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A Linear-Time Algorithm for Finding a Sparse k-Connected 
Spanning Subgraph of a k-Connected Graph 1 

Hiroshi Nagamochi 2 and Toshihide Ibaraki 2 

Abstract. We show that any k-connected graph G = (V, E) has a sparse k-connected spanning 
subgraph G'= (V, E') with IE'I = O(kl VI) by presenting an O(IEL)-time algorithm to find one such 
subgraph, where connectivity stands for either edge-connectivity or node-connectivity. By using this 
algorithm as preprocessing, the time complexities of some graph problems related to connectivity can 
be improved. For example, the current best time bound O(max{k21VI 1/2, k l V I}IEI) to determine 
whether node-connectivity x(G) of a graph G = (V, E) is larger than a given integer k or not can be 
reduced to O(max{k31Vp/2, k21VI2}). 

Key Words. Undirected graphs, Spanning subgraphs, Connectivity, k-edge-connectivity, k-node- 
connectivity, Linear-time algorithms. 

1. Introduction. In this paper connectivity stands for either edge-connectivity or 
node-connectivity unless explicitly specified. A graph G = (V, E) stands for an 
undirected graph that satisfies I VI > 2. It may have multiple edges but has no 
self-loop, unless otherwise specified, though a simple graph is always assumed 
when node-connectivity is discussed. Given a k-connected graph, the problem of 
finding a k-connected spanning subgraph with the minimum number of edges is 
known to be NP-complete for any fixed k (>2) [3, Problem GT31]. Recently, 
Suzuki et al. [9] emphasized the importance of a "linear"-time algorithm to find 
a "sparse" k-connected spanning subgraph of a given k-connected graph. We show 
that any k-connected graph G = (W, E) has a k-connected spanning subgraph 
G' = (W, E') with [E'[ = O(k[ VD. This result was also independently obtained by 
Nishizeki and Poljak [8]. For special cases of k = 2 and 3, Suzuki et al. [9] give 
an O(lEI)-time algorithm to find a k-node-connected subgraph G' = (V, E') with 
IE'l < 31VI - 5 for k = 2 and IE'I < 31VI - 3 for k = 3. For general k, Nishizeki 
and Poljak [8] find a k-edge-connected G' with IE'I < k(I VI - 1) in O(klE[) time, 
and a k-node-connected G' with IE'I _ k([ VI - 1) in O([VI1/21EI 2) time. 

In this paper we present O(IEI)-time algorithms for both problems of k-edge- 
connected subgraphs and k-node-connected subgraphs. The spanning subgraph 
G ' =  (W, E') obtained satisfies [E'[ < k i W I -  k(k + 1)/2 (_<k([ V [ -  1)) (in case of 

I The first author was partially supported by the Grant-in-Aid for Encouragement of Young Scientists 
of the Ministry of Education, Science and Culture of Japan and by the subvention to young scientists 
by the Research Foundation of Electrotechnology of Chubu. 
2 Department of AppliedqVlathematics and Physics, Faculty of Engineering, Kyoto University, Kyoto 
606, Japan. 

Received September 6, 1989; revised April 16, 1990, and August 16, 1990. Communicated by Greg N. 
Frederickson. 



584 H. Nagamochi and T. Ibaraki 

node-connectivity, G is assumed to be simple). By using this algorithm as 
proprocessing, the time complexity of algorithms for solving other graph problems 
can be improved, as is discussed in the last section. 

2. k-Edge-Connected Subgraph. In this section a graph is possibly multiple, but, 
if there is no confusion, an edge e with the set of end nodes {u, v} is denoted by 
e = (u, v). Our algorithm requires :the following property, which was also in- 
dependently found by Nishizeki and Poljak [8]. 

LEMMA 2.1. For a graph G = (V, E), simple or multiple, let F i = (V, Ei) be a 
maximal spanning forest  in G - E 1 u E 2 u .." u Ei_l ,  for  i -- 1, 2 . . . . .  IEI, where 
possibly Ei = Ei+a = " " =  EIE I - - ~  for  some i. Then each spanning subgraph 

G i = (V, E 1 u E 2 u " "  u El) satisfies 

(2.1) 2(x, y; Gi) -> min{2(x, y; G), i} for  all x, y e V, 

where 2(x, y; H) denotes the local edge-connectivity between x and y in graph H. 

PROOF. We proceed by induction on i. Equation (2.1) for i = 1 is obvious from 
the maximality of forest F1. Assume that some x, y ~ V and i satisfy 2(x, y; G~) > 
min{2(x, y; G), i} and 2(x, y; G~+~) < min{2(x, y; G), i + 1}. By 2(x, y; G~) < 
2(x, y; G~+t), this means 2(x, y; G) > i + 1 and 2(x, y; Gi) = 2(x, y; G~+I) = i. That 
is, G~+ ~ has a minimal cut set W _ E with I WI = i such that there are two distinct 
components X and Y in G~+I - W containing x and y, respectively. Since 
I W - E i + 11 >- i follows from 2(x, y; Gi) = i, this W satisfies W c~ Ei + x = ~Z~. How- 
ever, there is an edge e e E -  El  u E 2 u " ' u  E~+~ connecting a node in X to a 
node in Y, by 2(x, y; G) > i + 1, and this contradicts the maximality of F~+ 1 = 

(V, E~ + 1)- [ ]  

By this lemma we see that Gk = (V, E'), where E ' =  E x u E 2 u " " U  Ek, is 
k-edge-connected if k < the edge-connectivity 2(G). Moreover, Gk = (V, E') satisfies 
IE'[ < k(I V[ - 1) since [Ell < IVI - 1 for all i. It is therefore easy to see that G k 
can be obtained in O(k(IVJ + IEI)) time by repeating graph search procedure k 
times. However, this time complexity can be reduced to O(1 V[ + [El), as discussed 
below. The idea is to constructed all El,  E 2 . . . . .  EIE I in a single scan. During the 
graph search we compute, for each e being scanned, the i satisfying e ~ E~. Such i 
can be defined to. be the smallest i such that El u {e} does not contain a cycle, 
where these Ei denote the edge sets constructed so far. Note that, in general, 
checking whether Ei u {e} contains a cycle requires O([Ei[) time. To reduce this 
to O(1), we always chose an unscanned edge e that is adjacent to an edge e '~ E~ 
with the largest i. This graph search procedure can be described as follows: 

Procedure FOREST; { input: G(V, E), output: E 1, E2 . . . . .  EIE I } 
(Le t  r(v):= i denote that v has been reached by an edge of the forest 

Fi = (V, El). } 
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begin 

1 E 1 := E2: . . . .  .'= EIE I := ~ ;  
2 Label all nodes v �9 V and all edges e �9 E "unscanned";  
3 r(v):= 0 for all v �9 V; 
4 while there exist "unscanned" nodes do 

begin 
5 Choose an "unscanned" node x �9 V with the largest r; 
6 for each "unscanned" edge e incident to x do 

begin 
7 Er~r)+l := Er~y)+ 1 w {e}; {y is the other end node ( ~ x )  

of e} 
8 if r(x)  = r(y)  then r (x ) :=  r(x) + 1 ; 
9 r(y):= r(y)  + 1; 

10 Mark  e "scanned" 
end; 

11 Mark  x "scanned" 
end; 

end. 

For  example, a partition E~, i = 1, 2 . . . . .  obtained by applying FOREST to a 
simple graph G 1 of Figure 1 is shown in Figure 2. Similarly, a partition E~, 
i = 1 . . . . .  of a multiple graph G 2 is illustrated in Figure 3. In Figures 2 and 3 node 
x i (edge e j) represents that this is the ith node (jth edge) scanned by FOREST.  
The edges are directed from x to y of FOREST,  so that the role of these nodes 
is explicitly shown. 

Fig. 1. A simple graph G 1 with 2(G l) = 4 and tc(G 1) = 3. 
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Fig. 2. Partition E~ of G ~ obtained by FOREST. t> - - - - - - -o ,  edges in El; o -  -- - - .o ,  edges in E2; 
o . . . . . . . . .  o ,  edges in E3; o . ,~m~u~,  edges in E,,. 
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Fig. 3. Partition Ei of G 2 obtained by FOREST. 0 -. o, El; o -  -- -- -.0, E2; 0 . . . . . . . . .  o,  E3; 
o . , a . v ~  Er o-  . . . . .  ..-0, Es ,o -  . . . . . . . .  .0, E6;o-- . . . . . . . .  Q, E-/, 0 - - . ~ . ~ 0 ,  E 8. 
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N o t e  that  the largest r(x) is always chosen for the for- loop of line 6. In  other  
words:  

(2.2) When  edge e is scanned, one of the end nodes of e has the largest  
label r in G. 

F O R E S T  without  line 8 also works  correctly, because once a node  x is 
selected in line 5, all unscanned edges incident to x are scanned and  x will never 
be referred to again. However ,  updat ing  r(x) in line 8 is useful for proving  propert ies  
of F O R E S T  as discussed below. 

To  find an unscanned node  x with the largest r(x) efficiently, we prepare  I Vl \'~ 
buckets  such that  each unscanned node  v is conta ined in the r(v)th bucket.  All 
nonempty  buckets  are doubly  linked by pointers so that  an unscanned node  x 
with the largest r(x) can be found in 0(1) t ime and the link update  after increasing 
label r of  a node  by one can also be done in 0(1) time. The  entire t ime required 
to upda te  bucket  links is therefore O(]VI + I E[) because labels are changed O(IEI) 
times. This shows that  t ime complexi ty  of  F O R E S T  is 0(I V[ + IEI). 

We  now show that  each F i = (V, El)  , 1 < i <_ [El, compu ted  by F O R E S T  is a 
maximal  spanning forest in G - E1 w E2 u ' - "  u E i_ 1. 

LEMMA 2.2. Consider the time instant when the begin-end block of lines 7-10 in 
F O R E S T h a s  been completed for the current x. Let v6 V be any node and let E(v) 
denote the set of edges incident to v. Then 

E(v) n E i v~ f~j for i = 1, 2 , . . . ,  r(v), 

E(v) n E~ -- ~ for i = r(v) + 1 . . . . .  [E[. 

PROOF. Immedia t e  f rom F O R E S T .  [ ]  

LEMMA 2.3. All subgraphs F i = (V, Ei) , i = 1, 2 , . . . ,  [El, constructed by F O R E S T  
are forests. 

PROOF. At the instant  of adding an edge e = (x, y)~ E(y) to Ei in F O R E S T ,  
r(x) > r(y) = i - 1 and  hence E(y) n El = ~ (by L e m m a  2.2) holds. This proves  
that  F i does not  contain a cycle, i.e., is a forest. [ ]  

I t  will now be shown tha t  each forest Fi is maximal  in G - E 1 w E 2 u " ' "  W E i_ 1. 
If  an  edge e = (u, v) with E(u) n E i = ~ and E(v) n E l =  ~5 (i >_ 1) is added to Ei 
at line 7 of  F O R E S T ,  then such e is called a root  edge of E~. Tha t  is, by L e m m a  
2.2, the two end nodes u, v of  such e satisfy r(u) = r(v) = i - 1 before e is added 
to El. Dur ing  computa t ion ,  each (V, E~) m a y  contain more  than  one nontr ivial  
tree, where nontr ivial  means  tha t  the tree contains at least one edge. Each 
nontr ivial  tree T has exactly one roo t  edge (i.e., the first edge of the tree), because 
F O R E S T  adds to E i no edge e = (u, v) with E(u) n El :/: ~ and E(v) n E i 4= ~ (i.e., 
T grows without  merging with other  trees). Fo r  example,  in Figure 2 each of 
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(V, El), (V, E2), and (V, E4) has one nontrivial  tree, (V, E3) contains two nontrivial  
trees, and el,  e9, e l5 ,  e l 9 ,  e29 are roo t  edges. 

If  an edge e = (u, v) is scanned in F O R E S T  while scanning node  u, we regard e 
as a directed arc ~ = u ~ v (i.e., u is scanned before v). F o r  example,  in Figure 2 
e 1 is i l lustrated as a directed arc f rom x 1 to x 2, since edge el = (xl, x2) is scanned 
while scanning node xl .  Fo r  a set of  scanned edges E' ___ E and G' = (V, E'), denote  
/ ~ ' =  {~[e~E'}  and ( ~ ' =  (V,/~'). G' is a directed graph. The  directed tree 
corresponding to a nontr ivial  tree T in (V, Ei) is always a rooted  out- t ree with 
root  x such that  Y = x --* y is the roo t  edge of T. This means  that  indeg(v) of T is 
at mos t  one for any node  v. Since all unscanned edges incident to x chosen at line 
5 of  F O R E S T  become scanned, the resulting directed graph  G = (V, E1 kA E2 u 
"'" U/~IEI) is acyclic. These propert ies  are easily confirmed in Figure 2. 

LEMMA 2.4. 

(a) When F O R E S T  adds an edge e = (u, v) to E i at line 7, there exists a path 
Pi-~ c Ei_ ~ connecting u and v. 

(b) Let  E k (k = 1, 2 , . . . ,  IEI) be the sets obtained by F O R E S T  at some time instant. 
I f  there is a path Pj c_ Ej connecting nodes u and v, then there are paths Pi ~- Ei 
connecting the same u and v, for  all i < j. 

PROOF. (a) By L e m m a  2.2, E(u) n Ei -  1 ~;~ ~ and E(v) c~ E i_ 1 ~ ~ .  If  there is no 
pa th  Pi-  1 c_ E l -  1 connect ing u and v, (V, El_ 1) has two nontr ivial  trees T, and T~ 
containing u and v, respectively. Let u o (Vo) be the root  in T~ (T~), where we assume 
wi thout  loss of  generality tha t  u o has  been scanned before Vo. Let  Uo, u l , . . . ,  ua 
( =  u) denote  the nodes in the unique pa th  f rom u o to u in T,. After scanning Uo, 
u I has label r > i - 1, but  v o has label r < i - 2 as discussed after L e m m a  2.3, 
since Vo is a roo t  in Ei-1.  Therefore  ul is scanned before Vo. u2 then has label 
r > i - 1 .  Repeat ing this argument ,  we see that  u2, u3 . . . . .  uh ( = u )  and v are 
scanned before Vo. This contradicts  the assumpt ion  tha t  vo is the root  of T~ (i.e., 
Vo is scanned before v). 

(b) Let e k, k = 1, 2 , . . . ,  h, denote  the edges in pa th  Pj ~_ E~ (j >_ 2), which 
connects  u and v. By (a), each e k has a pa th  P~_ 1 ~- E j_ 1 connect ing the two end 
nodes of  e k. Clearly, P~- I  u P ] - I  u . . . u  P ~ - i  contains a pa th  P ~ - I - ~  E~_I 
connect ing u and  v. Similarly for i = j - 2, j - 3 , . . . ,  1. [ ]  

LEMMA 2.5. Consider the sets Ei, i = 1, 2 . . . . .  [E I, obtained by F O R E S T  for  a 
graph G = ( V , E ) .  Then each (V, EI) is a maximal spanning forest  in 
G -  EI ~ E2 u . . . ~  Ei_ 1. 

PROOF. Let H i_ 1 = G - -  E 1 U E 2 u " "  u E i_ 1" Every (V, El) is a forest by L e m m a  
2.3. I f  (V, Ei) is not  maximal  in H i_ 1, there is an edge e = (u, v) e Ej for some j > i 
such that  (V, E i u {e}) is a forest. However  this contradicts  L e m m a  2.4(b). [ ]  

THEOREM 2.1. Given a graph G -- (V, E), a partition El (i = 1, 2 . . . . .  ]El) of  E 
satisfying (2.1) is found in O([V[ + [E[) time, where [Eit < [ V I -  i (i = 1,2 . . . .  , 
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IVI - 1) and lEvi = 0 (i = IVI, . . . ,  IEI) if G is simple, and [E~j < [VI - 1 (i = 1, 
2 . . . .  , [El) i f G  is multiple. 

PROOF. By the discussion so far, it suffices to show tha t  ]Ell < - I V [ -  i 
(i = 1, 2 . . . .  , I VI - 1) and IEil = 0 (i = I V l , . . . ,  IEI) if G is simple. Deno te  all nodes 
in G by x l ,  x2, . . . ,  xlvl in the order  scanned by F O R E S T .  Since G has no mult iple 
edges, r(xi) increases at  mos t  by 1 when an incident node  Xk, k < i, is scanned. 
Hence,  r(xi) < i, i = 1, 2 , . . . ,  I VI. This and L e m m a  2.2 imply E(xi) ~ E1 u E 2 u 
"'" u E i .  Therefore  each (V, Ei) has at least i -  1 (IV[ if i -  1 > IVl) isolated 
nodes x 1, x 2 . . . . .  x i -  1, implying IEil < I VI - i for i < I V[ - 1 and JEll = 0 for 
i>_ ]V[. [] 

Consequent ly,  a k-edge-connected spanning subgraph  

Gk = (V, E '  = E 1 u E 2 u " "  U Ek) 

of a k-edge-connected graph  G = (V, E) can be found in 0(1V[ + IEI) = O(IEI) 
time, where I E ' l < k l V l - k ( k + l ) / 2  if G is simple, o r l E ' l < k ( l V l - 1 )  if 
G is multiple. These bounds  on IE'l are sharp  since IE I = IE'I = k(k + 1 ) -  
k(k + 1)/2 = k(k + 1)/2 if G = (V, E) = Kk+ 1 (i.e., a simple complete  g raph  with 
k + 1 nodes), and IEI = IE'I = k(I VI - 1) if G = (V, E) is k-multiple tree. 

No te  also tha t  edge-connect ivi ty of  the above  G k "is exactly k, provided that  
).(G) > k, since Gk contains a node  with degree = k as we shall see below. 

LEMMA 2.6. For a graph G = (V,E), let E i (i = 1 , 2 , . . . ,  [El) be obtained by 
F O R E S T .  Then each G k = (V, E 1 w E2 u ""  u Ek), k <_ 6(G), contains a node with 
degree = k, where 6(G) is the minimum degree o f  G. 

PROOF. Consider  the last  node  x scanned by F O R E S T .  Since all edges incident 
to x have been already scanned at  the t ime of scanning x, there is no directed arc 
outgoing  f rom x in (~. Since each (V, El) has no node  v with indeg(v) > 1, each E i 
with i < [E(x)[ contains  exactly one edge incident to x. Thus,  deg(x) = k holds in 
G k if k < I E(x)]. [ ]  

3. k-Node-Connected Subgraph. In  this section we consider node-connectivi ty.  
Let  x(x, y; G) denote  the local node-connect ivi ty  between nodes x and y in G, 
where x(x, y; G) = ] V] - 1 if x and y are adjacent.  The  node  connectivi ty of  G is 
defined by x ( G ) =  mln{x(x, y; G)lx, y ~  V}. Surprisingly, the spanning subgraph  
G k = (V, E 1 u E 2 u .-- u Ek) obta ined  for a simple graph  G by F O R E S T  is k-node- 
connected for every k ~ x(G). In the following, any graph  is assumed to be simple, 
and an edge e with the end nodes {u, v) is also denoted by an unordered  pair  (u, v). 

O u r  goal  is to prove  the following theorem.  

THEOREM 3.1. For a given simple graph G = (V, E), let E i (i = 1, 2 . . . . .  ]El) be 
obtained by F O R E S T  upon completion. Then each spanning subgraph 
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Gi = (V, E~ w E 2 u "" u Ei) satisfies 

(3.1) x(x, y; Gi) >_ min{x(x, y; G), i} for  any x, y e V. 

Before proving Theorem 3.1, we need the following lemmas which are useful in 
understanding the dynamics of FOREST�9 In order to avoid confusion, we use 
notations E~ (i = 1, 2, . . . ,  IEI) to denote the final partition obtained from 
G = (V, E) by FOREST, and E* (i = 1, 2 . . . .  , IEI) to denote the intermediate edge 
sets Ei constructed by FOREST at a given time instant (E* = Ei holds for any i 
upon completion of FOREST)�9 
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Fig. 4. Contradictory configurations of paths in Lemma 3.1. 
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LEMMA 3.1. Consider a time instant during the execution o f  F O R E S T ,  and assume 
that there is an x - y  path Pj  ~_ E* with the nodes 

(3.2) X, Ul ,  U 2 ~ . . . ~ U  k ~ W~ y 

such that either k = 1 (Figure 4(a)) or u 1 is scanned before scanning u k = w, i f  k >_ 2 
(Figure 4(b)). I f  there are a w - x  path Pi ~- E* and a w - y  path P~ ~_ E*, where 
1 < i < j, then these two paths contain a common node other than w. 

PROOF. See the Appendix. [ ]  

LEMMA 3.2. Consider a node cut set W in Gi+ 1 = (V, E 1 u g 2 t j . . .  u El+ 1), where 
the nodes in W are denoted wl, WE, . . . ,  W i in the order scanned in F O R E S T  (see 
Figure 5). Let  X be a component in Gi+l -- W, and let Y denote the rest o f  the 
components (note that Gi+ I - W may have more than two components). For each 
o f  w 1, w 2 . . . .  , wi, the following (a) and (b) hold immediately after F O R E S T  has 
scanned wt e W in F O R E S T ,  where E* denotes the edge set constructed by F O R E S T  
at that time instant. 

P .  
,.] Xr 1 

Fig. 5. Proof of Lemma 3.2. | scanned nodes in W; @, unscanned nodes in W. 
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(a) Every path Pt ~ E* connecting a node in X to a node in Y passes through w t. 
(b) For any j such that t + 1 <_ j < i + 1, E* has no path connecting a node in X 

to a node in Y. 

PROOF. Immediately after scanning w t ~ W, it is clear that 

(3.3) if there is an edge (Wh, Wh,) ~ E with h < t or h' < t, then (w h, Wh, ) has 
already been scanned and its direction is wh --* Wh, (Wh, --* Wh) if h < h' 
(h' < h). 

However, at this instant, 

(3.4) w h i p  with h > t + l  is not present yet for any peV.  

Now consider a path Pj _c E* ( _  E~) such that it connects a node in X to a node 
in Y and j < i + 1. By definition of W, it can be assumed without loss of generality 
that all the nodes in P1 except fro x and y are all in W. Therefore denote the nodes 
in Pj from x to y by (see Figure 5)  

(3.5) x, wi,, wi2 . . . . .  wi~, y. 

If wi, E {wt+ 1, wt+ 2 . . . . .  wi} for some g, then two edges (wi,, PO and (wi,, P2) (with 
their orientation ignored) in Pj satisfy either wl, ~ Px or wl, --, P2 by indeg(wi) < 1 
in/3 i. This contradicts (3.4). Therefore, 

(3.6) wi, E {wa, w2, . . . ,  wt} for g = 1, 2 . . . . .  k. 

This means that we have 

t >_ ix > i2 > " '"  > ih < ih+l < "'" < ik "< t for some 1 < h < k, 

by properties (3.3) and (3.6). In the subsequent discussion we assume 

(3.7) i x < i k if k > 2 

without loss of generality. We now prove (a) and (b) by induction on t. 
(I) Immediately after scanning wl e W: Condition (a) for wl is obvious from (3.6) 

with t = 1. To prove (b), take a path P~ ~ E* as discussed above for j with 
2 < j  < i + 1. By (3.7), the nodes in P1 are written as x, w a, y. Also by Lemma 
2.4(b), there exist an x-wx  path P1 _ E* and a w l - y  path P'~ _ E*. From condition 
(a), whose validity with t = 1 was already shown, these P~ and P'x are node-disjoint 
except at w l (otherwise there is a path from X to Yin E* not passing w0. However, 
these Pj, Px, and P'~ form a contradiction to Lemma 3.1, proving condition (b) 
for wx. 

(II) Immediately after scanning wt ~ W (t > 2): By induction hypothesis, condi- 
tion (b) holds for wt_ 1- That is, 
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(3.8) at the time of having scanned wt-  1, E* with (t - 1) + 1 < j < i + 1 
contains no path connecting a node in X to a node in Y. 

Assume, after scanning wt, that there is a path Pj _ E* with t < j < i + 1 that 
connects some x ~ X and y e Y. Assume (3.5) and (3.7) for this Pj. By (3.8), we can 
assume i k = t (i.e., condition (a) for wt is shown). Now assume tha t j  further satisfies 
t + 1 < j  (_<i + 1) (i.e., this P1 does not satisfy (b)). By Lemma 2.4, there exist an 
x-wt  path P t  ~ E* and a wt-y  path P'~ _ E*. These Pt and P't are node-disjoint 
except at wt by the above condition (a) for w~. However, such P j, Pt, P't form a 
contradiction to Lemma 3.1, and prove condition (b) for w z. [] 

PROOF OF THEOREM 3.1. We prove (3.1) by induction on i. Validity for i = 1 is 
obvious. Assuming that some x, y r V and i satisfy x(x, y; Gi) > min{x(x, y; G), i} 
and x ( x , y ; G ~ + l ) < m i n { x ( x , y ; G ) , i +  1}, we derive a contradiction. The as- 
sumption implies to(x, y; G) > i + 1 (then i + 1 < I Vl - 1) and to(x, y; G~) = 
t c ( x , y ; G i + l ) = i .  Note that x and y are not adjacent in G~+~ because 
x(x, y; G~+ 2) = i < I VI - 1. x(x, y; G~+ ~) = i implies that x and y are disconnected 
in G~+~ - Wfor  some node cut set W ~  V -  { x , y }  satisfying IWI = i. Let X be 
the component containing x in G~+ 1 - IV, and let Ydenote the rest of components. 
This is illustrated in Figure 6. By x(x, y; G) > i + 1, 

E "  = E l +  2 u E/+ 3 u "'" L) EIE I 

contains an edge e = (u, v)~ E, for some u ~ X, v ~ Y, and h > i +  2. Thus, by 
Lemma 2.4, there is a path Pi+l -~ E~+I connecting u and v. This P~+x must pass 

I 

1 t 
1 r 

e 

Fig. 6. Connected components in G - E"  - -  IV. o.. ................ o ,  edges in E". 
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through a node w in W by definition of W. However, by Lemma 3.2(b), for w~, we 
see that there is no such path P,+ 1 - E*+ t after scanning all nodes in W. Hence 
there is no such P~+ 1 --- E~+~ since all edges incident to nodes in W have already 
been scanned at the time of scanning w v This is a contradiction and proves 
Theorem 3.1. [] 

4. Concluding Remarks. A linear-time algorithm for finding a sparse k-connected 
spanning subgraph for a given k-connected graph is developed in this paper. This 
is very useful in improving the time complexity of some algorithms for solving 
other graph problems, by preprocessing the given graph by FOREST. For 
example, an O(max{k21VI t/2, kl VI}lEI)-time algorithm [2] for testing whether 
x(G) > k can be improved to O(max{k21 V[1/2, . k[ Vl}kl VI) = O(max{k3l V[ 3/2, 
k21V12}). This is an improvement since O(klVI)< O(IEI) can be assumed, as 
klVI/2 > IEI trivially implies x(G)< k. To attain this, the spanning subgraph 
Gk = (V, E1 w E 2 u ... u Ek) is first computed by applying FOREST to G = (V, E). 
This requires 0(I VI + IEI) time, and Gk = (V, E') satisfies 2(Gk) = min{2(G), k} and 
IE'I = O(klVl). Then X(Gk) > k (x(G) > k) can be checked in O(max{k2lV[ l/z, 
kIVI}IE'[) = O(max{k31VI 3/e, kelV[2}) time by the algorithm in I-2]. The total 
time is O(J VI + [El + max{k3[VI 3/2, k2lVl2}) = O(max{k3lVI 3/2, k 2 1 V I 2 } )  �9 

Based on this time complexity for testing x(G) > k and Matula's careful binary 
search [4], the current best bound O(max{x(G)Zl V I ]EI, ~:(G) I V II/21EI}) to com- 
pute x(G) can be reduced to O(max{x(G)3lVI 3/2, x(G)2IV[2}). For this, we check 
x(G) > k for each k = 2, 22, 23 . . . .  in order to find the integer i satisfying 
2i< x(G)< 2 i+1. Since the algorithm [2] for testing ~:(G)>_ k provides x(G) if 
x(G) < k, x(G) is obtained when such i is found. The total time is 

O(max{23 [ V I 3/2, 221 V[2}) + O(max{(22)31 V I 3/2, (22)21 V[2}) 

+ . - -  + O(max{(2i+ 1)31VI 3/2, (2 i+ 1)21V[2}) 
= O(max{I VI a/2" 8(8 i+a - 1)/(8 - 1), I VI 2 .4(4 i+1 - 1)/(4 - 1)}) 
= O(max{~c3(G)l gr 3/2, x2(G)[ g12}). 

Based on the fact that the spanning subgraph Gi = (V, E 1 w E 2 k.)""k.J E~) 
obtained by FOREST preserves the local edge- and node-connectivities up to i, 
we can improve the complexity for computing the number 2st (~:,t) of edge (node) 
disjoint paths between specified nodes s and t in G. (Clearly; by Menger's theorem, 
),st = 2(s, t; G) and 

= ~x(s, t; G) 
x , ,  I x ( s ,  t; G - {(s, t)}) + 1 

ifs and t are not adjacent, 

ifs and t are adjacent, 

where G is assumed to be simple.) For example, the algorithms in [1-1 determine 
whether 2s, > k in O(min{k, 11/12/3} IEI) time if G is simple, and in O(min{lV[, k, 
IEI x/2} [El) time ifG is multiple, and xst >_ k in O(min{k, I VI lz2 } IE[). By preprocess- 
ing G by FOREST, if k([ V [ -  1 )<  [E l, these can be improved to O(min{k21VI, 
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klVISia}), O ( m i n { k l V ]  2, k21VI, k3/21Vla/2}), and O(min{k21VI ,  klVla/Z}),  respec- 
tively. Based on these improved bounds and the above binary search, 2st can be 
computed  in O(IE[ + min{2~tlVI, 2stlVIS/a}) time for a simple graph and in 
O(IEI + min{2,,I VI z, 2~1V[, 2~3,/21VI3/2}) t ime for a multiple graph, and x~t can be 
found in O(IEI + min{x2l VI, x~t[ V13/2}) time. 

Recently, further useful properties of F O R E S T  have been studied [5, Theorem 
2.2], [6], [7]. For  example, [6] contains O([EI + min{2(G)lV[ 2, pIVI  + IVl 2 
log[ V I }) and 0([ V I I EI + I V I 2 log l V I)-time algori thms for determining the edge- 
connectivity of given multiple and capacitated graphs, respectively, where p ( < ]El) 
is the number  of pairs of nodes between which the multiple graph has an edge. 
These algori thms may provide new insight into connectivity problems as they do 
not  rely on max-flow algorithms, different from the algorithms previously known. 
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Appendix. Proof of Lemma 3.1. Assume that  Pi and P'i are node-disjoint except 
at w. Denote  the nodes in Pi (P'~) by w, Vl, v2 . . . . .  Vh = X (W, V'I, V~ . . . . .  V~, = y). Pj  
is given by (3.2). First, the case of k = 1 is considered (Figure 4(a)). Since G has 
no multiple edge, h > 2 and h' > 2. Since indeg(w) < 1 in (1/,/~*), as discussed in 
Section 2, w --* y is assumed without  loss of generality. If w ~ v'i, then w --* v'~ 
v~--* . . . -*  v~,(=y) holds, since indeg(v'a)< 1 in /~*  for any V'a. This implies that  
nodes v'l, v~ . . . . .  v~,_ 1, Y are all unscanned when w is scanned. Note  that  r(y) < i 
holds when (v~,_ 1, Y) is added to E* by scanning v~,_ 1. However,  edge (w, y) has 
been scanned at the time of scanning w, and (w, y) ~ E* means that  r(y) >_ j > i 
was satisfied after scanning w. This is a contradict ion.  Therefore, we assume v'l ~ w. 
By a similar argument,  v'l --* w ~ v i  --* v2 ~ " " ~ vh( = x) follows from v] --. w. Since 
w ~ x leads to a contradict ion in the same manner  as above, x ~ w is concluded. 
However,  this creates a directed cycle in /Sj and /~, again a contradict ion to 
die  [ : (1,1,/~1 u E 2 u . . .  u/~IEI) is acyclic. 

Now consider the case of k > 2 (Figure 4(b)). w e  have w ~ y by indeg(w) < 1 
in (V,/~*). Since w ~ v'l is not  possible for the same reason as the case of k = 1, 
we have v'l ~ w ~ vl--* v2--*"" ~ vh(=x). F r o m  this, we see that  w is scanned 
before Vh-1" TO avoid a directed cycle, ul --* x is concluded. Clearly, (Vh-1, X)~  E* 
implies that  r(x) < i when (vh- 1, x) is added to E*,  i.e., vh_ 1 is scanned before 
scanning u 1. This contradicts  the fact that  u 1 has been scanned before w. [ ]  
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