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Uniqueness in the Dirichlet Problem for Some Elliptic Operators 
with Discontinuous Coefficients (*) (**). 

M. CRISTINA CERUTTI  - Luis ESCAURIAZA - E U G E N E  B.  FABES 

A b s t r a c t .  - Uniqueness is proved for the Dirichlet problem for second order nondivergence form 
elliptic operators with coefficients continuous except at a countable set of points having at 
most one accumulation point. Moreover, gradient estimates are proved. 

1. - I n t r o d u c t i o n .  

This paper deals with uniqueness for the Dirichlet problem for strongly elliptic 
operators in F: ~ in non-divergence form with discontinuous coefficients. More precise- 
ly we will consider operators of the form 

(1) L =  ~ a~j(x)Di~, where D/~- a2 
i, j ~ 1 ~X i ~Xj 

and the functions a~j are defined on some bounded domain D c R n and for the moment 
they will only be assumed to be bounded on D. We will look for solutions to the 
Dirichlet problem: 

L u =  - f  in D, 
(2) u = ~ on aD. 

While in the case of divergence form operators there are complete results on exis- 
tence, uniqueness and regularity for solutions to the Dirichlet problem, in the non-di- 
vergence case if the coefficients aij are not continuous only a few facts are known. 

Before going on let us make a few remarks about what the meaning of a solution to 
(2) is, since, the coefficients of L being only bounded, it is not clear at first what one 
may expect a solution to be, and therefore what a good uniqueness class is. 
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We shall consider an example, which was originally due to GILBARG and SER- 
RIN [6] and was then considered by PuccI in [9]. The operator L with a~j (x) = ~ij + 
+ ~(xi xj / Ix 12 ) in the unit ball B = B1 (0) has coefficients that are bounded on B and ac- 
tually C a on B \  {0}. If ~ > n - 2 it can be easily verified that the function v(x) = 
= I xl z with/~ = (~ - (n - 2))/(1 + ~) is a pointwise solution to L v  = 0 in B \ {0}, v = 1 
on aB and is smooth outside the origin and continuous on B. But the same problem 
admits another obvious solution which is u(x)  - 1 on B. The function v despite being 
,,fairly smooth- has some ,,unwanted- characteristics, such as not satisfying the maxi- 
imum principle and Harnack's inequality. 

Furthermore, ff we take a regularization a~ of the coefficients of L, such that 

ai~(x)--~aij(x) in B, and we solve the problems L k u  k ~ k 2 k = aij (x) Dij u = - f in B, 
i , j  = 1 

u ~ = 1 on aB we should reasonably expect a solution u to (2) to be a limit of a subse- 
quence of such uk's. This is not true for the v in Pucci's example: in fact any regula- 
rized problem has the unique solution u k -= 1. 

We observe that the above procedure actually always constructs ,,some- u, as a 
limit of a subsequence of the uk's. This follows from the HSlder estimates which have 
been shown to hold for u k independently of the regularity of ai~ (see [10]). This will be 
the concept of a solution to (2) which will be adopted here. A natural problem is to de- 
termine whether or not all subsequences converge to the same limit, i.e. whether this 
<,solution, is unique. 

This is precisely the question we will be dealing with here. We will prove that in 
fact such a limit is unique in some cases, namely when the coefficients a~j have at most 
countably many singularities with one accumulation point in D. 

We should point out that the technique used to prove uniqueness in the case of a 
one point discontinuity, is due to Luis Caffarelli but it has never been published by 
him. 

Moreover when the coefficients have a single point P of discontinuity and are C ~ 
outside that point we will characterize the case in which ,~bad- solutions (i.e. 
solutions of the kind in Pucci's example) exist and the case in which they do not exist. 
In the latter case we will show that the solution u is unique in the class 
C 2 ( D \ { P } )  N C(-D) and has the property 

f I Vu(y) 12 g(x, y) dy  < oo sup 
x~D D 

J 

where g(x, y) is the Green's function for L in D (see Sect. 6). 
In the case in which a <,bad, solution ~ exists, under the assumptions 0 <~ ~(x) <~ 1 

in D, ~(P) = 1 and ~(x) = 0 on aD, we will show (Sect. 5) that there exists a unique 
pointwise solution u to L u  = 0 in D \  {P} with u = ~ on ~D and satisfying 

I IVu(y) l 
(3) 1 - ~(y) g(P' y) dy  < ~ . 

D 
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Related to this problem is a result of R. BASS in [2]: he proves a uniqueness result 
for the Dirichlet Problem for operators L whose coefficients are homogeneous of de- 
gree zero and smooth outside the origin. The solutions that Bass considers are in the 
class C2(B\{0}) N C(B) and satify Lu  = 0 in B \  {P} with u = ~ on OB and the condi- 

I (y) g(O, y )dy  < ~ for some s > 0 and for every 1 ~< i, j ~< n. tion ~ lD~u 1+~ 
D 

2. - P r e l i m i n a r y  r e s u l t s .  

Throughout this paper L = ~ aij (x)Di~ is a uniformly elliptic operator defined 
i , j  = i 

on a bounded smooth domain D c R ~, i.e. the coefficients aij satisfy the uniform ellip- 
ticity condition 

n 

(4) there exist positive numbers ~ and A such that )~ I ~12 ~< ~ a~j (x) ~ ~j <~ A I ~.12 
Vx e D and Y~ = (~1, ..-, ~ ) e R n ; also aij (x) = aji (x). i, j = 1 

Let f e L ~ ( D )  and ~ e C(aD). 
In order to give a definition of solution to the equations we are considering here, 

let's recall the uniform HSlder estimates due to Safanov ([10]), which hold for smooth 
solutions to Lu  = 0: 

k r u(x) - u(y) I 
(5) Ilu = s u p  ' -< c l i e n t .  xy~B~ I x - y  

x ~ y  

where C and ~ depend only on ~, A, n and ~. 

Now let {ai~ (x)}, i , j  = 1, ..., n and k = 1, 2 .... , ~ ,  be a regularization of the coef- 
ficients of L, i.e. a collection of smooth functions such that: 

i) for each pair ij, ai~ ~ aij uniformly on compact subsets of D \ E ,  where E is 
the set of points of discontinuity of a~j; 

ii) for each k, {a~(X)} satisfies (4) with the same constants as {aij(x)}. 

Also le tLk  ~ k 2 = a~j (x) D~j which will be called a regularization of the operator L. 
i , j = l  

(A regularization of L can be obtained, for example, through convolution of the coeffi- 
cients of L with a smoothing kernel). 

Because of the smoothness of the coefficients the problems 

t L k u  k :  ~ ai~(x)Di~u k= - f  in D 
i , j = l  

[ u  = ~ on aD, 

admit a unique solution u k. 

From (5), the classical maximum principle and the theorem of Aleksandrov and 
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Pucci (see [1] and [9]), it follows that 

(6) IlukllLO(n) + Ilukllco(~) <<- C(~, A, n, t~, D){II~IIL~(aD) + HfIIL~(D) },  

with t~ a compact subset of D. Observe that the above constant is independent of k 
and therefore Ascoli-Arzel~ theorem implies that there exists a subsequence {u k~ } of 
{u k } such that uk~---)u uniformly on compact subsets of D. 

The discussion in Sect. 9.9 of [7] combined with a barrier argument ([7], Ch. 6) as- 
sures that the modulus of continuity of the uk's at the boundary of D is independent of 
k, and therefore that the convergence u k~ ~ u is uniform on D. Moreover (6) holds for 
such a u. Observe, though, that there may be more than one u constructed in this 
way. 

We are now in position to give: 

DEFINITION 1 .  - We will say that u ~ C(D) is a ,good,  solution to the Dirichlet 
problem (2) for  L i f  there exist sequences of funct ions  {ai~ } ~  1 c C ~ (D) satisfying i) 

and ii) above and a sequence of funct ions  u k such that L k u  k = ~ aijk (X) Dij2uk = - f 
in D, u k = ~ on OD and u k---~ u uni formly  on -D. i,j = 1 

Also, i f  t~ is an open set contained in D, we will say that u is a ,,good- solution to 
L in t] is there exist sequences of  funct ions  {ai~ }~= 1 r C ~ (t~) as above and a sequence 
of funct ions  u k such that L k u  k = 0 in t~ and u k - o  u uni formly  on compact subsets 
oft~. 

Since Harnack's inequality has been proved (see [10]) with constants independent 
of the regularity of the coefficients, it holds for ,,good- solutions. Moreover the strong 
Maximum Principle holds for ,,good, solutions. Precisely we have: 

HARNARCK'S INEQUALITY. - Let u be a non negative ,,good, solution to L in D and 
let B2r c_ D. Then sup u(x) <. ~ inf u(x) where the constant ~ depends only on ~, A 

x~Br xeB~ 
and n. 

STRONG MAXIMUM PRINCIPLE. - Let u be a ,,good, solution to L in D. Then i f  u has 
a local m a x i m u m  ( m i n i m u m )  in D, u is constant in D. 

Next we are going to explain what we ~ l l  mean for a Green's function for L in D 
and to defme ,,normalized, Green's functions. 

A well known result of ALEKSANDROV[1]  and PuccI [9] states that, if L has 
smooth coefficients, and u is the solution to the Dirichlet problem with homogeneous 
boundary data, i.e. L u  = - f  in D, u = 0 on aD, the following a priori estimate 
holds: 

(7) sup l u I <<- CIIflIL~(D) where C = C(~, n, diam D), 
D 

independent of the regularity of the coefficients of L. Since we know that in this case 
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the solution is unique, the map f ~  u(x) is a bounded linear functional on L~(D) for 
every x �9 D. Therefore by the Riesz representation theorem there exists g(x,.) such 
that 

(8) u(x) = ~ g(x, y)f(y) dy 
D 

and I[g(x, ")[l~-/,--,(D)= sup I g(x, y) f (y)dy <<. C(~, n, diamD). 
f ~ L "(D) l )  

I[flt = 1 

Suppose now that the coefficients of L are not continuous and consider as before 
some regularization L k of L. Let Lku  k = - f i n  D, u k = 0 on aD and gk(x, y) the cor- 
responding Green's functions. Because of (6) for every x �9 D there exists a subse- 
quence, which we will still call g k, such that g k (x, . ) ~  g(x, .) weakly in L ~/(~ -1)(D). 
Through a diagonalization process we can define g(x, y) for x �9 Q" A D (where Q~ is 
the subset of points of R ~ with rational coordinates) and then, because of the equlcon- 
tinuity of {u k }, extend it to D. Observe that this process constructs a Green's func- 
tion but says nothing about the uniqueness of g. 

We are now going to construct -normalized, Green's functions y(x, y) for L. These 
,objects- were first introduced and thoroughly studied by P. BAUMAN in [3] and [4] in 
the case of an operator with continuous coefficients. Our definition will be slightly 
different but the results about y that we need here will still hold. Let's first assume 
that L has smooth coefficients. 

DEFINITION 2. - Let BR be a ball such that D r Ba/2, P �9 BR/2 and G(x, y) be the 
Green's function for L in BR. Let g(x, y) be the Green's function for L in D. The ,~nor- 
malized- Green's function for L in D is ~(x, y) = g(x, y)/G(P, y). 

In this case ~(x, y) is uniquely defmed because the Green's function is unique 
when L has smooth coefficients. 

For y the following properties hold. 

THEOREM 1. - For each x e D, ~(x, ") satisfies the strong maximum principle in 
subdomains of D \ {x}. 

MoreoVer, 

i) sup ~(x, z) <~ C inf y(x, z), 
z e B~ z ~ Bi 

ii) zOSC ~ ( x , ~ _  z) < C~  osc ~(x, z) 
z e B ~  

whenever B2r r  and 0 < ~ < 1, with constants C and a depending only on 2, A 
and n, 

The above results were proved by BAUMAN in [3] (Theorem 2.2, 2.4 and 2.5) 
with constants depending on the modulus of continuity of the a~j. The results 
of FABES and STROOK in [5] can be used to show that a constant C can be 
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found for Theorem 1 depending only on ~, A and n. Observe that locally .~(., y) 
is a solution to Lu = O. 

Observe that the above result also implies that ~ cannot be identically zero. To see 
this observe first that Theorem 1, together with the A ~ property of ~(x, .) (see BAU- 
MAN [3]), implies that ~(x, y) is equivalent (with constants depending only on 2, A, n 
and d(x, aD)) to I g(x, z) d z / I  G(P, z) gz for y e Br and B4~ r D \  {x}. It can be easily 

B~ B~ 

seen that this ratio is bounded from below by a constant depending again only on ~, A, 
n and d(x, ~D). 

Let's now go back to the case of an operator L with discontinuous coefficients. 
Consider the regularized operators L k again and let G k be the Green's functions for L k 
in BR. We have seen that there exists a subsequence, that will be called again {G k }, 
such that Gk(P, .) - ~  G(P, .) weakly in L ~/(~'- 1)(BR). 

Let now ~k(x, y) =gk(x ,  y)/Gk(P, y) and let ~1~= {(x, y) e D  •  I x - y l  ~> 

Observe that ~k(x, y) is H51der continuous jointly for (x, y) in A~. 
We are now going to construct ~(x, y) via a diagonalization process as follows: let 

~ be a subsequence of ~k uniformly convergent on/11 and by induction let ~ be a 
subsequence of ~ ~-~ subsequence of ~ ~ uniformly convergent on A~. Taking the diago- 
nal we obtain a sequence, call it again ~ ,  uniformly convergent on each Am. Call the 
limit ~(x, y); clearly this function is defined in all D • D \ { x  = y}. This will be a 
,,normalized, Green's function for L in D. 

Clearly Theorem 1 holds for ~ so defined. Also ~(., y) is a ,,good, solution in sub- 
sets of D \ { y } .  Moreover, 

THEOREM 2. - Fix a �9 D; then either 

i)   fi(x, a ) =  + or 

ii) lira ~(x, a) = ~(a, a) < r162 x-~a  

PROOF. - Without loss of generally assume a = 0. 
Assume first that lira sup ~(x, 0) = + ~.  Then there exists {xj } r D, with I xj ] $ 0 

x-+0 
and ~(xj, O) >1 j. Because of Harnack's inequality we have that ~(x, 0)/> C ' j  on I xl = 
= I xj I and we have that ~(x, 0) 1> C(j + 1) on I xl = I x~ + 1 ]- By the maximum principle 
it then follows that on the anullus Ix i . l l  <~ I xl <<- I xjl we have ~(x, 0)>I C.j. As 
j - ~  ~ we get l~o~(x, 0 )=  + ~.  

Let now lim Sup ~(x, 0) = b < + ~.  Then choose ~ ~ 0 so that ~(x, O) < b + 1/j on 

the set where I xl < vj and xj e D such that I xj I ~ O, [xj I < rj and ~(xj, O) > b - 1/j. 
Then by Harnack's inequality 0 < b - ~(x, 0) + 1/j <<. ~(b - ~(xj, O) + l / j )  <~ ~(2/j), 
when Ix[ = Ixj I. Therefore by the maximum principle, when lxj+ll <. Ixl <~ Ixjl 
we have that 0 ~< b - ~(x, 0) + 1/j <~ ~(2/j) or, equivalently, - 1/j <<. b - ~(x, 0) ~< 
~< (2~ - 1)(1/3'). Now let j--> ~ and the theorem is proved. 
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3. - Uniqueness  o f  good solut ions .  

In this section we will deal with coefficients with at most countably many singu- 
larities and one accumulation point. 

In order to simplify some proofs, in what follows we will always assume 0 e D. 
Moreover B~ or aB~ when the center is not specified will always denote balls centered 
in the origin. 

Assume first that aij e C ~ (D\{0}) .  

REMARK 1. - If  for a ~ we have that ~(0, 0) = ~,  we can prove uniqueness for solu- 
tions u to problem (2) which satisfy L u  = - f  in D \ { 0 }  and belong to the class 
C 2 (D\{0})  (~ L 7 (D), by the following reasoning. Let ul and u2 be two solutions and 
assume they are different at some point (say Ul > u2 there). Let v = u~ - u~ ; by maxi- 
mum principle v > 0 in D \ {0} and m_ax v(x) = v(0). May assume 0 ~< v(x) ~< 1. Choose 

D 

> 0 in such a way that ~(x, 0) > M on SB~. Then w(x) = v(x) - (1/M)~(x,  0) ~< 0 on 
~B~ and w(x) = 0 on aD. Therefore by the maximum principle 0 ~< v(x) ~< (l/M)~(x, 0) 
in D \ B ~ .  Fixing x and letting M tend to infinity we get v(x)= 0 which is a 
contradiction. 

Observe that ~,good, solutions in this case are in the class C 2 ( D \  {0}) A C(D) and 
they satisfy L u  = - f  in D \ {0}, so that this argument actually gives uniqueness for 
,~good- solutions. 

REMARK 2. - Using the above reasoning we can prove that if ~ and g2 are two nor- 
realized Green's functions for the same operator L whose coefficients are smooth in 
D \ {0} and gl (0, 0) = ~ then also g2 (0, 0) = ~.  To see this assume g2 (0, 0) < ~ and 
repeat the same argument of Remark 1 replacing ~ with ~ and v with g2 to conclude 
g2 (x, 0) = 0 which is a contradiction. 

In view of the previous Remark, when 0 is the only point of singularity, it will 
make sense to distinguish the two cases ~(0, 0) = ~ and ~(0, 0) < ~.  

We are now going to prove some uniqueness results for ,,good- solutions. The 
main tool in this section is Theorem 3. The proof is due to Luis Caffarelli. 

THEOREM 3. - Let  L be as in (1), with coefficients aij e C ~ ( D \  {0}) and satisfying 
(4). Let  u be a ~,good~, solutions to problem (2), with ~ e C(aD) and f e C~ ( D \  {0}) and 

,J be a non-constant funct ion  such that Lv = 0 in D \  {0}, v e C2(D\{0})  A C(D) and 
0 < v(x) < v(O) in  D \ { 0 } .  Then there exist ~ and C such that 

{u(x) - u(O) l < CIx[~(~(o) - ~ ( x ) ) ,  

where C = C1 (ll~ll~ + IIfllL ~ ) and ~ depends only on ~, A, n and C 1 o n  the latter and the 

support o f f .  
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PROOF. - By hypothesis f is supported away from the origin; suppose f = 0 in Br. 
Let  ~(x) = u(x) - u(O) and ~(x) = v(O) - v(x). Therefore ~(x) > 0 on aB~/e and in 

particular we can choose C such that  C~(x) + ~(x) I> 0 on ~Br/~. 
Observe that  for every s < r it is possible to find x~ e 5B~ such that  ~(x~) = 0. If  x~ 

did not exist we would have ~(x) > 0 on ~B~ and by maximum principle ~ >~ 0 on B~. 
But ~ is a ,,good, solution in B~ for which Harnack's inequality holds in B~/~ and ~(0) = 
= 0. This implies ~(x) --- 0 in B~/~ and therefore in B~. 

Let  now w~ (x) = C~(x) +_ ~(x). We ha~e that  w~ (x) >/0 on ~Br/~ and w~ (0) = 0; 
hence, again by maximum principle, w~ (x) >~ 0 in B~/~. Also, by Harnack's inequali- 
ty, applied to w~ in the anullus A~ = Br/~ \ Br/4 we have 

w ~  (x) ~ ~w~  (x~/2 ) = C~(x~/2 ) >1 C~ 2 -~(x) for x e AI.  

So in particular w~ (x) = C(1 - ~2)~(x) + ~(x) I> 0 on abel4. 
Let  now w2 • (x) = C(1 - ~2)J-l-~(x) +- ~(x) and Aj = Br/2J\  B~/2,~. Having esta- 

blished that  wj +- (x) >I 0 in aBr/2~ and observing that  wj • (0) = 0 for every j ,  again by the 
maximum principle we can conclude that  wj • (x) >I 0 in B~/2J and by Harnack's inequa- 
lity that  wj ~ (x) >i ~wj • (xj) = C ~ ( x j )  >~ C.~2-~(x) in A3., where xj = (x~/2~). In other 
words lu(0) - u(x)l <~ C(1 - ~2)J(v(0) - v(x)) when r2 - j -1  ~< Ixl < r2 -j. 

Set ~--  - log(1 - ~ 2 ) / l o g  2 and the theorem is proved. 

As an immediate consequence of Theorem 3 we have the following uniqueness 
theorem: 

THEOREM 4. - Let  L and  ~ and  f be as in  Theorem 3; then problem (2) has a unique  
,,good, solution. 

PROOF. - Let  u I and u2 be two possible ,,good- solutions to the given problem. If  
they are different at some point in D (say ul > u2 there), then by the maximum princi- 
ple applied to v = ul - u2 (which satisfies L~ = 0 in B \ { 0 } )  we must  have v(x) > 0 in 
D \  {0} and max v(x) = v(0). But then ~ satisfies the hypothesis for Theorem 3 and by 

applying the same with u first equal to ul then to u~ we conclude that  Iv(x) - ~(0) I = 
= o(Iv(x) - v(O) I ); this can only happen if ~(x) -= v(0) in a neighborhood of the origin 
which is a contradiction; therefore we conclude u~ -=- u2. 

R E M A R K  3 .  - From now on let ~(x) = ~(x, 0). Then if ~(0) = lira ~(x, 0) < ~ ,  ~(x) 
x ---~ 0 

satisfies the hypothesis for v in Theorem 3. This case, by Bauman's paper [4], corre- 
sponds to the case in which the point zero has positive capacity, i.e. when we can 
solve the Dirichlet problem for L in the punctured set D \ {0}. So in this case we can 
actually have functions which are pointwise solutions in D \  {0} and that  do not satis- 
fy the maximum principle and Harnack's theorem across the origin. Theorem 3 in this 
case tells us that  a ,~good, solution has a better regularity than one of these other 
solutions. 
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DEFINITION 2 . ,  Given an operator L and a smooth domain D we will say that the 
Dirichlet problem for L in D is uniquely solvable i f  for any ~ �9 C(~D) and f e L~(D) 
there exists a unique ,,good,, solution u to problem (2). 

When this happens the mapping ~--) u(x), where u is the ,,good- solution to 

Lu = 0 in D, 

u = ~ on ~D, 

is a positive linear functional on C(aD) for every x �9 D; hence by the Riesz represen- 
tation theorem there exists a unique measure ~o~, D (dQ) define on aD such that  

f X . u(x) = ~(Q) ~oi, D (dQ) , 
aD 

(in the following when it is clear to which operator and domain we are refering to, we 
will simply write oJ~(dQ)). 

Also observe that  if ~o~'s are the harmonic measures for the operators L k in D, 
where the {L k } is a regularization of L, then ~o~ --~ oJ ~ weakly. Therefore for every 
w E C(D) the function u(x)= ~ w(Q)oJX(dQ) is the unique ,,good, solution to the 
problem aD 

Lu = 0 in D,  

u = w on aD.  

LEMMA 5. - I f  ul and u2 are two ,,good,, solutions on a domain D in which there is 
uniqueness, then ~ = u l -  u2 is a ~,good,, solution. 

PROOF. - v(X) = f (Ul -- ue)(Q) co ~ (dQ). 
aD 

THEOREM 6. - Let D be a smooth domain and L an operator with bounded coeffi- 
cients. Then the Dirichlet problem for L in D is uniquely solvable i f  and only i f  for 
every x e D there exists 0 < r < d(x, ~D) such that the Dirichlet problem for L in Br(x) 
is uniquely solvable. 

PROOF. - Let  ul and u2 be two possible distinct ,,good, solutions to problem (2) in 
D. Since u l -  u2 on aD, u s - u 2  must attain positive maximum or a negative mini- 
mum at some Xo �9 D. Assume u~ (Xo) > ue (Xo). Le t  v(x) = [u2 (x) - u2 (Xo)] - [ul (x) - 
- ul (Xo)] (observe that  ~/> 0 in D) and let ro be such that  the Dirichlet problem for L in 

B~0 (xo) is uniquely solvable. In view of the discussion about harmonic measure, the 
previous Lemma and the uniqueness assumption in B~o (Xo), v(x) = f ~(Q) COCo (dQ) 

aB~o (xo) 
(with oJ x~o the harmonic measure for L in B~(xo)) is the (unique) ,,good- solution to the 
problem Lu = 0 in B~ (Xo), u = v on aB~ (Xo). Since v(x) I> 0 and v(xo ) = 0 by the Har- 
Rack's inequality follows that  v-= 0 in B~o(Xo). 
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Now let xl ~ OB~o (x o) and let rl be such that the Dirichlet problem for L in B~ (X 1 ) 

is uniquely solvable. Repeat the same argument to conclude that v -  0 in 
B~o (x0) tO B~ (Xl). Since every point has a neighborhood in which there is uniqueness 
for the Dirichlet problem for L, it is clear that we can keep repeating the same argu- 
ment to conclude that v - 0  in D. But ul(x)=u2(x)  on aD and this implies 

Ul  (X0)  = U 2 (X0) .  

COROLLARY. - Let L be an operator with coefficients aij e C ~ ( D \ { x l  . . . .  , xm }). 
Then the Dirichlet problem for L in D is uniquely solvable. 

REMARK 4. - Let suppfc_ D \  B~ (0) and let ~(x) and :~(x) be as in the proof of Theo- 
rem 3. We can repeat the same argument in there if the following conditions 
hold: 

a) on each abe(0) there exists x~ such that ~(x~)= u(O)-  u(x~)= 0, for 
s < r ;  

b) if C~(x) -+ ~(x)/> 0 on aB~ implies that the same is >I 0 on B~ and satisfies a 
Harnack's inequality on Br/2~\B~/e~. 

THEOREM 7. - Let {xm }~ = 1 c_ D and xm -~ 0 (in D), let L be an operator with coeffi- 
cients aij �9 C ~ ( D \ { x l ,  ..., 0}). Then the Dirichlet problem for L in D is uniquely 
solvable for data f � 9  C~ (D\{Xl ,  ..., 0}) and ~ �9 C(aD). 

PROOF. - Suppose ul and U 2 are two ,,good, solutions to (2). If Ul (x0) > u2 (x0) for 
some x0 �9 D, then by the Corollary to Theorem 6 and by Lemma 5 m_ax[ul ( x ) -  

D 
- u2 (x)] = Ul (0) - u2 (0). Assume ul (0) > u2 (0) and f  = 0 on B, (0). Let's now prove that 
a) and b) in Remark 4 are satisfied, with ~(x) = ul (x) - ul (0) (or u2 (x) - u2 (0)) and 
V(X) : V(X) --  V(0) = I n  1 (X) - -  U 2 (X)] --  [U 1 (0 )  --  U 2 (0 ) ] .  

Suppose ~(x) > 0 on aB,, s < r, and let oY~ be the harmonic measure for L in 
B~ \ B~ (0) (which is well defined in view of Theorem 6, since in B~ \ B~ (0) the coeffi- 
cients of L have only finitely many points of discontinuity); then 

f F 
~(x) = | Y~(Q)do~ = | ~(Q)d~oX~ + o(1) 

, J  

O(B~ \-B~ (0)) OB~ (0) 

as 8-- ,0.  

Hence ~(x)I> 0 in B~ and ~(0)= 0; from Harnack's inequality ~ ( x ) -  0 in Bs/2 and 
therefore in B~. So a) holds. 

Finally if C~(x) -+ ~(x) >I 0 on aB~ a similar argument shows that this function is 
>t 0 in Bs. Moreover because of Lemma 5 this function is a ~,good, solution on anulli 
and therefore satisfies Harnack's inequality there. 

Now assume as in Theorem 3 that f - -  0 on Br(0); repeating the same argument 
there we conclude that I ul (x) - Ul (0) I ~< C I x ] ~ (v(0) - v(x)) and the analogous for u2 ; 
as in Theorem 4 we obtain that I-~(x)l = o(l~(x)l) as x - o 0  and conclude the 
uniqueness. 
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(Observe that if for some ~ we have ~(0, 0) = ~ the same argument in Remark 1 
applies.) 

As a consequence of Theorems 4 and 7, and the Corollary to Theorem 6 we also 
have uniqueness for the Green's function in those case. We will state and prove this 
result in the case of Theorem 7. 

THEOREM 8. - Let L be the operator in Theorem 7. Then there exists a unique 
Green's function for L in D. 

PROOF. - Let gl (x, y) and g2 (x, y) be two Green's functions for L in D, i.e. suppose 
there exist two sequences of operators L~ and L~ converging to L (in the sense of Defi- 
nition 1) such that for every x e D, the corresponding Green's functions g~(x, .)--~ 
--~gl(X, ") and g~(x, .)--~g2(x, ") weakly in Ln/(n-1)(D). Let f e  Co ~ (D\{Xl ,  ..., 0}); 

then ul (x) = ff(y) gl (x, y) dy = lira ~f(y) g~ (x, y) dy and u2 (x) = f f(y) g2 (x, y) dy = 
]r 

D D 
= lim ~f(y)Dg~ (X, y) dy are ,good,, solutions to Lu = - f in  D, u = 0 on 20. Because of 

k ---~ oo 
D 

the uniqueness Theorem 7 we have ff(Y)[gl(x, Y) -g~(x ,  y)]dy = 0 for every 
D 

f e C~ ( D \  {x~, ..., 0}) and therefore gl  (X, ") = g2 (X, ") a.e. 

4. - Proper t i e s  o f  n o r m a l i z e d  Green's  f u n c t i o n s .  

In this paragraph we are going to study the behaviour of normalized Green's func- 
tions ~(x, y) which were introduced in Section 2. We will need these properties to 
study the regularity properties of the gradient of ,,good, solutions. BR and P are as in 
Section 2. 

Assume first that the coefficients of L are C ~ (B). By f -  g we will mean that two 
constants C~ and C2 exist such that f(x)<~ Clg(x)<<. C2 f(x). 

THEOREM 9 . -  Let B 4 r ( x ) c B  R and g4r(X, y) denote the Green's function for L in 
B4r (X). Then i f  aB~ (x) 

g4r(x, Y) r 2 r e f 
G(P, y) oJ(Br (x)) w(B~ (y)) where oJ(E) = G(P, y) dy 

E 

and the equivalence constants depend only on ~, A and n. 
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PROOF. - The proof follows exactly the one of Bauman for Lemma 2.1 in [4]. 

THEOREM 10. - Let g~(x, y) denote the Green's function for  L in B~(O) r <~ 1. 
Then 

r ; 
I s ds gr (x, y) 

o~(B~ (x)) G(P, y) 
Ix-y[ Ix-y[ 

~(B~ (y)) ds for x, y e B~/2(O), 

with equivalence constants depend only on ;~, A and n. 

PROOF. - The proof is a slight modification of the proof of Theorem 2.3 
in [4]. 

Let 's now go back to the general case where L has just  bounded coefficients. Ob- 
serve that, because of the way we constructed a ~ for a general operator, it is possible 
to find a subsequence of regularized operators L k such that  the corresponding ~ k _ ,  
uniformly on compact subsets of D • D \ { x  = y} and at the same time 
Gk (x, .) - ~  G(x, ") weakly in L ~/(~ - 1 ) ( D ) .  

Therefore if we let r < d(~D, a)/2 and .~r(x, y) = gB~(~)(X, y), then Theorem 9 tells 
us that  

gr(x, a) - i" . s . ds if I x - a  I < r /2 .  
oJ(Bs (a)) 

Ix-al 

We are now going to state and prove a theorem which describes the continuity of 
~(x, a) at x = a when ~(a, a) < ~ .  

THEOREM 11. - Let ~ be a normalized Green's functions constructed above. Fix  
a ~ D and assume ~7(a, a) < ~.  Then 

0 <~ ~(a, a) - ~(x, a) - 
~(B8 (a)) 

o 

ds for  ] x - a l <<- 
d(a, aD) 

and ~(x, a) < ~(a, a) for  every x e D \ { a } .  

Observe that, since we deal with the case y(a, a) < ~ ,  it only makes sense in the 
context of operators with discontinuous coefficients (in fact when the coefficients are 
continuous ~(a, a) < r162 can occur only in dimension two: see BAUMAN [4]). 

P R O O F .  - Observe that  since ~r(x, a) ~< ~(x, a) also li~n ~r(x, a) = ~r(a, a) < ~ .  
r 

Then, if we let x --* a, from the observation above we get gr (a, a) ~ I s/(oJ(B8 (a))) ds. 
0 

So we will only need to prove that  O(a, a) - ~](x, a) ~ gr (a, a) with Ix - a} = r. 
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Let  m, = min [~(a, a) - ~ ( x ,  a)] and Mr = max [~(a, a) -~ (x ,  a)]. Then clearly 
I x -a  I=r I x -a  I =r 

(9) ~(a, a) - y(x, a) O(a, a) - ~(x, a) _<1~< for Ix - a l  = r. 
Mr mr 

Consider now the function w(x) = [~(a, a) - y(x, a)] - [gr (a, a) - y~ (x, a)]. We 
claim that  there exists Xo such that  [Xo - a l = r and w(xo) = 0. To see this observe 
that  w(x) is a -good,  solution throughout Br (a). (This follows from the fact that  if yk 
converges to ~ in D • D \ { x  = y}, being yk(x, y) t> yr k (x, y) in Br • Br, we can assume 

that  up to a subsequence, -k gr converges to gr in Br • B r \ { x  = y}. Moreover 
.~k(x, a ) -  ~ ( x ,  a) is a -good,, solution since the two normalized Green's functions 
have the same pole). I f  w(x) is never zero on OBr (a) it has constant sign (say it is > 0) 
and therefore by the maximum principle it will be I> 0 in all B~ (a) in which case Har- 
nack's inequality will imply w(x)==-0 (since w(a)= 0). Then we have y(a, a ) -  
- ~(x0, a) = gr (a, a) which combined with (9) gives m~ ~< gr (a, a) ,< Mr. Since mr - M~ 
our claim and the theorem are proved. 

In order to prove the results in the next section we will need the following Cac- 

cioppoli type theorem. 

THEOREM 12. - Let u ~ C ~ (D) and Lu = 0 and w >1 0 such that L*w <<. 0 in the 

weak sense (i.e. I wL~ <- 0 for every ~ E C~ ~ (D), ~ >I 0). 
D 

Then f w(y) I Vu I ~ (y) dy <- C/R 2 y w(y) u z (y) dy where B ~  c D and the constant C 
B R B~ 

depends only on ~, A and n. 

PROOF. - First  of all we have that  

L(u 2) = 2uLu + 2 ~ aijDiuDju = 2 
i , j = l  i , j = l  

aijDiuDju >t )~]Vul ~. 

In what follows C is a constant that  depends only on n. 
Let  ~ e Co ~ (B2a), be such that  0 -< ~ -< 1, ~ - 1 on BR, I V~ I <" C/R and I Di~ ~ I <- 

<- C/R 2. (Observe that  92 satisfies the same estimates). Then using the hypothesis on 
and on w, the ellipticity of L and HSlder's inequality it follows that  

Bz, B~ 

n laijDiuDj~ ) = using L(u2~ 2) = u~L~ 2 + ~ L u  ~ + 4u~ ~_, = 
z , J  = 
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= ~ w(y) L(u 2 ~2 ) dy - f w(y) u 2 L(~2 ) dy - 
B2R B~ 

f n 

4 w(y)u~.~, laijDiuDj?dy<- 
~,3 = 

B2a 

B~ B~ 

[ (f /lj2/s ;2 C w(y)u2(y)dy + 4A w(y)? 2 IVul2dy w(y)u 2 IV~12dy ~< 

<~ _~C f w(y)u2(y)dy + 4A~ I w(y)~21Vul2dy + 4AC I w(y)u2(y)dy ----~ 

B~ B~ Bze 

And choosing ~ small enough and observing that  

f w(y) I Vul ~ (y) dy <<. I w(y) ~ I Vul ~ dy 
B~ B2R 

the theorem is proved. 

5. - T h e  c a s e  o f  o n e  p o i n t  d i s c o n t i n u i t y :  ~(0) < :r 

In this paragraph we are going to prove more results about solutions in the case of 
coefficients with a single point of discontinuity. Recall that  ~ ( x ) -  y(x, 0) and 
y(0) = lim ~(x). 

x - o 0  

THEOREM 13. - Let L be as in Theorem 3, B = B1 (0) and assume ~(0) = 1. Then 
there exists a unique u ~ C 2 ( B \  {0}) A C(B) satisfying 

~Lu = 0 in B \ { 0 } ,  
(i) ) 

[u  = ~ aB,  

I I (ii) 1 - g(Y) g(O, y) dy < :~ , 
B 

where the constant C depends only on ~, A and n. 

PROOF. - We are going to show that  the u that  satisfies (i) and (ii) is exactly the 
,,good- solution to Lu = 0 in B, u = ~ on aB. More precisely we are going to show in 
Proposition 1 that  if u is a ,,good, solution then (i) and (ii) are satisfied. Moreover 
such a u is unique. Suppose ui and u2 are two functions satisfying (i); then by the 
maximum principle ul  (x) - ue (x) = c ~(x). We will show in Proposition 2 that  for u = 
= ~ the integral in (ii) is infinite. 
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PROPOSITION 1. - I f  U is a ,,good~, solution to L u  = 0 in B, u = ~ on OB, wi th  L as 
in Theorem 13 then u satisfies condition (i) in Theorem 13 and moreover 

I IVul~ 1 - ~(y) g(O, y) dy <. CH~[I~, 
B 

where the constant C depends only on 2, A and n. 

PROOF. - Condition (i) is satisfied since the coefficients of L are smooth in B \  {0}. 
Recall from Theorem 3 that 

Ixl 

( l _ ~ ( x ) ) _  I s__ . d s ,  w h e r e ~ o ( E ) = f  
~(B~ (0)) 

0 E 

G(P, y) dy .  

Let L k = ai~ (x) Di~ be a smooth approximation of L and let (o k be the analogue of oJ for 

L k. Define ],k(r)= Is/(o~k(B~(O))+ ~)ds and for every ~ > 0 the auxiliary func- 
tions o 

1 for Ix I > 
? ( I x l )  

re(x) = 1 [ ~ - I x 1 2 3  + ~ for Ixl < ~. 
2[o~ k (B~) + ~](~ (D) 2 ~ (~) 

k C1,1(~) and that for [x[ ~< ~ it is v~(x) i> 1/~(~). It is easy to verify that  v~ e 
The following estimates also hold: 

for Ixl ~< 

and t Lv~ t <- ~~ k (B~) + IW~l ~< ojk(B, ) + 

and for I xl > 

IW(x)~ I -< Ixl [~(x)]_~,  
o~k (Bl~,) + 

Lv~ >I - L ~ [ ~ ( x ) ]  -2 and 
o~k(Bl~j ) + 8' 

The latter is a consequence of the fact that if v is an adjoint solution, then 
f v(y) dy ~ r I v(y) dy. (To see this, integrate by parts I v(y) L( l y l  2 - r 2) dy). 

B~ OB~ B~ 

Also observe that ~ (2r) ~< 4 ~  (r). 
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Now let L k u  k = 0 in B, u k = ~ on aB; then 

f IVuk 12 I ],k(y) gk(O' y )dy  <<. C Lk (u  k -  uk(O))2v~(y)gk(O, y )dy  = 
B 

: c [ j  L ~[(u k- u~(o): ~](y):  (o, ~)dy - ,I (u~- ~(o):  (y) L ~ :  (o, y)dy - 

--B I4 (uk  -- uk(O))ai~(y)DiukDjv~gk(O' y)dy}  = C{I + I I  + I I I } .  

Using the representation formula for solutions we obtain: 

f 
II[ ~ | ]uk(Q) - uk(O)12v k ( O ) ~  (0, y)d~(Q) ~< 4 11~5, 

a~ ( s ds 
J 

) oJ k (B~) + 
o 

where a / a n  o is the exterior conormal derivative. 
Also by using the previous estimates: 

K(~) 

I I ~ E  I j = O  
Bi/~J\ B1/2., 

luk(y) - uk(O)l 2 [vk(lYl )]-2 
cok (Blyl) 

g k (0, y) dy + 

+ f luk(Y)- uk(0)12 [~(lYl)]-2oJ k (B~) g k (0, y) dy < 

B. 

K(e) 
~< ~ sup luk(y) - uk(O)l ~ [~(22)1-2._. gk(0, B1/23) + 

+ sup luk(y) - uk(0)[ 2 [yk(~)]-2 B~ wk (B~) gk(0' B~), 

where g(x, E) = f g(x, y) dy and K(e) is chosen in such a way that 2-K(~) - 1 < ~. 
E 

Finally by Theorem 12, together with the doubling property of g(x, .) (see [3]) 
Schwartz's inequality and previous estimates we also have that H I  <~ last term of the 
previous chain of inequalities. 
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Letting now k tend to infinity and applying Theorem 3 and Theorem 10 we obtain 
that: 

I )Vul 2 
y(y) g(O, y )dy  <<. 

<~C 
_ ~(2-j)]5 + ~2~ 1 + ~] 2-2J~ [1 [1 - y(s)]~ 

1 j = 1 2 - j  2 e 2 
s ds s s 

d ~o(B8 ) + ~ oj(B s ) + ~ ds oJ(B~ ) + ~ ds 

N lf 

Letting then # tend to 0 we conclude 

K(~) } 
I (1]Vul2- g(l)l E 2-2J~. g(Y)) g(O, y) dy <~ CJ[~l[5 ~ + j=o + ~2y . 

lyl >1 

Finally let s tend to 0 and the Proposition is proved. 

PROPOSITION 2. - In  the hypothesis of Theorem 13 we have that 

I Iv l , ^  

1 ~ ~ y )  g(u, y) dy = oo. 
B 

PROOF. - Remember  y(y) = y(y, 0). Let  E = {t e (0, 1) It is a critical value for 9}. 
By Sard's theorem I EI  = 0. For  t �9 (0, ~ ) \  E, ~ - l ( t )  = {y �9 B l y(y) = t} is a smooth 
C ~ manifold. Therefore the following computations are justified: integrate by parts 
observing that  the normal to the set ~(x) = t is given by (V~/IV~l)(x) and recalling 
that y(x) = 0 on aB and obtain 

0 = I g(O, x) L~ dx = 
0 < ~(x)  < t 

0 <O(x )  < t 0 <O(x )  < t 

I D~O 
= a~j (x)Dj~-~Tg(O,  x)dS~ - I Dj[D~[a~j(x)g(O, x)][7(x)]dx = 

~(x)  = t 0 < ~(x)  < t 
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: I a i j ( x ) D j ~ g ( O , x ) d S x +  I xjDj[aij(x)g(O,x)]g(x)dx- 
I gl 

~ ( x )  = t Ix[  = 1 

-IDi(aij(x)g(O,x))~(x)~dS~. 
~ ( x )  = t 

Hence, 

(11) 
I _ Di~ ,1 Dj~ 

aij(x)Djg ~-~g~ g(O, x)dS~ = t I Di[aij(x)g(O, x ) j~ -~dSx .  
~(x )  = t ~ ( x )  = t 

Also, 

0 = I Di~[aij(x)gk(O, x)]dx = 
0 < ~ ( x )  < t 

= f xjDi[aij(x)g(O,x)]dx+ I Di [a i j ( x )g (O,x ) ]~dSx .  
I gl 

I x  ] = 1 ~ ( x )  = t 

By developing the derivatives this implies that the integral on the right hand side 
of (11) equals 1 and therefore 

I a~j(x)Dj~ g(O, x)dSx = 1 - t for a.e. t e [0, 1]. 
I gl 

1 - ~ ( x )  = t 

By applying the co-area formula ([8]) we conclude that 

1 

I a i j ( x )DigDjgg(10 'x )dx=I~-~dt  
< 1 - ~ ( x )  <~ 1 

= - l n ~ - l + s  

and letting ~-o 0 the theorem is proved. 

6. - The case of  one  point  discontinuity:  ~ ( 0 ) =  ~.  

THEOREM 14. - Let L and B be as in Theorem 3 and assume ~7(0, O) = ~. Then 
there exists a unique u ~ C2(B\{O}) satisfying 

[Lu = O in B \  {O} , 
(i) [u = ~ on aB, 

(ii) sup[  IVul2g(x, y)dy < ~. 
B 
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PROOF. - We are going to show as in the previous section that  this u is precisely 
the ,good-  solution to Lu = 0 in B, u = ? on aB. 

If  u is the -good,  solution to this problem it is easy to seen that  (ii) is verified, 
since if u k __~ u with u k solutions to the regularized operators, the following holds in- 
dependently of k 

f IVu k 12gk(x, y)dy <~ CILk(u~(y)2)gk(x ,  y)dy <~ 
B B 

<~ C I luk(Q)l ~ ag k (x, y)d~(q) <~ cll~ll~. 
aB 

for  

Now assume that  u � 9  C 2 ( B \ ( 0 } )  and Lu = 0 in B \ { 0 }  and (ii) holds. 
I f  u is bounded u is the ,good ,  solution by Remark 1. 
I f  u is unbounded and has constant sign we can repeat the same argument in the 

proof of Proposition 2 to the integral ] g(x0, y)Lu dy and obtain that  
t < u(y)  < s 

DjuDiu  DjuD~u 
I aij(y) iVul g(xo, y)dSy= I aij(y) -~-~[ g(Xo, y)dSy = C, 

u(y)  = t u(y)  = s 

t < s and xo such that  U(Xo)<~ t. Then by the coarea formula again 
cc 

t Vu 12 g(Xo, y) dy - ~ C d s  = 2 .  
u(y) > t t 

Finally assume u changes sign and lira sup ! I Vu 12g(x, y) dy < ~r ; we will show 
x--)0 B 

that  in this case u is bounded and therefore we are back in the first case. Firs t  of all 
by the maximum principle for every s < 1 there exists xs with I xs I = s and 

u(xs) = O. 
Let  w(x) = u 2 (x) + ~ g(x, y)L[u 2 (y)] dy. On t/2 < I xl < (3/2) t we have 

t /2  <~ l Yl <<- (3/2)t 
that  Lw = L(u 2) - L(u 2) = O, w �9 C (B). Clearly 0 ~< u2(x) <~ w(x) in the same anul- 

lus. Therefore by Harnack's inequality (applied to w on I xl = t) we have 

u 2 (x) <~ w(x) <~ ~w(xt) = 

= ~ ~ g(xt, y)L[u2(y)]dy <~ C 
t /2  <~ lYl <~ (3/2)t t /2  < lYl <~ (3/2)t 

and the last term is bounded by hypothesis. 

g(xt, y) I Vul 2 dy 
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