and q with no other site on
its boundary, then ~-~ is called a strictly Delaunay edge. Throughout the rest of
the paper, all squares and rectangles have their sides parallel to the coordinate
axes. Figure 1 shows an L~o Delaunay triangulation on a set of sites with no
degeneracies.

If an empty square has multiple sites on its boundary, there may be crossing or
overlapping Delaunay edges. More specifically, four or more sites on the boundary
of the square produce crossing Delaunay edges, and three or more sites on the same
vertical or horizontal line produce overlapping Delaunay edges. See Figure 2.

\ - r

(a) (b) (c)

Fig. 2. (a) Four sites on the boundary of an empty square have a pair of crossing Delaunay edges.
(b) Three sites on the same vertical (horizontal) line have a Delaunay edge overlapping two others.
(c) Multiple sites on the boundary of an empty square cause multiple crossings and overlaps of
Delaunay edges.

210 G.M. Shute, L. L. Deneen, and C. D. Thomborson

V

Fig. 3

In L 2 the Delaunay diagram is defined to be the dual of the Voronoi diagram.
In L~ the Voronoi diagram itself is not always well defined. This is because the
Voronoi diagram is constructed from the bisectors of pairs of sites, and pairs of
sites on the same vertical or horizontal line have bisectors of dimension two. See
Figure 3. To maintain the property that the Voronoi diagram divides the plane into
regions, one site per region, we can replace each region in the bisectors above by a
ray from the vertex of the region, as in [4], [10], [12], and [16]. In light of all this,
we say that a set of sites in the L~ metric has degeneracies if it contains two or more
sites on the same horizontal or vertical line or it contains four or more sites on the
boundary of the same empty square.

We would like to clarify the definition of a Delaunay triangulation in the
presence of degeneracies in L~, but first we need a few preliminaries. Following
[203 we refer to a planar graph that is embedded in the plane so that its edges are
mapped to straight line segments as a planar straight-line graph or PSLG, A PSLG
is called a triangulation if every interior face is a triangle. A PSLG G is said to
satisfy the square-crossing condition if for every square R through vertices of S, with
vertices on both of two opposite sides of R and no vertices on the interior of the
square or the interiors of the other two sides, there is an edge in G that crosses the
square. See Figure 4.

Now we define an (L~o) Delaunay triangulation on a set S of sites in the plane to
be a PSLG G on S such that G is a triangulation, every edge of G is Delaunay, and G
satisfies the square-crossing condition. The inclusion of the square-crossing
condition in this definition needs some justification. First, it is easy to see that the
square-crossing condition implies G is connected, a desirable trait. Secondly, every
strictly Delaunay edge ~ has an empty square R through p and q with no other
sites on its boundary. By shrinking and sliding R if necessary, it is possible to get p
and q on opposite sides of R, whence the square-crossing condition ensures that p-q

y
Fig. 4, The square-crossing condition.

An O(n log n) Plane-Sweep Algorithm for L~ and L~ Delaunay Triangulations 211

r - - - -) ~ -"
I ,/ I

I

I
I

Fig. 5

is in G. Therefore, for a set of sites with no degeneracies, G contains only the strictly
Delaunay edges on S and is the usual dual of the Voronoi diagram. If there are
degeneracies, the requirement that G be a triangulation prevents some Delaunay
edges from being included. Finally, the square-crossing condition is a generaliza-
tion of Preparata and Shamos's Lemma 6.2 in 1-20, p. 220], and, with it, their proof
can be modified to show that G contains a minimal spanning tree on S.

Our definition of a Delaunay triangulation differs slightly from that of Lee and
Schachter [15]; they define a Delaunay triangulation to be a maximal PSLG in
which every edge is Delaunay. Their definition is not equivalent to ours. Our
definition allows graphs that are not necessarily maximal; Figure 5 shows a graph
that satisfies our definition but is not maximal. The fact that our definition allows
nonmaximal graphs is not a major drawback, however, since the only edges that
might be missing are on the boundary of the triangulation and could easily be
added. Neither definition yields a unique graph on a set of sites with degeneracies.

3. Description of the Algorithm. In this section we give an informal description of
an algorithm to produce an L~ o Delaunay triangulation on a set of distinct sites in
the plane. The formal specification of the algorithm is given in the next section, and
the proof of correctness is in Section 5. This algorithm uses the plane-sweep
technique, where the sweep line L is vertical and moving from left to right across
the plane. As is usual in a plane-sweep algorithm, we use a priority queue X to
control the position of the sweepline. Events in X are of two types: activation of a
site and inactivation of a site. The details of the prioritization of these events in X is
discussed shortly. When an activation record is produced by X, its site is inserted
into a second data structure, Y, and that site is called active as long as it remains in
K When an inactivation record is produced by X, its site is deleted from Y, and the
site becomes inactive.

The data structure Y is a dictionary, and sites are stored in Y in reverse
lexicographic order on their coordinates (x, y); that is, the sites are ordered first on
y and then on x. It is shown that adjacent sites in Y have a Delaunay edge between
them. It is these Delaunay edges that are reported by the algorithm, and we prove
that they form a Delaunay triangulation. At each step of the algorithm, the
Delaunay edges joining adjacent sites in Y form a polygonal path with endpoint
monotonically nondecreasing in y. We call this path the Y-frontier.

Next we describe the interaction between the two data structures X and Y. We
begin the algorithm by inserting activation records for all the sites into X, using the

212 G.M. Shute, L. L. Deneen, and C. D. Thomborson

usual lexicographic order on the coordinates of the sites to determine priority: sites
smaller in the lexicographic order have higher priority. Dummy sites (- ~ , - ~)
and (- ~ , + ~) are placed in Y to ensure that all other sites have two neighbors in
Y, making computation simpler. It is easy to avoid reporting the edges with
dummy endpoints if desired. The algorithm is driven by X: X produces the next
event, causing one or two Delaunay edges to be reported and some updates to be
made to the data structures. When the event produced by X is an activation for site
p, p is inserted into Y, and edges are reported between p and its two new neighbors
in Y. When the event produced is an inactivation for site p, p is deleted from Y, and
a new edge is reported between p's former neighbors. Moreover, with either type of
event, it may be necessary to insert new inactivation records into X or to change
the priority of inactivation records that are already there. Because X produces sites
for activation sequentially, we can think of sites as having an age with respect to the
algorithm. If site a's activation record is produced by X before site b's, we say that a
is older than b or that b is younger than a.

Next we examine the management of the inactivation records in X. We must
consider the circumstances under which a site p is due to become inactive: there
must be sites to p's right, both above and below it, that prevent an empty square
with p on its left boundary from being maintained as the sweepline L moves to the
right. When this occurs, p can no longer be the endpoint of a Delaunay edge whose
other endpoint is to the right of L so p should become inactive. The obvious
candidates for the bounding sites that cause this inactivation are the neighbors of p
in I~ if they both lie to the right of p,we set up an inactivation record for p in X. Let
P = (Px , Py); let r = (r x, ry) be the predecessor of p in Y; let q = (q x, %) be the
successor of p in Y If rx > Px and qx _> p~, then p must become inactive when L
reaches px + qy - r r. See Figure 6. Thus, an inactivation record for p with priority
(p ~ + qy - ry, py) is entered into X. If this inactivation record has the same priority
as an activation record already in X, we give higher priority to the inactivation
record. Two inactivation records can never tie in X, because if two sites Pl and Pz
lie on the same horizontal line and both are active, then the leftmost is a neighbor
of the rightmost in Y, so the rightmost cannot have an inactivation record. Notice
that p becomes inactive somewhat prematurely in the degenerate case where
p~ = q~. By doing this, we prevent some Delaunay edges with p as endpoint from

p,

q

,(p~+q~ - ry,pv)

Fig. 6

An O(n log n) Plane-Sweep Algorithm for La and L~ Delaunay Triangulations 213

Inactive
points

Sweep line L

\

/
Y-frontier, containing

active points stored in Y

Points not yet seen,
stored in X

Fig. 7

being reported, but the algorithm will still produce a Delaunay triangulation, as we
prove in Section 5. Whenever a site in Y gets a new neighbor, we must check to see
if it needs an inactivation record. In case a site already has an inactivation record
but a new neighbor has caused a change in the inactivation priority, it is necessary
to update the inactivation record, increasing its priority in X.

The position of the sweepline L is determined by the event being processed. If the
event is an activation for site p = (p~, py), then L is the line x = p~. If the event is an
inactivation for p with priority (p~ + qy - % py), then in most instances L is x = p~
+ qy - r r If, however, the activation of a new site causes subsequent inactivations
with p~ + qy - ry smaller than the x-coordinate of the newly activated site, then L
remains at the activation site while the inactivations are done. Thus, L moves from
left to right as the algorithm proceeds. Moreover, the processing of each event from
X moves the Y-frontier to the right. Inactive sites lie to the left of the Y-frontier, and
the sites not yet seen, those with activation records still in X, lie to the right of the
Y-frontier. Edges of the triangulation on or to the left of the Y-frontier have been
reported; edges of the triangulation to the right of the Y-frontier have yet to be
reported. See Figure 7.

4. Formal Specification of the Algorithm. Input S is a set of distinct sites in the
plane for which the algorithm will produce an L~o Delaunay triangulation.

Data Structure Y is a dictionary containing sites from S in reverse lexicographic
order; that is, (Px, Pr) < (q~, qy) in Yif and only if (i) pr < qy or (ii) py = qy and
Px < qx. Data structure Y supports the following operations within time bound
O(log k) when k sites are in Y:

�9 Insert(Y, p) insert p into Y.
�9 Delete(Y, p) deletes p from Y.
�9 Successor(Y, p) returns the site above p in Y.
�9 Predecessor(Y, p) returns the site below p in Y.

Data Structure X is a priority queue containing activation and inactivation
records for sites p = (p x, Py) in S. The records of X are ordered lexicographically on

214 G . M . Shute, L. L. Deneen, and C. D. Thomborson

Initialization:
X ~- 0; For all p in S, Insert(X, p, p~, act)
Y ~ { (- oo, - ~) , (- o % +oo)}

Triangulation:
while X is not empty

P , - Min(X)
if P is an activation record for p

Insert(Y,p)
Report edges E 1 between p and Successor(Y, p)

and E 2 between p and Predecessor(Y, p)
Update the inactivation records in X for

the older endpoints of E 1 and E 2
else [P is an inactivation record for p}

q ,.- Predecessor(Y, p)
Delete(Y, p)
Report an edge E between q and Successor(Y, q)
Update the inactivation record in X for

the older endpoint of E
end if

end while

Fig. 8. Algorithm to form an L~o Delaunay triangulation on S.

the triples (t rans , y, s ta tus) , where t rans and y are real numbers under the usual
ordering and s ta tu s is the enumerated type (inac t , act) . The activation record for p
has t rans = p~, y = pr, and s t a t u s = act . A site p has an inactivation record in X
only if it has a predecessor r = (rx, ry) in Ywith rx > Px and a successor q = (qx, qr)
in Y with qx >- P~. In this case, t rans = Px + qr - ry, y = pr, and s t a t u s = inact .

Data structure X supports the following operations within time bound O(log k)
when there are k records in X:

�9 Min(X) removes the minimal record from X and returns it.
�9 Insert(X, p, n e w t r a n s , n e w s t a t u s) insert a new record for site p into X with

t rans = n e w t r a n s and s ta tu s = n e w s t a t u s .

�9 ChangePriority(X, p, n e w t r a n s) changes the t rans field of the inactivation record
for p in X to n e w t r a n s and adjusts the location of this record in X accordingly.
This is used to increase the priority of p.

The algorithm to form an L~ Delaunay triangulation on S is given in Figure 8.
The algorithm for updating inactivation records is given in Figure 9.

r ~ Predecessor(Y, p)
q ~ Successor(Y, p)
If (r~ > Px) and (q~ _> p~)

if p has no inactivation record
Insert(X, p, Px + qy - rr, inact)

else {p already has an inactivation record}
ChangePriority(X, p, Px + qy - ry)

end if
end if

Fig. 9. Algorithm to update the inactivation record of site p.

An O(n log n) Plane-Sweep Algorithm for La and L~ Delaunay Triangulations 215

5. Proof of Algorithm Correctness. The main result of this section is Theorem
5.8, showing that our algorithm produces a Delaunay triangulation. We prove this
theorem by a sequence of shorter results. Throughout this section we let S denote
the set of sites and G denote the graph on S produced by our algorithm.

LEMMA 5.1. Graph G is a PSLG on S.

PROOF. Each edge in G has endpoints in S and is a straight line. Thus, we need
only show that G has no crossing or overlapping edges. It suffices to show that the
new edges reported for an event produced by X do not cross or overlap any
previously reported edges. There are two cases to consider.

First, assume that an activation record for site p is to be inserted into Y between
sites r and q, where r is the predecessor of q in Y. It follows from the orderings on X
and Y that ry < qr Let U be the region bounded on the left by ~ below by y = ry,
above by y = qy, and on the right by x = Px. See Figure 10. Just before p is inserted
into Y, no edge in the Y-frontier crosses into the interior of U, because ~ is in the
Y-frontier, and the sites in the Y-frontier are monotone nondecreasing in their
y-coordinates. Furthermore, since all other edges reported by the algorithm so far
lie to the left of the Y-frontier, none of them can cross into the interior of U either.
Therefore, ~ and -~ cross no edges previously reported by the algorithm.
Moreover, since px > r~ and p~ > q~, 7~ and ~-~ cannot overlap ~ .

Second, assume that an inactivation record is produced for site p in Y, and
assume r is the predecessor and q is the successor of p in Y. Consider the region U
bounded by rp, pq, y = qy, the sweepline L, and y = ry, as shown in Figure 11.
Usually the x-coordinate of L will be p, + qy - ry, but if q or r is the most recent
activation, the sweepline will intersect it. As in the first case, no previously reported
edge can cross into the interior of U, so the new edge ~ cannot cross any previously
reported edge. Moreover, q~ > p x and r~ > px, so 7"~ cannot overlap rp or pr. []

LEMMA 5.2. Graph G is a triangulation.

PROOF. Each event from X processed by the algorithm produces a triangular face.
When the event is an activation for a site p, as in Figure 10, the new edges ~ and-~
form a triangle with edge ~ . When the event is an inactivation for a site p, as in

q y=qy

U

P

y = ry
1"

~=p~

Fig. 10

216 G.M. Shute, L. L. Deneen, and C. D. Thomborson

q

r

q
Y = q y

y=r~ P ~

Y : qy

y : r ' y

Fig. 11

Figure 11, the new edge ~ forms a triangle with edges ~ and ~--~. If any of the
endpoints involved in either of the cases are dummy endpoints, an implementation
of the algorithm might not report the incident edges, but these would be edges in
the exterior face in any case. Therefore, all interior faces of G are triangles, r-

LEMMA 5.3. Graph G satisfies the square-crossin 9 condition.

PROOF. There are two cases to consider.

Case 1. Let R be a square with sites on its left and right boundaries and no sites in
its interior or on the interiors of its top and bottom boundaries. Let p be the
topmost site on its left boundary and let q be the bottommost site on its right
boundary. We show that ~ in G. See Figure 12.

If p were to become inactive before q becomes active, it must have a predecessor
and a successor in Y that are both younger than p. Because R is empty, p's
predecessor a must be in the region A below R, and its successor b must be in the
region B above R. See Figure 13. Then p~ + b y - a r > q~,which implies that q
becomes active before p becomes inactive.

Next we need to show that p and q become adjacent in Y Consider the strip U
bounded by y = qr, Y = Py, and the left boundary of R. The top and right
boundaries of U are closed, and the bot tom boundary is open. See Figure 14. Let u
be the oldest active site in U immediately after q has entered Y If u = p, then p and
q are already adjacent in Y; otherwise u has a predecessor t and a successor v in
U w (p,q} that are both younger. Thus, the inactivation time for u is u~ + v r -
t r ~ Ux "q- IPy -- qrl < q~. Therefore, u becomes inactive before p becomes inactive

/9,

ft R

Fig. 12

An O(n log n) Plane-Sweep Algorithm for L 1 and L~ Delaunay Triangulations 217

B b

pl

ogt
A

Fig. 13

and before any new sites can be inserted into Y. The same argument can be
repeated for any other active sites in U, so p and q must become adjacent in Y, and
~-~ is an edge of G.

Case 2. Let R be a square with sites on its top and bottom boundaries and no
sites in its interior or the interiors of its left or right boundaries. Let p be the
leftmost site on the top boundary of R and let q be the rightmost site on the bottom
boundary of R. We show that ~ is in G. See Figure 15.

If p is older than q, the argument given in Case 1 applies again to show that p is
active when q becomes active. If q is older than p, a symmetric argument holds to
show that q is active when p becomes active. Finally, we apply the same argument
as in Case 1 to show that all active sites in U become inactive before the older of p
and q and before any new sites can be entered into Y between p and q, so that p and
q becomes adjacent in Y and ~-~ is in G. []

It remains to prove that every edge of G is Delaunay. In order to simplify the
proof of this fact, it is helpful to show first that G satisfies a related property. We say
that a PSLG satisfies the empty-rectangle condition if for every edge p-q in the graph,
the rectangle with sides parallel to the coordinate axes and ~ on its diagonal has
interior free of any vertices. Notice that this condition is satisfied vacuously if p and
q are on the same vertical or horizontal line.

LEMMA 5.4 Graph G satisfies the empty-rectangle condition.

Y : P y

Y : qv

R
Y = q y

U
q

Y = Pv

R

Fig. 14

218 G.M. Shute, L. L. Deneen, and C. D. Thomborson

P

Y= P~

U R

y = p y

Y=qy

u=qu q

Fig. 15

p

PROOF. We proceed inductively. The first edge reported by the algorithm clearly
has an empty rectangle. Assume that the edges reported during the processing of
the first k events all have empty rectangles.

If the (k + 1)st event is an activation, the situation is as described in Figure 10. It
was proved in Lemma 5.1 that U is empty. By the inductive hypothesis, ?-~ has an
empty rectangle R, so R u U contains empty rectangles for both new edges 7~ and

Pq.
If the (k + 1)st event is an inactivation, the situation is as described in Figure 11.

It was proved in Lemma 5.1 that U is empty. By the induction hypothesis, ~ and
have empty rectangles R 1 and R2, so R1 w R 2 U U contains an empty rectangle for
the new edge ~ . []

Next, we prove another lemma, which is used to prove Theorem 5.6. First we
need a definition: a PSLG satisfies the rectangle-crossing condition if for every
nonsquare rectangle R with sides parallel to the coordinate axes, no vertices on its
interior, and vertices on the interiors of both of its long sides, there is an edge of the
graph that intersects the interiors of both of the long sides of R.

LEMMA 5.5. I f H is a PSLG that satisfies the square-crossing condition, then H
satisfies the rectangle-crossing condition.

PROOF. Let R be a rectangle with no sites on its interior and with sites on its
longer sides. We can assume without loss of generality that the long sides of R are
horizontal and of length I. Let w be the length of the vertical sides of R. Let s be
either the leftmost site on the interior of the top side of R or the leftm0st site on the
bottom side of R, whichever is further right. We can further assume without loss of
generality that s is on the top side of R. Net let t be the site on the interior of R's
bottom side that is on or to the left of the vertical line through s and has minimal
distance from the vertical line through s. See Figure 16.

T

!

Fig. 16

An O(n log n) Plane-Sweep Algorithm for Ll and L~ Delaunay Triangulations 219

Ifsx - tx <- w, then it is easy to see that there is a square with side w in R that has
sites only on its top and bottom sides, with s on its top side and t on its bot tom side.
The square-crossing condition ensures, therefore, that there is an edge in H that
intersects the interiors of the top and bottom sides of R.

If sx - t~ > w, let u be a site with ux _< s~, ur _< sy, and having minimal distance d
from s. Figure 16 shows one possibility; it is also possible that u is on the left side of
T. Notice that d <_ s x - t~, so ux --- tx. By the choice of u, the square T with side d
and s at its upper right corner has an empty interior and no sites on its top or right
sides except for s and possibly u (at the lower right corner). If there are any sites on
the bottom side of T other than at the lower left corner, then T can be shifted
slightly to the right to produce a square with sites only on its top and bottom sides.
The square-crossing condition then ensures an edge that intersects the interiors of
the top and bottom sides of R. If there are no sites on the bottom side of T except
possibly at the lower left corner, then the only sites on T are s and one or more sites
on the left side of T that are on or below the bottom side of R. In this final case, the
square-crossing condition again ensures an edge of H intersecting the interiors of
the top and bottom sides of R.

We now prove a general result, from which our desired result follows.

THEOREM 5.6. I f H is a PSLG satisfying the empty-rectangle condition and the
square-crossing condition, then every edge in H is Delaunay.

PROOF. Let ~ be an edge of H. Without loss of generality we can assume that the
horizontal distance from p to q is greater than or equal to the vertical distance from
p to q. Let U be the region between the vertical lines through p and q; let R be the
rectangular section of U between the horizontal line through the lowest sites in the
interior of U above ~ and the horizontal line through the highest sites in the
interior of U below ~~. The empty-rectangle condition implies that p and q are on
the left and right sides of R. If the height of R is less than the width of R, then
Lemma 5.5 implies that there is an edge of H crossing the interiors of both the top
and bottom sides of R. This edge would cross ~'q, however, contradicting the
assumption that H is a PSLG. Therefore, the height of R is greater than or equal to
the width of R, so R must contain an empty square through p and q, whence ~ is
Delaunay. []

COROLLARY 5.7. Every edge in G is Delaunay.

The proof of the algorithm's correctness now follows from Lemmas 5.1-5.4 and
Corollary 5.7.

THEOREM 5.8. Graph G is a Delaunay triangulation.

It would be nice to have a good characterization of the Delaunay edges that have
been omitted by this algorithm. Unfortunately we have no simple and intuitive way

220 G.M. Shute, L. L. Deneen, and C. D. Thomborson

to describe them. The choice of which edges are inserted and which omitted is very
much tied to the algorithm itself.

6. Run Time of the Algorithm. The run time for the initialization step of the
algorithm is O(n log n) to insert n sites into X. This can be improved to O(n) using a
technique described by Bentley [1]. Because X contains at most two records for
each site (one activation record and perhaps one inactivation record), the main
loop in the triangulation step is entered at most 2n = O(n) times. Each execution of
the loop takes in O(log n) time, so the run time for the entire algorithm is O(n log n).
The space used is O(n). The algorithm is optimal: Shamos and Hoey [21] have
shown that the time to triangulate a set of n sites is f~(n log n).

We have implemented the algorithm in C on an Encore Multimax. When run on
a set of 1000 random sites, the program produced a Delaunay triangulation in 32.6
CPU seconds. A profile of the execution revealed that 88 ~o of this execution time
was spent doing input and output. Execution of the program on a set of 25,000
random sites took 130 CPU seconds, excluding input and output.

Profiling further revealed that the program spent about 7.5 times as much time
manipulating X as Y. This is not particularly surprising; we suspect that for a
random point set, X contains approximately n records on the average and Y

contains approximately v/~ records on the average. The run time of the program
could be improved even more in the average case by using a bucketing technique
on the records in X as described by Maus in [19]. Moreover, the algorithm can be
adapted to handle very large data sets by dividing the plane into vertical strips,

each containing approximately v/n sites, and processing the strips one at a time
from left to right.

7 Conclusions and Open Questions. We have described an optimal O(n log n)
plane-sweep algorithm for computing a Delaunay triangulation on a set of sites in
the plane under the L~o metric. A simple preprocessing step, when added to our
algorithm, transforms it to an algorithm for computing an L1 Delaunay triangula-
tion. Our algorithm has two major strengths: it performs satisfactorily even when
degeneracies are present, unlike many related algorithms, and it avoids the
complicated hyperbolic transformation of Fortune's algorithm [7]. It is an open
question whether a similar technique can be applied in the Euclidean case.

We are grateful to the two referees for their careful reading and helpful
comments.

References

[1] J. Bentley. Programming pearls. Communications of ACM, 28(3):245-250, March 1985.
[2] M.W. Bern. Two probabilistic results on rectilinear Steiner trees. In Proceedin#s of the 18th

Annual ACM Symposium on the Theory of Computing, pages 433-441, May 1986.
I-3] L.P. Chew. There is a planer graph almost as good as the complete graph. In Proceedings of the

2nd Annual Symposium on Computational Geometry, pages 169-177, 1986.

An O(n log n) Plane-Sweep Algorithm for La and L~ Delaunay Triangulations 221

[4] L. P. Chew and R. L. Drysdale. Voronoi diagrams based on convex distance functions. In
Proceedings of the Symposium on Computational Geometry, pages 235-244, 1985

[5] R. A, Dwyer. A simple divide-and-conquer algorithm for constructing Delaunay triangulations
in O(n log log n) expected time. In Proceedings of the 2nd Annual Symposium on Computational
Geometry, pages 276-284, J 986.

[6] S.J. Fortune. A fast algorithm for polygon containment by translation. In Automata, Languages,
and Programming, 12th Colloquium, Lecture Notes in Computer Science, vol. 194, pages 189-198,
Springer-Verlag, Berlin, 1985.

[7] S.J. Fortune. A sweepline algorithm for Voronoi diagrams. In Proceedings of the 2nd Annual
Symposium on Computational Geometry, pages 313-319, 1986.

[8] P.J. Green and R. Sibson. Computing Dirichlet tesselations in the plane. Computer Journal, 21
(22):73-87, 1981.

[9] L.J . Guibas and J. Stolfi. Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams. ACM Transactions on Graphics, 4(2):74-123, April 1985.

[10] F .K. Hwang. An O(n log n) algorithm for rectilinear minimal spanning trees. Journal of the
ACM, 26(2):177-182, April 1979.

[11] F.K. Hwang, An O(n log n) algorithm for suboptimal rectilinear Steiner trees. IEEE Transactions
on Circuits and Systems, 26(l):75-77, January 1979.

[12] D. T. Lee. Two-dimensional Voronoi diagrams in the Lp-metric. Journal of the ACM,
27(4):604-618, October 1980.

[13] D.T. Lee. Relative neighborhood graphs in the Ll-metric. Pattern Recognition , 18:327-332, 1985.
[14] D.T. Lee and R. L. Drysdale, III. Generalization of Voronoi diagrams in the plane. SlAM

Journal of Computing, 10(1):73-87, February 1981.
[15] D.T. Lee and B. J. Schachter. Two algorithms for constructing a Delaunay triangulation.

International Journal of Computer and Information Sciences, 9(3):219-242, 1980.
[16] D.T. Lee and C. K. Wong. Voronoi diagrams in L1 (L~) metrics with 2-dimensional storage

applications. SIAM Journal of Computing, 9:200 211, 1980.
[17] J .H. Lee, N. K. Bose, and F. K. Hwang. Use of Steiner's problem in suboptimal routing in

rectilinear metric. IEEE Transactions on Circuits and Systems, 23(7):470-476, July 1976.
[18] A. Lingas. The greedy and Delaunay triangulations are not bad in the average case. Information

Processing Letters, 22:25-31, 1986.
[19] A. Maus. Delaunay triangulations and the convex hull of n points in expected linear time. BIT,

24:151-163, 1984.
[20] F.P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,

New York, 1985.
[21] M.I. Shamos and D. Hoey. Closest point problems. In Proceedings of the 16th IEEE Symposium

on Foundations of Computer Science, pages 151-162, 1975.
[22] J .M. Smith, D. T. Lee, and J. S. Liebman. An O(n log n) heuristic algorithm for the rectilinear

Steiner minimal tree problem. Engineering Optimization, 4:179-192, 1980.
[23] K.J. Supowit. The relative neighborhood graph, with an application to minimal spanning trees.

Journal of the ACM, 30(3):428-448, July 1983.
[24] G.T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recognition,

12:261-268, 1980.

