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Probing a Scene of Nonconvex Polyhedra 1 

J. D. Boissonnat  2 and  M. Yvinec 3 

Abstract. We show, in this paper, how the exact shapes of a class of polyhedral scenes can be computed 
by means of a simple sensory device issuing probes. A scene in this class consists of disjoint polyhedra 
with no collinear edges, no coplanar faces, and such that no edge is contained in the supporting plane 
of a nonincident face. The basic step of our method is a strategy for probing a single simple polygon 
with no collinear edges. When each probe outcome consists of a contact point and the normal to the 
object at the point, we present a strategy that allows us to compute the exact shape of a simple polygon 
with no collinear edges by means of at most 3n - 3 probes, where n is the number of edges of the 
polygon. This is optimal in the worst case. This strategy can be extended to probe a family of disjoint 
polygons. It can also be applied in planar sections of a scene of polyhedra of the class above to find 
out, in turn, each edge of the scene. If the scene consists of k polyhedra with altogether n faces and m 
edges, we show that ~-n(m + k) - 2m - 3k probes are sufficient to compute the exact shapes of the 
polyhedra. 

Key Words. Computational geometry, Geometric probing, Polyhedral scenes. 

1. Introduction. Given a simple polyhedron or a family of simple nonintersect ing 

polyhedra,  the p r o b i n #  p r o b l e m  consists in determining the shapes of the polyhedra 
by a small set of simple measurements .  A variety of subproblems can be dis- 
tinguished, depending on the model  of the sensor and on the constraints  on the 

type of the objects to be probed. 
This problem was first studied by Cole and Yap I-4], who showed that  the shape 

of a convex polygon with n edges can be determined with no more than  3n "finger" 
probes (i.e., each probe response consists of the coordinates of a "contact  poin t"  
on the b o u n d a r y  of the object); later, Bernstein [3] improved on this result in the 
case where the polygon is restricted to a finite set. D o b k i n  e t  al. [5] have considered 

the case of convex polytopes in mul t id imens iona l  space, other probe models, and 
also probes with errors. A work of synthesis of the field of geometric probing as 
well as a collection of new results can be found in Skiena's Ph.D. thesis [7]. 

This paper  extends the results of [2], recalled in Section 2, where it is shown 

how we can probe a large class of n o n c o n v e x  polygons, namely  the class of simple 
polygons with no collinear edges. In  order to study such complex objects, we use 

probes that  are more  powerful than simple finger probes:  our  probes answer not  
only with a contact  point  but  also with the no rma l  to the object at that  point.  
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3 LIENS, URA CNRS 1327, Ecole Normale Sup6rieure, 45 rue d'Ulm, 75230 Paris, France. 

Received November 6, 1989; revised March 15, 1990. Communicated by Bernard Chazelle. 



322 J.D. Boissonnat and M. Yvinec 

Moreover, we use an additional information, called a ray, which is generally 
available with the outcome of each probe. A ray is defined as a half-line or, more 
generally, as any semi-infinite curve which has the measured point as its origin 
and which does not intersect the interior of the objects---as does an optical ray, 
for example. It has been shown [1] that, given a set of contact points belonging 
to the boundary of a single object, the rays induce a total order on the set of 
points that coincides with the natural order of the points along the boundary of 
the object. Our method relies heavily on this property and a related lemma that 
we recall in Section 2.1. The method is subsequently extended to deal with multiple 
objects in a plane (Section 3) and three-dimensional objects (Section 4). 

2. The Basic Planar Probing Algorithm 

2.1. Description of  the Probe Model and Preliminaries. We show, in this section, 
how the exact shape of a simple polygon C can be computed by probing in the 
plane of C. In the following we denote by n the number of edges of C. It is 
important to realize that n is a priori unknown and will be discovered at the same 
time as the exact shape of the object. 

Our probe model is the following. We probe along a half-line, called the probe 
path, whose origin is some point o~ of the plane. When the probe is issued, the 
probing device responds with the first point Pi, called the contact point, where the 
probe path encounters the boundary of C and also gives the normal n i to C at pi 
when it is defined. The sensory device is supposed to be able to detect when p~ is 
a vertex of C, in which case the object responds with two normals instead of one, 
namely, the normals to the edges incident to p~. An example of such a device may 
be a finger with a tactile sensor at its tip. 

In addition, in order to avoid unrealistic probes, we assume that when the probe 
path contains an edge of C (such a probe is called a tangent probe), no contact 
point on this edge is reported: the device misses the edge. It should be noticed 
that, in Cole and Yap's model [41, a tangent point returns the first vertex it 
encounters. This leads to an algorithm that is simpler than the one presented here 
but highly unreliable if an actual probing device is to be used. 

The above probe model does not guarantee that any probing problem is solvable 
in a finite number of steps. To ensure this, two mild conditions are needed: 

CONDITION 1. The oriented supporting lines of the edges of C are all distinct. 4 
Notice that two supporting lines may be identical if their orientations are opposite. 

CONDITION 2. A point t of the object (on the boundary or in the interior of 
polygon C), called the target point, is given. 

4 C is supposed to be oriented counterclockwise and the edges and their supporting lines accordingly. 
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These two conditions are made to ensure that the probing problem is solvable in 
a finite number of steps. Indeed, without the first condition, a small detail of the 
object may still have been missed after any finite number of probes. The second 
condition allows us to isolate the problem of discovering the shape of the object 
from the problem of locating it within the workspace. Without this condition, we 
have no idea where C is located and an unbounded number of probes can be 
required to find it. 

Our probing strategy is based on the use of the total order induced on the set 
of contact points by the set of probe paths. In order to make use of the results of 
[1], each new probe is chosen so that the outcoming contact point pz can be 
associated with a semi-infinite curve li, called a ray, that ends at pi and is known 
not to intersect the interior of the object. This is achieved as follows. As previously 
mentioned, each probe is associated with an origin oi and a contact point p~. The 
line segment oipi connecting these two points (a portion of the probing path) is 
called the probe segment of the probe. The origin o~ of a new probe path is chosen 
to be either a point at infinity or to belong to a previous probe segment. In the 
former case, ray li is identical to the new semi-infinite probe segment; in the latter 
case, ray li is the concatenation of the current probe segment oip~ with the 
semi-infinite prefix made of portions of previous probe segments and ending at 
point ol. In the following we consider that a probe outcome, noted ml = (pg, hi, ll), 
includes three components: the contact point p~, the normal n~ to the boundary 
of C at Pi, and the semi-infinite ray li ending at pi. 

Let P be a set of contact points and let L be the set of corresponding rays. We 
first recall a few facts (proved in [1]). The set of rays L induces, on P, a total cyclic 
order that corresponds to the natural order of the points of P along the boundary 
of the probed object. The following lemma is a necessary and sufficient condition 
for two contact points p~ and pj of P to be consecutive in that order. 

Let C be any simple curve joining the points of P without intersecting the rays 
of L (except at the points of P). In particular, in this section, we can take this 
curve to be the unknown boundary of the probed object. The curve C is considered 
to be oriented so that the rays of L lie on the fight-hand side of C. Let Ci, j be 
the portion of C joining Pi to pj. Portion Cz.j, together with the rays Ii and lj 
measuring respectively the points Pl and pj, partitions the plane into several  
regions. Let W/,j be the union of the regions that do not contain p~ nor pj (W~,j 
may be empty). Among the two regions containing p~ and pj on their boundary, 
let H~,j be the region to the right of C~,j (see Figure 1). 

LEMMA 1. Two points Pi and pj of P are consecutive in the order induced by L if 
and only if the region Hi,j, considered as a closed region including its boundary, 
contains no point of P, except Pi and pj. 

2.2. The Basic Probing Algorithm. In this section we present a probing strategy 
that computes the exact shape of an n-sided simple polygon with no collinear 
edges by means of at most 3n - 3 probes. 

Given a probe outcome ml = (pi, ni, 13, we call the line Di, normal to ni and 
passing through p~, the supporting line of rag. When necessary, Di is considered 
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Fig. 1. For the definition of W/,j and Hi, j, 

to be oriented so as to let I i lie on its right-hand side (and therefore the interior 
of the object on its left-hand side) in the neighborhood of pi. When a probe 
outcome includes a contact point p~ that belongs to the edge e~ of C, we say that 
the edge e~ has been discovered.  At that time, this edge is not completely known 
because its endpoints have not yet been found out. 

The initialization step of the algorithm performs the first three probes as follows. 
The first two probes are issued along straight line rays with opposite directions 
and both passing through the target. Let D1 and D z denote the two supporting 
lines of the two corresponding probe outcomes t~ t and ~v 2 and let I = D 1 c~ D 2 

be the intersection point (possibly at infinity) of these two lines. The third probe 
is performed along a directed straight line passing through the target point and 
I and directed in such a way that the target point is reached before I. The three 
corresponding contact points Pl, P2, P3 belong to three distinct edges of C. 

Let us now describe a step of the core of the algorithm. At a given stage of the 
algorithm some edges have been discovered. The algorithm maintains a list of 
contact points ~g, sorted according to the ray order (in the following the indices 
refer to that order). The intersection I between the supporting lines Di and D~+ x 
of two successive contact points is called a corner  and is a potential vertex of C. 
The algorithm also maintains an ordered list of corners 5r Let ! be the current 
first corner of list s Corner I is the intersection of two supporting lines D 1 and 
D 2 ( I  = D 1 c~ D2) corresponding to two contact points p~ and P2 that are at present 
consecutive in the list cg. At each step, the algorithm either confirms corner I as 
being a vertex of C, or discovers a new edge lying between pl and Pz on the 
boundary of C. This is achieved by means of at most two probes that are described 
just below. In the first case we simply report the vertex and delete 1 from 5e; in 
the latter, two new corners are inserted in ~ .  The algorithm halts when ~ is empty. 

Let us describe precisely the (at most two) probes performed at the current step 
of the algorithm. The two supporting lines D~ and D 2 define four wedges R (with 
Pl and P2 on its boundary), S (with Pl but not P2 on its boundary), T (with neither 
Pl nor Pz on its boundary), and U (with Pz but not p~ on its boundary) (see Figures 
2 and 3). Let to1 ---(pa, 11, nO and ~v 2 = (P2, lz, n2) be the two probe outcomes 
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whose supporting lines are Da and D 2 and let ea and e 2 be the edges of C containing 
Pa and P2, respectively. The two points Pa and P2 are adjacent in the order induced 
by the set of rays, at this stage of the algorithm. Therefore, from Lemma 1, the 
region Ha, 2 is known to contain no contact point of the previous probes and, 
furthermore, a future contact point p is to be inserted between Pl and P2 on the 
boundary of C if and only if p lies inside Ha, 2- 

The strategy is to exhibit probe paths that will either confirm I as being a vertex 
of C or discover a new edge of C between PI and P2. For  that purpose, the first 
probe path p, issued at the current step is such that: 

1. # aims at I in order to decide whether this point is actually a vertex or not. 
2. # does not intersect the supporting lines D a nor D2, to avoid useless probes 

with contact points on already discovered edges. 
3. The probe segment of # is guaranteed to lie entirely inside HI, 2, to ensure that 

the outcoming contact point will lie between p~ and P2 on the boundary of C. 

Such a probe path # may be constructed as follows. Let D be a straight line 5 
contained in R u T. Line D passes through I and intersects the segment PaPz. We 
orient D so that p~ is on the left-hand side of D and P2 on its right-hand side. The 
probe path # is supported by D and its origin 0 is chosen as follows. The boundary 
7 of Ha, 2 is a simple closed curve that is the concatenation of the portion of the 
boundary of C between Pa and P2, Ca, 2 (unknown at this stage), and of an arc 
hi, 2 made of portions of previous probe paths and, possibly, an edge at infinity. 
Let 01, . . . ,  Ozk be the sequence of intersection points between D and h L z  , sorted 
along D. We associate to each intersection point o~ a sign, + if D enters Ha,z at 
point oi, - otherwise. The origin o of # is either oak if ozk has a + sign or the 
first of two successive intersection points both with + signs. Because ~ is a simple 
closed curve, it follows from Jordan's theorem that such a point exists and, 
moreover, we are guaranteed that the half-line p supported by D and starting at 
o, first encounters C at a point p satisfying o p c  H~, 2. Details can be found in the 
companion paper [2]. 

Let ~o = (p, l, n) be the outcome corresponding to the first probe path # issued 
at the current step. The probing ray l is exactly the probe segment op, if o is a 
point at infinity and, otherwise, the concatenation of op with the infinite portion 
of the ray l~ (i = 1 or 2) passing through o. Lemma 1 implies that Pa, P, P2 are 
encountered in that order along the boundary of C. 

We distinguish four possible cases, depending on whether p belongs to el, e 2, 
both, or none. Notice that, due to Condition 1 above, p belongs to e~ iff p belongs 
to D~ and n = ni. 

Case 1: p ~ e~ and p ~ e2. In this case p = I and I is confirmed as a vertex of C, 
Due to Condition 1, we are guaranteed that the edges containing Pl and P2 are 
adjacent along the boundary of C and that I is their common vertex. 

5 It would be possible to take for D a pseudoline instead of a straight line. This will only affect the 
complexity of computing the individual probes, not the number of probes. 
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Case 2: p ~ e 1 and p ~ e 2. The supporting line D(~) of the probe outcome is 
distinct from D 1 and D 2. Because p is guaranteed to belong to portion C1.2 of the 
boundary of C and because, up to this point, C1,2 contains no contact point, a 
new edge has been discovered. 

Case 3: p ~ el and p ~ e2. In this case p = 1 but is not a vertex of C. Thus probe 
/~ does not confirm I as a vertex of C and discovers no new edge. In that case the 
algorithm issues another probe that is guaranteed to discover a new edge. Let 1-I 1 
be the half-plane on the right-hand side of D 1, when oriented as described above. 
We distinguish two subcases according to whether P2 belongs to 1-11 or not. In both 
subcases, we exhibit a new probe path #' that is guaranteed to discover a new 
edge of the boundary of C between Pl and P2. Path/~'  will be supported by a 
straight line D' passing through ! and contained in S w U. 

Subcase 3.1: p2eI- lv  The situation is depicted in Figure 2. In this case D' is 
oriented from S to U. Let #' be the half-line supported by D' and starting at I. 
The contact point probed by #' is p'. The corresponding ray l' is the concatenation 
of Ip' and I. As in Case 2 the new probe necessarily discovers a new edge of C 
(between Pl and P2)" 

Subcase 3.2:P2 r 171. The situation is depicted in Figure 3. We now orient D' 
from U to S. The origin o' of the new probe path #' is defined in a way similar 
to the origin o of/t.  This ensures that the new probe necessarily discovers a new 
edge of C (between Pl and P2). 

Case 4: p r e x and p e e2. This case is analogous to the previous one. The indices 
1 and 2 have simply to be exchanged as well as the wedges U and S. 

2.3. Analysis of  the Algorithm. Let us count the total number of probes which 
have been performed. Each step of the probing algorithm either confirms a corner 
of list ~ as a vertex of C by means of one probe and this corner will never be 
probed again, or discovers a new edge by means of at most two probes. Thus to 
determine the exact shape of C, the algorithm issues at most one probe per vertex 

�9 12 / \ q  / 1 
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Fig. 2. Case 3.1, 
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D ~ ~ ~  ll D2 

Fig. 3. Case 3.2. 
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and two probes per edge, except for the first three edges that are discovered in 
the initialization step by means of only one probe each. This proves the following 
theorem: 

THEOREM 1. 3n -- 3 probes are sufficient to determine the exact shape of a simple 
polygon with n noncollinear edges. 

It is proved in [2] that, under our probe model, this bound is also a lower bound 
and that every probe algorithm that determines the shape of a polygon with n 
edges makes at least 3n - 3 probes in the worst case. Thus our probing strategy 
is optimal with respect to the number of probes. 

We simply give here an outline of the proof. Remember that, in our model, a 
probe tangent to an edge misses that edge. Thus polygon C is not completely 
explored as long as we do not have a contact point on each edge and a contact 
point at each vertex. Indeed, otherwise we might have missed an edge of C (of 
potentially arbitrary small size). Thus a trivial lower bound on the number of 
probes needed to discover an n-sided polygon is 2n. Our algorithm meets this 
bound for convex polygons. Let us consider the case of a nonconvex polygon C. 
Let S be a probing strategy that tries to discover the exact shape of C by means 
of a sequence of probes. Suppose that i - 1 probes have already been performed. 
At this stage, some edges of C have been discovered. The rays associated with the 
probes induce an ordering of the discovered edges (the same as the one on C). As 
in Section 2.2, the intersection I between the supporting lines D~ and D z of two 
successive contact points is called a cornJer and is a potential vertex of C. Either 
this corner is a vertex of C or some new edge has to be discovered between edge 
e I and edge e2. Sooner or later, S will have to issue a probe aiming at I in order 
to decide whether this corner is an actual vertex of C or not. When this probe 
answers with a point tlaat coincides with I but belongs to only one of the edges 
el or e2, no new edge has been discovered and no vertex has been confirmed. For  
the lower bound, we construct a polygon C where this adverse situation is 
encountered n - 3 times. This is done by induction on the number of corners 
which are actual vertices of C. 



328 J.D. Boissonnat and M. Yvinec 

The above strategy guarantees that a minimum number of probes are performed. 
In order to evaluate the actual complexity of the algorithm, it remains to analyze 
the complexity of determining each new probe path. It is shown in [-2] that the 
probes can be constructed in such a way that each one can be determined in 
O(log n) time. Thus the algorithm has overall O(n log n) time complexity and 
requires O(n) storage. 

2.4. Probing a Polygonal Room from a Given Point Within the Room. The 
probing strategy developed above can also be used if we want to find out the 
exact shape of a polygonal room by probing from the inside of the room. This is 
possible as soon as a point s inside the room is known: this point may be, for 
example, the initial position of the probing device. 

In this case, each contact point may be associated with a ray joining this contact 
point to the point s without intersecting the exterior of the room. It can be easily 
proved that the set of rays induces a total order on the set of contact points that 
corresponds to the order of these points on the boundary of the room and that 
Lemma 1 holds. 

The initialization step of the algorithm performs three probes issued from this 
point s: the first two probes are issued from point s along two opposite directions. 
Let I = D t c~ D 2 (possibly at infinity) be the corner formed by the supporting lines 
of the two corresponding probe outcomes. The third probe is issued from the 
point s along the straight line passing through the points s and 1 and directed 
from 1 to s. The three corresponding contact points Pt, P2, P3 belong to three 
distinct edges of the polygonal room. Then a strict application of the probing 
strategy described above provides a complete description of the polygonal shape 
of the room in clockwise order. 

3. Probing Several Polygons. In this section the probing strategy developed in 
Section 2 is extended to apply to the case where several polygons have to be 
simultaneously explored. More precisely, we assume that the probing device has 
to compute the shape of k' polygons C~,.,., Ck, among a scene of k polygons 
(1 < k' < k). Let n denote the total number of edges in the scene. The numbers k 
and n are unknown and will remain unknown, except in the case k' = k. 

As before, some mild restrictions on the statements of the problem are assumed 
in order to ensure that the probing problem is solvable within a finite number of 
steps. Namely: 

1. The oriented supporting lines of the n edges in the scene are all distinct. 
2: A target point tl is given within each polygon to be explored (tis Ci 

(i --- 1 . . . .  , k')). 

Under these conditions, we prove below that 3n - 3 + k probes are sufficient to 
compute the exact shapes of the k' polygons. Unfortunately, these probes are 
harder to compute than those of Section 2 and our algorithm requires | time 
per probe and, thus, has overall time complexity | 



Probing a Scene of Noneonvex Polyhedra 329 

3.1. Description of the Algorithm. Roughly speaking, the present algorithm for 
probing several polygons uses the divide-and-conquer paradigm in conjunction 
with the probing strategy described in Section 2. This strategy, valid for the probing 
of a single polygon, is applied as long as there is no evidence for the presence of 
several objects among the current set of contact points. When the presence of 
more than one object becomes manifest, the probing problem is split into two 
subproblems that are recursively solved. 

Before giving the whole algorithm, we describe its main ingredients and 
introduce the notions of a probing process and of a separator probe. 

In the following we call probin 9 process a realization of the probing algorithm 
for a single polygon (in fact, a slight variant to be described below). As explained 
in Section 2, the current state of a probing process ~ is completely determined 
by the triplet (cg, ~ ,  ~/f), where the current contour, cg, is the circular list of contact 
points sorted according to the order induced by the rays, 5r is the corresponding 
ordered list of corners, and J f  is the set of the polygonal chains, hl, i+ 1, made of 
portions of probe segments and joining pairs, (Pi, Pi + 1), of successive contact points. 

We call a probe whose outcome reveals that the contact points of (g belong to 
more than one polygonal object the separator probe. Such a probe is either a probe 
whose contact point p is at infinity (if the probe path encounters no polygon) or 
a probe whose probe segment op intersects the polygonal chains of ~ in, at least, 
one point o' (between o and p). Indeed, as long as no probe segment op intersects 
the set of chains ~ ,  all the contact points of cg belong to the same cell of the 
subdivision of the plane induced by J f  (or equivalently, by the set of the rays). 
Therefore, we know from ]-1] that there exists a simple curve passing through all 
the contact points without intersecting the rays (except at their endpoints); thus 
there is no evidence that the contact points found so far belong to several polygons. 

The algorithm for several polygons will activate several probing processes. Each 
probing process will be stopped as soon as a separator probe is encountered. As 
previously mentioned, the probing process is a variant of the basic algorithm of 
Section 2. The only difference between the variant and the basic algorithm is an 
additional test. Indeed, here we need to detect when a separator probe is 
encountered and, therefore, each time a probe is issued, before updating the triplet 
((g, ~ ,  ~ ) ,  we have to check whether the probe segment op intersects one of the 
segments of the current set ~ or not. This simple variant of the basic algorithm 
will serve as the first main ingredient of the algorithm for several polygons. 

When a probing process ~ with current state (cg, L~, ~ )  encounters a separator 
probe, it is stopped and replaced by two secondary processes ~ '  and ~ "  with 
current states (cg,, 5f', ovf') and (cg,, 5r ~") .  These secondary processes will evolve 
recursively in turn. The construction of (cg,, ~ , ,  ~ , )  and ((g", 5r Jq~") from 
(cg, ~ ,  j r )  and the separator probe segment op is performed by our second main 
ingredient, the so-called Procedure SPLIT described below. As is proved in the 
next section, the current states ((g', 5r ~ ' )  and ((g", ~ " ,  ~f~") of ~ '  and ~ "  Will 
summarize the whole information (as far as probing is concerned) contained in 
the current state ((g, ~q~, i f )  of process ~,  and both secondary processes ~ '  and 
~"  have no evidence for the presence of several polygons among their respective 
sets of contact points. 
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Procedure SPLIT 
Input:  a probing process ~ with current state (cg, Le, j4~) and a separator 

probe segment op. 

Output:  two secondary processes ~ '  and ~"  with initial states (cg,, Le,, ~r 
and (cr Le-, JcF"). 

1. Find the intersection point o' between the separator probe segment 
op and the segments of the set of chains .Of which is closest to o. 

2. Split the circular list cr into two circular sublists as follows. Among 
the two chains of ~ containing o, let hl, i+ 1 be the one such that the 
supporting line Dop of op, oriented from o to p, comes into the region 
Hi, i + 1 at point o (i.e., o has a + sign according to the sign convention 
of Section 2.2). Among the two chains of Jef containing o', let hi, i+ 
be the one such that Dop comes out of the region Hj , j+ 1 at point o' 
(i.e., o' has a - sign). ~g' is the sublist of cr going circularly from Pi + 1 
to pj while ~" is the sublist of c~ going circularly from pj+ 1 to Pi. The 
list Le is split accordingly (see Figure 4). 

3. All the chains from ~ '  and gr are inherited without change from 
the corresponding chains of ~ except for the chain hj, i+ 1 of r and 
the chain hi, j+ 1 of cr The new chain h j, i + 1 is the concatenation of the 
portion of the old chain hi, j+ ~ from pj to o', the segment o'o and 
the part of the old chain hl, i+ ~ from o to Pi+ r Similarly, the new chain 
hi,j+ t is the concatenation of the part of the old chain hi, i+ ~ from Pl 
to o, the segment oo' and the part of the old chain hj,.i+~ from o' to 

Pj+ 1. 

We can now give a description of the whole algorithm. During the course of 
the algorithm, a number of probing processes will be activated. Each probing 
process is activated with an initial state (cg o, Leo, ~o); the initial state of the first 
probing process is (~ ,  ~ ,  l~o), where lo~ is the line at infinity. We distinguish 
between primary and secondary processes. A primary  process  is a process whose 
initial lists of contact points cr o and corners Leo are empty and thus need to be 
initialized. At the initialization step, we issue three probes aiming at a given target 

Fig. 4. Illustration of Procedure SPLIT. 
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(as in the initialization step of the basic algorithm), fill the two lists <go and So 
with the outcomes of these three initial probes, and update ~tg o. 

A secondary process is a (already initialized) process which results from splitting 
a previous process when a separator probe is encountered. A probing process 
disappears either because its list of corners 5e becomes empty, which means that 
it has completed the exploration of one of the polygons, or because it has been 
replaced by two secondary processes after a separator probe has been encountered. 

At the begining the algorithm activates a primary process with three initial 
probes aiming at the first target point ol as described in Section 2. This primary 
process and the subsequent secondary processes evolve in turn until all of them 
have disappeared. We then say that the algorithm has reached a stable state. 

At such a stage of the algorithm, the exact shape of at least one polygon of the 
scene has been computed but some of the k' polygons to be explored may have 
been completely missed, until this point. Assume that, when reaching a stable state, 
the algorithm has discovered kl polygons with altogether n 1 edges. The boundary 
of these polygons together with the current set of probe segments induce a 
subdivision of the plane into regions, k 1 of these regions are simply the interiors 
of the discovered polygons. The others are the regions Hi, i + 1 (called, for short, the 
H-regions) associated to each pair of contact points (Pi, Pi+ 2) consecutive on the 
boundary of one of the k~ polygons. 

To ensure discovery of all the k' polygons, the algorithm maintains in a dynamic 
structure this subdivision of the plane and also a sublist of the given targets oi 
which have not yet been located in an explored polygon. Each time a stable 
probing state is reached, the subdivision of the plane is updated and the algorithm 
locates in turn each target of the remaining list until it encounters a first target, 
say t, lying in the interior of an H-region. Then a new primary probing process 
is activated within this H-region, called the probing region of the process. Its initial 
list ~'~o consists of one closed chain, 6 the boundary of the probing region, and the 
first three probes have their origin on Jgo and aim at target t. This will guarantee 
discovering at least one new polygon inside the probing region. Such a probing 
process is very similar to the initial probing process. In fact, both are identical if 
we consider the line at infinity as the boundary of a special probing region, namely, 
the whole plane. Due to the usual mechanism, the probes issued by this process 
have probing segments totally included in the probing region, except possibly for 
the last probe when it is a separator probe with its contact point outside the 
probing region. 

The whole process is repeated until all the targets have been found to belong 
to an explored polygon. 

3.2. Correctness of  the Algorithm. The notion of a probing region, introduced 
for primary processes, extends in a straightforward way to secondary processes. 
In all cases the probing region of a probing process is the region of the plane 
bounded by the initial set of chains ~o  of the process. 

6 With possibly an edge at infinity. 
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As previously noted, all the probe segments issued by a probing process ~ are 
contained in the probing region of ~ ,  except possibly for the last probe when it 
is a separator probe with its contact point outside the probing region. This 
property guarantees that two probing processes whose probing regions have 
disjoint interiors are independent. Therefore, the results of Section 2 show that 
each probing process evolves correctly as long as no separator probe is  en- 
countered and we only have to prove the correctness of Procedure SPLIT. 

We shall successively prove the three following facts that altogether prove the 
correctness of Procedure SPLIT: 

FACT 1. Both sublists ~' and ~" are nonempty. 

FACT 2. The separator probe subdivides the probing region into two subregions 
with disjoint interiors, one containing the points of ~' and the other the points of Cg ". 

FACT 3. The secondary processes ~ ' =  (c~,, ~, ,  ~g~,) and ~ " =  (~", 5f", ~")  to- 
gether summarize the whole information regarding probing that is contained in the 
state (~, ~ ,  ~ )  of ~; none of them has any evidence for the presence of several 
objects among its set of contact points. 

Because no separator probe has been encountered by N before op, we know that 
there exists a simple closed curve C joining all the points of cg without intersecting 
the chains of the set W, except at the points of c~. Curve C and the chains of H 
together subdivide the probing region of .~ into the interior of ~ and the regions 
Hi, i+ r We denote by 7i the boundary of the region Hi,i+ 1: 7~ is the concatenation 
of the portion of C, Ci, i+l, going from the contact point Pi to the contact point 
Pi+l, and of the chain hi, i+ 1 of ~ with endpoints Pi and Pi+r  

To prove the first and the second facts we consider the intersections between 
the line Dov supporting the separator probe segment op and the set of simple closed 
curves 7i. The supporting line Dog is oriented from o to p and we assume, for each 
intersection point between Dop and a curve 71, the same sign convention as in 
Section 2: the intersection has a + sign if Dopenters Hi,i+1 at this point and a 

- sign otherwise. Furthermore, we consider that the intersection points are sorted 
along Doe and, in the following, first, last, next, etc., refer to that order. 

PROOF OF FACT 1. We prove that the indexes i and j defined in Step 2 of 
Procedure SPLIT are distinct, which clearly implies Fact 1. Let us suppose, for a 
contradiction, that o' ~ hi,i+ 1. Due to our conventions, o' is an intersection with a 

- sign between Dov and hi, i+1. Thus o is not the last point on the list of 
intersections between line Dov and the chain hi, i+ 1 and, moreover, from the way 
point o has been chosen on Dov (see Section 2.2), this point is the first one of two 
consecutive intersections between Dop and hl.i+l, o and o", both with + signs. 
Thus point o" is necessarily between o and o' on Dop, which contradicts the fact 
that o' is the intersection between the probe segment op and the set of chains Jq' 
which is closest to o. [] 
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PROOF OF FACT 2. Let I and l' be the rays passing through o and o' respectively 
and let 2 (resp. 2') be the portions of I (resp. l') between o (resp. o') and the common 
point of I and l' if it exists or, otherwise, infinity. The concatenation of the segment 
oo' and of 2 and 2' is a simple curve, either infinite or closed, whose intersection 
with the probing region is connected. Let us call such a curve the separator curve. 
This curve subdivides the probing region into exactly two subregions. To complete 
the proof of Fact 2, we show that one of those subregions contains the points of 
cg, while the other contains the points of cg-. This is done by proving that C~,i+ 1 
and Cj, j+ 1 intersect the separator curve in an odd number of points while any 
other Ck.k+ ~, for k # i and k # j ,  intersects the separator curve in an even number 
of points. Notice first that the intersections between C and the separator curve 
obviously all belong to oo'. From Jordan's Lemma and the definition of points o 
and o', the first (along line Dop) of these intersections has a - sign and belongs 
to C~,i+ 1 while the last one has a + sign and belongs to Cj,j+I. Still from Jordan's 
lemma, the sequence of signs of the other intersections between C and oo' (if any) 
is an alternate sequence of + and - :  + - + . . . .  + - .  Let us consider one 
such intersection with a + sign, belonging, say, to Ck, k+ a" At this point line Dop 
enters region Hk, k+ ~ and thus must leave this region later on. From the definition 
of o and o', Dop must leave this Hk, k+l through Ck,k+l, which proves that the 
subsequent intersection (with a - sign) also belongs to Ck, k + 1" This ends the proof 
of Fact 2. [] 

PROOF OF FACT 3. The set of chains J r '  and s/Y" together span the set of chains 
Yg, which shows that the two current states (cg,, Za,, ~4~,) and (cg,,, 5~", ~gC") together 
include the whole information (as far as probing is concerned) gathered in the 
current state (cg, ~ ,  s4g) of the probing process that disappears. Let us consider 
curve C' which is the concatenation of the portion C~+ 1,j of C going counter- 
clockwise from Pi+ 1 to pj and of a curve joining pj to Pi+ 1 obtained by following 
the chain hj,~+ 1 defined at step 3 of Procedure SPLIT, as closely as possible (Figure 
5). Such a curve is a simple closed curve that joins all the contact points of cg, in 
their order in this sublist and intersects no chain of • ' ,  except at points ~'. This 
proves that the probing process ~ ' ,  in its current state (off,, 5~', ~ ' ) ,  has no evidence 
for the presence of several objects among its contact points. A similar argument 
holds for the probling process ~"  in its current state (cg,,, ~,, ,  j4,~,,). []  

3.3. Number  o f  Probes. Let us now count the total number of probes performed 
by the above algorithm. For  a polygonal scene including k polygons, at most k 
separator probes can be encountered. Except for those separator probes, each 
probe either confirms a corner as being a vertex of one of the polygons or 
discovers a new edge or guarantees that the next probe will discover a new edge. 
As a primary probing process starts by aiming at a given target known to belong 
to a polygon, the first three probes of each primary process are each guaranteed 
to discover a new edge. At least one such primary process is performed which 
finally yields the following theorem: 
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Fig. 5. For the proof of Fact 3. 
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THEOREM 2. Given a scene of k polygons including altogether n noncollinear edges, 
it is possible to determine the exact shape of any subscene of k' < k polygons by 
means of at most 3n - 3 + k probes, provided that one target point is given inside 
each of these k' polygons. 

It must be noticed that while k' is known from the begining, k and n are in general 
unknown and will remain so since the algorithm does not determine them. 

3.4. Complexity Analysis. A direct consequence of Theorem 2 is that the cardina- 
lities of the sets ~g, Le, and ~ are O(n) at any stage of the algorithm. In particular, 
the set ye of the chains hi,i+ 1 has O(n) edges. This immediately implies that the 
determination of one probe can be done in O(n) time and thus the determination 
of all the probes can be done in O(n 2) time. This time bound can be improved to 
O(log n) time per probe by using a technique analogous to that of Section 2.3, but 
this is useless here since the additional test that detects separator probes induces 
a quadratic complexity. 

Indeed, in order to check if the current probe is a separator probe, we have to 
test if the probe segment op intersects one of the chains of Je. This requires 
examining in turn each segment of the set of chains which takes O(ni) time for the 
ith probe. Hence, in total, O(n2). 

Procedure SPLIT is called at most k times. Once all intersection tests have been 
performed, Procedure SPLIT can be performed in constant time if appropriate 
pointers link the lists ~, L a, and ~r 

Let us now evaluate the complexity of locating the targets t~, i = 1 . . . .  , k', in 
the successive subdivisions corresponding to the stable states encountered by the 
probing algorithm. A straightforward induction shows that if k 1 polygons with 
altogether nj edges have been explored; the induced planar subdivision has at 
most (3nl - 3 + kl) regions. Thus locating a target in the subdivision can trivially 
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be done in O(n) time. Each time a location is queried for a target, either the target 
is found to belong to one of the explored polygons or a new probing process is 
activated that will discover a new polygon. Thus O(k) queries are performed, with 
total cost O(kn). For large values of k, this time bound can be improved to 
O(n log 2 n) by using the dynamic structure for maintaining a subdivision described 
on pp. 135-143 of [6]. 

The algorithm for probing several polygons is thus dominated by the complexity 
of the intersection tests which is | As mentioned, improving the time 
complexity of these intersection tests will immediately improve the overall com- 
plexity of the method. We left as an open question whether a data structure for 
storing the set of chain ~ can be found that would allow us to perform these 
tests more efficiently. 

3.5. Probing from a Point at Finite Distance. In Section 2.4 we have shown that 
our basic probing strategy also allows us to compute the shape of a polygonal 
room as soon as a point inside the room is known. It is easy to see that this is 
also true in the case of several polygons since the presence of a room does not 
perturb the evolution of a probing process once this process has been initialized. 

We consider the slightly different situation where it is not known in advance 
whether the objects to be explored are contained in a bounded room or not. 
Although this problem may appear a bit strange to the reader, it is exactly one 
of the probing problems that are encountered when probing polyhedra in three- 
dimensional space. More formally, the problem can be stated as follows: given a 
scene of polygonal objects, possibly contained in a polygonal room, a point s, 
lying outside all the objects but inside the room (if any), and k' target points 
belonging to k' objects in the scene, compute the exact shapes of the k' objects. 

We will see that our method can be slightly adapted to solve this problem by 
means of at most 3n - 2 + k probes, where k is the total number of polygons in 
the scene (including the room, if present) and n is the total number of edges of 
the scene (including the edges of the room, if present). 

Let t a be the first target point. 

1. The first probe has s as its origin and is directed along the line passing through 
s and tl, oriented from tl to s. If the contact point is at infinity, no room is 
present and the usual algorithm described in Section 3.1 can be resumed from 
the beginning. With respect to the usual algorithm, only one additional probe 
has been performed. Otherwise, let Pl be the contact point output by this 
first probe and let DI be the corresponding supporting line. 

2. The second probe path is issued along the half-line starting at s and directed 
toward the target t~. This probe outputs necessarily a contact point P2 on the 
segment Ot 1. Let D z be the corresponding supporting line. 

3. Let I = D a n  D 2 be the corner between the supporting lines D 1 and D e. The 
third probe is issued along the half-line starting at s and directed toward I. 
�9 If this probe path reaches infinity without encountering any obstacle, no 

room is present and the scene can be probed from infinity. In that case, an 
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additional probe performed from infinity along the line PiP2 and directed 
toward Pl (or P2) is guaranteed to discover a point p on a third edge distinct 
from the edges containing Pl and P2 and the usual probing algorithm can 
be resumed. (The contact point Pl (resp. P2) can now be associated with a 
ray joining infinity which is the concatenation of the segment opl (resp. op2) 
with the third probe path.) Once again, only one additional probe has been 
performed. 

�9 Otherwise, let Pa be the contact point output by the third probe. The three 
points Pl, P2, and P3 belong to three distinct edges of the scene and form, 
with the set of chains {h~,i+l =piopi+l, i =  1, 2, 3 (mod3)}, a correct 
initialization of the first primary probing process. This probing process will 
be handled in the usual way. Two cases may happen. Either the process will 
encounter a probing path reaching infinity, at that moment all the contact 
points may be associated with an infinite ray and the usual probing algorithm 
can be resumed at that point as in the previous case, or the algorithm will 
reach a stable state where a number of objects (at least one) and possibly 
the enclosing polygonal room have been discovered (and thus completely 
found out). At this stage, any additional primary process which may be 
necessary can be initialized and further continued in the usual way. 

In any case, only the first probe path reaching infinity--this probe proves that 
no room is present--is an additional probe which has not been counted in the 
analysis of the basic algorithm. This achieves the proof of the following theorem. 

THEOREM 3. Given 

(i) a scene of polygonal objects, possibly contained in a polygonal room, 
(ii) a point s, lying outside all the objects but inside the room (if any), and 

(iii) k' target points belonging to k' objects in the scene, 

the exact shapes of the k' objects can be computed by means of at most 3n - 2 + k 
probes, where k is the total number of polygons in the scene (including the room, if 
present) and n is the total number of edges of the scene (including the edges of the 
room, if present). 

REMARK. This algorithm provides the boundaries of the discovered objects in 
counterclockwise order and the boundary of the polygonal room in clockwise 
order. 

4. Probing Polyhedra in Three-Dimensional Space. The probing algorithm can 
be extended so as to probe a polyhedron C in three-dimensional space. The idea 
is to discover one edge of C at a time by applying another variant of the basic 
planar algorithm in a plane whose intersection with C contains that edge. 

This algorithm works under the two following conditions that are the three- 
dimensional analogous conditions of Conditions 1 and 2 of Section 2: 
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CONDITION 1. C has no collinear edges. Moreover, there is no pair (e,f) where 
e is an edge of C and f is a face of C which does not contain e, such that e and 
f are coplanar (Thus, in particular, C will not have coplanar faces). 

This condition ensures that no section of C through a plane containing e contains 
edges collinear to e. 

CONDITION 2. A target point t belonging to C is known. 

The probe model is the analog of the probe model used in Sections 2 and 3. When 
a probe is issued, the probing device responds with the first point where the probe 
path encounters the object. The probe output includes the contact point, the 
associated ray, and the normal to the face of the polyhedron passing through this 
point. The normals are oriented toward the exterior of the object. The sensory 
device is assumed to be able to detect when the contact point lies on an edge of 
C or is a vertex of C, in which cases the normals of all incident faces are reported 
in the probe output. 

4.1. General Outline of  the Three-Dimensional Probing Algorithm. We say, as 
usual, that an edge has been discovered when a contact point on this edge has 
been returned by a probe; furthermore, we say that an edge has been explored 
when its two endpoints have been probed. After an initialization step that discovers 
a first edge of C, the algorithm will consider in turn each discovered edge to find 
out the vertices of C which are its endpoints. Therefore the algorithm maintains 
the list E of the edges that have been discovered but not yet explored. For each 
element e in this list, the outcome of the probe that has discovered e (i.e., a contact 
point on e and the normals to the faces incident to e) is stored. The following 
pseudocode gives the general outline of the algorithm: 

Initialization: First, call Procedure INIT to find a contact point on an 
edge of C. List E is initialized with that edge. 

Loop. While E is not empty: 

1. Take the first element e of E and call Procedure EDGE(e) to find the 
vertices of C which are the endpoints of e. 

2. Remove e from E and insert in E the edges incident to the endpoints 
of e and not yet explored (each of these new edges has, as its associated 
contact point, one of the endpoints of e). 

The main ingredients of the three-dimensional probing algorithm are Proce- 
dures INIT and EDGE(e), described in Sections 4.3 and 4.4. The aim of Procedure 
INIT is to issue a contact point on an edge of C and the aim of Procedure EDGE(e) 
is to find the endpoints of the discovered edge e. Both of these procedures choose 
a plan I-I intersecting the object and use a variant of the algorithm described in 
the previous sections to explore (in general, only partially) the planar section 
1-I(e) c~ C. We say, for short, that these procedures probe in a plane, which means 
that all the issued probe paths are included in the same plane. 
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Fig. 6. Collinear edges in a planar section. 

The main difficulty encountered at this stage comes from the fact that the planar 
section H(e) ~ C does not fulfill Condition 1 of Sections 2 and 3; indeed, it may 
include collinear edges (see Figure 6). The basic algorithm has no means to 
understand that two contact points with collinear supporting lines belong to 
distinct edges unless another contact point has been found on an edge between 
these two collinear edges. Thus the algorithm is likely to consider two collinear 
edges as a single one, erroneously too long, and not discover the edges between 
these collinear edges. 

In addition, the current estimate of the polygonal contour (obtained by joining 
by straight line segments the pairs of consecutive contact points) may be not 
simple; indeed, the relative interiors of some of its edges may intersect even if their 
endpoints are confirmed vertices (see Figure 7). This may happen at any stage of 
a probing process and heavily disturb further evolution of the probing process. 
To cope with this difficulty, we introduce a variant of the basic algorithm that 
avoids producing explored edges whose relative interiors intersect. This procedure 
is described in the next section. It will be used by Procedures INIT and EDGE(e). 

4.2. Error Recovery in the Presence of Collinear Edges. Each time both vertices 
of an edge have been explored, the algorithm checks whether or not the relative 
interior of this edge intersects some of the edges that have been previously 
explored. If an intersection is detected, at least one of the two intersecting edges 
is erroneously long and has to be corrected. This is done by the following 
procedure. 

Let J = e n e' be such an intersection. Let Hi, i+ 1 (resp. Hi,,i,+ 1) be the region 
associated to the contact points Pi and Pi+ 1 (resp. Pi, and Pc+ 1) preceding and 
following J on e (resp. e'). We issue a probe aiming at J in one of these regions, 
say, for example, Hi,i+ 1. There are two possible cases: 

�9 If the answered contact point p is not J or coincides with J but does not belong 
to e (i.e., its normal is distinct from the normal at Pi and Pi+ 1), then e is erroneous: 
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Fig. 7. Intersecting edges with confirmed vertices. --, actual contour; ~ ,  current estimate of 
contour; - - - ,  probe segment; 0, contact point. 

Pi and Pi+l belong to distinct edges and the contact point p belongs to an 
edge that has not yet been discovered, lying between Pi and Pi+ t along the 
contour. 

�9 Otherwise, the contact point coincides with J and lies on e. Edge e' is necessarily 
erroneous. A new probe, issued inside Hi,, i'+ 1 and aiming at J, will necessarily 
discover a new edge between p~. and Pi,+ 1. 

In both cases, at least one of the two intersecting edges has been ruled out and, 
by means of at most  two probes, we have discovered a new edge. The probing 
process can go on as usual. 

4.3. Procedure INIT. Procedure INIT chooses a plane 17 passing through the 
target point t and probes in that plane using the probing strategy of Section 3 
modified to include the error recovery procedure of the previous section. The first 
primary probing process is initialized from infinity with point t as its target point. 
The probing process is stopped as soon as a vertex v of  17 c~ C has been confirmed. 
The edge of C passing through vertex v of  F I n  C is returned, with the contact 
point v and the normals to the two incident faces. 

Notice that the presence of coUinear edges in the planar section 17 ~ C does 
not cause any trouble here since the probing process is not required to explore 
the whole section but simply to report a vertex. 
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4.4. Procedure EDGE(e), As soon as e is discovered, the supporting planes of 
the two faces incident to e are known. Among the four wedges defined by these 
planes, let R be the wedge which contains C in a neighborhood of e and let T be 
the wedge opposite to R. Procedure EDGE(e) chooses a plane l'I(e) passing through 
e and contained in R • T and probes in that plane in order to find the vertices 
of II(e) n C which are the endpoints of e. 

The planar section l-I(e)n C consists of an unknown number of connected 
components and, moreover, these components may have holes that may them- 
selves include other components. Procedure EDGE(e) has to discover the con- 
nected component of Fi(e)n C which contains e. As this component may be 
contained in another one, Procedure EDGE(e) uses the probing strategy of Section 
3.5. The target point is the contact point p(e) of the probe that discovered edge e. 
The starting point is obtained by a preliminary probe issued from p(e) along a 
straight half-line contained in FI(e) c~ T. Let q be the contact point (possibly at 
infinity) output by this preliminary probe. Any point s on the segment p(e)q can 
be taken as a starting point. The probing algorithm is stopped as soon as the 
component of II(e) c~ C which contains e has been found. 

This component may be erroneous because of the presence of collinear edges 
in the planar section YI(e) n C but the endpoints of edge e. are guaranteed to be 
the actual endpoints of e because, due to Condition 1 of the present section, there 
is no edge collinear to edge e in the planar section II(e) c~ C. 

Notice that, according to the probing strategy of Section 3.5, p(e) will be the 
contact point of the second probe issued by the first primary probing process. 
Thus the component of FI(e) n C which contains e has surely been explored by 
the time the probing algorithm reaches its first stable state. Thus no additional 
primary probing processes will be required, which is fortunate since localization 
of the target p(e) among erroneous polygonal contours would have been a 
hazardous undertaking! 

4.5. Probing a Scene of Polyhedra. Throughout Sections 4.1-4.4 we have never 
used the fact that C was the unique polyhedron in the scene. Let us suppose that 
scene C consists of k polyhedra satisfying Conditions 1 and 2 of Section 4 and 
that we want to compute the shapes of a subset of k' polyhedra in the scene located 
by k' target points. We activate the above algorithm until all the discovered edges 
have been explored. We have then reached a stable state and computed the shape 
of some of the polyhedra. The whole algorithm is subsequently rerun, aiming now 
at a target t', not contained in one of the explored polyhedra (if any). Procedure 
INIT chooses a plane 1-I'. Let C' be the intersection of FI' with the already explored 
polyhedra. If t' is surrounded by a (nonsimply connected) component C'c of C', 
Procedure INIT probes inside the hole of C't, containing t' (i.e., we take this hole 
as the probing region); otherwise, we use the standard procedure described in 
Section 4.3. Procedure EDGE(e) is then applied as usual. This procedure is 
iteratively applied until all the targets have been located inside one of the 
discovered polyhedra. 

4.6. Complexity of the Algorithm. Let us count the number of probes performed 
by the algorithm. Suppose first that the scene consists of a unique polyhedron C 



Probing a Scene of Nonconvex Polyhedra 341 

with n faces and m edges. Each section of the object has at most n edges and n/3 
connected components. Indeed, if a section contains zero- or one-dimensional parts 
(i.e., a vertex or an edge of C with all their incident faces on the same side of the 
cutting plane), our probes will miss them (these are tangent probes); thus any 
connected component of a cross-section of C has at least three edges. Therefore, 
from Theorems 2 and 3, Procedure INIT and Procedure EDGE perform at most 
respectively ~ n -  3 and ~ n -  2 probes. Procedure EDGE is called m times. 
Therefore, the total number of probes performed by the algorithm is at most 
~-n(m + 1) - 2m - 3. If the scene consists of k polyhedra with n faces and m edges 
in total, Procedure INIT is activated at most k ,imes. The total number of probes 
performed by the algorithm is, in that case, at most ~-n(m + k) - 2m - 3k. We 
sum up our results in the following theorem: 

THEOREM 4. Let S be a scene of k polyhedra with m noncollinear edges, n 
noncoplanar faces, and such that no edge is contained in the supporting plane of a 
nonincident face. We can determine, by means of at most !~-n(m + k ) -  2 m -  3k 
probes, the exact shape of any subscene of k' polyhedra of S located by k' target 
points, one inside each polyhedron. 

5. Concluding Remarks. In this section we discuss our results and present some 
related open questions. Other open problems on geometric probing can be found 
in a recent paper [8]. 

1. The probing algorithm developed by Cole and Yap for convex objects assumes 
a simple finger probe model whose outcome consists only of the coordinates of a 
point on the boundary of the object but contains no information on the direction 
of the normal at that point. We have introduced a new probe model that includes 
the normals at the contact points. 

This seems to be an essential feature for probing nonconvex objects. Indeed, 
without additional hypothesis, the problem of finding the exact shape of non- 
convex polygons with a finite number of finger probes has no solution. Even if 
collinear points are found, we cannot guarantee that they belong to the same edge 
of C; thus an edge can never be confirmed as an edge of C. Nevertheless, we have 
shown in I-2] that, when no information on the normal directions is available, a 
variant of our method will almost surely output the exact shape of the object, 
provided that, in addition to the two conditions stated in Section 2, the following 
third condition is fulfilled: 

CONDITION 3. If the intersection point of the supporting lines Di and Dj of any 
pair of edges el and ej of C belongs to C, then it belongs to el or ej. 

More precisely, we have the following theorem: 

THEOREM 5. Provided that Conditions 1-3 are fulfilled, the above procedure 
discovers with at most 8n - 4finger probes a pelygon which almost surely is identical 
to C. 
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The method obviously extends to the case of several planar objects. It also extends 
to the case of polyhedra provided that Condition 3 is replaced by the (analogous) 
following condition: the intersection of the supporting planes of any two distincct 
faces intersects C only finitely many times (in which case we can always slightly 
rotate the cutting plane so that, in each planar section, Condition 3 is satisfied). 

2. In this paper we have mainly tried to optimize the number of probes and 
have ignored, in our complexity analysis, the cost of moving the probing device 
from one point to another. Our strategy is not good, in general, for this task and 
we can exhibit situations, even in the simplest case of one single polygon, where 
the probing device will be moved along ~(n 2) (noncollinear) straight line segments. 
On the other hand, a probing device that adopts the strategy of moving toward 
the target until it reaches the object and then follows the boundary of the object, 
will perform an infinite number of probes to ensure that no edge is missed, but 
the trajectory followed by the device is clearly the shortest possible one. Between 
these two extreme situations, there is surely room for interesting compromises. 
For example, how many probes are necessary and sufficient to determine the exact 
shape of a planar object using only O(n) turns? 

3. Theorem 4 gives an upper bound on the number of probes in the three- 
dimensional case that is quadratic. Is there also a quadratic lower bound? 

4. Lastly, we recall an open question already mentioned at the end of Section 
3.4: does a suitable data structure exist that allows us to compute efficiently the 
probes in the case of several polygons? 
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