
Algorithmica (1992) 7:583-596 Algorithmica
�9 1992 Springer-Vertag New York Inc.

A Linear-Time Algorithm for Finding a Sparse k-Connected
Spanning Subgraph of a k-Connected Graph 1

Hiroshi Nagamochi 2 and Toshihide Ibaraki 2

Abstract. We show that any k-connected graph G = (V, E) has a sparse k-connected spanning
subgraph G'= (V, E') with IE'I = O(kl VI) by presenting an O(IEL)-time algorithm to find one such
subgraph, where connectivity stands for either edge-connectivity or node-connectivity. By using this
algorithm as preprocessing, the time complexities of some graph problems related to connectivity can
be improved. For example, the current best time bound O(max{k21VI 1/2, k l V I}IEI) to determine
whether node-connectivity x(G) of a graph G = (V, E) is larger than a given integer k or not can be
reduced to O(max{k31Vp/2, k21VI2}).

Key Words. Undirected graphs, Spanning subgraphs, Connectivity, k-edge-connectivity, k-node-
connectivity, Linear-time algorithms.

1. Introduction. In this paper connectivity stands for either edge-connectivity or
node-connectivity unless explicitly specified. A graph G = (V, E) stands for an
undirected graph that satisfies I VI > 2. It may have multiple edges but has no
self-loop, unless otherwise specified, though a simple graph is always assumed
when node-connectivity is discussed. Given a k-connected graph, the problem of
finding a k-connected spanning subgraph with the minimum number of edges is
known to be NP-complete for any fixed k (>2) [3, Problem GT31]. Recently,
Suzuki et al. [9] emphasized the importance of a "linear"-time algorithm to find
a "sparse" k-connected spanning subgraph of a given k-connected graph. We show
that any k-connected graph G = (W, E) has a k-connected spanning subgraph
G' = (W, E') with [E'[= O(k[VD. This result was also independently obtained by
Nishizeki and Poljak [8]. For special cases of k = 2 and 3, Suzuki et al. [9] give
an O(lEI)-time algorithm to find a k-node-connected subgraph G' = (V, E') with
IE'l < 31VI - 5 for k = 2 and IE'I < 31VI - 3 for k = 3. For general k, Nishizeki
and Poljak [8] find a k-edge-connected G' with IE'I < k(I VI - 1) in O(klE[) time,
and a k-node-connected G' with IE'I _ k([VI - 1) in O([VI1/21EI 2) time.

In this paper we present O(IEI)-time algorithms for both problems of k-edge-
connected subgraphs and k-node-connected subgraphs. The spanning subgraph
G ' = (W, E') obtained satisfies [E'[< k i W I - k(k + 1)/2 (_<k([V [- 1)) (in case of

I The first author was partially supported by the Grant-in-Aid for Encouragement of Young Scientists
of the Ministry of Education, Science and Culture of Japan and by the subvention to young scientists
by the Research Foundation of Electrotechnology of Chubu.
2 Department of AppliedqVlathematics and Physics, Faculty of Engineering, Kyoto University, Kyoto
606, Japan.

Received September 6, 1989; revised April 16, 1990, and August 16, 1990. Communicated by Greg N.
Frederickson.

584 H. Nagamochi and T. Ibaraki

node-connectivity, G is assumed to be simple). By using this algorithm as
proprocessing, the time complexity of algorithms for solving other graph problems
can be improved, as is discussed in the last section.

2. k-Edge-Connected Subgraph. In this section a graph is possibly multiple, but,
if there is no confusion, an edge e with the set of end nodes {u, v} is denoted by
e = (u, v). Our algorithm requires :the following property, which was also in-
dependently found by Nishizeki and Poljak [8].

LEMMA 2.1. For a graph G = (V, E), simple or multiple, let F i = (V, Ei) be a
maximal spanning forest in G - E 1 u E 2 u .." u Ei_l , for i -- 1, 2 IEI, where
possibly Ei = Ei+a = " " = EIE I - - ~ for some i. Then each spanning subgraph

G i = (V, E 1 u E 2 u " " u El) satisfies

(2.1) 2(x, y; Gi) -> min{2(x, y; G), i} for all x, y e V,

where 2(x, y; H) denotes the local edge-connectivity between x and y in graph H.

PROOF. We proceed by induction on i. Equation (2.1) for i = 1 is obvious from
the maximality of forest F1. Assume that some x, y ~ V and i satisfy 2(x, y; G~) >
min{2(x, y; G), i} and 2(x, y; G~+~) < min{2(x, y; G), i + 1}. By 2(x, y; G~) <
2(x, y; G~+t), this means 2(x, y; G) > i + 1 and 2(x, y; Gi) = 2(x, y; G~+I) = i. That
is, G~+ ~ has a minimal cut set W _ E with I WI = i such that there are two distinct
components X and Y in G~+I - W containing x and y, respectively. Since
I W - E i + 11 >- i follows from 2(x, y; Gi) = i, this W satisfies W c~ Ei + x = ~Z~. How-
ever, there is an edge e e E - El u E 2 u " ' u E~+~ connecting a node in X to a
node in Y, by 2(x, y; G) > i + 1, and this contradicts the maximality of F~+ 1 =

(V, E~ + 1)- []

By this lemma we see that Gk = (V, E'), where E ' = E x u E 2 u " " U Ek, is
k-edge-connected if k < the edge-connectivity 2(G). Moreover, Gk = (V, E') satisfies
IE'[< k(I V[- 1) since [Ell < IVI - 1 for all i. It is therefore easy to see that G k
can be obtained in O(k(IVJ + IEI)) time by repeating graph search procedure k
times. However, this time complexity can be reduced to O(1 V[+ [El), as discussed
below. The idea is to constructed all El, E 2 EIE I in a single scan. During the
graph search we compute, for each e being scanned, the i satisfying e ~ E~. Such i
can be defined to. be the smallest i such that El u {e} does not contain a cycle,
where these Ei denote the edge sets constructed so far. Note that, in general,
checking whether Ei u {e} contains a cycle requires O([Ei[) time. To reduce this
to O(1), we always chose an unscanned edge e that is adjacent to an edge e '~ E~
with the largest i. This graph search procedure can be described as follows:

Procedure FOREST; { input: G(V, E), output: E 1, E2 EIE I }
(Le t r(v):= i denote that v has been reached by an edge of the forest

Fi = (V, El). }

A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph 585

begin

1 E 1 := E2:'= EIE I := ~ ;
2 Label all nodes v �9 V and all edges e �9 E "unscanned";
3 r(v):= 0 for all v �9 V;
4 while there exist "unscanned" nodes do

begin
5 Choose an "unscanned" node x �9 V with the largest r;
6 for each "unscanned" edge e incident to x do

begin
7 Er~r)+l := Er~y)+ 1 w {e}; {y is the other end node (~ x)

of e}
8 if r(x) = r(y) then r (x) := r(x) + 1 ;
9 r(y):= r(y) + 1;

10 Mark e "scanned"
end;

11 Mark x "scanned"
end;

end.

For example, a partition E~, i = 1, 2 obtained by applying FOREST to a
simple graph G 1 of Figure 1 is shown in Figure 2. Similarly, a partition E~,
i = 1 of a multiple graph G 2 is illustrated in Figure 3. In Figures 2 and 3 node
x i (edge e j) represents that this is the ith node (jth edge) scanned by FOREST.
The edges are directed from x to y of FOREST, so that the role of these nodes
is explicitly shown.

Fig. 1. A simple graph G 1 with 2(G l) = 4 and tc(G 1) = 3.

586 H. Nagamochi and T. Ibaraki

x 2

. '

3

x 8 e22

Fig. 2. Partition E~ of G ~ obtained by FOREST. t> - - - - - - -o , edges in El; o - -- - - .o , edges in E2;
o o , edges in E3; o . ,~m~u~, edges in E,,.

el6

j . v / \ "-.. . 'g\"2".. ~22

~...-, ~ -Tt-,, ~ ;~.+.~,..V =~
\'"-. ", I# ~ i!~ ..."J
\".,~ ,d ; ">.. o,~S~ ~ ~

- , . , , 1 ,,o, -~ ~ ,.~o ~ ~ , . , ' / , , .

- -

x2 e7 x8

Fig. 3. Partition Ei of G 2 obtained by FOREST. 0 -. o, El; o - -- -- -.0, E2; 0 o, E3;
o . , a . v ~ Er o- -0, Es ,o - 0, E6;o-- Q, E-/, 0 - - . ~ . ~ 0 , E 8.

A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph 587

N o t e that the largest r(x) is always chosen for the for- loop of line 6. In other
words:

(2.2) When edge e is scanned, one of the end nodes of e has the largest
label r in G.

F O R E S T without line 8 also works correctly, because once a node x is
selected in line 5, all unscanned edges incident to x are scanned and x will never
be referred to again. However , updat ing r(x) in line 8 is useful for proving propert ies
of F O R E S T as discussed below.

To find an unscanned node x with the largest r(x) efficiently, we prepare I Vl \'~
buckets such that each unscanned node v is conta ined in the r(v)th bucket. All
nonempty buckets are doubly linked by pointers so that an unscanned node x
with the largest r(x) can be found in 0(1) t ime and the link update after increasing
label r of a node by one can also be done in 0(1) time. The entire t ime required
to upda te bucket links is therefore O(]VI + I E[) because labels are changed O(IEI)
times. This shows that t ime complexi ty of F O R E S T is 0(I V[+ IEI).

We now show that each F i = (V, El) , 1 < i <_ [El, compu ted by F O R E S T is a
maximal spanning forest in G - E1 w E2 u ' - " u E i_ 1.

LEMMA 2.2. Consider the time instant when the begin-end block of lines 7-10 in
F O R E S T h a s been completed for the current x. Let v6 V be any node and let E(v)
denote the set of edges incident to v. Then

E(v) n E i v~ f~j for i = 1, 2 , . . . , r(v),

E(v) n E~ -- ~ for i = r(v) + 1 [E[.

PROOF. Immedia t e f rom F O R E S T . []

LEMMA 2.3. All subgraphs F i = (V, Ei) , i = 1, 2 , . . . , [El, constructed by F O R E S T
are forests.

PROOF. At the instant of adding an edge e = (x, y)~ E(y) to Ei in F O R E S T ,
r(x) > r(y) = i - 1 and hence E(y) n El = ~ (by L e m m a 2.2) holds. This proves
that F i does not contain a cycle, i.e., is a forest. []

I t will now be shown tha t each forest Fi is maximal in G - E 1 w E 2 u " ' " W E i_ 1.
If an edge e = (u, v) with E(u) n E i = ~ and E(v) n E l = ~5 (i >_ 1) is added to Ei
at line 7 of F O R E S T , then such e is called a root edge of E~. Tha t is, by L e m m a
2.2, the two end nodes u, v of such e satisfy r(u) = r(v) = i - 1 before e is added
to El. Dur ing computa t ion , each (V, E~) m a y contain more than one nontr ivial
tree, where nontr ivial means tha t the tree contains at least one edge. Each
nontr ivial tree T has exactly one roo t edge (i.e., the first edge of the tree), because
F O R E S T adds to E i no edge e = (u, v) with E(u) n El :/: ~ and E(v) n E i 4= ~ (i.e.,
T grows without merging with other trees). Fo r example, in Figure 2 each of

588 H. Nagamochi and T. Ibaraki

(V, El), (V, E2), and (V, E4) has one nontrivial tree, (V, E3) contains two nontrivial
trees, and el, e9, e l5 , e l 9 , e29 are roo t edges.

If an edge e = (u, v) is scanned in F O R E S T while scanning node u, we regard e
as a directed arc ~ = u ~ v (i.e., u is scanned before v). F o r example, in Figure 2
e 1 is i l lustrated as a directed arc f rom x 1 to x 2, since edge el = (xl, x2) is scanned
while scanning node xl . Fo r a set of scanned edges E' ___ E and G' = (V, E'), denote
/ ~ ' = {~[e~E'} and (~ ' = (V,/~'). G' is a directed graph. The directed tree
corresponding to a nontr ivial tree T in (V, Ei) is always a rooted out- t ree with
root x such that Y = x --* y is the roo t edge of T. This means that indeg(v) of T is
at mos t one for any node v. Since all unscanned edges incident to x chosen at line
5 of F O R E S T become scanned, the resulting directed graph G = (V, E1 kA E2 u
"'" U/~IEI) is acyclic. These propert ies are easily confirmed in Figure 2.

LEMMA 2.4.

(a) When F O R E S T adds an edge e = (u, v) to E i at line 7, there exists a path
Pi-~ c Ei_ ~ connecting u and v.

(b) Let E k (k = 1, 2 , . . . , IEI) be the sets obtained by F O R E S T at some time instant.
I f there is a path Pj c_ Ej connecting nodes u and v, then there are paths Pi ~- Ei
connecting the same u and v, for all i < j.

PROOF. (a) By L e m m a 2.2, E(u) n Ei - 1 ~;~ ~ and E(v) c~ E i_ 1 ~ ~ . If there is no
pa th Pi- 1 c_ E l - 1 connect ing u and v, (V, El_ 1) has two nontr ivial trees T, and T~
containing u and v, respectively. Let u o (Vo) be the root in T~ (T~), where we assume
wi thout loss of generality tha t u o has been scanned before Vo. Let Uo, u l , . . . , ua
(= u) denote the nodes in the unique pa th f rom u o to u in T,. After scanning Uo,
u I has label r > i - 1, but v o has label r < i - 2 as discussed after L e m m a 2.3,
since Vo is a roo t in Ei-1. Therefore ul is scanned before Vo. u2 then has label
r > i - 1 . Repeat ing this argument , we see that u2, u3 uh (= u) and v are
scanned before Vo. This contradicts the assumpt ion tha t vo is the root of T~ (i.e.,
Vo is scanned before v).

(b) Let e k, k = 1, 2 , . . . , h, denote the edges in pa th Pj ~_ E~ (j >_ 2), which
connects u and v. By (a), each e k has a pa th P~_ 1 ~- E j_ 1 connect ing the two end
nodes of e k. Clearly, P~- I u P] - I u . . . u P ~ - i contains a pa th P ~ - I - ~ E~_I
connect ing u and v. Similarly for i = j - 2, j - 3 , . . . , 1. []

LEMMA 2.5. Consider the sets Ei, i = 1, 2 [E I, obtained by F O R E S T for a
graph G = (V , E) . Then each (V, EI) is a maximal spanning forest in
G - EI ~ E2 u . . . ~ Ei_ 1.

PROOF. Let H i_ 1 = G - - E 1 U E 2 u " " u E i_ 1" Every (V, El) is a forest by L e m m a
2.3. I f (V, Ei) is not maximal in H i_ 1, there is an edge e = (u, v) e Ej for some j > i
such that (V, E i u {e}) is a forest. However this contradicts L e m m a 2.4(b). []

THEOREM 2.1. Given a graph G -- (V, E), a partition El (i = 1, 2]El) of E
satisfying (2.1) is found in O([V[+ [E[) time, where [Eit < [V I - i (i = 1,2 ,

A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph 589

IVI - 1) and lEvi = 0 (i = IVI, . . . , IEI) if G is simple, and [E~j < [VI - 1 (i = 1,
2 , [El) i f G is multiple.

PROOF. By the discussion so far, it suffices to show tha t]Ell < - I V [- i
(i = 1, 2 , I VI - 1) and IEil = 0 (i = I V l , . . . , IEI) if G is simple. Deno te all nodes
in G by x l , x2, . . . , xlvl in the order scanned by F O R E S T . Since G has no mult iple
edges, r(xi) increases at mos t by 1 when an incident node Xk, k < i, is scanned.
Hence, r(xi) < i, i = 1, 2 , . . . , I VI. This and L e m m a 2.2 imply E(xi) ~ E1 u E 2 u
"'" u E i . Therefore each (V, Ei) has at least i - 1 (IV[if i - 1 > IVl) isolated
nodes x 1, x 2 x i - 1, implying IEil < I VI - i for i < I V[- 1 and JEll = 0 for
i>_]V[. []

Consequent ly, a k-edge-connected spanning subgraph

Gk = (V, E ' = E 1 u E 2 u " " U Ek)

of a k-edge-connected graph G = (V, E) can be found in 0(1V[+ IEI) = O(IEI)
time, where I E ' l < k l V l - k (k + l) / 2 if G is simple, o r l E ' l < k (l V l - 1) if
G is multiple. These bounds on IE'l are sharp since IE I = IE'I = k(k + 1) -
k(k + 1)/2 = k(k + 1)/2 if G = (V, E) = Kk+ 1 (i.e., a simple complete g raph with
k + 1 nodes), and IEI = IE'I = k(I VI - 1) if G = (V, E) is k-multiple tree.

No te also tha t edge-connect ivi ty of the above G k "is exactly k, provided that
).(G) > k, since Gk contains a node with degree = k as we shall see below.

LEMMA 2.6. For a graph G = (V,E), let E i (i = 1 , 2 , . . . , [El) be obtained by
F O R E S T . Then each G k = (V, E 1 w E2 u "" u Ek), k <_ 6(G), contains a node with
degree = k, where 6(G) is the minimum degree o f G.

PROOF. Consider the last node x scanned by F O R E S T . Since all edges incident
to x have been already scanned at the t ime of scanning x, there is no directed arc
outgoing f rom x in (~. Since each (V, El) has no node v with indeg(v) > 1, each E i
with i < [E(x)[contains exactly one edge incident to x. Thus, deg(x) = k holds in
G k if k < I E(x)]. []

3. k-Node-Connected Subgraph. In this section we consider node-connectivi ty.
Let x(x, y; G) denote the local node-connect ivi ty between nodes x and y in G,
where x(x, y; G) =] V] - 1 if x and y are adjacent. The node connectivi ty of G is
defined by x (G) = mln{x(x, y; G)lx, y ~ V}. Surprisingly, the spanning subgraph
G k = (V, E 1 u E 2 u .-- u Ek) obta ined for a simple graph G by F O R E S T is k-node-
connected for every k ~ x(G). In the following, any graph is assumed to be simple,
and an edge e with the end nodes {u, v) is also denoted by an unordered pair (u, v).

O u r goal is to prove the following theorem.

THEOREM 3.1. For a given simple graph G = (V, E), let E i (i = 1, 2]El) be
obtained by F O R E S T upon completion. Then each spanning subgraph

590 H. Nagamochi and T. Ibaraki

Gi = (V, E~ w E 2 u "" u Ei) satisfies

(3.1) x(x, y; Gi) >_ min{x(x, y; G), i} for any x, y e V.

Before proving Theorem 3.1, we need the following lemmas which are useful in
understanding the dynamics of FOREST�9 In order to avoid confusion, we use
notations E~ (i = 1, 2, . . . , IEI) to denote the final partition obtained from
G = (V, E) by FOREST, and E* (i = 1, 2 , IEI) to denote the intermediate edge
sets Ei constructed by FOREST at a given time instant (E* = Ei holds for any i
upon completion of FOREST)�9

v~c

x(---v h)

Pi ~ ~ " ~ ~

P:

1

\p.
v 1 J

v 2

(a)

x(=v h) u I

Vh i / " ~ Pj

vl

Pi
L y w(=uk)

v I

p,
l

h" -1

(b)

Fig. 4. Contradictory configurations of paths in Lemma 3.1.

A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph 591

LEMMA 3.1. Consider a time instant during the execution o f F O R E S T , and assume
that there is an x - y path Pj ~_ E* with the nodes

(3.2) X, Ul , U 2 ~ . . . ~ U k ~ W~ y

such that either k = 1 (Figure 4(a)) or u 1 is scanned before scanning u k = w, i f k >_ 2
(Figure 4(b)). I f there are a w - x path Pi ~- E* and a w - y path P~ ~_ E*, where
1 < i < j, then these two paths contain a common node other than w.

PROOF. See the Appendix. []

LEMMA 3.2. Consider a node cut set W in Gi+ 1 = (V, E 1 u g 2 t j . . . u El+ 1), where
the nodes in W are denoted wl, WE, . . . , W i in the order scanned in F O R E S T (see
Figure 5). Let X be a component in Gi+l -- W, and let Y denote the rest o f the
components (note that Gi+ I - W may have more than two components). For each
o f w 1, w 2 , wi, the following (a) and (b) hold immediately after F O R E S T has
scanned wt e W in F O R E S T , where E* denotes the edge set constructed by F O R E S T
at that time instant.

P .
,.] Xr 1

Fig. 5. Proof of Lemma 3.2. | scanned nodes in W; @, unscanned nodes in W.

592 H. Nagamochi and T. Ibaraki

(a) Every path Pt ~ E* connecting a node in X to a node in Y passes through w t.
(b) For any j such that t + 1 <_ j < i + 1, E* has no path connecting a node in X

to a node in Y.

PROOF. Immediately after scanning w t ~ W, it is clear that

(3.3) if there is an edge (Wh, Wh,) ~ E with h < t or h' < t, then (w h, Wh,) has
already been scanned and its direction is wh --* Wh, (Wh, --* Wh) if h < h'
(h' < h).

However, at this instant,

(3.4) w h i p with h > t + l is not present yet for any peV.

Now consider a path Pj _c E* (_ E~) such that it connects a node in X to a node
in Y and j < i + 1. By definition of W, it can be assumed without loss of generality
that all the nodes in P1 except fro x and y are all in W. Therefore denote the nodes
in Pj from x to y by (see Figure 5)

(3.5) x, wi,, wi2 wi~, y.

If wi, E {wt+ 1, wt+ 2 wi} for some g, then two edges (wi,, PO and (wi,, P2) (with
their orientation ignored) in Pj satisfy either wl, ~ Px or wl, --, P2 by indeg(wi) < 1
in/3 i. This contradicts (3.4). Therefore,

(3.6) wi, E {wa, w2, . . . , wt} for g = 1, 2 k.

This means that we have

t >_ ix > i2 > " '" > ih < ih+l < "'" < ik "< t for some 1 < h < k,

by properties (3.3) and (3.6). In the subsequent discussion we assume

(3.7) i x < i k if k > 2

without loss of generality. We now prove (a) and (b) by induction on t.
(I) Immediately after scanning wl e W: Condition (a) for wl is obvious from (3.6)

with t = 1. To prove (b), take a path P~ ~ E* as discussed above for j with
2 < j < i + 1. By (3.7), the nodes in P1 are written as x, w a, y. Also by Lemma
2.4(b), there exist an x-wx path P1 _ E* and a w l - y path P'~ _ E*. From condition
(a), whose validity with t = 1 was already shown, these P~ and P'x are node-disjoint
except at w l (otherwise there is a path from X to Yin E* not passing w0. However,
these Pj, Px, and P'~ form a contradiction to Lemma 3.1, proving condition (b)
for wx.

(II) Immediately after scanning wt ~ W (t > 2): By induction hypothesis, condi-
tion (b) holds for wt_ 1- That is,

A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph 593

(3.8) at the time of having scanned wt- 1, E* with (t - 1) + 1 < j < i + 1
contains no path connecting a node in X to a node in Y.

Assume, after scanning wt, that there is a path Pj _ E* with t < j < i + 1 that
connects some x ~ X and y e Y. Assume (3.5) and (3.7) for this Pj. By (3.8), we can
assume i k = t (i.e., condition (a) for wt is shown). Now assume tha t j further satisfies
t + 1 < j (_<i + 1) (i.e., this P1 does not satisfy (b)). By Lemma 2.4, there exist an
x-wt path P t ~ E* and a wt-y path P'~ _ E*. These Pt and P't are node-disjoint
except at wt by the above condition (a) for w~. However, such P j, Pt, P't form a
contradiction to Lemma 3.1, and prove condition (b) for w z. []

PROOF OF THEOREM 3.1. We prove (3.1) by induction on i. Validity for i = 1 is
obvious. Assuming that some x, y r V and i satisfy x(x, y; Gi) > min{x(x, y; G), i}
and x (x , y ; G ~ + l) < m i n { x (x , y ; G) , i + 1}, we derive a contradiction. The as-
sumption implies to(x, y; G) > i + 1 (then i + 1 < I Vl - 1) and to(x, y; G~) =
t c (x , y ; G i + l) = i . Note that x and y are not adjacent in G~+~ because
x(x, y; G~+ 2) = i < I VI - 1. x(x, y; G~+ ~) = i implies that x and y are disconnected
in G~+~ - Wfor some node cut set W ~ V - { x , y } satisfying IWI = i. Let X be
the component containing x in G~+ 1 - IV, and let Ydenote the rest of components.
This is illustrated in Figure 6. By x(x, y; G) > i + 1,

E " = E l + 2 u E/+ 3 u "'" L) EIE I

contains an edge e = (u, v)~ E, for some u ~ X, v ~ Y, and h > i + 2. Thus, by
Lemma 2.4, there is a path Pi+l -~ E~+I connecting u and v. This P~+x must pass

I

1 t
1 r

e

Fig. 6. Connected components in G - E" - - IV. o.. o , edges in E".

594 H. Nagamochi and T. Ibaraki

through a node w in W by definition of W. However, by Lemma 3.2(b), for w~, we
see that there is no such path P,+ 1 - E*+ t after scanning all nodes in W. Hence
there is no such P~+ 1 --- E~+~ since all edges incident to nodes in W have already
been scanned at the time of scanning w v This is a contradiction and proves
Theorem 3.1. []

4. Concluding Remarks. A linear-time algorithm for finding a sparse k-connected
spanning subgraph for a given k-connected graph is developed in this paper. This
is very useful in improving the time complexity of some algorithms for solving
other graph problems, by preprocessing the given graph by FOREST. For
example, an O(max{k21VI t/2, kl VI}lEI)-time algorithm [2] for testing whether
x(G) > k can be improved to O(max{k21 V[1/2, . k[Vl}kl VI) = O(max{k3l V[3/2,
k21V12}). This is an improvement since O(klVI)< O(IEI) can be assumed, as
klVI/2 > IEI trivially implies x(G)< k. To attain this, the spanning subgraph
Gk = (V, E1 w E 2 u ... u Ek) is first computed by applying FOREST to G = (V, E).
This requires 0(I VI + IEI) time, and Gk = (V, E') satisfies 2(Gk) = min{2(G), k} and
IE'I = O(klVl). Then X(Gk) > k (x(G) > k) can be checked in O(max{k2lV[l/z,
kIVI}IE'[) = O(max{k31VI 3/e, kelV[2}) time by the algorithm in I-2]. The total
time is O(J VI + [El + max{k3[VI 3/2, k2lVl2}) = O(max{k3lVI 3/2, k 2 1 V I 2 }) �9

Based on this time complexity for testing x(G) > k and Matula's careful binary
search [4], the current best bound O(max{x(G)Zl V I]EI, ~:(G) I V II/21EI}) to com-
pute x(G) can be reduced to O(max{x(G)3lVI 3/2, x(G)2IV[2}). For this, we check
x(G) > k for each k = 2, 22, 23 in order to find the integer i satisfying
2i< x(G)< 2 i+1. Since the algorithm [2] for testing ~:(G)>_ k provides x(G) if
x(G) < k, x(G) is obtained when such i is found. The total time is

O(max{23 [V I 3/2, 221 V[2}) + O(max{(22)31 V I 3/2, (22)21 V[2})

+ . - - + O(max{(2i+ 1)31VI 3/2, (2 i+ 1)21V[2})
= O(max{I VI a/2" 8(8 i+a - 1)/(8 - 1), I VI 2 .4(4 i+1 - 1)/(4 - 1)})
= O(max{~c3(G)l gr 3/2, x2(G)[g12}).

Based on the fact that the spanning subgraph Gi = (V, E 1 w E 2 k.)""k.J E~)
obtained by FOREST preserves the local edge- and node-connectivities up to i,
we can improve the complexity for computing the number 2st (~:,t) of edge (node)
disjoint paths between specified nodes s and t in G. (Clearly; by Menger's theorem,
),st = 2(s, t; G) and

= ~x(s, t; G)
x , , I x (s , t; G - {(s, t)}) + 1

ifs and t are not adjacent,

ifs and t are adjacent,

where G is assumed to be simple.) For example, the algorithms in [1-1 determine
whether 2s, > k in O(min{k, 11/12/3} IEI) time if G is simple, and in O(min{lV[, k,
IEI x/2} [El) time ifG is multiple, and xst >_ k in O(min{k, I VI lz2 } IE[). By preprocess-
ing G by FOREST, if k([V [- 1)< [E l, these can be improved to O(min{k21VI,

A Linear-Time Algorithm for Finding a Sparse k-Connected Spanning Subgraph 595

klVISia}), O (m i n { k l V] 2, k21VI, k3/21Vla/2}), and O(min{k21VI , klVla/Z}), respec-
tively. Based on these improved bounds and the above binary search, 2st can be
computed in O(IE[+ min{2~tlVI, 2stlVIS/a}) time for a simple graph and in
O(IEI + min{2,,I VI z, 2~1V[, 2~3,/21VI3/2}) t ime for a multiple graph, and x~t can be
found in O(IEI + min{x2l VI, x~t[V13/2}) time.

Recently, further useful properties of F O R E S T have been studied [5, Theorem
2.2], [6], [7]. For example, [6] contains O([EI + min{2(G)lV[2, pIVI + IVl 2
log[V I }) and 0([V I I EI + I V I 2 log l V I)-time algori thms for determining the edge-
connectivity of given multiple and capacitated graphs, respectively, where p (<]El)
is the number of pairs of nodes between which the multiple graph has an edge.
These algori thms may provide new insight into connectivity problems as they do
not rely on max-flow algorithms, different from the algorithms previously known.

Acknowledgments. We wish to thank Professor Takao Nishizeki of T o h o k u
University for his valuable discussion as well as the information about references
[8] and [9], and the anonymous referee for his helpful comments.

Appendix. Proof of Lemma 3.1. Assume that Pi and P'i are node-disjoint except
at w. Denote the nodes in Pi (P'~) by w, Vl, v2 Vh = X (W, V'I, V~ V~, = y). Pj
is given by (3.2). First, the case of k = 1 is considered (Figure 4(a)). Since G has
no multiple edge, h > 2 and h' > 2. Since indeg(w) < 1 in (1/,/~*), as discussed in
Section 2, w --* y is assumed without loss of generality. If w ~ v'i, then w --* v'~
v~--* . . . -* v~,(=y) holds, since indeg(v'a)< 1 in /~* for any V'a. This implies that
nodes v'l, v~ v~,_ 1, Y are all unscanned when w is scanned. Note that r(y) < i
holds when (v~,_ 1, Y) is added to E* by scanning v~,_ 1. However, edge (w, y) has
been scanned at the time of scanning w, and (w, y) ~ E* means that r(y) >_ j > i
was satisfied after scanning w. This is a contradict ion. Therefore, we assume v'l ~ w.
By a similar argument, v'l --* w ~ v i --* v2 ~ " " ~ vh(= x) follows from v] --. w. Since
w ~ x leads to a contradict ion in the same manner as above, x ~ w is concluded.
However, this creates a directed cycle in /Sj and /~, again a contradict ion to
die [: (1,1,/~1 u E 2 u . . . u/~IEI) is acyclic.

Now consider the case of k > 2 (Figure 4(b)). w e have w ~ y by indeg(w) < 1
in (V,/~*). Since w ~ v'l is not possible for the same reason as the case of k = 1,
we have v'l ~ w ~ vl--* v2--*"" ~ vh(=x). F r o m this, we see that w is scanned
before Vh-1" TO avoid a directed cycle, ul --* x is concluded. Clearly, (Vh-1, X)~ E*
implies that r(x) < i when (vh- 1, x) is added to E*, i.e., vh_ 1 is scanned before
scanning u 1. This contradicts the fact that u 1 has been scanned before w. []

References

[1] S. Even and R. E. Tarjan, Network flow and testing graph connectivity, SIAM J. Comput. 4
(1975), 507-518.

[2] Z. Galil, Finding the vertex connectivity of graphs, SIAM J. Comput. 9 (1980), 197-199.
[3] M. R. Garey and D. S. Jhonson, Computer and Intractability, A Guide to the Theory of

NP-completeness, Freeman, San Francisco, 1979.

596 H. Nagamochi and T. Ibaraki

[4] D.W. Matula, Determining edge connectivity in O(nm), Proceedinos of the 28th Symposium on
Foundations of Computer Science (1987), pp. 249-251.

[5] H. Nagamochi and T. Ibaraki, Linear time algorithms for finding k-edge-connected and
k-node-connected spanning subgraphs, Technical Report ~89006, Department of Applied
Mathematics and Physics, Faculty of Engineering, Kyoto University (1989).

[-6] H. Nagamochi and T. Ibaraki, Computing edge-connectivity in multiple and capacitated graphs,
Technical Report :~ 89009, Department of Applied Mathematics and Physics, Faculty of Engin-
eering, Kyoto University (1989).

I-7] H. Nagamochi, Z. Sun, and T. Ibaraki, Counting the number of minimum cuts in multiple
undirected graphs, Technical Report :~ 89010, Department of Applied Mathematics and Physics,
Faculty of Engineering, Kyoto University (1989).

[8] T. Nishizeki and S. Poljak, Highly connected factors with a small number of edges, Working
Paper (1989).

[9] H. Suzuki, N. Takahashi, and T. Nishizeki, An algorithm for finding a triconnected spanning
subgraph, SIGAL Research Report 7-3 (in Japanese) (1989).

