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An Efficient Algorithm for One-Step Planar Compliant 
Motion Planning with Uncertainty 1 

Amy J. Briggs 2 

Abstract. Uncertainty in the execution of robot motion plans must be accounted for in the geometric 
computations from which plans are obtained, especially in the case where position sensing is inaccurate. 
We give an O(n 2 log n) algorithm to find a single commanded motion direction that will guarantee a 
successful motion in the plane from a specified start to a specified goal whenever such a one-step 
motion is possible. The plans account for uncertainty in the start position and in robot control, and 
anticipate that the robot may stick on or slide along obstacle surfaces with which it comes in contact. 
This bound improves on the best previous bound by a quadratic factor, and is achieved in part by a 
new analysis of the geometric complexity of the backprojection of the goal as a function of commanded 
motion direction. 
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1. Introduction.  M o t i o n  plans for real robo t s  must  account  for errors  dur ing  
execution.  Consequent ly ,  given bounds  on errors  in sensing and  control ,  we would  
like to p lan  mot ions  that  are guaran teed  to succeed even in the worst  case. 
Uncertainty as to cont ro l  fundamenta l ly  changes the complexi ty  of mo t ion  
p lanning  and  the techniques employed.  The in t roduc t ion  of uncer ta in ty  leads 
na tura l ly  and  necessari ly to a l lowing the r o b o t  to contac t  and  comply  w i t h  
obstacle  surfaces, because doing  so great ly  enriches the set of p rob lems  that  can 
be solved. 

We address  the concrete  and  basic p rob lem of  f inding a single c o m m a n d e d  
m o t i o n  direct ion to maneuver  a po in t  r o b o t  from an uncer ta in  start  pos i t ion  in 
the p lane  to a specified goal  where the robo t  is guaran teed  to stop. Mot ions  are 
strictly t rans la t iona l ;  thus the problem,  for example,  of mode l ing  the geometr ic  
in terac t ions  of a peg and a hole can be reduced to navigat ing  a poin t  in 
conf igura t ion  space [Lo] .  As in the classical mo t ion -p l ann ing  problem,  we assume 
the p rob lem is posed  in an envi ronment  of p l ana r  po lygona l  obstacles  that  is 
known  and  can be mode led  exactly. The real iza t ion of a command ,  however,  is 
subject  to uncer ta in ty  since robo t s  have imprecise  sensing and  imperfect  cont ro l  

1 A preliminary version of this paper appeared in the Proceedings of the ACM Symposium on 
Computational Geometry, Saarbriicken, June 1989. This paper describes research done in the Computer 
Science Robotics Laboratory at Cornell University. Support for our robotics research is provided in 
part by the National Science Foundation under Grant IRI-8802390 and by a Presidential Young 
Investigator award, and in part by the Mathematical Sciences Institute. 
2 Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853, USA. 
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Fig. 1. Uncertainty cone U,r The actual direction 0 fr~ chosen by the control system, may be any 
direction in the cone. 

and therefore can only execute commands to within a given accuracy. Given a 
bound ec on the control error, we model this error as a cone in configuration 
space about a vector in the direction of the commanded motion 0 and call it the 
uncertainty cone U~c(O ) (see Figure 1). While executing a motion plan, the robot 
complies with the environment and may choose any direction consistent with the 
commanded direction and the control uncertainty. The direction chosen may vary 
over the execution of the plan. In what follows, n denotes the number of vertices 
in the environment and E denotes the number of edges in the visibility graph, 
where we assume E = f~(n). 

To deal with uncertainty in control, we allow compliance on obstacle surfaces, 
where a compliant motion is one during which the robot may slide or stick on 
obstacle surfaces. We model this effect by assuming generalized damper dynamics 
[W], [M1], [D2] and Coulomb friction at point contacts, where the coefficient 
of friction/z is known and remains fixed for the environment. To determine if an 
obstacle surface is a sticking surface at motion direction O, we check whether a 
vector at direction 0 lies inside the negative friction cone at the point of contact. 
If the vector lies outside the negative friction cone, then sliding will occur, otherwise 
sticking may occur (see Figure 2). To determine if sticking can occur on a vertex, 
we assume that the vertex can produce reaction forces that are linear combinations 
of the reaction forces that the adjacent edges can produce [El i .  In this model we 
take a worst-case approach; that is, we assume that if sticking is possible at a 
point, then the motion plan must prevent the point from being reached unless the 
point is in the goal. 

Our method involves the construction of a concise representation for a structure 
called the nondirectional backprojection of the goal [E l i ,  [D1]. By analyzing the 

friction 
CO~,e a t  
contact p o  

/ ~  2 t a n  -1  p 

Fig. 2. Sliding occurs at motion direction 0 fr~ 
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changes to the backprojection as the motion direction varies, we give a complete 
characterization of the nondirectional backprojection and its complexity, and an 
efficient representation. To achieve this result, we develop an amortization strategy 
that is powerful enough to bound the number of changes to the boundary of the 
backprojection by O(n2). Hence, we can tighten the previous bound [D1], [D2] 
on its combinatorial complexity from O(n 3) to O(n2), and improve the algorithm 
for computing it from O(n ~ log n) to O(n 2 log n). As our examples show, the 
nondirectional backprojection is a complex object that can undergo very large 
global changes at a single event while remaining locally monotonic. We obtain 
our result by characterizing this local monotonicity. 

We state the problem as follows: 

DEFINITION 1. Given a planar polygonal environment ~ with start region R and 
goal G, both having a constant number of vertices, the one-step planar compliant 
motion planning problem is to find a commanded motion direction 0 such that any 
trajectory from R consistent with the control uncertainty er is guaranteed to reach 
G. The path should avoid obstacles or comply with the environment. 

1.1. Related Work. Backprojections are derived from preimages, which were 
proposed in [LMTI for automatically generating fine motion strategies. Erdmann 
introduced the concept of a backprojection and showed how to compute a 
backprojection in the plane [Eli. Canny and Reif [CR] have shown that, in three 
dimensions, the problem of one-step motion planning is NP-hard and the problem 
of multistep motion planning is NEXPTIME-hard. Previously, Natarajan had 
shown the multistep problem to be PSPACE-hard IN]. Canny has also given 
doubly exponential upper bounds for the three-dimensional translational multistep 
problem [C]. Our algorithm extends and improves the O(n 4 log n) algorithm by 
Donald [D1], [D3] for finding a translational motion direction 0 in the plane. 
We presented an earlier version of this work in [Bri]. Friedman et al. have 
considered the problem of planning compliant motion within a simple polygon 
[FHS]. For other related work on motion planning with uncertainty, see [Bro] 
and [La]. 

1.2. Preliminaries. Given goal G, and commanded direction 0, the backprojection 
Bo(G) is the set of all initial positions such that any trajectory consistent with the 
control uncertainty is guaranteed to reach the goal. Donald and Erdmann show 
that, for constant size G, Bo(G) can be computed in O(n log n) time using plane- 
sweep techniques. Erdmann's algorithm is as follows [D2], [E2]: 

1. For each nongoal vertex, determine whether the inverted control uncertainty 
cone U~c(O) intersects the friction cone at that vertex. If so, call this vertex a 
sticking vertex under commanded motion 0. 

2. On each sticking vertex, erect two constraint rays parallel to the edges of the 
inverted control uncertainty cone. 

3. Compute the arrangement of the environment with these O(n) additional 
constraint rays. 

4. Starting at a point in the goal, trace out the backprojection region (see Figure 3). 
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Fig. 3. Backprojection construction. 

We call the maximal initial segment in free space of a constraint ray erected on 
a sticking vertex a free-space edge. The sticking vertex (called the anchor vertex) 
on which a free-space edge e is erected remains fixed while the angle of e changes 
with 0. Recall that constraint rays lie parallel to one of the edges of the control 
uncertainty cone, which lie at angle 0 _+ ~c. A left edge anchored at p, denoted 
I(p, 0), is a free-space edge lying at angle 0 + n - ~r for motion direction 0 and 
control uncertainty e~. A right edge anchored at q, denoted r(q, 0), is a free-space 
edge lying at angle 0 + n + e~ (see Figure 4). If free-space edge 1 anchored at p 
and free-space edge r anchored at q # p intersect, we call the point of their 
intersection a free-space vertex. Free-space vertices are uniquely determined by 
their generating edges. A free-space edge is vgraph critical when it lies coincident 
with an edge of the visibility graph and therefore joins two obstacle vertices in 
free space. We employ the convention that as 0 increases monotonically over the 
range 1-0, 2n), the corresponding control uncertainty cone U,~(O) rotates in an 
anticlockwise direction, which has the effect of locally "rotating" the back- 
projection in an anticlockwise direction. 

LEMMA 1. For any direction 0 and goal G of constant size, the backprojection Bo(G) 
has size O(n). 
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Fig. 4, Free-space vertex generated by the intersection of two free-space edges. The left edge lies at 
angle 0 + 7z - e~ and the right edge lies at angle 0 + n + e c. 
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PROOF. The environment N has n obstacle edges and n vertices, that in turn 
contribute O(n) constraint rays when cones are erected on all the sticking vertices. 
The backprojection is built from obstacle edges and free-space edges, where a 
free-space edge is a constraint ray anchored at an obstacle vertex and intersecting 
an obstacle edge or another constraint ray. Since at most two free-space edges are 
anchored at each obstacle vertex, the backprojection has size at most O(n). [~ 

In order to find a commanded motion direction 0 for which all trajectories from 
R are guaranteed to reach G, we evaluate the predicate R ~ Bo(G) for selected 
values of 0. As we shall see, it suffices to consider those values of 0, called critical 
values, at which the topology of the backprojection changes. To this end, it is 
convenient to index the backprojection Bo(G ) with the critical motion direction 0 
at which it arises. This leads to the definition of the nondirectional backprojection 
B(G) as the set in 9~ 2 x St: 

B(C) = 0 (Bo(G) • {0}). 
0 

Given that the topology of the backprojection does not change between critical 
events, Donald's approach [D1], [D3I is to build B(G) by computing a back- 
projection slice at each critical 0, and then test B(G) for intersection with the 
cylinder R x S ~ over the start region R. His algorithm builds a representation of 
size O(n 3) for the nondirectional backprojection in time O(n 4 log n). To obtain his 
result, Donald shows that we can bound the number of motion directions at which 
the topology of the backprojection changes, and thereby obtain a polynomial-sized 
representation for the nondirectional backprojection. Since our proof allows this 
bound to be improved from O(n z) to O(E), we give our own rendering. 

LEMMA 2. There are O(E) motion directions at which the topology of the back- 
projection changes. 

PROOF. Note that the topology of the backprojection may change when any of 
the following events occurs: 

Sliding critical event. The determination of sliding versus sticking on an obstacle 
edge changes due to a change in the motion direction 0. 

Vgraph critical event. A constraint ray becomes coincident with a visibility edge. 
Vertex critical event. A free space vertex of the backprojection coincides with an 

obstacle edge. 

Since the topology of the backprojection can change only when an edge is 
inserted or deleted, these are the only events that can cause a topological change. 

Sliding critical events contribute O(n) critical values of 0 since the determination 
of sliding versus sticking on an edge can change at most four times. The visibility 
graph has O(E) edges, and since all constraint rays are parallel to one or the other 
of the two edges of the control uncertainty cone, there are O(E) vgraph critical 
values of 0. 
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Fig. 5. Vertex critical event is charged to a visibility edge. (a) The vertex event. (b) and (c) The previous 
vgraph events to which the vertex event may be charged. 

Vertex critical events contribute O(E) critical values since we can charge each 
vertex critical event to a unique visibility edge or sliding event as follows. Suppose 
the free-space vertex determined by left edge l(p, 0o) and right edge r(q, 0o) lies on 
obstacle edge e. Let x be the endpoint of e such that l(p, 0o) has passed over x. 
Then one of the following must have occurred (see Figure 5): 

(1) Edge l(p, 01), 01 < 0o, was coincident with the visibility edge between p and x. 
(2) x is not visible from p and edge r(q, 0z), 01 < 02 < 0o, was coincident with a 

visibility edge between q and some vertex on an obstacle between p and x. 
(3) No such vgraph event as in (1) or (2) occurred, in which case at least one of 

p and q has become a sticking vertex at 03, 01 < 03 • 00. 

We assume that the environment is in general position, that is, at most one critical 
event will occur at any 0. Under this assumption, one of these events will occur 
first. In other words, we can choose 0~, 1 ___ i < 3, for which 0 o - 0~ is minimized. 
Thus we can charge the vertex event to a vgraph or sliding event at 0 i. At most 
one other vertex event will be charged to the critical event at 0~ since, without any 
intervening sliding or vgraph events, a free-space vertex travels in a piecewise 
circular arc and can coincide with an obstacle edge at most twice. We have shown 
above that the number of sliding and vgraph events is O(E), so it follows that the 
number of vertex critical events is O(E). [] 

2. Main Result. As 0 changes, the topology of the backprojection changes when 
edges are inserted or deleted at critical events. Using amortization techniques, we 
show that over the entire range of 0, the number of topological changes to the 
boundary of the backprojection is bounded by O(n2). Thus we can compute a 
representation for the nondirectional backprojection incrementally instead of 
computing a slice for each critical 0. Namely, we fix 0 o = 0 and compute the 
ordered set 

{Boo(G), ABo,(G) . . . . .  ABo~(G)}, 

where Oi e {010 is critical}, Oo < 01 < "'" < 0~, and ABo~(G) encodes the net change 
to the data structure representing backprojection slice Bo,_,(G ) to obtain the data 
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Fig. 6. Combinatorially large change in backprojection caused by vgraph event at vertex x. 

structure representing backprojection slice Bo,(G) by adding and deleting vertices. 
We show below that our representation for B(G) has size O(n 2) and is computed 
in time O(n 2 log n). 

2.1. The Nondirectional Backprojection. In this section we bound the size of the 
nondirectional backprojection by bounding the total number of changes to the 
backprojection over all 0. 

Recall that under the assumption of general position, at most one critical event 
will occur at motion direction 0. Under this assumption, however, it is not true 
that a critical event causes only one topological change or only constant topologi- 
cal change to the backprojection. Indeed, we can construct examples where O(n) 
changes occur at some 0, or where O(n 3/2) critical events' occur, each causing O(x/-s ) 
changes to the backprojection (see Figures 6 and 7). In the following discussion 
we show that the total number of changes to the backprojection over the full range 
of 0 is O(n2). 

Fig. 7. Each of the O(n) spikes of the backprojection will be vgraph critical with each of the O(xfn ) 
dusters of obstacles. Each cluster is of size O(x/n), so each of O(n 3/2) vgraph critical events causes 
O(x/-n) changes to the topology of the backprojection. 
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Fig. 8. At least one vertex on the polygon must be a sticking vertex. 

In what follows we make use of an object called a conforming ray. A conforming 
ray is specified by an anchor vertex q and is defined for the interval [01, 02] in 
which q is a sticking vertex. Crucial to this definition is the assumption that every 
polygonal obstacle in the environment contains at least one sticking vertex. 
Consider an obstacle in the configuration space. Even in the case of no friction, 
a motion in direction 0 could stick on a vertex if 0 points into the span of the 
normal vectors on the edges adjacent to the vertex. The sum of the angles spanning 
the normal vectors over all vertices is 27~, so any 0 will point into the cone spanning 
the normal vectors at some vertex. Any vertex at which this happens could cause 
sticking, and so will be called a sticking vertex. (See Figure 8.) For  each sticking 
vertex, we construct a leading conforming ray and a trailing conforming ray. 

DEFINITION 2. A leading conforming ray on sticking vertex q for commanded 
motion 0 is formed by extending l(q, O) at angle 0 + n - ec until it intersects an 
obstacle. We then follow the boundary of the obstacle anticlockwise until reaching 
the first vertex q' that is a sticking vertex for direction 0. Treat this vertex as q 
and continue. A trailing conforming ray on sticking vertex p for commanded motion 
0 is formed by extending r(p, 0) at angle 0 + rc + ec until it intersects an obstacle. 
We then follow the boundary of the obstacle clockwise until reaching the first 
vertex p' that is a sticking vertex for direction 0. Again, treat this vertex as p and 
continue (see Figure 9). 

For  purposes of discussion, we say that a point in configuration space is on a 
conforming ray or contained in it if the conforming ray passes through the point. 
A point x leaves a conforming ray if the ray no longer passes through x. We 
imagine that conforming rays sweep out area continuously between critical events. 
If obstacle vertex x enters the boundary of the backprojection as some conforming 
ray sweeps over x, we say that the conforming ray brings x into the boundary of 
the backprojection. We are interested in whether a vertex is part of the boundary 
of the backprojection since the backprojection itself is neither open nor closed. 
For  example, in the third backprojection shown in Figure 10, vertex z is contained 
in the backprojection, and vertex x is not, while both are on the boundary of the 
backprojection. 
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Fig. 9. Leading conforming ray on q and trailing conforming ray on p. 

Fig. 10. Two entries of obstacle vertex x into the boundary of the backprojection are charged to 
different conforming rays. 
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Note that the conforming rays bounding the backprojection move montonically 
with 0 in the absence of sliding events. By this we mean that between sliding events, 
conforming rays sweep out area in one direction as 0 increases. In particular, once 
a point on a conforming ray leaves the conforming ray, it will not become part 
of that conforming ray again. This is because each conforming ray is composed 
simply of obstacle edges and free-space edges, which are parallel to the bounding 
edges of the control uncertainty cone and change monotonically. As critical events 
occur, the backprojection changes and vertices are added to or deleted from the 
backprojection boundary. Since a vertex is deleted only as many times as it is 
added, to establish a bound on the number of topological changes due to vgraph 
events, we need only consider insertions of vertices to the boundary of the 
backprojection. When x enters the boundary of the backprojection due to a vgraph 
event, at least one conforming ray will contain x. We can then say that x enters 
the backprojection boundary as this conforming ray sweeps over x, and that the 
entry of x can be charged to this conforming ray. Since conforming rays are 
monotonic between sliding events, this conforming ray will bring x into the 
backprojection boundary at most once. Note that even if a conforming ray could 
back up due to a sliding event, we could charge any resulting topological changes 
to the sliding event since there are only O(n) sliding events. With O(n) vertices in 
the environment and O(n) conforming rays, each capable of bringing in each vertex 
at most once, we have O(n 2) vertices entering the boundary of the backprojection 
due to vgraph events, i.e., we have O(n 2) topological changes attributable to vgraph 
events. 

We are now ready to prove the following: 

THEOREM 1. There a r e  O(n 2) changes to the topology of the backprojection over 
all values of O. 

PROOF. With the above discussion we have shown that each vertex brought into 
the boundary of the backprojection due to a vgraph event can be charged to a 
conforming ray on which it lies (see Figure 10). There are O(n) conforming rays, 
and n obstacle vertices, so this gives O(n 2) changes to the topology of the 
backprojection over all vgraph critical events. 

Sliding events contribute only O(n) critical values of 0, so the total number of 
changes to the topology of the backprojection due to sliding events is O(nZ). A 
vertex critical event occurs when a free-space vertex coincides with an obstacle 
edge. Since the environment is assumed to be in general position, no new constraint 
rays arise and therefore the only change to the boundary of the backprojection is 
that an obstacle edge segment is inserted or deleted (see Figure 11). Thus the O(E) 

Fig. 11. Change to boundary of backprojection due to a vertex critical event. 
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vertex critical events cause only local changes to the boundary of the back- 
projection, so they contribute only O(E) topological changes. 

Thus the total number of changes to the topology of the backprojection is 
O(n2). [] 

3. The Algorithm. In this section we prove the following: 

THEOREM 2. Given a goal G of constant size and an arrangement of input polygons 
of size O(n), a representation of size O(n 2) for the nondirectional backprojection 

B(G) can be computed in time O(n 2 log n). 

The original arrangement of obstacles has size n and is taken as input. The 
visibility edges are then computed in time O(n 2) [AAG +] where n is the number 
of vertices in the environment. The visibility graph and arrangement remain fixed 
throughout the computation, which then begins by fixing 0 at an initial value, say 
0o = 0, and computing a backprojection Boo(G). To keep the backprojection 
updated as 0 changes, a priority queue for each type of critical value is maintained. 
These queues are initialized as follows: 

�9 Sliding critical values: For each obstacle edge e, find each 0 at which the 
determination of sliding versus sticking on e will change. Insert the pairs (0, e) 
in the sliding critical queue, ordered by 0. 

�9 Vgraph critical values: For each constraint ray e, find each 0 at which e will 
become coincident with a visibility edge. Insert the pairs (0, e) in the vgraph 
critical queue, ordered by 0. The visibility graph, which has size O(E), can be 
found and the critical values sorted in time O(n z log n). 

�9 Vertex critical values: For purposes of this discussion, we say that free-space 
backprojection edges e~ and e 2 are consecutive if el is a left edge, e z is a right 
edge, and e2 is the next free-space edge along the boundary of the back- 
projection. Then, for each pair of consecutive free-space edges on the boundary 
of Boo(G ), find the first 0 at which their intersection point p will lie on an obstacle 
edge. Insert the pair (0, p) in the vertex critical queue, ordered by 0. 

Since each queue contains O(n z) elements, each requires time O(n 2 log n) to 
initialize and O(log n) to update. 

Note that the sliding and vgraph critical values can be computed ahead of time, 
while the vertex critical values cannot since we do not know where the free-space 
vertices will be. To solve this problem, we introduce a data structure to help keep 
track of potential vertex events. Recall that a free-space edge is the maximal initial 
segment of a semi-infinite constraint ray. As the computation proceeds, for each 
constraint ray e, we keep an updated priority queue of obstacles that the ray 
intersects. If ray e, anchored at p, lies coincident with vertex v of obstacle j, then 
the edges o f j  incident to v are added to or deleted from the priority queue for e 
depending on whether e will intersect them as 0 increases. Since there are O(n) 
constraint rays and O(n) obstacle edges, the overall time to maintain these queues 
is O(n 2 log n). Then at each vgraph or sliding event, we find the new free-space 
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vertices and calculate their impending interesections with obstacles, based on the 
priority queues for their generating edges. This can be done by computing the 
circular arc in which the free-space vertex travels and intersecting it with the 
common edges in the two queues. These potential vertex events are added to the 
vertex critical event queue, and the computation continues. As we showed earlier, 
there is only constant amortized change to the boundary of the backprojection 
for vgraph events, so there is only a constant amortized number of new free-space 
vertices due to a single vgraph event. 

Suppose we have some slice of the nondirectional backprojection computed and 
wish to compute the next backprojection slice. The next critical value of 0 can be 
found by comparing the first elements of the three priority queues, and removing 
the minimum valid event. Note that an event is valid if it arises from a vertex or 
edge that is part of the backprojection; not all queued events will be valid. If the 
next event arises from a sliding criticality, then a new backprojection slice can be 
computed using the plane-sweep algorithm, since there are only O(n) sliding critical 
values. In the case of a vertex critical value, the only change to the backprojection 
will be that a free-space vertex either enters or leaves the boundary of an obstacle. 
The backprojection boundary can then be updated locally to reflect the change. 
On the other hand, a vgraph criticality can cause O(n) changes to the back- 
projection (see Figure 6). Since there are potentially O(n z) vgraph critical values, 
we would like to update the backprojection incrementally when one arises. This 
can be accomplished by deleting the critical edge e from the backprojection and 
then tracing out the new backprojection region starting at one endpoint of e until 
some vertex on Bo(G ) is reached (see Figure 6). The following lemma shows that 
this can be accomplished in time linear in the size of the change. 

LEMMA 3. Given polygonal environment ~,  goal G, commanded motion direction 
O, control uncertainty co, and baekprojection vertex u, vertex v adjacent to u on the 
backprojection Bo(G ) can be found in O(1) time, making use of a data structure that 
costs O(n 2 log n) to maintain over the entire computation. 

PROOF. For  each sticking vertex v, we keep a priority queue of constraint rays 
that intersect the left ray of v, ordered by the distance from v to the ray intersection. 
Each time a new constraint ray is created or deleted at a sliding critical event, 
we update the priority queues. Since there are O(n) rays, and each is inserted into 
O(n) queues at a cost of O(log n) per insert, the overall time to maintain the data 
structure is O(n 2 log n). [] 

3.1. Algorithm One-Step. As the nondirectional backprojection B(G) is com- 
puted, we can check incrementally for containment of the start region. Some or 
all of the vertices of R c ~ may be in free space, so we say that a pseudocritical 
event occurs when an edge of R intersects Bo(G). If a pseudocritical event occurs 
at 0j, then we test the backprojection at Boj(G) for containment of R. To do this, 
we maintain an updated backprojection slice Bo~(G) for 01 e {010 is critical} as the 
computation proceeds. The plane-sweep algorithm [D2] is used to decide R 
Boi(G), for 0je {010 is pseudocritical}, which requires time O(nlog n) for R of 
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constant size. If 0 is found such that R c Bo(G), then motion direction 0 from R 
is guaranteed to reach the goal. Otherwise, no one-step motion is guaranteed to 
each G. We have thus established the following: 

THEOREM 3. The one-step planar compliant motion planning problem with un- 
certainty can be solved in time O(n z log n). 

4. Conclusion. In this work we give an O(n 2 log n) algorithm for finding a 
commanded motion direction 0 that will guarantee a trajectory from a specified 
start region to a specified goal region amidst planar polygonal obstacles where 
control is subject to uncertainty. This result represents a quadratic improvement 
over the best previous bounds. It is achieved by a new analysis of the geometric 
complexity of the nondirectional backprojection, which yields an efficient algo- 
rithm for computing its representation. 

We expect that an implementation of this algorithm would perform well in 
practice. Our robotics laboratory at Cornell has implemented an approximate 
generalized damper on a PUMA 560 robot and found through experiments that 
the control error cones are small enough that implemented backprojection 
algorithms perform well [JDC]. 

We are currently working on the problem of computing a forward projection in 
the configuration space 912 x S 1. We hope to use such an algorithm for solving 
the planar compliant motion-planning problem with rotation. 
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