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Uniqueness in the Dirichlet Problem for Some Elliptic Operators
with Discontinuous Coefficients (*) (**).

" M. CrisTIiNA CERUTTI - LUIS ESCAURIAZA - EUGENE B. FABES

Abstract. - Uniqueness is proved for the Dirichlet problem for second order nondivergence form
elliptic operators with coefficients continuous except at a countable set of points having at
most one accumulation point. Moreover, gradient estimates are proved.

1. — Introduction.

This paper deals with uniqueness for the Dirichlet problem for strongly elliptic
operators in R” in non-divergence form with discontinuous coefficients. More precise-
ly we will consider operators of the form
82

= S 4.2 D2 2o %
@ L= > 1% (@)D,  where Dj 3o, %,

hj=

and the functions a; are defined on some bounded domain D ¢ R* and for the moment
they will only be assumed to be bounded on D. We will look for solutions to the
Dirichlet problem:

2 {Lu= ~f D,

U=9 on 3D.

While in the case of divergence form operators there are complete results on exis-
tence, uniqueness and regularity for solutions to the Dirichlet problem, in the non-di-
vergence case if the coefficients a; are not continuous only a few facts are known.

Before going on let us make a few remarks about what the meaning of a solution to
(2) is, since, the coefficients of L being only bounded, it is not clear at first what one
may expect a solution to be, and therefore what a good uniqueness class is.
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We shall consider an example, which was originally due to GILBARG and SER-
RIN [6] and was then considered by Puccr in[9]. The operator L with a;(x) = ¢; +
+ a(a; 2; /| 2|?) in the unit ball B = B, (0) has coefficients that are bounded on B and ac-
tually C* on BN\ {0}. If a > % — 2 it can be easily verified that the function v(x) =
= |x|?with 8 = (x — (n — 2))/(1 + «) is a pointwise solution to Lv = 0in B\ {0}, v =1
on 3B and is smooth outside the origin and continuous on B. But the same problem
admits another obvious solution which is u(x) = 1 on B. The function v despite being
«fairly smooth» has some «unwanted» characteristics, such as not satisfying the maxi-
imum principle and Harnack's inequality.

Furthermore, if we take a regularization af of the c%efﬁcients of L, such that
af (@) — a;(x) in B, and we solve the problems L*u*= X af@)Diu*= -fin B,

j=1
u* =1 on dB we should reasonably expect a solution u to (]2) to be a limit of a subse-
quence of such %%s. This is not true for the v in Pucci’s example: in fact any regula-
rized problem has the unique solution u” = 1. '

We observe that the above procedure actually always constructs «some» u, as a
limit of a subsequence of the »*s. This follows from the Hélder estimates which have
been shown to hold for »* independently of the regularity of af (see [10]). This will be
the concept of a solution to (2) which will be adopted here. A natural problem is to de-
termine whether or not all subsequences converge to the same limit, i.e. whether this
«solution» is unique.

This is precisely the question we will be dealing with here. We will prove that in
fact such a limit is unique in some cases, namely when the coefficients a;; have at most
countably many singularities with one accumulation point in D.

We should point out that the technique used to prove uniqueness in the case of a
one point discontinuity, is due to Luis Caffarelli but it has never been published by
him.

Moreover when the coefficients have a single point P of discontinuity and are C~
outside that point we will characterize the case in which «bad» solutions (i.e.
solutions of the kind in Pucci’s example) exist and the case in which they do not exist.
In the latter case we will show that the solution # is unique in the class
C?*(D\{P}) N C(D) and has the property

sup f | Vuy) |29, y)dy < o,
xeDD

where g(x,y) is the Green’s function for L in D (see Sect. 6).

In the case in which a «bad» solution ¢ exists, under the assumptions 0 < g(x) <1
in D, g(P) =1 and g(x) =0 on 3D, we will show (Sect. 5) that there exists a unique
pointwise solution # to Lu =0 in D\ {P} with % = ¢ on 3D and satisfying

9P, ypdy < ».

V 2
@ f | V)|

1-g@)

D
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Related to this problem is a result of R. Bass in [2]: he proves a uniqueness result
for the Dirichlet Problem for operators L whose coefficients are homogeneous of de-
gree zero and smooth outside the origin. The solutions that Bass considers are in the
class C2(B\.{0}) N C(B) and satify Lu = 0 in B\, {P} with « = ¢ on 3B and the condi-
tion [ |Dful"**(y) g0, y)dy < o for some ¢ >0 and for every 1<14, j<n.

b 4

2. - Preliminary results.

n

Throughout this paper L = > a;;(x) D} is a uniformly elliptic operator defined
ij=1

on a bounded smooth domain D c R", i.e. the coefficients ay; satisfy the uniform ellip-
ticity condition

n
(4)  there exist positive numbers X and A such that A||% < 2 a;@ &5 < AlE)?
VeeD and V&= (&, .., &) e R"; also a;(@) = a;(x). /7!

Let fe L™(D) and ¢ e C(3D).

In order to give a definition of solution to the equations we are considering here,
let’s recall the uniform Holder estimates due to Safanov ([10]), which hold for smooth
solutions to Lu = 0:

lu(x) — u(y)
) ooy = sup 1AE DL oy

syeB | —yY|*
rEY
where ' and « depend only on 2, A, n and .
Now let {a{]‘- @}, 4,j=1,.,n and k= 1,2,.., ©, be a regularization of the coef-
ficients of L, i.e. a collection of smooth functions such that:

i) for each pair ij, aif- — a; uniformly on compact subsets of D\ E, where E is
the set of points of discontinuity of a3

ii) for each k, {af(x)} satisfies (4) with the same constants as {a;; @)}

Also let L*= Y af (acj D which will be called a regularization of the operator L.
e Oy i

LJ]=
(A regularization of L can be obtained, for example, through convolution of the coeffi-
cients of L with a smoothing kernel).
Because of the smoothness of the coefficients the problems

Liyk = Zlag(x)z)guk: ~f inD,

ij=

U =9 on 8D,

admit a unique solution #*.
From (5), the classical maximum principle and the theorem of Aleksandrov and
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Pucci (see[1] and [9]), it follows that
(6) e e - o + e lle-@ < €@, 4, , O, D){lle

Lo T Ifl-ay } s

with £ a compact subset of D. Observe that the above constant is independent of k
and therefore Ascoli-Arzeld theorem implies that there exists a subsequence {u"} of
{u*} such that " — u uniformly on compact subsets of D.

The discussion in Sect. 9.9 of [7] combined with a barrier argument ({7], Ch. 6) as-
sures that the modulus of continuity of the %*s at the boundary of D is independent of
k, and therefore that the convergence " — u is uniform on D. Moreover (6) holds for
such a u. Observe, though, that there may be more than one u constructed in this
way.

We are now in position to give:

DEFINITION 1. - We will say that u e C(D) is a «good» solution to the Dirichlet
problem (2) for L if there exist sequences of functions {af }¢-,c C™ (D) satisfying i)
_Elaz’j(W)Déu’“ =~f

and ii) above and a sequence of functions u* such that L¥u* =
Wl=

in D, u* =9 on 3D and u*—u uniformly on D.

Also, if Q is an open set contained in D, we will say that u is a «good» solution to
L in Q is there exist sequences of functions {af}i-c C* (Q) as above and a sequence
of functions u* such that L*u* =0 in Q and u* — u uniformly on compact subsets
of Q.

Since Harnack’s inequality has been proved (see[10]) with constants independent
of the regularity of the coefficients, it holds for «good» solutions. Moreover the strong
Maximum Principle holds for «good» solutions. Precisely we have:

HARNARCK’S INEQUALITY. — Let u be a non negative «good» solution to L in D and
let By, ¢ D. Then supu(x) < 9 ing u(x) where the constant & depends only on A, A
and n. weB, re

STRONG MAXIMUM PRINCIPLE. — Let u be a «good» solution to L in D. Then if u has
a local maximum (minimum) in D, u is constant in D.

Next we are going to explain what we will mean for a Green’s funetion for L in D
and to define «normalized» Green’s functions.

A well known result of ALEKSANDROV[1] and Pucci[9] states that, if L has
smooth coefficients, and » is the solution to the Dirichlet problem with homogeneous
boundary data, ie. Lu = —f in D, 4 =0 on 3D, the following a priori estimate
holds:

) sup lu| < Clf

oy  Where C = C(3, n, diam D),

independent of the regularity of the coefficients of L. Since we know that in this case
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the solution is unique, the map f—> «(z) is a bounded linear funetional on L" (D) for
every x € D. Therefore by the Riesz representation theorem there exists g(x,-) such
that

®  wux) = fg(oc, ) fy)dy
D

and [g(, |pve-vpy = sup f g(x, ) f(y)dy < CO, n, diam D).
feL™D)

=1 P

Suppose now that the coefficients of L are not continuous and consider as before
some regularization L* of L. Let L*u* = — fin D, u* = 0 on 8D and g*(x, y) the cor-
responding Green’s functions. Because of (6) for every x e D there exists a subse-
quence, which we will still call g¥ such that g*(x, ) = g(z, -) weakly in L"/™ (D).
Through a diagonalization process we can define g(x, y) for x € Q" N D (where Q" is
the subset of points of R™ with rational coordinates) and then, because of the equicon-
tinuity of {u*}, extend it to D. Observe that this process constructs a Green’s func-
tion but says nothing about the uniqueness of g.

We are now going to construct «normalized» Green’s functions g(x, y) for L. These
«objects» were first introduced and thoroughly studied by P. BAUMAN in [3] and [4] in
the case of an operator with continuous coefficients. Our definition will be slightly
different but the results about g that we need here will still hold. Let’s first assume
that L has smooth coefficients.

DEFINITION 2. — Let Bg be a ball such that D c By, P e ER/z and G(x,y) be the
Green’s function for L in Bg. Let g(x, y) be the Green’s function for L in D. The «nor-
malized» Green’s function for L in D is g(x, y) = g(x, y)/G(P, y).

In this case g(x, y) is uniquely defined because the Green’s function is unique
when L has smooth coefficients.
For g the following properties hold.

THEOREM 1. — For each x € D, g(x, -) satisfies the strong maximum principle in
subdomains of D\ {x}.
Moreover,
i) sup g, 2) < C inf glx, 2),
zeB, 2 €D,
i) ose gx, 2) < Co* osc glx, 2)
B, zeB,

whenever By, c D\A{x} and 0 < ¢ < 1, with constants C and a depending only on 2, A
and n.

The above results were proved by BauMan in[3] (Theorem 2.2, 2.4 and 2.5)
with constants depending on the modulus of continuity of the a;. The results
of FABES and STROOK in[5] can be used to show that a constant C can be
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found for Theorem 1 depending only on A, A and %. Observe that locally g(, y)
is a solution to Lu = 0.

Observe that the above result also implies that g eannot be identically zero. To see
this observe first that Theorem 1, together with the A ® property of g(x, -) (see BAu-
MAN [3]), implies that g(x, ) is equivalent (with constants depending only on 2, 4, n

and d(z, 3D)) to j 9z, 2)dz/ j G(P, z)dz for y € B, and By c D\ {#}. It can be easily
B, B,
seen that this ratio is bounded from below by a constant depending again only on 4, 4,

#w and d(z, 3D).

Let’s now go back to the case of an operator L with discontinuous coefficients.
Consider the regularized operators L* again and let G* be the Green’s functions for L*
in Bp. We have seen that there exists a subsequence, that will be called again {G*},
such that G*(P, ) = G(P, -) weakly in L™/*~ Y (Bg).

Let now g§*(x, 4) = g*(x, )/G*(P,») and let 4, ={@, y)eD xD| |x—y| =
= 1/m}.

Observe that §*(x, y) is Holder continuous jointly for (x,y) in 4,.

We are now going to construct g(x, ¥) via a diagonalization process as follows: let
g" be a subsequence of §* uniformly convergent on 4; and by induction let g% be a
subsequence of §* - subsequence of §* uniformly convergent on 4,,. Taking the diago-
nal we obtain a sequence, call it again §*, uniformly convergent on each 4,,. Call the
limit (v, y); clearly this function is defined in all D X D\ {z = y}. This will be a
«normalized» Green’s function for L in D.

Clearly Theorem 1 holds for g so defined. Also g(-, %) is a «good» solution in sub-
sets of D\ {y}. Moreover,

THEOREM 2. ~ Fix a e D; then ecither

i) lim g(w, @) = + o, or

i) lim gz, @) = gla, @) < .

ProoF. — Without loss of generally assume a = 0.
Assume first that lim sup gz, 0) = + . Then there exists {a;} ¢D, with |a; | | 0

and g(x;, 0) = j. Becausz—())% Harnack’s inequality we have that g(x, 0) = C-j on || =
= [#; | and we have that §(x, 0) = C(j + 1) on |#| = |2; . |. By the maximum principle
it then follows that on the anullus |a;.,| < |®]| < |x;| we have g(x, 0) = C-j. As
j— o we get g}ilnoﬁ(x, 0)= +co.

Let now lim sup g(x, 0) = b < + ». Then choose r; | 0 so that g(x, 0) < b+ 1/j on

-0

the set where |z| <7; and «; e D such that |x;| | 0, |a;| <7, and glx;, 0) > b — 1/5.
Then by Harnack’s inequality 0 <& — glx, 0) + 1/j < (b — gl;, 0) + 1/5) < 8@Q2/5),
when [z| = [#;|. Therefore by the maximum principle, when |z;, 1| < |2| < |a; |
we have that 0<b—g(x, 0)+ 1/5 < &2/j) or, equivalently, —1/j <b—g(x, 0) <
< (28 — 1)(1/5). Now let j— o« and the theorem is proved.
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3. - Uniqueness of good solutions.

In this section we will deal with coefficients with at most countably many singu-
larities and one accumulation point.

In order to simplify some proofs, in what follows we will always assume 0 e D.
Moreover B, or dB, when the center is not specified will always denote balls centered
in the origin.

Assume first that a; e C* (D\{0}).

REMARK 1., - If for a § we have that (0, 0) = », we can prove uniqueness for solu-
tions % to problem (2) which satisfy Lu = —f in D\ {0} and belong to the class
C2(D\.{0}) N L = (D), by the following reasoning. Let u; and u; be two solutions and
assume they are different at some point (say u; > u, there). Let v = u; — u,; by maxi-
mum principle v > 0 in D\ {0} and ml_:;mx v(z) = v(0). May assume 0 < v(x) < 1. Choose

¢ > 0 in such a way that g(z, 0) > M on 3B,. Then w(x) = v(x) — (1/M)g(x, 0) < 0 on
3B, and w(x) = 0 on 8D. Therefore by the maximum principle 0 < v(x) < (1/M) g, 0)
in D\ B.. Fixing z and letting M tend to infinity we get v(x) =0 which is a
contradiction.

Observe that «good» solutions in this case are in the class C2(D\.{0}) N C(D) and
they satisfy Lu = — fin D\ {0}, so that this argument actually gives uniqueness for
«good» solutions. '

REMARK 2. - Using the above reasoning we can prove that if g; and g, are two nor-
malized Green’s functions for the same operator L whose coefficients are smooth in
D\ {0} and §; (0, 0) = o then also g, (0, 0) = «. To see this assume g, (0, 0) < © and
repeat the same argument of Remark 1 replacing g with g; and v with g, to conclude
92 (x, 0) = 0 which is a contradiction.

In view of the previous Remark, when 0 is the only point of singularity, it will
make sense to distinguish the two cases (0, 0) = « and g(0, 0) < .

We are now going to prove some uniqueness results for «good» solutions. The
main tool in this section is Theorem 3. The proof is due to Luis Caffarelli.

THEOREM 8. ~ Let L be as in (1), with coefficients a; e C* (D\{0}) and satisfying
(4). Let u be a «good» solutions to problem (2), with ¢ € C(8D) and f e Cy* (D\{0}) and
v be a non-constant function such that Lv = 0 in D\ {0}, ve C2(D\.{0}) N C(D) and
0 < v(z) < w(0) in D\ {0}. Then there exist « and C such that

[u(x) — w(0)| < Cla]*(«0) — v(x)),

where C = C; (ol +fllz-) and « depends only on A, A, n and C, on the latter and the
support of f.
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ProoF. — By hypothesis f is supported away from the origin; suppose f =0 in B,.

Let %(x) = u(x) — u(0) and ¥(x) = v(0) — v(x). Therefore v(x) >0 on 0B, and in
particular we can choose C such that Cu(x) = u(x) = 0 on 3B, ).

Observe that for every s < r it is possible to find x, € 3B, such that u(x,) = 0. If x,
did not exist we would have u(x) > 0 on 3B, and by maximum principle % = 0 on B,.
But % is a «good» solution in B, for which Harnack’s inequality holds in B, and %(0) =
= 0. This implies u(x) =0 in B,); and therefore in B,.

Let now w;” (x) = Cv(x) = u(x). We have that w;" (z) = 0 on 3B, and w;" (0) = 0;
hence, again by maximum principle, w;* (¥) =0 in B, ;. Also, by Harnack’s inequali-
ty, applied to w;" in the anullus A, = B,;;\ B,/; we have

wit (%) = dw (@) = C(w,0) = CFWx)  for wel,.

So in particular ws" (x) = C(1 — 82)%(x) + u(x) = 0 on 9B,/s.

Let now w;* (1) = C(1 — %) ~(x) = %(x) and A; = B,s\ B,jps». Having esta-
blished that w;* (x) = 0 in 3B, and observing that wf (0) = 0 for every 7, again by the
maximum principle we can conclude that w;” (x) = 0 in B, and by Harnack’s inequa-
lity that w;* (x) = dw;* (x;) = CoW(x;) = C8%(x) in A;, where x; = (,). In other
words |u(0) — u(®)| < C — £ Y ((0) — w(zx)) when r277 -1 < || <r27.

Set « = — log(1 — #*)/log 2 and the theorem is proved.

As an immediate consequence of Theorem 3 we have the following uniqueness
theorem:

THEOREM 4. — Let L and ¢ and f be as in Theorem 3; then problem (2) has a unique
«good» solution.

Proor. - Let u; and u, be two possible «good» solutions to the given problem, If
they are different at some point in D (say u, > u, there), then by the maximum prinei-
ple applied to v = u; —~ u, (which satisfies Lv = 0 in B\ {0}) we must have v(x) > 0 in
D\ {0} and ml_?x v(x) = v(0). But then v satisfies the hypothesis for Theorem 3 and by

applying the same with u first equal to u, then to u, we conclude that |v(x) — w(0)] =
= o(|v(x) — v(0)|); this can only happen if w(z) = v(0) in a neighborhood of the origin
which is a contradiction; therefore we conclude %, = u,.

REMARK 3. — From now on let g(x) = g(x, 0). Then if g(0) = lirr}J gz, 0) < oo, g(x)

satisfies the hypothesis for v in Theorem 3. This case, by Bauman’s paper [4], corre-
sponds to the case in which the point zero has positive capacity, i.e. when we can
solve the Dirichlet problem for L in the punctured set D\ {0}. So in this case we can
actually have functions which are pointwise solutions in D\ {0} and that do not satis-
fy the maximum principle and Harnack’s theorem across the origin. Theorem 3 in this
case tells us that a «good» solution has a better regularity than one of these other
solutions.
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DEFINITION 2. — Given an operator L and o smooth domain D we will say that the
Dirichlet problem for L in D is uniquely solvable if for any ¢ € C(8D) and fe L™ (D)
there exists a unique «good» solution u to problem (2).

When this happens the mapping ¢ — u(z), where % is the «good» solution to

Lu=0 in D,
{u=;o on 9D,

is a positive linear functional on C(3D) for every x € D; hence by the Riesz represen-
tation theorem there exists a unique measure «f p(dQ) define on 9D such that

u@) = [ o(@of, pdQ;
aD

(in the following when it is clear to which operator and domain we are refering to, we
will simply write o®(d@)).

Also observe that if «{’s are the harmonic measures for the operators L*in D,
where the {L*} is a regularization of L, then wf— »® weakly. Therefore for every
we CD) the function u(x) = f w(Q) w* (dQ) is the unique «good» solution to the
problem 8D

LEMMA 5. — If u; and us are two «good» solutions on a domain D in which there is
uniqueness, then v=1u; — Uy is a «good» solution.

PROOF. ~ v(&) = [ (u; — up }(@) o (dQ).
3D

THEOREM 6. — Let D be a smooth domain and L an operator with bounded coeffi-
cients. Then the Divichlet problem for L in D is uniquely solvable if and only if for
every « e D there exists 0 < r < d(zx, D) such that the Dirichlet problem for L in B, (x)
is uniquely solvable.

PROOF. — Let u; and u, be two possible distinet «good» solutions to problem (2) in
D. Since 4, = uy on 3D, u; — u, must attain positive maximum or a negative mini-
mum at some x, € D. Assume 2 (xg) > us (). Let v(x) = [ug (@) — ug ()] — [u; (@) —
— a4y (9 )] (observe that v = 0 in D) and let 7, be such that the Dirichlet problem for L in
B, (xy) is uniquely solvable. In view of the discussion about harmonic measure, the
previous Lemma and the uniqueness assumption in B, (#y), »(x) = j v(Q) i (dQ)

3B, (xy)
(with wj, the harmonic measure for L in B, (x,)) is the (unique) «good» solution to the

problem Lu = 0 in B, (), = v on 3B, (&,). Since v(x) = 0 and v(x,) = 0 by the Har-
nack’s inequality follows that v =0 in B, (x,).
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Now let a; € 3B, (x,) and let »; be such that the Dirichlet problem for L in B, (x;)
is uniquely solvable. Repeat the same argument to conclude that v=0 in
B, (xy) U B, (). Since every point has a neighborhood in which there is uniqueness
for the Dirichlet problem for L, it is clear that we can keep repeating the same argu-
ment to conclude that v=0 in D. But u,(®) =us(x) on 3D and this implies
Uq (%o ) = g (%),

COROLLARY. — Let L be an operator with coefficients a;e C* (D\A{#y, ..., &y }).
Then the Dirichlet problem for L in D is uniquely solvable.

REMARK 4. - Let supp fc D\ B, (0) and let %(x) and vw(x) be as in the proof of Theo-
rem 3. We can repeat the same argument in there if the following conditions
hold:

a) on each 9B,(0) there exists x, such that wu(x,) = u(0) — u(x,) =0, for
s <

b) if Cv(x) = u(x) = 0 on OB, implies that the same is = 0 on B, and satisfies a
Harnack’s inequality on B, i\ B, i+

THEOREM 7. — Let {z,, };» - 1 ¢ D and x,, — 0 (in D), let L be an operator with coeffi-
cients a; e C* (D\A{xy, ..., 0}). Then the Dirichlet problem for L in D is uniquely
solvable for data fe Cy” (DN\{x1, ..., 0}) and ¢ e C@D).

ProoF. - Suppose u, and u, are two «good» solutions to (2). If u, (xy) > uy(iy) for
some &, € D, then by the Corollary to Theorem 6 and by Lemma 5 max[u; () —

= Uy (X)) = u1(0) ~ % (0). Assume u, (0) > uy (0) and f = 0 on B,.(0). Let’s novls; prove that
@) and b) in Remark 4 are satisfied, with 7(x) = %, (x) — u, (0) (or us(x) — u5(0)) and
(@) = v(@) — wW0) = [u; () — ug (@)] — [1(0) — ux (0)].

Suppose u(x) >0 on 3B,, s <7, and let »”; be the harmonic measure for L in
B, \ B;(0) (which is well defined in view of Theorem 6, since in B, \ B,(0) the coeffi-
cients of L have only finitely many points of discontinuity); then

W= [ Qder,= [ WQder+o@) as 20,
3B, \B.,(0) 3B, (0)

Hence u(x) = 0 in B; and %(0) = 0; from Harnack’s inequality u(x) =0 in B, and
therefore in B,. So a) holds.

Finally if Cv(x) = u(x) = 0 on dB, a similar argument shows that this function is
z 0 in B,. Moreover because of Lemma 5 this function is a «good» solution on anulli
and therefore satisfies Harnack’s inequality there.

Now assume as in Theorem 8 that f= 0 on B,(0); repeating the same argument
there we conclude that |u; (x) — u,(0)| < C|x|*(»(0) — w(x)) and the analogous for u,;
as in Theorem 4 we obtain that |v(x)| = o(|%(x)|) as —0 and conclude the
unigqueness.
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(Observe that if for some g we have g(0, 0) = © the same argument in Remark 1
applies.)

As a consequence of Theorems 4 and 7, and the Corollary to Theorem 6 we also
have uniqueness for the Green’s function in those case. We will state and prove this
result in the case of Theorem 7.

THEOREM 8. — Let L be the operator in Theorem 1. Then there exists a unique
Green’s function for L in D.

Proor. - Let g, (¢, y) and g» (z, %) be two Green’s functions for L in D, i.e. suppose
there exist two sequences of operators L and Ls converging to L (in the sense of Defi-
nition 1) such that for every x e D, the corresponding Green’s functions g¥ (x, -) =
—g,(x, -) and g¥(x, ) =g, (x, -) weakly in L"~ V(D). Let fe C;° (D\{zy, ..., 0});
then u, (x) = j ) g: (=, y)dy = lim j @) gf @, y)dy and u, (2) = j g (2, y)dy =

hm f f(y) 0% (x, y)dy are «good» solutlons tolu = —finD,u= 0 on 3D. Because of
D
the uniqueness Theorem 7 we have j flg: (e, ) — g2 (x, Y)ldy = 0 for every
D
feCy® (D\{#y, ..., 0}) and therefore g,(x, -) = g.(, ) a.e.

4. - Properties of normalized Green’s functions.

In this paragraph we are going to study the behaviour of normalized Green’s func-
tions g(x, ¥) which were introduced in Section 2. We will need these properties to
study the regularity properties of the gradient of «good» solutions. B and P are as in
Section 2.

Assume first that the coefficients of L are C~ (B). By f ~ g we will mean that two
constants C,; and C, exist such that f(x) < Cig(x) < G, f(x).

THEOREM 9. — Let By, (x) c Bp and g,.(x, y) denote the Green’s function for L in
By (). Then if OB, (x)

Gar (.’17, ?/) - ’/'2 - 1"2
GP,y)  wB,@) wB,®H)

where w(E) = f G, y)dy
B

and the equivalence constants depend only on A\, A and n.
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PRroOF. — The proof follows exactly the one of Bauman for Lemma 2.1 in[4].

THEOREM 10. — Let g.(x, ¥) denote the Green’s function for L in B,(0) r< 1.
Then

P

S - gr(xr .7/) . IT s
fl o(B. @) ds GP. 1) —-—————w(BS ™) ds for x,y e B,,(0),

[z —y [z —yl

with equivalence constants depend only on A, A and n.

Proor. — The proof is a slight modification of the proof of Theorem 2.3
in [4]. :

Let’s now go back to the general case where L has just bounded coefficients. Ob-
serve that, because of the way we constructed a g for a general operator, it is possible
to find a subsequence of regularized operators L* such that the corresponding §* — g
uniformly on compact subsets of DX D\{x=y} and at the same time
G*(x, ) = G(x, -) weakly in L™~ D(D),

Therefore if we let » < d(3D, a)/2 and g, (x, ¥) = gp ) (@, ¥), then Theorem 9 tells
us that

g, (@, @) ~ J —3 __ds if |z—al| <r/2.
le - aj
We are now going to state and prove a theorem which describes the continuity of
g(x, a) at © = o when g(a, a) < .

THEOREM 11. — Let g be o normalized Green’s functions constructed above. Fix
aeD and assume g(a, a) < ». Then

jz —aj
- e _ s B d(a, dD)
0 < gla, a) — glx, @) OJ B B.@) ds for |x—a| < ~—

and g(x, a) < §a, a) for every x e D\ {a}.

Observe that, since we deal with the case g(a, a) < », it only makes sense in the
context of operators with discontinuous coefficients (in fact when the coefficients are
continuous g(a, a) < © can occur only in dimension two: see BAUMAN [4]).

Proor. —~ Observe that since g,(x, a) < g(x, a) also a}i_znaﬁr(x, a) = g,(a, a) < ®,

¥

Then, if we let « — a, from the observation above we get g.(a, a) ~ [s/ (w(B,(a))) ds.

0
So we will only need to prove that g(a, ) — g(x, a) ~ g,(a, @) with |x —a| =
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Let m,= | rzli!n_ [g(a, @) — g, a)] and M, = [ rflalzg [g(a, a) — g(x, a)]. Then clearly

9 9(a, a) - gz, a) <1< 9a, a) — g, a)

~
M, ,

for |z —a| =r.

Consider now the function w(x) = [g(e, a) — gz, &)1 — [9,(a, @) — g.(x, @)]. We
claim that there exists 2, such that |z, — | = and w(x,) = 0. To see this observe
that w(x) is a «good» solution throughout B, (a). (This follows from the fact that if g*
converges to § in D X D\ {x = y}, being §* (x, y) = gk, ) in B, X B,, we can assume
that up to a subsequence, jF converges to g, in B, X B,\{x =y}. Moreover
G (x, @) — g (x, a) is a «good» solution since the two normalized Green’s functions
have the same pole). If w(z) is never zero on 3B, (a) it has constant sign (say it is > 0)
and therefore by the maximum prineiple it will be = 0 in all B, (a) in which case Har-
nack’s inequality will imply w(x) =0 (since w(a) =0). Then we have g(a, @) -
— §(xy, @) = g, (a, @) which combined with (9) gives m, < g,(a, @) < M,. Since m, ~ M,
our claim and the theorem are proved.

In order to prove the results in the next section we will need the following Cac-
cioppoli type theorem.

THEOREM 12. — Let u e C* (D) and Lu =0 and w = 0 such that L*w < 0 in the
weak sense (ie. [wLy <0 for every pCq° (D), ¢ 2 0).
Then | w(y)| Vi 1> dy < C/R? [ w(y) u? (y) dy where By C D and the constant C

By Byr
depends only on A, A and n.

PRrROOF. — First of all we have that

n (2
Lw?) =2ulu+2 > azDiwDiu=2 > aijDiuDjualeuP.
Li=1

Lj=1

In what follows C is a constant that depends only on 7.

Let ¢ € Gy (Byg), be such that 0 < ¢ < 1,9 =1o0n Bg, |Vg| < C/R and |Die| <
< C/R2 (Observe that ¢” satisfies the same estimates). Then using the hypothesis on ¢
and on w, the ellipticity of L and Holder’s inequality it follows that

)\Iw(y)gaz |Vu|®dy < Jw(y)L(u2)¢2dy =

2r B

ki3
= (using Lu?¢?) = u?L¢® + ¢°Lu® + dup > a;D;uD;o| =
hi=1
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= Jw(y)L(uzqoz)dy - fw(y)uzL(¢2)dy —4 fw(y)ugp.zlaijl)iungody <
b=
BZR BZR B?R

<< jw(y)uzw)dy 44 j w(y) wo| Vu| | Vo) dy <

RZ
By Bor
c 2 2 2 5 |V 2 2 5 \Y2
< & wiy)uly)dy +4A [ | wly)o® |Vu|dy wiyu® |Vo|?dy| <
Bor Bop Bor

< % Jw(y)uz(y)dy+4/15jw(y)§02 |Vu|?dy + %2—(; fw(y)uz(y)dy-
B,

21 By By

And choosing ¢ small enough and observing that

jw(y)quP(y)dys jw(ymz | V|2 dy

By By

the theorem is proved.

5. — The case of one point discontinuity: g(0) < «,

In this paragraph we are going to prove more results about solutions in the case of
coefficients with a single point of discontinuity. Reecall that g(x) = g(x, 0) and
§0) = lim @)

THEOREM 13. — Let L be as in Theorem_?), B = B;(0) and assume g(0) = 1. Then »
there exists a unique u e C2(B\.{0}) N C(B) satisfying

0 Lu=0 in B\ {0},
: u=¢ JB,

V 2
(i) f Vel 0, pay < o,
E 1-g(y)

where the constant C depends only on A, A and n.

Proor. — We are going to show that the « that satisfies (i) and (i) is exactly the
«good» solution to Ly = 0 in B, w = ¢ on dB. More precisely we are going to show in
Proposition 1 that if % is a «good» solution then (i) and (ii) are satisfied. Moreover
such a % is unique. Suppose u, and u, are two functions satisfying (i); then by the
maximum principle w4, (&) — 4 (%) = ¢ g(x). We will show in Proposition 2 that for « =
=g the integral in (ii) is infinite.
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PROPOSITION 1. - If u is a «good» solution to Lu = 0 in B, u = ¢ on IB, with L as
in Theorem 13 then u satisfies condition (i) in Theorem 13 and moreover

Vo |2
| Vel 0, pdy < e,
E 1-g(y)

where the constant C depends only on A, A and n.

Proor. — Condition (i) is satisfied since the coefficients of L are smooth in B\ {0}.
Recall from Theorem 3 that
Jz]
1 - §x)) ~ f — 5 __ds, where w(&) = jG(P, )dy.
1 - g()) 2B, ) Y dy
0 B
Let L* = af (x) DZ be a smooth approximation of L and let «* be the analogue of w for

L*. Define y*(r)= [’Ts/(w’“ (B,(0)) + ¢)ds and for every ¢ >0 the auxiliary fune-
tions 0

1
(=)

1
2[w*(B,) + 31(* ()

for |x| >«

vE () = 1
[ - |z|®1+ —— for |z| <e.

7*(e)

It is easy to verify that v e C¥1(B) and that for |z| < ¢ it is v¥(x) = 1/Y%(¢).
The following estimates also hold:

for |x| <<

V] < —S——[FE1 2 and L] € —C ()

B+ ¢ (B, +¢
and for |z| > ¢
V k < Ixi —2,
V| < ——=— B )
k/ - -2 L ~= ~ 1 .
Lz = L' @) and  |Ly"(@)] < W (By) + 3

The latter is a consequence of the fact that if v is an adjoint solution, then
[vy)dy ~r [ vy)dy. (To see this, integrate by parts [ @) Ly |* — r*) dy).

B, B, B,

Also observe that v*(2r) < 4y ().
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Now let L*u* =0 in B, u* = ¢ on 3B; then

|V ® |2
v (y)

9%(0, y) dy < CfL’c(uk ~u* P VE@) "0, y) dy =
B

lyl z

= C[ JLk[(u’ﬂ — w02 E1w) 9% (0, y) dy — I(uk —wF(0) () L*vEg* (0, w) dy —
B B

- J4(u’° — u*(0)) af (y) D;u* D;vEg* (0, y)dy] =C{I+1II+1II}.
B

- Using the representation formula for solutions we obtain:

Pllo »

dg* 4
| < J luk(Q)—uk(O)lzvlf(Q)a(O, Y do(@) < —
oB ? I s ds
; *(B;) + ¢

where 9/31, is the exterior conormal derivative.
Also by using the previous estimates:

K(e)

[ (Jy D12
k ok 2 -4 NIV Lk
Ilsjgo f | () — u*(0)] By 970, y)dy +

By \ Biji:

[ (ly D12

kO, y) dy <
o (B) 9", y)dy

+ J' |u” () — u*(0) |2

B,

K(e)

2i)] -2
<> suplur — w2

k
g (05 Bl 21) +
) o (Byz) /

[y*(e)]72

k0, B,),
@) L O8)

+ sup |u*(y) — u*(0)|?
B,

where g(x, E) = [g(x, y)dy and K(e) is chosen in such a way that 27K -1 < ¢,

P>

Finally by Theorem 12, together with the doubling property of g(x,+) (see[3])
Schwartz’s inequality and previous estimates we also have that I < last term of the
previous chain of inequalities.
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Letting now k tend to infinity and applying Theorem 3 and Theorem 10 we obtain -
that:

V 2
f }Y(Zl 90, ydy <

lyl =«

K(e)

<C|l—r2—+ 22w
=1

[1-g@)Pr

+ &

[1- g
2 e el
277 € 2

- s s s
J BT fw(Bs)-H‘dS J wB) 2"
0

Letting then ¢ tend to 0 we conclude

f V0, yydy < clol 1 Sow s
Q-gay VYRG0 TS '

lyl =z

Finally let ¢ tend to 0 and the Proposition is proved.

PROPOSITION 2. — In the hypothesis of Theorem 13 we have that

V’*Z
j Y10, yyay = .
E 1-g(y)

PROOF. — Remember §(y) = §(y, 0). Let E = {t € (0, 1)|¢ is a critical value for §}.
By Sard’s theorem |E| = 0. For te (0, @)\ E, g ~'(¢) = {y € B] §(y) =t} is a smooth
C* manifold. Therefore the following computations are justified: integrate by parts
observing that the normal to the set g(x) =t is given by (Vg/|Vg|)(x) and recalling
that g(x) =0 on OB and obtain

0= f 900, x) Lgdx =

0 <glx)<t

= f D;la;; (x)9(0, x) D;gldx — [ D;[a;;(x) 90, )] D; g dee =

0<g@ <t 0<glxy <t

D.g
- j alj<x>Dj§I—V17-ng(o, 2)dS, - j D, [D; [a; () 9(0, )] @] de =

gy =t 0<jx)<t
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_ D;g -
= j 4@ D, -@gl—gm, 2)dS, + j a3 D; [y () 900, )1§@) de —
gy =1 jzf =1

_ . D;g
- j D; (a; () g(0, x)) §la) ———dS,.

_J |Vg|
gx) =t
Hence,
_ D;g D;g
1) J 45 @) DG 2L 400, 2)dS, = t f D;lag () g(0, #)] = d,
J |Vg| _ |Vg|
gy =t glaw) =t
Also,

0= | Dlas@g0 w1de=

0<gle) <t ‘
ng
|Vg|

= J ;. D; e () 90, x)]dw + J D;[a;;(x) g(0, 2)] as,.

el =1 g =t

By developing the derivatives this implies that the integral on the right hand side
of (11) equals 1 and therefore

D5
aij(x)pjgﬁg(o, 2)dS,=1-1 for ae. tel0,1].

1— @) =t

By applying the co-area formula ([8]) we conclude that

1
0,2 -
aij(x)Dingg 91( ~) de = J l—t—tdt =—Ilne—-1+c¢
-7 ) .

e<l-gys1

and letting ¢ — 0 the theorem is proved.

6. — The case of one point discontinuity: g(0) = .

THEOREM 14. — Let L and B be as in Theorem 3 and assume §(0, 0) = ». Then
there exists o unique u e C2(B\{0}) satisfying

0 Lu=0 1n B\ {0},
: u=g9 on OB,

(i) supj |V |2 g(a, y)dy < .
B
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PRrOOF. — We are going to show as in the previous section that this u is precisely
the «good» solution to Lu =0 in B, # = ¢ on 3B.

If u is the «good» solution to this problem it is easy to seen that (ii) is verified,
since if #* — u with «* solutions to the regularized operators, the following holds in-
dependently of &

[ |Vu 29", y)dy < CJL"’(u"(yF)g’“(x, ydy <
B B

j lu’“(Q)Iz <x y) do(@) < Cllgll%. -

3B

Now assume that u e C2(B\{0}) and Lu =0 in B\ {0} and (i) holds.

If % is bounded u is the «good» solution by Remark 1.

If « is unbounded and has constant sign we can repeat the same argument in the
proof of Proposition 2 to the integral j gy, y) Ludy and obtain that

t<uly) <s

uwD;u dS DjuDiu S = C
f az,(y) IVI 9o, ¥) J aij(y)—l—v—ul—g(xo,y) y=C,

uly) =t u(y) =8

for t<s and ux suchw that wu(xy) <{. Then by the coarea formula again
f Wulzg(xo,y)dy~j(]ds= .
i

wy) >t
Finally assume u changes sign and lim sup | |Vu|2g(z, y)dy < »; we will show
z—0 B )
that in this ease « is bounded and therefore we are back in the first case. First of all

by the maximum principle for every s <1 there exists x, with |®;| =s and
u(x,) = 0.
Let w(x) = u®(x) + | g(x, y) LIu® () dy. On t/2 < |x| < (8/2)t we have
t/2< |y| < (8/21¢
that Lw = L(u?) — Lw?) = 0, w e C * (B). Clearly 0 < u?(z) < w(x) in the same anul-

lus. Therefore by Harnack’s inequality (applied to w on |x| =t) we have
u? (@) < wlx) < dwx,) =

=9 [ g, pLi@ldy<C [ g, p|Vul’dy
t/2 < |y| < @/t t/2 < |y < 8/t

and the last term is bounded by hypothesis.
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