
Algorithmica (1992) 8:89-101 Algorithmica
�9 1992 Springer-Verlag New York Inc.

Path-Matching Problems 1

S u n W u 2 and Udi Manber 2

Abstract. The notion of matching in graphs is generalized in this paper to a set of paths rather than
to a set of edges. The generalized problem, which we call the path-matching problem, is to pair the
vertices of an undirected weighted graph such that the paths connecting each pair are subject
to certain objectives and/or constraints. This paper concentrates on the case where the paths are
required to be edge-disjoint and the objective is to minimize the maximal cost of a path in the matching
(i.e., the bottleneck version). Other variations of the problem are also mentioned. Two algorithms are
presented to find the best matching under the constraints listed above for trees. Their worst-case
running times are O(n log d log w), where d is the maximal degree of a vertex, w is the maximal cost
of an edge, and n is the size of the tree, and O(n2), respectively. The problem is shown to be NP-complete
for general graphs. Applications of these problems are also discussed.

Key Words. Algorithm, Bottleneck, Graphs, Matching, Paths, Trees.

1. Introduction. Given an undirected graph G = (V, E), a matching is a set of
edges no two of which have a vertex in common. Each edge in the matching
connects two vertices that are said to be matched. One is usually interested in
finding maximum matchings, that is, matchings that include as many edges as
possible. Sometimes the edges have associated weights and one is interested in
finding maximum (or minimum) weight matchings. Problems involving matching
occur in many situations (see [3] or [4]). Workers may be matched to
jobs, machines to parts, players to teams, etc. Furthermore, many problems that
seem unrelated to matching have equivalent formulations in terms of matching
problems.

In this paper we introduce a generalization of the matching problem, show its
usefulness, and solve several algorithmic problems associated with it. Let G =
(V, E) be an undirected weighted graph with 2n vertices. A path-matching in G is
a set of simple paths with distinct end vertices. A regula r matching is thus a special
case of a path-matching in which all the paths consist of exactly one edge. A perfect
path-matching in G is a set of n paths such that each vertex in G is the end vertex
of exactly one path. (If the number of vertices is odd, we will call a matching that
leaves exactly one vertex unmatched perfect.) Not all graphs contain a perfect
(regular) matching. The next lemma shows that all connected graphs with even

Udi Manber was supported in part by an NSF Presidential Young Investigator Award (Grant
DCR-8451397), with matching funds from AT&T.
z Department of Computer Science, University of Arizona, Tucson, AZ 85721, USA.

Received August 20, 1989; revised March 23, 1990. Communicated by Nimrod Megiddo.

90 Sun Wu and U. Manber

number of vertices contain a perfect path-matching, even if the paths are restricted
to be edge-disjoint. Path-matchings may be useful in cases where there is no perfect
matching and we can be satisfied with paths instead of edges. We present one
such example next. We will generally be interested in optimal matchings, therefore,
we will assume that the number of vertices is even. For simplicity of notation, we
will call a path-matching a P-matching, and assume that a P-matching is perfect.
A P-matching with edge-disjoint paths will be called a DP-matching. Unlike regular
matching, it is easy to determine which graphs have a DP-matching, as is seen in
the following simple lemma.

L~MMA 1. Every connected undirected graph with an even number of vertices
contains at least one DP-matching.

PROOF. It suffices to prove the lemma for trees since every connected graph
contains a spanning tree: The proof is by induction on the number of vertices.
Since the number of vertices is even, the induction starts at n = 2 and advances
in steps of 2. The base case is trivial. Let T~ be a tree with n vertices, and consider
it as a rooted tree with (an arbitrary) root r. Let v be a leaf in T~ that is farthest
away from the root, and let w be its parent. If w has other children besides v, then
they must be leaves; in that case we match v with one of these children, and remove
the path. The remaining graph is still a tree, hence, by induction, it has a
DP-matching, and we are done. If v is w's only child, then we match v with w and
remove the edge. Again, we are done by induction. []

The following application motivated our study. Suppose that G models a
network of computers such that each vertex corresponds to a computer and each
edge corresponds to a link of communication. Each link is associated with a cost
of using that link (e.g., load, tariff, delay). Suppose furthermore that we want to
organize a tournament among the computers such that each computer is paired
with another one and they perform some competition together. The competition
may correspond, for example, to some computation task that both computers are
involved in. We would like to pair the computers so that communication is
minimized. A minimum cost perfect matching would be the best solution, but there
may not be one. A P-matching is thus required. One may want to insist on
edge-disjoint paths to parallelize the communication as much as possible, or, if
the bandwidth is high enough, edge-disjoint paths may not be required. One
objective may be to minimize the total cost, which corresponds to the sum of the
costs of all involved edges; we call this variation of the problem the rain-sum
problem. Another objective may be to minimize the delay (parallel time), which
corresponds to the maximal cost of a path in the P-matching; we call this variation
of the problem the rain-max problem (such problems are also called bottleneck
problems). We will address all these variations, but we concentrate on the min-max
variation. Algorithms for some min-max (regular) matchings are presented in [1].

We start with some basic definitions. The input is a weighted undirected graph
G = (V, E) with positive weights and even number of vertices. The length of a path
is the number of edges it contains. The cost of a path is the sum of the weights

Path-Matching Problems 91

of its edges. We use the term longest-path to denote the path having maximal
number of edges, and max-path to denote the path with maximum cost. Let k be
an integer; we say that a P-matching is bounded by k if the cost of its max-path
is at most k. We say that a (D)P-matching is maximal for a graph with odd number
of vertices, if only one vertex is left unmatched.

The following three facts are easy to verify. For brevity sake, we leave the proof
to the reader (see also [5]). We mention these facts for completeness; we do not
rely on them in this paper.

FACT 1. There exists an O(n) algorithm for finding min-sum P-matching for trees
(the algorithm can be directly obtained from Lemma 1).

FACT 2. For general graphs, there is a min-sum P-matching that contains only
paths with at most two edges each. This P-matching can be obtained by computing
all shortest paths (with at most two edges) and finding a minimum-cost matching
where the costs correspond to path weights.

FACT 3. There exists an O(max(n 2"5 log w, n3)) algorithm for finding min-max
P-matching for integer-weighted general graphs, where w is the weight of the
max-path.

We concentrate in this paper on min-max DP-matchings. We give three results.
First, an O(n log d log w) algorithm for finding min-max DP-matching for integer-
weighted trees, where d is the maximal degree of a vertex and w is the maximal
cost of an edge; second, an O(n 2) algorithm for finding min-max DP-matching for
trees with arbitrary costs; and third, a proof that the min-max DP-matching
problem for general graphs is NP-complete.

2. An Algorithm for Integer-Weighted Trees. If the weights are integers, then
we can use binary search (on the weights) to reduce the problem to the following
decision problem, which we call a feasibility test: Given a weighted tree T and a
bound B, determine whether there exists a DP-matching whose max cost is < B.
We solve the decision problem for B = 1, 2, 4 until the answer is positive for,
say, B = 2 k, and then apply regular binary search in the range 2 k- 1 + 1 to 2 k.
Consider a tree T rooted at r as shown in Figure 1, and suppose that the feasibility
test is attempted with bound B. If any of T's subtrees T~ is an even subtree (a subtree
with even number of vertices), then the DP-matching of vertices of T~ must be
within Ti, because only one edge leaves T~. Therefore, we have to verify only that
the cost of the DP-matching in T~ is at most B. However, if T~ is an odd subtree,
then one of its vertices must remain unmatched; the problem is to determine which
vertex should be left unmatched. We call the path from the unmatched vertex vj
in T~ to r i an active path. (The active path is an empty path if the unmatched vertex
is ri.) For each odd subtree we will find the DP-matching with cost at most B
that minimizes the active path. We will call such a DP-matching a minimal
DP-matching for the subtree. Our only interest in the feasibility test is whether

92 Sun Wu and U. Manber

T r

odd sublrees

Fig. 1. The recursive structure of the algorithm.

there is a DP-matching with cost at most B. Therefore, we need not minimize the
cost of the DP-matching in the subtree, as long as it is within the bound of B.

We find minimal DP-matchings by a bottom-up traversal. We assume that all
the subtrees of T~ have been traversed, and either minimal DP-matchings (in the
case of even subtrees) or the minimal active paths (in the case of odd subtrees) for
them have been found. If any of the partial DP-matchings cost more than B, then
the feasibility test obviously fails. Our task is to match the active paths (each of
which corresponds to an unmatched vertex) in the best possible way. Since r has
to be matched as well, we consider it as an active path with a cost of 0. We denote
the active path of the odd subtree Tj by AP(j), and we add to all active paths the
cost of the edge connecting the corresponding r~ to r (which the active path must
use). Suppose that the active paths AP(j) are sorted in increasing order of their cost.

The easy case is again the case where T is an even subtree. Clearly, the best
DP-matching in T results from pairing the largest active path with the smallest
one (the root), the second largest with the second smallest, and so on. Assume
now that T is an odd subtree. We must find a pairing of the active paths with
cost at most B such that the unmatched active path (which will be the active path
of T) has minimum cost. If we decide to choose the active path AP(j), then the
best pairing for the rest of the active paths can be easily determined (the largest
with the smallest, second largest with second smallest, and so on). However, we
do not have to consider all possibilities. The cost of pairing the active paths
increases when a smaller active path is excluded. We can use binary search to find
the smallest active path whose exclusion still results in a pairing of cost at most B.

Time Complexity. The number of times the feasibility test for the whole tree is
called is clearly O(log p), where p is the cost of the max-path of the solution.
However, by Lemma 1, in trees there is always a DP-matching that consists of
paths of at most two edges. Therefore, the cost of the max-path is no more than
twice the maximal cost of an edge, which we denote by w, and the feasibility test
is called at most O(log w) times. Let the degree of root r~ be d~. The feasibility
test for each odd subtree requires O(d~ log d~) steps for the sorting, and O(d~)
steps for finding the best pairing for each attempt to pair. There are O(log d~)
such attempts (using binary search). Therefore, the overall running time is

Path-Matching Problems 93

O(Eii texinT di log di). Since ~ d i = n it is easy to see that the sum above is
O(n log d), where d = max(di). The overall running time of this algorithm is thus
O(n log d log w).

The algorithm above performs well when the weights are integers (and they are
not too large). But if the weights are not integers or if they are very large integers,
then binary search is not a good approach. The next algorithm eliminates the need
for binary search with increased time complexity.

3. An Algorithm for Trees with Abrbitrary Weights. In this section we present
an efficient algorithm to solve the min-max DP-matching problem for trees with
arbitrary positive weights. Throughout this section we consider the tree to be a
rooted tree by choosing an arbitrary node r to be the root. Each edge in a tree
separates the tree into two subtrees. If these subtrees are even, then, as we have "
already mentioned, each subtree must be matched within itself. The difficult case
is thus when the trees are odd.

The problem with an odd subtree is that it has an unmatched vertex, and we
have to treat it in a special way. This is the major difficulty in the algorithm.
Consider a vertex v which is a root of d odd subtrees. We would like to be able
to combine the solutions for the subtrees to a solution for the whole tree. But,
there is not just one "best" solution for each subtree; it depends on the unmatched
vertex, as is shown in Figure 2. Since there are several possible "best matchings"
for each subtree, we will keep track of all of them. The problem thus becomes one
of combining sets of all possible matchings of the subtrees to a set of all possible
matchings of the whole tree. A particular maximal matching of an odd subtree is
denoted by a record p that has two components: the cost of the matching p.C,
and the cost of the active path p . A P . We call such a record a point. For each
subtree, we will find a set of all possible minimal points in the following way.
Suppose that p and q correspond to two different valid matchings for T. We say
that p < q i f p . A P < q . A P and p . C < q .C . In this case, q can be discarded since
p is better than q in all respects. Let S be a set of points. A point p is called a
minimal point in S if no point in S is smaller than p. The matchings that correspond
to minimal points are those that we are interested in. We will find all the minimal
points associated with every odd tree. Let us first see how to find the set of all
minimal points corresponding to an odd tree of height 1.

w matching active path cost

p--s q--r v--w
16 15 2 16

q--r s--v p--w
15 12 6 15

p q r s p--r v--s q--w
12 12 9 12

Fig. 2. The possible best solutions for a subtree.

94 Sun Wu and U. Manber

Consider an odd subtree of height 1 with a root v and d leaves with weights
cl < c2 < "'" < Cd on the corresponding edges (notice that d is even). If the active
path includes leaf i then its cost is c~, and it is easy to see that the best matching
among the rest of the vertices is v with leaf d (or d - 1 in case i = d), the maximal
remaining leaf with the minimal, and so on. For example, let the cost be 1, 4, 6,
7, 8, 11 and let i = 2, then the best matching is v with v6, vl with vs, and v3 with
v4, whose max cost is 13. We can compute these costs for all possible active paths
and then discard all points that are not minimal. Finding all minimal points can
be done by sorting all points according to increasing active paths, then scanning
the sorted sequence, and leaving only those points with costs that are smaller than
those of the previous points. In the example above there are three minimal points:
they correspond to picking the root for the active path (in which case the active
path has cost 0, and the matching has cost 13), picking the third leaf for the active
path (in which case the active path has cost 6, and the matching has cost 11), and
picking the sixth leaf for the active path (in which case the active path has cost
11, and the matching has cost 10). Generally, few of the leaves will correspond to
minimal points, but in the worst case, there could be d minimal points.

Let T be a tree with d - 1 odd subtrees T~, T2 Td- 1, each associated with a
set of minimal points. We are now left with the problem of combining the lists of
minimal points of the subtrees of T into one list of minimal points for T. (From
now on we will call the minimal points of the subtrees simply points, and reserve
the term minimal points to the combined minimal points for T.) We denote the
set of points of subtree i by p~, P/z, �9 i �9 . , Pk(o, and we assume that they are sorted
in increasing order of active paths (namely, for all i and j , p~ .AP < p~+ 1.AP). We
add to the active paths of each of these points the cost of the edge to the root of
T (which the active paths must use). Furthermore, since the root of T has to be
matched as well (or be used as an active path) we consider it as a subtree with
one minimal point (whose active path and cost are 0). From now we will talk
about d subtrees and include the root as a subtree.

At most one active path can continue up from T, hence the rest of the active
paths must be matched. To find the minimum DP-matching for T, we need to
consider all possible matchings of the active paths corresponding to the points of
the subtrees. Let Q = (q l , q 2 , �9 . . , qd) be a tuple such that each q~ is a representative
point from a distinct subtree. We assume that the points in Q are sorted in
increasing order of their active paths, so that q l . A P < q 2 . A P < "'" < qd.AP. If d
is even, which is the easier case since T is an even tree, then the best matching of
the points in Q is clear. It is the same as if the points corresponded to leaves. We
match the point with the largest active path with the point with the smallest, the
second largest with the second smallest, and so on. If d is odd then one active
path must leave T. In that case, we consider each point q~ separately, and find the
best matching (as above) without it. This procedure leads to at most d combined
minimal points (one for each q~ serving as an active path). The active path of the
point corresponding to choosing q~ is the active path for q~. The cost of choosing
q~ as the active path will be the higher of the maximal cost of pairing the rest of
the active paths or the maximal cost of all the points in Q.

Path-Matching Problems 95

Thus, for each tuple Q we can compute combined minimal points for the whole
tree. The problem is that there are too many possibilities. There are k(1) x k(2) •
... • k(d - 1) possible tuples (the root corresponds to only one point). We cannot
afford to check all of them. However, we are only interested in finding minimal
combined points. Next, we show how to consider only a small set of the tuples
which will be sufficient to find all combined minimal points.

Let us start with the easier case of even d. For each tuple Q we denote by
Q.Pair the minimum cost of pairing the points in Q (the cost of a pairing is the
maximal, over all matched pairs, of the sum of their active paths). Since d is even
there is one unique minimum cost of pairing its points (the point with largest
active path with the point with the smallest active path, the second largest with
the second smallest, and so on), thus Q.Pair is uniquely defined. We denote by
Q.Max the maximal cost among the points in Q. We start with Q = (p], p2 p~),
namely, we choose from each subtree the point with the smallest active path. We
match these points as described above and find Q.Pair. If Q.Pair > Q.Max then
we claim that this matching is the minimum in T. This is so because any other
tuple will have larger active paths and thus larger sums. On the other hand, if
Q.Pair < Q.Max then the cost of this matching remains Q.Max, and there is a
hope of finding a better matching since Q'.Max may be smaller than Q.Max for
another tuple Q'. (Recall that, for each subtree, the points are ordered in increasing
active paths and thus decreasing costs.) In other words, other tuples have larger
active paths, but they may also have smaller costs, and if the pairing cost associated
with Q was due to Q.Max then there is still hope.

We find the best matching for T as follows. Let p~ be the point with the
maximal cost among the points in Q, namely, p].C = Q.Max. We replace p]
with p~ in the tuple, and reorder the points if necessary (so that they remain
sorted). We then pair the points as above, and continue in the same manner. In
each step, we compare Q.Pair to Q.Max. there are two cases:

(1) Q.Pair > Q.Max--in this case we are done (by the same argument as above),
and

(2) Q.Pair < Q.Max--we replace the maximal cost point with the point next
in its list.

This process terminates either by encountering case 1, or by trying to replace a
point which is last on its list.

For each tuple Q that we consider we find Q.Pair and Q.Max. The cost
of the corresponding DP-matching is max(Q.Pair, Q.Max). At the end we choose
the tuple Q that corresponds to the minimal DP-matching. We have to prove that
the tuples that we have not considered cannot lead to a better matching.
The reason for that is that replacing the point with the maximal cost is mandatory.
All the tuples Q', which use this point and which we have not considered, include
points further down in the corresponding lists. Since the points are sorted
according to their active paths and Q'.Max = Q.Max (the point with Q.Max is
not changed), the cost of matching in Q' is no lower than that of Q. If there is a
total of n points in all the subtrees of T then we need to consider at most n tuples.

96 Sun Wu and U. Manber

The number of minimal points associated with a vertex v in the tree cannot
exceed the number of descendants of v since a point corresponds to an active path.

We now consider the harder case of an odd d. This case is harder because there
is now an active path coming out of T, and thus we can no longer determine the
best DP-matching for T. We have to find the set of all minimal points of T.
However, the procedure for finding the set of all minimal points is very similar to
the procedure for the even case. Let Q be again the tuple (Pl, P~ p~). We can
no longer find the "best" pairing for it since it depends on the chosen active path.
Instead, we will do the same thing we did for the case of a tree of height 1.

We denote by Q(i).Pair the cost of pairing all points in Q except for qi, and
by Q.Max the maximal cost of all points in Q. If Q is the tuple used for the
matching, . then the total cost cannot be lower than Q.Max. We will compute
all Q(i).Pair for those i that lead to minimal points. The fact that the points of
Q are sorted by their active paths implies that Q(1).Pair > Q(2).Pair > . . . >
Q(d).Pair. We compute Q(i).Pair for i = 1, 2, . . until we find an i such that
Q(i).Pair < Q.Max. In that case, there is no need to continue checking other active
paths in Q since we cannot achieve a better cost than Q.Max and we might as
well use the smallest active path to achieve it (in other words, we cannot get more
minimal combined points). We now continue in a similar fashion to the even case
by replacing a point with the next one on its list. But first, let us see an example.

Suppose that there are four subtrees with the following minimal points (after
we added the edge cost to the active path; see Figure 3): [(7, 16), (8, 11), (9, 10)],
[(5, 17), (6, 12)], [(11, 14), (12, 13)], and [(14, 15)]. Of course, we also have to add
the "point" (0, 0) corresponding to the root. The first Q consists of the points
(0,0), (5, 17), (7, 16), (11, 14), and (14, 15). Q.Max = 17. Q(1).eair = 19 (pair-
ing 7 to 11 and 5 to 14), with the active path of cost 0. Q(2).Pair = 18 (pairing
7 to 11 and 0 to 14), with the active path of cost 5. Q(3).Pair = 16 (pairing 5
to 11 and 0 to 14), with the active path of cost 7. We can now stop considering
Q since other active paths will be larger and the cost cannot be lower than

(4, 16) (4, 17) (7, 14) (8, 15)
(5, 11) (5, 12) (8, 13)
(6. lo)

i: 1 2 3 4 5
.

Q: (0,0), (5,17), (7,16), (11,14), (14,15)
Q(i).Pair: 19 18 16 Q.Max: 17

Q': (O,OL (6,12), (7,16), (11,14), (14,15)
Q'(i).Pair: 17 15 Q'.Max: 16

Q": (0,0), (6,12), (8,11), (11,14), (14,15)
Q"(i).Pair: 14 Q".Max: 15

The minimal combined points generated are (0, 19), (5, 18), (7, 17), (11, 15).

Fig. 3. An example.

Path-Matching Problems 97

Q.Max = 17. So far we have found three minimal combined points~(0, 19),
(5, 18), and (7, 17). We now replace in Q the point (5, 17), which sets the value of
Q.Max, with the next point in the corresponding list, (6, 12). The new tuple Q'
consists now of the points (in increasing active path order) (0, 0), (6, 12), (7, 16),
(11, 14), and (14, 15). Q'.Max = 16.

Notice that there is no need to check Q'(1).Pair and Q'(2).Pair. This is so
because Q'(1).Pair (Q'(2).Pair) is >Q(1).Pair (Q(2).Pair) (we replaced one point
with another with larger active path), and since Q(1).Pair (Q(2).Pair)>
Q.Max > Q'.Max, they cannot lead to any minimal combined point. So next, we
check Q'(3).Pair, which is 17. This leads to a combined point (7, 17) which is no
better than the one we had before ((7, 17)), hence it is not a minimal combined
point. We continue with Q'(4).Pair = 14, and generate a new minimal combined
point, (11, 16). Since Q'(4).Pair is < Q'.Max, we continue our process by replacing
the point that sets the current bound, i.e., (7, 16), with its next point, (8, 11).

The new tuple Q" now consists of the points (0, 0), (6, 12), (8, 11), (11, 14), and
(14, 15). Q".Max is now equal to 15. Again, there is no need to check Q"(i).Pair
for i < 4 (by the same argument as above). We find Q"(4).Pai r to be 14, which
is < Q".Max. Since the new point (11, 15) has lower cost than that of the previous
point (11, 16), we replace the previous point with this new point. We now continue
the process by replacing the point that sets the bound, i.e., (14, 15) with its next
point. However, there is no next point in that set, and the process is thus completed.
The minimal combined points are [(0, 19), (5, 18), (7, 17), (11, 15)].

We now discuss the implementation of the algorithm and its complexity. The
algorithm proceeds in a bottom-up fashion. The information collected at each
vertex is either the best DP-matching of the tree rooted at that vertex (in case this
tree is even), or a set of minimal points for that tree (in case it is odd). Since the
whole tree is even, the information gathered at the root will be the best DP-
matching for the tree. It is sufficient to consider the actions taken at an arbitrary
vertex v. We assume that the sets of minimal points (each set corresponds to one
child of v) are given to us each in increasing order of active paths. We describe
only the case of d odd; the even case is simpler.

Let Q denote the current tuple, and Q.Max the maximal cost of its points.
Initially, Q consists of the first minimal point from each set (i.e., the minimal point
with the smallest active path). We first sort the points in the tuple according to
their active paths. Let i denote the index of the child that we currently try to use
as an active path (i is initially 1). For a given Q and i we find Q(i).Pair (by
pairing the smallest active path with the largest active path, the second smallest
with the second largest, and so on). This step requires O(d) time since the minimal
points in the tuple are sorted according to their active paths (we will have to make
sure this sorted order is maintained throughout the algorithm). If Q(i).Pair >
Q. Max, we check whether the combined point (qi. AP, Q(i).Pair) is a new combinea
minimal point by comparing it to the previous combined minimal point and add
it to the list of minimal points if it is. (Notice that the values of the qi.AP's are
increasing; hence, we collect the set of combined minimal points in increasing
order of active paths.) We then increment i and continue (without changing Q). If
i becomes larger than d we terminate.

98 Sun Wu and U. Manber

The harder case is when Q(i).Pair < Q.Max. We again check to see whether
the combined point (qi.AP, Q.Max) is a new combined minimal point and add it
if it is. We then replace the point p~ whose cost is Q.Max with the next point P~+I
from the same set (if there is no next point in that set, we are done). We put p~+ 1
in Q in the appropriate place so that Q remains in sorted order of active paths.
Therefore, k k k in p~+l may not be in the same position in Q as pj was. Putting pj+~
its right position in Q can be done in O(log d) steps by using a balanced tree data
structure. In the same time complexity we can also update Q.Max. We now have
a new Q, and we continue in the same way. Notice that i is not changed when Q
is changed.

Time Complexity. We now prove that the complexity of the algorithm is O(n2),
where n is the number of vertices in the tree. Since each point can add at most
one new combined minimal point (and each leaf can add one minimal point), the
number of minimal points associated with any vertex is bounded by the number
of descendants of that vertex. The complexity of the algorithm for one vertex v is
bounded by O(dD) where D is the number of descendants of v and d is the degree
of v. This is so because the most expensive step involving one particular Q and i
is the computation of Q(i).Pair with is O(d) (d is the size of the tuple Q). Since
2n=1 d i <_ n, and D i <_ n, we have ~7=1 diDi-< n'2. Thus, the overall worst-case
complexity is O(n2).

4. The DP-Matehing Problem for General Graphs is NP-Complete. In this
section, we prove that the min-max DP-matching problem and a variation of a
discrete multicommodity flow problem are NP-complete.

The discrete multicommodity flow problem (DMF) is the following. Given an
undirected graph G = (V, E) and a set of source-sink pairs (s 1, t l) , (S2, t2)
(Sk, tk), determine whether there exists a set of k vertex-disjoint paths, the ith of
which connects si to ti. The D M F problem is NP-complete [2]. We are interested
in a variation of this problem (denoted by DMF'), which is defined as follows. Let
G = (V, E) be a weighted graph, K be an integer, and (s 1, t 0, (s 2, t2), (s a, ta)
(Sk, tk) be a collection of distinct vertex pairs of G. The problem is to determine
whether there exist k edge-disjoint paths, the ith of which connects si to t~, such
that the weight of each path is at most K. We do not allow the path from s~ to t~
(for any i) to include any sj or t~ for i r (because the reduction to the
DP-matching problem becomes easier); the problem remains NP-complete with-
out this restriction.

THEOREM 1. The DMF' problem is NP-complete.

PROOF. The proof is similar to the NP-completeness proof for the regular D M F
problem. It is easy to see that DMF' belongs to NP. We prove that DMF' is
NP-complete by a transformation from the satisfiability problem (SAT). Let the
CNF expression E = C1 �9 C2" C3 "..." Ck be an arbitrary instance of SAT, where
C~ is a clause consisting of variables Xl, x2 x,. We associate a pair of vertices

Path-Matching Problems 99

n

S i l_ n _/

Si2~ n l~

(

S " - n
t3 [(

�9 n
St4*-- ~

Sip �9 �9

•J2
q

n

T

0

0

sj~ sj, sj,
i

n n �9 �9

0 0

0 0 0

t 0 0

0

ti~ ti~ tj~ tj , . . tjq

Fig. 4. A variable subgraph of x,,.

n ti ~

n ~ti2

n ti 3

n , ti 4

tip

(s~, t~) with each clause C~. We call these vertices the clause vertices. For each
variable x,, we built a subgraph connecting the vertices corresponding to the
clauses containing Xm in the following way. If x,, appears in clauses C~,, Ci2, C/3,
. . . . Ci~, and ~ appears in Cjl, Ci2, Cj~ Cjq, we connect the corresponding
clause vertices as is shown in Figure 4. All the edges incident to sl or t~ are assigned
weight n, and all the other edges are assigned weight 0. The new vertices forming
the octagons in the middle are called connectin9 vertices. The subgraph is called
a variable suboraph.

The variable subgraph is designed such that it is possible to join all the s~,'s to
the corresponding ti,'s by edge-disjoint horizontal paths (paths that use no vertical
edges), or to joint all the sjm's to their corresponding tim's by edge-disjoint
vertical paths (paths that use no horizontal edges). However, every horizontal path
separates all the vertical paths and vice versa. Therefore, either the paths that
connect clauses containing Xm can be used, or paths that connect clauses containing
x-~ can be used. The graph for E is obtained by adding the variable subgraphs
for all variables (using new connecting vertices for each variable, but the same
clause vertices) together.

We now prove that there is a truth assignment satisfying E if and only if G has
k edge disjoint paths, with cost at most 2n, connecting the pairs of clause vertices.
Given a truth assignment satisfying E, we obtain the edge-disjoint paths by
selecting the horizontal paths in the subgraph corresponding to x,, if x m is true,
or the vertical paths otherwise. Since each clause must be satisfied, it is possible
to connect the corresponding clause vertices. Furthermore, all horizontal and
vertical paths have cost 2n. On the other hand, suppose that G has k edge-disjoint
paths of cost at most 2n connecting the s~'s to the corresponding t~'s. Then, any
of these paths must use only one specific variable subgraph, since otherwise their
cost would be more than 2n. Since a subgraph allows only one type of path,
connecting s~ to t i determines the truth value of some variable that satisfies C~.

100 Sun Wu and U. Manber

(The variables whose truth assignment is not determined by the procedure above
can be assigned arbitrarily.) It is clear that the transformation can be done in
polynomial time. []

THEOREM 2. Let G = (V, E) be a weighted undirected graph with 2n vertices, and
let K be a positive integer. The problem of determining whether the cost of a rain-max
DP-matching for G is at most K is NP-complete.

PROOF. It is easy to see that the problem belongs to NP. We prove that the
problem is NP-complete by a transformation from DMF'. Let the graph G =
(V, E), with the designed vertex pairs (st, q), (s2, t2), (s3, t3) (Sk, tk), and an
integer K, be an arbitrary instance of the DMF' problem. We construct a graph
G' from G as follows. The construction for a vertex that is one of the vertices in
the designated pairs is shown in Figure 5(a), and the construction for other
(undesignated) vertices is shown in Figure 5(b). A designated vertex s t is augmented
by adding d~ bridge vertices together with d~ image vertices, where d~ is the degree
of vertex s~. The same construction is applied to the t~'s, except that the weight of
the additional edges are different. The construction involves four types of addi-
tional edges:

(1) edges connecting the s~'s and their bridge vertices; their weight (denoted by a
in Figure 5) is iM, where M is equal to the sum of all weights in G;

(2) edges connecting the t~'s and their bridge vertices; their weight is (2k - i)M;
(3) edges connecting the bridge vertices and their image vertices; their weight

(denoted by b in Figure 5) is (2kM + K); and

si (t9

(a)

si (t i) ~ = e 2

-.%

Co)

Fig. 5. The construction of G' (the costs a and b are defined in the text). (a) Designated vertices, (b)
undesignated vertices, m, bridge vertex; IS], image vertex.

Path-Matching Problems 101

(4) edges connecting undesignated vertices to their image vertex; their weight is
also (2kM + K).

The construction described above guarantees that G' has a complete DP-
matching bounded by (2kM + K) if and only if G has a set of edge-disjoint paths
connecting the designated vertex pairs with weight _< K. If G has a set of paths,
bounded by K, connecting the designated vertex pairs, then we can achieve a
DP-matching, bounded by (2kM + K), by matching the sis to the ti's, the bridge
vertices to their corresponding image vertices, and the undesignated vertices to
their corresponding image vertices. Conversely, if there is a DP-matching bounded
by (2kM + K), then we first claim that image vertices cannot match designated
vertices or other image vertices. This is so because the only edge coming out of
an image vertex has already the maximal possible weight and we made sure that
there are no zero-weight edges leading to designated vertices (there may be
zero-weight edges in G). Since there is an equal number of image vertices and
bridge vertices plus undesignated vertices, the match must be between them; that
leaves the designated vertices to match among themselves. Next, we claim that st
must be matched with ti, for all i 1 < i < k. The match involving each s i must
contain an edge with weight iM, and the match involving each tt must contain an
edge with weight (2k - i)M. Therefore, the sum of the weights in all the paths
involves in the matching is at least 2k2M. The average weight of a path is at least
2kM. If there is a path with weight __< (2k - 1)M, then there must be another path
with weight at least (2k + 1)M > 2kM + K, which is contrary to our goal.
Therefore, all paths must have weights between 2kM and (2k + 1)M, which implies
that each of the st must be matched to its corresponding tt. Since the paths between
the st's and the ti's are bounded by (2kM + K) and mutually edge-disjoint, the
corresponding paths in G have costs bounded by K and are mutually edge-disjoint.
Thus, if G' has a DP-matching bounded by 2kM + K, then the original graph G
has k edge-disjoint paths with cost bounded by K the ith of which connects st to
ti. The transformation can obviously be done in polynomial time. []

Acknowledgment. We thank Peter Downey for helpful discussions.

References

[1] Gabow, H. N. and R. E. Tarjan, Algorithms for two bottleneck optimization problems, J.
Algorithms, 9, (1988), 411417.

[2] Karp, R. M., On the complexity of combinatorial problems, Networks, 5 (1975), 45-68.
[3] Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Rinehart & Winston,

New York, 1976.
[4] Papadimitriou, C. H. and K. Steiglitz, Combinatorial Optimizdtion: Algorithms and Complexity,

Prentice-Hall, Englewood Cliffs, NJ, 1982.
[5] Wu S. and U. Manber, Algorithms for generalized matching, Technical Report, TR 88-39,

Department of Computer Science, University of Arizona (November 1988).

