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Forests, Frames, and Games: 
Algorithms for Matroid Sums and Applications I 
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Abstract. This paper presents improved algorithms for matroid-partitioning problems, such as finding 
a maximum cardinality set of edges of a graph that can be partitioned into k forests, and finding as 
many disjoint spanning trees as possible. The notion of a clump in a matroid sum is introduced, and 
efficient algorithms for dumps are presented. Applications of these algorithms are given to problems 
arising in the study of the structural rigidity of graphs, the Shannon switching game, and others. 
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1. Introduction. Matroid theory provides a unifying framework for many diverse 
areas of combinatorics. The matroid sum has been called one of the most successful 
notions in matroid theory [A, p. 294]. In large part this is due to the theorems of 
Edmonds on covering and packing, and Edmonds' matroid-partitioning algo- 
rithm [El], [E2]. 

This paper investigates matroid-partitioning algorithms, both on the general 
matroid level and for specific matroids. Our general matroid algorithm in- 
corporates several ideas that should make it more efficient than Edmonds' 
algorithm (and other partitioning algorithms) on any specific matroid. We support 
this claim by applying the algorithm to a number of matroids, the most important 
being graphic matroids. Our main results for specific matroids are summarized in 
Table 1. (The expressions in Table 1 are asymptotic, e.g., m represents O(m).) Before 
explaining the table we introduce some notation and terminology. 

All of the specific matroids in this paper are derived from undirected graphs. 
The given graph is denoted G = (V, E). We use several parameters for the size of 
G. As usual n and m denote the number of vertices and edges, respectively. In 
problems involving the parameter k (which indicates the size of the desired 
solution) it is convenient to define 

n' = min{n, 2re~k}, m' = m + n' log n'. 
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Table 1. Main results (notation: n' = rain{n, 2re~k}, m' = m + n' log n'). 

Problem Previous bounds New bounds 

k-forests k 3 / 2 n ~ ,  if m _< n log n k3/2n'x/~ 
k3/2mx/n, otherwise [GS] k(n') 2 log k 
(kn) 2 [I], [RT] 

weighted k-forest O((kn) 2 + m log m) [RT] O(k(n') 2 log k + m log m) 
cov(~9) m z [I1 [RT] m(mm' log n) 1/3, if m < n 3/2 log n 

mn log n, otherwise 
mx/(mm'/n ) log(re~n) 
mn log(m/n) 

n 2 

nx/~ 7, preprocessing time 
n, query time 

pack(g) m 2 [RT] 

Top clump 
Degrees of freedom 
Shannon switching game 

mn [I] 

(If a problem is not stated in terms of k yet our time bound involves n' or m', 
there is no harm in assuming n' -- n, but the text gives a better choice.) 

A matroid consists of a finite set S and a family of subsets of S, called independent  

sets. The independent sets are closed under taking subsets, and they satisfy an 
enlargement axiom: For  any independent sets I and J with [I] < [J[, I can be 
enlarged to a bigger independent set by adding some element of J - I. A base of 
a matroid is a maximum cardinality independent set. For  example, the graphic 
matroid of a graph G, denoted fq(G) (or fr when the graph is obvious), has elements 
the edges of G, independent sets the forests of G, and bases the spanning trees if 
G is connected else the spanning forests. For  matroids Mi, i - -  1 . . . . .  k, on the 
same set S, the matroid  sum Vk= 1 M i  is a matroid M on S, whose independent 
sets are all sets I _ S that can be partitioned into disjoint subsets I~, i = 1, . . . ,  k, 
with I i independent in M i. For  such I and corresponding Ii, we say I = L)k= 1 Ii 
is a part i t ioned independent  set  of M. (An independent set can have more than one 
valid partition.) A part i t ioned base of M is defined similarly. An important special 
case is when all summands are identical--the k-fold sum of a matroid N, denoted 
N k, is ~/~= 1 N. As an example, an independent set in if(G) v (r is a subgraph 
that can be partitioned into two forests. Figure l(a) shows a graph used as an 
example throughout this paper; Figure l(b) gives a partitioned base of the two-fold 
graphic sum, where the two forests consist of the solid edges and the dotted edges, 
respectively. The matroid-pari t i t ioning problem is to find a partitioned base B of 
Vk= 1 Mi for given matroids M i. 

The first entry in Table 1 is for the k- forest  problem: Given a graph G and an 
integer k, find k edge-disjoint forests collectively containing as many edges as 
possible. (Equivalently this is the matroid-partitioning problem of the k-fold sum 
of a graphic matroid.) This problem has many applications: In the analysis of 
electrical networks, the solution for k = 2 (called ex t remal  trees [KK])  is central 
to hybrid analysis (it gives the minimum fundamental equations of the network 
[OIW], [IF]). The k-forest problem also arises in the study of rigidity of structures. 
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Fig. 1. (a) Example  graph.  (b) Par t i t ioned base  of f# v f#. 

For k = 2 it determines if a graph is rigid as a bar-and-joint framework on the 
surface of a cylinder in three-dimensional space R 3 [Wh]. For k = d(d + 1)/2 it 
determines if a graph is rigid as a bar-and-body framework [Tay] and also as a 
body-and-hinge framework [Wh] in R e. For aribitrary k it determines rigidity of 
bar-and-joint frameworks on the fiat torus in R k [Wh] and also rigidity of k-frames 
[WW]. 

We give two k-forest algorithms. The first, giving the first line of Table 1, applies 
our general matroid algorithm. It improves the previous algorithms over all ranges 
of parameters. The second k-forest algorithm has better dependence on k than the 
first. (A third algorithm gives a minor improvement.) To explain the second 
algorithm we introduce another matroid on graphs. 

The bicircular matroid of a graph G, denoted N(G) (N, when the graph is 
understood), was studied in [M]. It is related to the graphic matroid but seems 
to have simpler structure (see, e.g., [GT2]). A set is independent in the bicircular 
matroid if it is a pseudoforest, i.e., each connected component has at most one 
cycle. The k-pseudoforest problem is the analog of the k-forest problem. This 
problem arises in the theory of structural rigidity; e.g., for k = 2 it determines the 
rigidity of bar-and-joint frameworks on the surface of a regular tetrahedron [Wh]. 
The mixed-forest problem is to find a maximum cardinality set of edges that can be 
partitioned into f forests and p pseudoforests, along with its partition, i.e., a 
partitioned base of f#s v NP. This problem determines the rigidity of bar-and-joint 
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frameworks on the surface of a three-dimensional cone ( f  = p = 1); rigidity on 
higher-dimensional surfaces has been conjectured to be determined by the problem 
with higher values of f and p [Wh]. 

Our k-pseudoforest algorithm is another implementation of the general algo- 
rithm. It is faster than the k-forest algorithm because of the simpler structure of 
the bicircular matroid. Some techniques from network flow theory [ET] are used 
in the analysis. Our algorithm for the mixed-forest problem combines the two 
algorithms in a way that simplifies the computation on the more difficult graphic 
matroids. (The time bounds for these algorithms are given in Theorems 3.2 and 
3.5. We know of no previous work.) 

Our second k-forest algorithm is based on an interesting fact: k pseudoforests 
can always be converted into k + 1 forests. This observation is due to Picard and 
Queyranne [PQ] who phrased it in terms of the arboricity of a graph (defined 
below). Our second algorithm uses this observation recursively in a divide-and- 
conquer scheme. We call this the stepping-stone approach. The stepping-stone 
approach extends to weighted problems. For example it gives the table entry for 
the weighted k-forest problem, i.e., finding a maximum weight set of k edge-disjoint 
forests. 

We turn to covering and packing problems. The covering problem for a matroid 
M is to find coy(M), the smallest number of independent sets that contain all 
elements, together with the independent sets. For example cov(f~) is the arboricity 
of the graph, the fewest number of forests that contain all edges. The packing 
problem is to find pack(M), the greatest number of disjoint bases contained in S, 
along with the bases themselves. The packing problem on a graphic matroid 
gives spanning trees that can be used for fault tolerant communication (up to 
pack(f#) - 1 edge failures can be tolerated without disrupting communication [G], 
[IR]). 

We present algorithms for covering and packing on a general matroid M. The 
algorithms use a balanced binary search. This speeds up ordinary binary search, 
as follows: each probe gathers slightly less than complete information; after the 
search, postprocessing closes the knowledge gap. This technique is used in [GT3] 
for bottleneck matching. The bounds for graphic matroids improve previous work, 
as indicated in Table 1. For bicircular matroids, the "pseudoarboricity" was 
investigated in [PQ] and [GGT] (they do not use matroids). Our bound, given 
in Theorem 4.1, improves these results. We know of no previous work on packing 
bicircular matroids. 

We introduce the notion of clump in a matroid sum. This term was invented 
by Roskind and Tarjan [RT], who defined a clump in a graph algorithmically. 
We generalize their notion and use it to analyze our algorithms. We also define 
the top clump. This leads to a family of invariants of matroids (afortiori, invariants 
of a graph). It generalizes two other matroid invariants, the principal partition of 
[KK] and its generalization, the r-minors of [BW2]. We introduce another useful 
notion, the preclump (essentially a maximal set not containing a clump). 

The next problem is to find a top clump. Here are three applications: 

(i) Lov~tsz and Yemini [LY] give an algorithm to determine if a graph is 
generic independent (minimally rigid) in the plane. It involves solving n 
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2-forest problems. Using the top clump, our time bound is the time to solve 
one 2-forest problem. 

(ii) White and Whiteley [WW] define k-irreducible graphs, related to rigidity 
of bar-and-body frameworks. We can recognize a k-irreducible graph, essenti- 
ally by finding a top clump. The time is the time for one k-forest problem. 
(There does not seem to be an obvious algorithm for this problem; [WW] 
does not give an algorithm.) 

(iii) The Shannon switching game can be solved by finding a top clump and 
doing simple postprocessing, as indicated below. 

We present a related algorithm to determine the number of degrees of freedom 
of a bar-and-joint framework in the plane; in fact the algorithm can be used to 
give a complete description of the possible motions of such a framework. The 
algorithm amounts to finding a maximum cardinality generic-independent set, or, 
equivalently, finding a base of the two-dimensional rigidity matroid. (The algo- 
rithm presented here is for the rigidity matroid, but it generalizes to matroids 
defined by similar submodular functions.) 

The Shannon switching game (defined in Section 7) has been greatly studied 
(see, e.g., [Law]). We improve previous solutions in two ways. First, our solution 
to the 2-forest problem gives the best-known bound for the simple form of the 
game investigated by most researchers (e.g., [RT], [KK], and [BWl]). Second, 
we give a more general analysis of the switching game. We assume a fixed graph 
and allow the goal vertices to vary. We show that the top clump and preclumps 
determine the winner of a'switching game; furthermore, they give the trees and 
cotrees necessary to execute a winning strategy. This leads to various algorithms 
for finding the winuer of the game (classification and tree queries, defined in 

Sect ion7).Forinstance,  w e c a n f i n d t h e w i n n e r  o f e a c h o f t h e ( ~ ) p o s s i b l e  

switching games on a given graph, in time O(n z log n). This result is based on an 
algorithm that finds a decomposition of a graph into maximal preclumps. (This 
algorithm also extends to more general submodular functions and their matroids.) 

In summary, the main contributions of our work are using pseudoforest 
algorithms as: a stepping stone to tree algorithms; showing the applicability of 
balanced binary search; using top clumps and preclumps to solve rigidity problems ~ 
and the Shannon switching game. The stepping-stone approach-and the notions 
of top clump and preclump generalize to other matroids, although this is not 
discussed here. 

The remainder of this paper is organized as follows. Section 2 presents our 
general matroid-partitioning algorithm. Section 3 describes our algorithms for the 
k-forest problem and related problems. Section 4 gives algorithms for covering 
and packing problems. Section 5 discusses the top clump, giving a general 
algorithm to compute it. Section 6 solves rigidity problems for bar-and-joint and 
bar-and-body problems. Section 7 presents our analysis of the Shannon switching 
game. The rest of this section gives some notation. Readers more interested in 
applications than algorithmic techniques can skim Sections 3 and 4. 

If S is a set and e is an element, S + e denotes S w {e}, S - e denotes S - {e}. 
We use the following notation for matroid concepts; detailed definitions can be 
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found in [A], [Law], and [Wel]. Let M be a matroid on a set S, and let A be a 
set of elements of S. The rank of A in M is denoted p(A, M). I t s  span is sp(A, M). 
(Recall the definition sp(A, M) = A w {ele u C is a circuit for some C _c A}.) If A 
is independent and spans an element e, the fundamental circuit of e in A is denoted 
C(e, A, N). In all these notations we drop the last argument M when it is clear from 
context. The restriction of M to A is denoted MIA; its elements are A. The 
contraction of M by A is denoted M/A; its elements are S - A, and T c__ S - A is 
independent in M/A if T w A' is independent in M, for A' a maximal independent 
subset of A. The dual matroid of M is denoted M*; its independent sets are all 
A _c S such that sp(S - A, M) = S. A partition matroid M is given by a partition 
of S into r sets $1, . . . ,  S~ and nonnegative integers d~ . . . .  , d,; A ~_ S is independent 
i f lA c~Sq] _< d s for q = 1 . . . . .  r. 

2. Clumps and Augmenting Paths. This section sketches our algorithm for the 
matroid-partitioning problem on general matroids. The section starts by introdu- 
cing clumps, which help analyze the algorithm. Throughout  this section M denotes 
an arbitrary matroid sum M = ~/~= 1 Mi on a set S, unless stated otherwise. 

Any independent set L of M obviously satisfies [L[ < ~ =  ~ p(L, Mi). A set L is 
a clump of M if it is independent in M and the previous inequality holds with 
equality. (Figure l(b) has two clumps--the subgraphs induced by vertices 4, 6, 7, 
8 and 4 , . . . ,  8.) Equivalently, a set of elements L is a clump of M if it can be 
partitioned into sets L i, i = 1 . . . .  , k, with L i independent in Mi and L c_ sp(Li, Mi) 
for i = 1, . . . ,  k. A useful property of clumps is that L + e is dependent in M for 

k any element e ~ (]i= 1 sp(L, Mi) - L. 
The main algorithmic tool for matroid partitioning is the augmenting path, 

introduced by Edmonds [E l ]  for matroid sums. Consider a partitioned in- 
dependent set I = U~= 1 Ii of M. An augmenting path for I is a sequence of elements 
e j, j = 0, . . . ,  s, with ej ~ I precisely when j > 0, that enables eo to be added to I. 
Specifically, inserting eo into some partition set Iq creates a circuit, which is broken 
by removing e 1 from Iq; inserting e~ into a different partition set creates a circuit 
which is broken by removing e2; this pattern continues until e~ is inserted into a 
partition set and does not create a circuit. The process described above is called 
augmenting I along e 6, . . . ,  e s. The formal definition of an augmenting path is as 
follows: eo . . . . .  es is an augmenting path if and only if e~ e I precisely when j > 0; 
for all j < s, choosing q so that ej+l~Iq, I s + ej is dependent in M s and 
e~+ ~ e C(ej, Iq, Ms); for some index r, es ~ Ir and Ir + e~ is independent in Mr; lastly, 
augmenting I along eo . . . .  , e~ gives a new independent set. (Strictly speaking we 
should include the above index r in the specification of the augmenting path but 
for convenience we shall not do so.) The crucial last condition is not implied by 
the others. However, it is implied if the path has no shortcuts, i.e., there are no 
indices j, k with j + 1 < k and ek ~ C(ei, I s, Ms) (here q is the index with ek ~ Is; 
we give another proof of this well-known fact in Lemma 2.1 below). A prefix of 
an augmenting path is a partial augmenting path. If I is not a base, then an 
augmenting path exists, and can be used to enlarge the independent set as above 

[El] .  
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We use three different algorithms to find augmenting paths in a matroid sum 
M. In the first two algorithms all knowledge of M is supplied by two subroutines 
that solve the static-base circuit problem. This problem was introduced in [GS] 
for matroid intersection. A partitioned independent set Uk= 1 li is given. The 
problem is to process a sequence of intermixed operations called start and c(e, i). 
The operation c(e, i) outputs "independent" if 1~ + e is independent in M~; 
otherwise it outputs all elements in C(e, I~, M~) - e that have not been output (by 
any c operation) since the last start operation. 

The first two algorithms find one augmenting path. They are given a partitioned 
independent set I = Uk= 1 I~ and an alement e o ~ I. They either find an augmenting 
path that starts with eo or discover that none exists. The latter is called an 
unsuccessful search. 

The first algorithm is breadth-first scanning. It starts at e o and grows partial 
augmenting paths breadth-first. This is accomplished with two data structures: 
Any element that has been placed on a partial path gets labeled, and there is a 
queue Q of labeled elements to be scanned. Initially eo is labeled and in Q. The 
algorithm repeatedly removes the first element e from Q and scans it as follows: 
If e e l j  it executes c(e, i) for every index i ~ j (for eo takej  = 0); it labels all elements 
that are output and adds them to Q. The algorithm stops when an augmenting 
path is found (i.e., some c(e, i) returns "independent") or when Q becomes empty. 
The second alternative is an unsuccessful search. (In Figure l(b) if eo = 56, then 
scanning e o labels four edges, eventually all edges in the graph induced by vertices 
4 . . . . .  8 get labeled and the search is unsuccessful.) 

The last detail of breadth-first scanning concerns the initialization. Breadth-first 
scanning begins by doing a start operation, unless the previous call to breadth-first 
scanning was an unsuccessful search. In this case no start is done. 

LEMMA 2.1. Breadth-first scanning is correct. 

PROOF. Correctness amounts to two properties: If an augmenting path is found, 
augmenting I along that path gives a new partitioned independent set I + Co. If 
no augmenting path is found, then I + eo is dependent in M. 

To prove the first assertion it is obvious that the algorithm finds paths that 
satisfy all conditions of the definition of augmenting path except possibly the last; 
in addition the paths have no shortcuts. (The last property follows since the search 
is breadth-first. It holds even if there have been unsuccessful searches since the 
last start operation.) Call a path with these properties an "a-path." An easy 
induction shows that augmenting along an a-path e o . . . . .  e s gives a partitioned 
independent set: This is obvious if s = 0. Suppose s > 0. Then eo . . . . .  es-1 is an 
a-path for I - e~ (because the original path has no shortcuts). Now complete the 
augment by inserting e s into the appropriate set I,  (only the last insertion of an 
augmenting path changes a span sp(li, Mi)). 

To prove the second assertion, for j = 1 . . . . .  k, define Lj ~_ l j  to contain all 
elements that were output by operations c(-, j) since the last start operation. The 
rule for scanning an element implies that Li ~ sp(Lj, M j) for 1 < i, j < k. (This 
holds even if there have been unsuccessful searches since the last start operation.) 
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Thus the set of labeled elements L = U~= 1 L~ is a clump of M. If the unsuccessful 
search started with eo, clearly, e o 6 ~ =  1 sp(L, M i ) - L ,  whence L + e o is de- 
pendent in M. []  

Omitting start operations after unsuccessful searches makes the algorithm 
effficient--in fact we say "unsuccessful searches are free." To make this claim precise 
we first state two assumptions that hold for all applications of this paper. First, 
the time bound for a successful search allows time for every element to be labeled. 
(This assumption can fail only in circumstances where we can guarantee that many 
elements will not be labeled, which is not usually the case.) Second, the input has 
size ~2(mk). This assumption holds because we use breadth-first scanning only when 
the k given matroids on S are distinct. 

Now we show why unsuccessful searches are free. Consider ~ consecutive 
unsuccessful searches that are followed by a successful search. (If the last ~ searches 
of the algorithm are unsuccessful, invent a fictitious successful search to follow 
them.) The worst-case time bound for these g + 1 searches is O(6k) plus the 
worst-case time bound for one successful search. (The term O(6k) accounts for the 
fact that search from eo starts with k -  1 calls C(eo,j). The time bound for a 
successful search accounts for the time to label all elements, in all 6 + 1 searches, 
by our first assumption.) The terms O(6k), summed over all unsuccessful searches, 
amount to O(mk) (there is at most one unsuccessful search per element). This is 
no more than the size of the input, by our second assumption. Thus we have 
shown that the unsuccessful searches are not significant in the asymptotic time 
bound for the algorithm. In other words, unsuccessful searches are free. (This holds 
even under more relaxed assumptions than those above. For  instance the overhead 
of O(mk) can often be decreased to O(m) if, as with graphic matroids, we can test 
if an element is in the span of a clump in O(1) time. Since this is not needed for 

t h i s  paper we omit details.) 
The labels used by breadth-first scanning indicate how to carry out the augmen- 

tation of the independent set. Specifically, the label of an element f output by the 
operation c(e, i) is the pair (e,/). To augment along the path ej, j = 0 . . . . .  s, if ej+ 1 
has label (ej, i), then ej is moved into partition set I i (replacing e~+ 1). Note that 
the routine calling breadth-first scanning performs the augment operation. 

Breadth-first scanning gets less efficient as k, the number of matroids in the sum, 
gets larger (since it takes (k - 1) c operations to scan an element e). Our second 
algorithm to find an augmenting path avoids this inefficiency. It is cyclic scanning, 
introduced in [RT] for graphic matroids. Cyclic scanning is applicable to k-fold 
sums but not general matroid sums. Cyclic scanning is similar to breadth-first 
scanning except it calls c fewer times. Specifically to scan a labeled element e ~ I t, 
it only calls c(e,j + 1). (When discussing cyclic scanning we make the convention 
that k + 1 = 1. Hence when e ~ I k we call c(e, 1). Also to scan the initial element 
e o r  call c(e, 1).) Cyclic scanning, like breadth-first scanning, omits the start 
operation if the previous search was unsuccessful. 

LEMMA 2.2. Cyclic scanning on a k-fold sum is correct. 

PROOF. The argument is similar to breadth-first scanning (Lemma 2.1). To show 
that any augmenting path P found by cyclic spanning is valid, note that P has no 
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"cyclic shortcuts," i.e., indices j, k withj  + 1 < k and e k r C(ej, Ij+ 1). (We omit the 
third argument from C, since all component matroids of a k-fold sum are identical.) 
The rest of the argument is unchanged. 

Now we analyze unsuccessful searches. Define Lj ~_ lj as in Lemma 2.1. 
The cyclic scanning rule implies that L i ~_ sp(L~ + 1). This implies L~ ~_ sp(Lj) for 
all 1 <_ i, j _ k. (This conclusion holds because all matroids in the sum are identi- 
cal. It fails in a general matroid sum.) The rest of the argument is the same as 
Lemma 2.1. [] 

As in breadth-first scanning, unsuccessful searches are free. (Here the total 
overhead for unsuccessful searches is O(m), again the same bound as the input.) 
Also as in breadth-first scanning augments are performed by the calling routine. 

The third augmenting-path algorithm batch finds more than one augmenting 
path. This algorithm is the matroid-intersection algorithm of [GS], adapted for 
matroid sums. It uses the approach of Dinic [D] for network flow: At any point 
in the algorithm let 1 denote the length of a shortest augmenting path. The 
algorithm finds batches of disjoint augmenting paths, where each path in a batch 
has length l, and the batch is maximal. Unlike network flow, the paths in a batch 
must be augmented in the correct order. The batch algorithm augments the 
independent set for each path it finds (this contrasts with the first two algorithms, 
which do not augment). The batch routine works using the static-base circuit 
problem, and also the dynamic-base circuit problem [GS]. The inner workings of 
batch are unimportant here. (A lengthy discussion would carry us too far afield. 
For details see [GS] and [Wes].) We need only two properties, analogous to the 
cardinality matching algorithm of Hopcroft and Karp [HK]:  First after a call to 
batch, the length of a shortest path l increases. Second, let A denote the number 
of paths that remain to be found. Equivalently the current independent set has 
p(S, M) -- A elements. Then 

(1) At < p(S, M). 

We now state our algorithm to find a base of a matroid sum. It starts by calling 
batch some number of times l (from now on I has this meaning). After the lth call 
at most p(S, M)/l paths remain to be found, by the above two properties of batch. 
These paths are found one at a time, using breadth-first scanning if the component 
matroids are different and cyclic scanning if they are the same. The running time 
depends on l; we choose 1 to balance the time for the two parts of the algorithm. 

3. Matroid-Partitioning Algorithms. This section presents our algorithms for the 
k-forest, k-pseudoforest, and mixed-forest problems. It concludes with our algo- 
rithm for the weighted k-forest problem. 

For all problems in this section we do the following preprocessing and post- 
processing: Delete all vertices from the graph tha t  have degree at most k (for the 
mixed-forest problem k = f + p); solve the problem for this smaller graph; add 
the edges incident to each deleted vertex to the solution, at most one per forest 
or pseudoforest. Clearly, the preprocessing and postprocessing uses linear time. 
The smaller graph has at most n' = min{n, 2m/k} vertices. Hence assume that in 
each of our algorithms, the number of vertices is n'. 
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The following result is due to ERT]. 

LEMMA 3.1. Cyclic scanning uses O(kn') time and space on matroid ~k. 

PROOF. The operation c(e, i) of the static-base circuit problem is performed as 
follows. Let the current partitioned independent set be yk= 1 Ii, where each I / i s  
a forest. At the start of the search, root every tree in each Ii. Let e = uv. If u and 
v are not in the same tree of I/, answer "independent." Otherwise output the edges 
of C(e, I~) that have not been output yet. Cycle C(e, Ii) consists of the paths from 
u and v to their nearest common ancestor. 

The following data structure is used to implement the algorithm. Consider a 
forest I/. To decide if two vertices are in the same tree assign a tree number to 
each vertex. To find the paths to the nearest common ancestor assign a preorder 
number and parent pointer to each vertex. (Recall that an ancestor of a vertex 
has a lower preorder number.) To avoid outputting an edge more than once do 
set merging on the vertices (the ends of an edge that has been output are in the 
same set). In addition, each vertex has a pointer from its information in I~ to that 
for 1/+1. 

Rooting the trees, assigning tree numbers, preorder numbers, and parent 
pointers uses O(kn') time. Since the trees are initially given, the linear-time, 
static-tree set-merging algorithm of [GT1] can be used. Thus start (which in- 
itializes the data structure for the static-base circuit routines of all k copies of fr 
uses O(kn') time and space, and c(e, i) uses 0(1) (amortized) time per call and edge 
output. []  

THEOREM 3.1. The k-forest problem can be solved in the first of the two time bounds 
of Table 1 and O(m) space. 

PROOF. Use the algorithm of Section 2 to solve the matroid-partitioning problem 
for ~k: Execute batch l times, obtaining a partial solution I. Then for each edge 
e not in I do cyclic scannin9, and add e to I if the search is successful. 

To estimate the resources note that  batch is executed once in O(km') time and 
O(m) space. (The data structure is a simple application of dynamic trees; see [GS] 
and [Wes].) By Lemma 3.1 cyclic scanning uses O(kn') time and space. These 
observations give the desired space bound. They also imply that the total time is 
O(km'l + (kn'/1)kn'). (The second term is the total time for cyclic scanning, since 

unsuccessful searches are free and by inequality (1).) Now choose l = n'v/-s [] 

LEMMA 3.2. ~k is a matroid sum of partition matroids. 

PROOF (see also [M] and [A]). For  each vertex v define M v to be a partition 
matroid with two sets in the partition. One set contains all edges incident to v; 
an independent set can contain up to k of its edges. The other set contains all 
edges not incident to v; an independent set cannot contain any of its edges. We 
show that 9~ k = Vv~v My. 
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First assume k = 1. A set I is independent in CA if and only if each of its connected 
components contains at most one cycle. The latter holds if and only if the edges 
of I can be directed so each vertex v has at most one outgoing edge. This implies 
the desired equality, since we can associate v's outgoing edge with M v. This 
argument easily generalizes to arbitrary k. [] 

Using the lemma it is simple to show that breadth-first scanning can be 
implemented in time and space O(kn'). (The main observation is that if the 
independent set I has partition set Iv in My and e is an edge incident to v, then 
I lvl < k implies I v + e is independent and l Iv] = k implies C(e, Iv, My) = Iv.) We 
wish to show the same bound for one execution of batch. For this and other 
properties of ~k it is convenient to switch to a graph model. The lemma shows 
that an independent set of ~k can be viewed as a degree-constrained subgraph 
[Law] as follows. Let G = (V, E) be the given graph. Let B be a bipartite graph 
with vertices V u E and edges re, where v is an end of e in G. For  vertex x of B 
set u(x) equal to k if x ~ V and 1 if x ~ E. A degree-constrained subgraph of B is 
a subgraph where each x has degree at most u(x). The proof of the lemma shows 
that a set is independent in ~k if and only if it is a degree-constrained subgraph 
of B. Furthermore, it is simple to construct the partitioned independent set for a 
given degree-constrained subgraph. So we can work with degree-constrained 
subgraphs of B. 

Now we sketch how batch can be implemented in O(kn') time and space. Let D 
be the current degree-constrained subgraph. The idea is to do O(1) work for each 
edge of D. Define 

F = {x Ix is a vertex of B on fewer than u(x) edges of D}. 

We search for augmenting paths by starting from the vertices of F n V. (batch 
searches for shortest augmenting paths, so it starts the search from all possible 
vertices on one side of the bipartite graph B. Clearly, starting from the vertices of 
F n E uses too much time.) We always stop a search as soon as the first edge 
completing an augmenting path is found. Careful programming achieves this rule. 
The rule allows all work to be charged to the edges of D, giving the desired time 
bound. (This procedure can be interpreted in terms of the matroid representation 
of Lemma 3.2--it amounts to finding augmenting paths in reverse order. This 
approach is discussed further in Section 5.) 

THEOREM 3.2. The k-pseudoforest problem can be solved in time 

O(m + min{(kn') a/2, k(n')5/3}). 

The space bound is O(m). 

PROOF. Use the algorithm of Section 2 to solve the matroid-partitioning problem 
for ~k: Execute batch l times, obtaining a partial solution I. Then, for each edge 
e not in I, do breadth-first scanning, and add e to I if the search is successful. 
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To analyze the time, recall that batch and breadth-first scanning each use O(kn') 
time and space. Let A denote the number of edges 1 is short of a base. Since 
unsuccessful searches of breadth-first scanning are free the total time is O(kn'(l + A)). 
A can be bound using inequality (1) or, as we will show, 

(2) A <_ (2n'/l)t 

In either case choose I = A. This gives the desired time bound. 
Inequality (2) is derived using the ideas of [ET]. We sketch the argument. 

Consider the current degree-constrained subgraph D of bipartite graph B. Let n i 
denote the number of vertices of V whose shortest alternating path from some 
vertex of F ~ V contains i edges of D. Since D has A edge-disjoint augmenting 

paths, it is easy to see that nini+ i > A. This implies (l/2)x//A < n', which gives (2). [] 

Our second k-forest algorithm is based on an observation that follows from 
[PQ]: A set of edges that can be partitioned into k pseudoforests can be partitioned 
into k + 1 forests. This can be proved as in [PQ] using Nash-Williams' formula 
for the arboricity of a graph [N]; alternatively it is easily derived using clumps 
[Wes]. We call this the stepping-stone observation, for reasons apparent from the 
algorithm: 

Pseudoforest Step. Solve the k-pseudoforest problem. 

Convert Step. Convert the k pseudoforests into k + 1 forests. Initialize F to 
contain all but one of these k + 1 forests. 

Complete Step. Insert as many edges of G - F into F as possible, keeping F a set 
of k forests. 

Correctness follows from the stepping-stone observation. Now we give further 
implementation details. 

The Convert Step is done by the following divide-and-conquer scheme: The 
case k = 1 is trivial,, so suppose k > 1. Divide the k pseudoforests into halves 
(containing rk/2] and hk/2_] pseudoforests). Recursively convert both halves into 
forests. This gives k + 2 forests total. Pick any one of these forests, and insert its 
edges into the remaining k + 1 forests. Do this using cyclic scanning. 

The Complete Step is done using cyclic scanning as well. 
To analyze the time, first observe that the timing function T for the Convert 

Step obeys the recurrence, 

T(k) = T(hk/2J) + T(Fk/2]) + k(n')2; 

T(1) = n'. 

This follows from Lemma 3.1 and the fact that a forest has at most n' - 1 edges. 
Hence the Convert Step uses O(k(n') 2 log k) time. 
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The Pseudoforest Step uses time O(m 4- (kn') 3/2) by Theorem 3.2. Clearly, the 
largest k-pseudoforest has at least as many edges as the largest k-forest. Thus the 
Complete Step adds at most n ' -  1 edges to F. Since unsuccessful searches are 
free and by Lemma 3.1, the Complete Step uses time O(k(n')2). The time for the 
Convert Step clearly dominates. 

THEOREM 3.3. The k-forest problem can be solved in the second of the two bounds 
of Table 1 and O(m) space. 

Our third k-forest algorithm also uses the stepping-stone observation. First solve 
the k-pseudoforest problem. Then solve the k-forest problem for the graph whose 
edges are the k pseudoforests just found. Finally add as many edges of G as possible 
to the k-forest just found. 

Using Theorem 3.1, the time to find the first k-forest is O(k3/2n'x/kn' + n' log n). 
The rest of the analysis follows the previous algorithm. 

THEOREM 3.4. The k-forest problem can be solved in time 

O((kn') a/2 + k3/2n'x/kn ' + n' log n + k(n') 2) 

and O(m) space. 

For k, n, and m in a small region, this bound becomes O(k(n')2). This is superior 
to the other two bounds in this region. 

We turn to the mixed-forest problem. We are given a graph with integers f and 
p, and we seek a maximum cardinality set of edges partitioned into f forests and 
p pseudoforests. Recall that we preprocess the graph so its has only n' vertices. 

THEOREM 3.5. The mixed-forest problem can be solved in O((f + p )n ' x /~ )  time 
and O(m) space. 

PROOF. The task is to solve the matroid partitioning problem for M = (ql v ~P. 
The overall approach is to use the algorithm of Section 2 on M, treating it as the 
sum of f + p matroids: First execute batch 1 times, obtaining a partial solution I. 
Then enlarge I to the desired solution by finding augmenting paths one at a time. 

The batch routine for M is implemented as in Theorems 3.1 and 3.2. To find 
single augmenting paths we treat M as the sum of two matroids (r and ~P, and 
use breadth-first scanning. To implement breadth-first scanning we must solve the 
static-base circuit problem in each matroid. In (~r we find fundamental circuits 
using cyclic scanning. In ~P we find fundamental circuits using breadth-first 
scanning. 

Now we estimate the time for this algorithm. The time to find a single 
augmenting path is O((f + p)n'). (Lemma 3.1 shows cyclic scanning on ~ f  uses 
time and space O(fn'); the discussion after Lemma 3.2 shows breadth-first scanning 
on ~P uses time and space O(pn').) By the proofs of Theorems 3.1 and 3.2 algorithm 
batch runs in O(fm') time. (The time on all graphic matroids is O(fm'). The time 
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on all bicircular matroids is clearly linear in the total number of edges, O(m).) 
Choosing 1 to balance the times gives the desired bound. []  

This result is best for small values of f and p, for example, the rigidity 
applications mentioned in Section 1. We can use the stepping-stone approach to 
get more efficient algorithms for large values. Details are in [Wes]. 

The stepping-stone approach can be used to solve weighted problems. To 
illustrate, consider the weighted k-forest problem: this problem is to find a 
maximum weight base of ~k. Equivalently we are given an integer k > 1 and a 
graph G, where each edge e has a real-valued weight w(e). The weight of a set of 
edges is the sum of the weights of all its edges. The problem is to find k edge-disjoint 
forests with the largest total weight possible. We start with a relation between 
maximum weight bases of graphic and bicircular sums. 

LEMMA 3.3. A maximum weight base of  ~ k- 1 can be enlarged to a maximum weight 
base of ~k. 

PROOF. Let B be a maximum weight base of Mk-1. Choose T as a maximum 
weight base of ffk containing as many edges of B as possible. The argument is by 
contradiction: Assume there is an element e 6 B -- T. Let B' consist of the elements 
of B - e having weight at least w(e). We will show that e ~ sp(B', ~ k -  1), contradict- 
ing the independence of B. 

Consider the fundamental circuit C = C(e, T, f~k). Observe that C -  e _  
sp(B t, ~k-  1). To see this consider any element f ~ C - e. The choice of T implies 
that either w(f) > w(e), or w(f) = w(e) and f ~ B. In either case, f ~ sp(B', ~ k -  1) 
(for the first case, observe that the maximality of B implies B' spans all elements 
of weight larger than w(e)). 

Because of the observation, to complete the argument we need only find a set 
D _ C - e with e ~ sp(D, ~ k -  1). The definition of circuit implies that C - e consists 
of k trees, each spanning the same set of vertices W. Clearly, I WI > k, since the 
trees contain k(I W I -  1) edges. So we can dismantle one tree, placing one of its 
edges in each of the remaining k - 1 trees, to get a (k - 1) pseudoforest D spanning 
IV.. Clearly, D spans e, as desired. [] 

The algorithm to find a maximum weight base of ~k works as follows. Find a 
maximum weight base B of ~k -  1. Convert B to a k-forest (use the Convert Step 
of Theorem 3.3). Then run the greedy algorithm to enlarge B to a base of fgk. (The 
greedy algorithm attempts to add each edge of G - B to B, processing edges in 
nonincreasing order of weight.) 

Now we analyze the time. The main observation is that at most n edges need 
be added to B to get the desired base. This follows since a base of ~k-1  has at 
most n -- k fewer edges than a base of ffk. 

The Convert Step takes time O(k(n') 2 log k). The greedy algorithm takes time 
O(m log m) to sort the edges, plus O(k(n') 2) time to enlarge B to a base. Now we 
show that the time for the Convert Step dominates. We find B using the algorithm 
of [GT4] for finding a maximum weight, maximum cardinality degree-constrained 
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subgraph of a bipartite graph. When executed on a bipartite graph with bipartition 
Vo, Vt, where each vertex of 1/1 has degree 0(1), and the weights are integers of 
magnitude at most N, this algorithm runs in time 0(n2/3# log(nN)); here n is the 
number of vertices and # is the number of edges in the desired subgraph. Since 
~k-1 is a matroid, we can replace the given weights by integers between 1 and 
m, so N = m. Hence the time to find B is O(k(n') 5/3 log n). 

THEOREM 3.6. The weighted k-forest problem can be solved in the bound of Table 
1 and O(m) space. 

4. Covering and Packing. This section gives algorithms for the covering and 
packing problems for an arbitrary matroid M. Applying the algorithms to graphic 
and bicircular matroids gives improved time bounds. The algorithms use the 
balanced binary search technique of [GT3]. 

A balanced binary search works in two steps. The Search Step finds a "good" 
value close to the desired optimum. The Postprocessing Step finds the exact 
optimum. 

We start with an algorithm for the covering problem on an arbitrary matroid. 
To define "good," let A be a parameter. (The value of A is determined by the 
specific matroid, using efficiency considerations.) The covering problem seeks the 
smallest value k such that S is independent in M k. Call the value k 9ood if there 
is a set I that is independent in M k and has ]I I > ]S[ - A. The Search Step finds 
a good value k, with corresponding set I, such that k <_ coy(M); the Postprocessing 
Step adds elements to I, possibly increasing k, until all elements are in I and coy(M) 
has been found. The details are as follows. 

The Search Step is a binary search organized in probes. It maintains an interval 
[l, h] that contains the desired value k. The value h is always a good value; l is 
always a value less than coy(M). (Clearly, when h = l + 1 the desired value k = h 
has been found.) To probe the midpoint k of the current interval, execute batch 
]SI/A times. If the final independent set I found by batch has at least ]SL - A 
elements, then k is good, with corresponding set I. Hence assign h the value k. In 
the remaining case, iII < ISI - A. Inequality (1) implies that a baseofM k has fewer 
than ]S] elements, i.e., k < coy(M). Hence assign l the value k. 

The Postprocessing Step must add at most A elements to the solution I. For 
each element e it either finds an augmenting path for I + e, or, if unsuccessful, it 
increases k by one (coy(G) is at least this large) and adds e into the new copy of M. 

The correctness of this algorithm follows from the above discussion. On a 
specific matroid, the value of A is determined by balancing the times for the binary 
search and postprocessing. 

The most well-known covering problem is to find the arboricity of a graph. Let 
F denote the arboricity coy(f#) and p the pseudoarboricity cov(~). The time for a 
probe in the Search Step depends heavily on the probe value k. For arboricity 
and pseudoarboricity, good bounds are available. The following bounds are 
derived using clumps, and give slight improvements of [CN]. 
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LEMMA 4.1. F < (5 + x / / ~ -  7)/4; a similar bound holds for p. 

PROOF. For  F = 1 the lemma is true by inspection. Let F > 1. The proof uses 
the fact that M = f~r-1 has at least one circuit C. Thus C - e is a (connected) 
clump in M (see Lemma 5.1). If r is the number of vertices in C, then ICI = 
(F - 1)(r - 1) + 1. This implies (F - 1)(r - 1) < r(r - 1)/2, whence r > 2F - 2. 
Thus m >_ I CI > ( r  - 1)(2F - 3) + 1. The desired bound for m follows. [] 

- - _ 7  
THEOREM 4.1. The pseudoarboricity p can be found in O(mmin{~/mlogn, 
(n log n)2/a}) time and O(m) space. 

PROOF. By the proof of Theorem 3.2 the Search Step can be done in time 
O((m/A)m log n). By Lemma 3.2 the Postprocessing Step can be done in time O(Am). 

Choosing A = ~ n gives the first time bound. 

For  the second bound do each probe in the Search Step by running batch 2n/x/~ 
times. Inequality (2) shows this is correct. Hence the Search Step runs in 

O((n/x/A)mlogn ) time; the Postprocessing Step is O(Am). Choosing A = 
(n log n) 2/3 gives the desired time bound. [] 

This improves the best previous bound for pseudoarboricity, O(nm log(n2/m)) 
[GGT]  (their algorithm actually solves the more general problem of finding a 
maximum density subgraph). 

To find the arboricity the stepping-stone observation implies that p < F ~ p + 1 
[PQ].  Hence first compute the pseudoarboricity p; then test if the arboricity is p; 
otherwise it is p + 1. 

We implement this algorithm as follows. Let Po = (m log m)2/3/(m') 1/3. If p < Po 
use Theorem 3.1 to test the arboricity. In this case the arboricity is found in time 

O(m~/~ )  (substitute m/p for n'). If p > Po use Theorem 3.3 to test the arboricity. 
In this case the arboricity is found in time O((m2/p) log p) time (substitute m/p for 
n'). In both cases the time is at most the first of the two time bounds in Table 1. 
(Note that the algorithm can easily calculate Po to within a factor of two, which 
is adequate for the time bound. Note also that Theorem 4.1 shows the time to 
find the pseudoarboricity is a lower order of magnitude.) 

For  dense graphs the first bound in Table 1 is an overestimate. That is, any 
graph has p > m/n, so if m/n >_ Po, a better estimate for the time of Theorem 3.3 
is O(mn log n). 

THEOREM 4.2. The arboricity can be found in the time bounds of Table 1 and O(m) 
space. 

Now we give an algorithm for the packing problem on an arbitrary matroid 
M. It uses balanced binary search. To define "good," let A be a parameter to be 
determined later; let p be the rank of M (i.e., the size of a base). Call the value k 
good if there is a set I independent in M k with III > kp - A. 

The Search Step does a binary search to find a good k (with corresponding I) 
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such that k > pack(M). In the search interval [1, h], h is always a value bigger than 
pack(M); I is always a good value. A probe for k executes batch kp/A times. If the 
final independent set I found by batch has at least kp - A elements, k becomes 
the new value l; otherwise, by (1) we can make k the new value h. 

The Postprocessing Step repeats the following until the "deficiency" kp - [I[ is 
zero. Repeatedly try to enlarge I by an element e, by searching for an augmenting 
path. If no such element exists and [I I < kp, we know pack(G) < k. Discard the 
smallest of the k sets that I is partitioned into, and decrease k by one. 

For the correctness simply observe that, after the Search Step, k >_ pack(M). 
The time is estimated as follows. After the Search Step the deficiency kp - [ I1  

is at most A. If I is enlarged by an element e, the deficiency decreases by one. If 
the smallest of the k sets is discarded, the deficiency decreases at least by one (the 
smallest set has at most p - 1 elements). Thus the Postprocessing Step is repeated 
at most A times. Note that since unsuccessful searches are free, the time for 
postprocessing is the same as the time for A searches. Choose A to balance both 
steps of the algorithm. 

THEOREM 4.3. Packing bicircular matroids can be done in time 

O(m min{x/m log(re~n), (n log(re~n))2/3}) 

and space O(m). 

PROOF. The Postprocessing Step is done using breadth-first scanning on Vwv My 
(see Lemma 3.2). 

By the proof of Theorem 3.2 and since pack(~) < m/n, the Search Step runs in 
time O((m/A)m log(m/n)). By Lemma 3.2 the search for an augmenting path for a 
given element e is O(m). Since unsuccessful searches are free, each iteration of the 
Postprocessing Step runs in O(m) time. So postprocessing is O(mA). Choosing 
A = x/m log(re~n) gives the first time hound. 

Alternatively do each probe in the Search Step by executing batch 2n/x/~ 
times. Inequality (2) shows this is correct. Thus the Search Step runs in 

O((n/x/~)m log(rain)) time. Choosing A = (n log(m/n)) 2/3 gives the second time 
bound. [] 

Our first graphic packing algorithm is the above matroid algorithm. 

THEOREM 4.4. Graphic packing can be done in the first time bound stated in Table 
1 and O(m) space. 

PROOF. Use Theorem 3.1 for the Search Step. Use cyclic scanning for the 
Postprocessing Step. 

By the proof of Theorem 3.1 the Search Step runs in time 

O((m/A)(m/n)m' log(m/n)). 

Using Lemma 3.1 and the same reasoning as in Theorem 4.3 each iteration of the 



482 H.N. Gabow and H. H. Westermann 

Postprocessing Step runs in O(m) time. Choose A to balance the two terms for the 
time. []  

The relation between graphic and bicircular matroids for packing is weaker 
than covering; we only have pack(f#) < pack(~) + 1. To see this assume G contains 
k spanning trees. The kth spanning tree can be used to turn the remaining k - 1 
spanning trees into bases for ~ ,  since k - 1 < n - 1. The same reasoning applies 
to graphs that are not connected. 

Our second graphic packing algorithm first does bicircular packing, and then 
converts the solution to k = pack(B) + 1 forests. Then it does the Postprocessing 
Step of the general packing algorithm, using cyclic scanning. 

THEOREM 4.5. Graphic packing can be done in the second time bound stated in 
Table 1 and O(m) space. 

PROOF. The correctness of the algorithm follows from the stepping-stone ob- 
servation together with pack(f#) < pack(~3) + 1. 

By Theorem 4.3 bicircular packing can be done in time O(mx/m log(re~n)). Using 
the Convert Step of Theorem 3.3, the conversion to forests can be done in time 
O(nm log(re~n)) (substitute n for n' and m/n for k). By Lemma 3.t and the same 
reasoning as in Theorem 4.3 each iteration of the Postprocessing Step runs in 
O(m) time. 

Let k = pack(~)+ 1. If pack(~)= 1 the problem is trivial so assume the 
opposite. Thus a base of ~ contains n edges (even if G is not connected). Since 
the solution for ~ has (k - 1)n edges, the deficiency after the Convert Step is at 
most k ( n -  1 ) -  ( k -  1)n = n -  k. Thus the Postprocessing Step runs in time 
O(nm). The Convert Step dominates. [] 

5. Top Clumps. This section proves a number of facts about clumps, the top 
clump, and dual matroids. These facts shed light on the structure of matroid sums 
and are used in Sections 6 and 7. 

Throughout  this section unless stated otherwise M denotes a matroid sum 
M = ~/~= 1 Mi on S. Recall the basic definition: L is a clump of M if and only if 

k L it is independent in M and ILr = ~ =  1 P( , Mi). An equivalent condition is that 
L can be partitioned into sets L~ independent in Mi with L ~ sp(L i, Mi), i = ! . . . . .  
k; equivalently, L is independent and any partition into sets L~ independent in M~ 
has L ~_ sp(Li, M.3, i = 1 . . . . .  k. 

Clumps make a matroid sum interesting. I f  M has no clumps, then it has no 
circuits, i.e., every set is independent. This is shown in the following lemma; it is 
illustrated by Figure 1, where the subgraph induced by vertices 4 . . . . .  8 is a circuit. 

LEMMA 5.1. I f  element e is in a circuit C of M, then C -- e is a clump. 

PROOF. Try to add element e to the independent set C - e, using breadth-first 
scanning. Every element gets labeled but the search is unsuccessful. As shown in 
Lemma 2.1 the labeled elements C - e form a clump. [] 
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The next property is not needed in the remainder of the paper. We include it 
because, as we shall see, it gives an alternate, high-level justification of breadth-first 
and cyclic scanning. 

THEOREM 5.1. Let L be a clump of M. Then M/L k = VI= 1 M J L  

PROOF. We show that a set A _ S - L is independent in M/L if and only if it is 
independent in Vk= 1 M J L  If A is independent in M/L, then A w L is independent 
in M and thus can be partitioned into sets Ai u L~, i = 1, . . . ,  k, where each A~ _ A, 
L~ _ L, and A~ u L, is independent in M~. Since L is a clump, Li is a maximal 

k independent subset of L in M~. Hence A is independent in Vi= 1 M J L  
The converse statement--independence in Vk= 1 MJL implies independence in 

M/L---holds for any independent set L, not necessarily a clump. [] 

This fact gives an alternate justification for omitting start operations after an 
unsuccessful search in breadth-first or cyclic scanning: Suppose an unsuccessful 
search labels elements L. The next search for an augmenting path can be conducted 
in the matroid M/L, since L is already in the independent set and will not leave 
it. As noted in Lemmas 2.1 and 2.2, L is a dump. Thus M/L = Vk= 1 M J L  Thus 
each matroid M i Can be replaced by M J L  Equivalently, the elements of L need 
never be output by a c operation again. This is just what omitting the start 
operation accomplishes. 

We turn to the main notion of this section. For an arbitrary set A, a top clump 
of A is a clump of M that is maximal in A. A top clump of M is a top clump of 
S. In the subgraph of Figure l(b) the subgraph induced by vertices 4 . . . . .  8 is the 
unique top clump. 

Suppose A is independent in M. Then the clumps contained in A are closed 
under union. This follows since if clumps K and L have K w L independent, say 
as a partitioned independent set Uk= 1 Ki u Li, then 

K • L ~ sp(Ki, Mi) ~ sp(Li, Mi) ~ sp(K i w Li, Mi). 

Hence an independent set A has a unique top clump. (The clumps of an 
independent set are also closed under intersection. This and other properties are 
discussed in [Wes].) Theorem 5.3 below shows that a top clump of a set determines 
its span. First note a related fact, a clump L has sp(L, M) = Nk= 1 sp(L, Mi). 

THEOREM 5.2. An arbitrary subset A of S, with a top clump L, has sp(A, M)= 
A u sp(L, M). 

PROOF. Let B be a maximum cardinality independent subset of A that includes 
L. Clearly, sp(A, M) = sp(B, M). The elements of sp(B, M) - B are actually spanned 
by L (Lemma 5.1). This implies the theorem. [] 

The theorem implies that the top clump L of any base B of M is a top clump 
of M (since any element not in B is in sp(L, M)). 
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Recall that in any matroid, a bridge is an element that is in every base; a circuit 
element is an element that is in some circuit. It is easy to see that the circuit 
elements are precisely the nonbridges; also if B is any base, the circuit elements 
are precisely the elements in some fundamental circuit with respect to B. Any top 
clump L consists of bridges and circuit elements, where the circuit elements of L 
span all circuit elements of M. 

If we are given a partitioned base B of M and execute breadth-first or cyclic 
scanning on the elements not in B, then every search is unsuccessful, the labeled 
elements are precisely the circuit elements and the unlabeled elements are the 
bridges. Furthermore, the preprocessing of Section 3 is valid--vertices of degree 
at most k can be deleted, since all their incident edges are bridges. Hence, given a 
partitioned base, we can find the bridges of a k-fold graphic sum in time O(m). 
Note that this finds the circuit elements in the top clump of B (i.e., they are all 
the labeled elements of B). However, this algorithm does not find the bridge 
elements of the top clump. We present an algorithm to find the top clump below. 

First we give some terminology. It is useful to enlarge the matroid M with a 
copy of an element. More precisely fix an element e ~ S and let ~ be a new element 
not in S, parallel to e in each My Let M~ denote the corresponding matroid on 

k S + ~. The matroid sum ~t = V~= 1 ~r~ is called the matroid M with e duplicated 
(by ~). If a set A contains e, then certainly e ~ sp(A, M), but we may not have 

~ sp(A, ~,I) (recall the definition of span, reiterated in Section 1). 
Define 

T = (elduplicating e does not increase p(M)}; 

more exactly, the matroid M with e duplicated has the same rank as M. This set 
relates all top clumps: 

THEOREM 5.3. Any top clump L of M has sp(L, M) = T. 

PROOF. Consider any element e e S and form the matroid M with e duplicated 
by ~. Note that e is spanned by L if and only if ~ is spanned by L. (This is trivial 
if e r L; if e ~ L it follows from the definition of clump.) 

Obviously e ~ sp(L, M) implies e e T. Conversely, if e e T then, letting B denote 
a base of M containing L, the fundamental circuit C(~, B, if1) exists. Lemma 5.1 
implies that ~ is spanned by L. Thus e is spanned by L. []  

As a corollary note that if L 1, L 2 a r e  two top clumps of M, then sp(L x, Mi) = 
sp(L2, Mi) for i = 1 . . . . .  k. This follows since L1 - T = Nk= 1 sp(L2, Mi). 

The theorem gives the following algorithm to find a top clump. Suppose that 
we have a partitioned base B = Uk= ~ Ii of M. 

Test Step. For each element e e B, check if B + ~ is independent in ]Q. The top 
clump consists of the elements that check out dependent. 

The algorithm is correct since B contains a top clump L, and L - -  
B c~ sp(L, M) = B n T. Clearly the Test Step tests membership in T. 
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We give two implementations of the Test Step. The first uses breadth-first or 
cyclic scanning on M. For  each e ~ B search for an augmenting path for ~ using 
the static-base circuit routines (see Section 2). The search for an augmenting path 
may label all elements of B. Thus in the worst case, the static-base circuit routines 
output B, [B] times. 

The second implementation avoids outputting elements multiple times. It 
accomplishes this by finding augmenting paths in reverse. To do this we introduce 
a matroid that will be studied in the remainder of this section--recalling that 
M = Vk= 1 Mi define 

k 

M ' = V M * .  
t = l  

We now show that augmenting paths in M are essentially the reverse of such paths 
in M'. 

Consider a partitioned independent set I = U~= 1 Ii of M with a shortcut-free 
partial augmenting path eo, . . . ,  e,. Define J~ = sp(Ii, M/) - I/, so J / is  independent 
in M*. Define independent set J = Uk= 1 J / o f  M'. Then the reverse path e . . . . . .  eo 
is a shortcut-free partial augmenting path for J in M'. (Strictly speaking J = 
Uk= 1 J / i s  not a partitioned independent set, since the sets Jg are not necessarily 
disjoint. We could correct this by introducing multiple copies of elements that are 
in more than one J~.) The observation can be used to find augmenting paths by 
working with matroid duals, when this is more efficient. 

The second implementation of the Test Step uses this observation as follows. 
Recall B = Uk= 1 I~; let A be the set of all elements of e e B such that, for some i, 
e r I / a n d  I~ + e is independent in M~. Let J be the above independent set of M' 
corresponding to B. Do breadth-first scanning on M' with independent set J, 
starting by labeling not one element as usual, but rather all elements of A. It is 
easy to see that the top clump of M consists of all elements that do not get labeled 
in the search. 

Now consider the special case of a k-fold sum matroid M = N k. We can find 
augmenting paths using cyclic scanning on M. Thus we can use cyclic scanning on 
M'. For  increased efficiency note that in M~ the only elements that get used in 
augmenting paths are in If_ 1 u I i. Thus we can restrict the ith component matroid 
of M' to these elements, i.e., use cyclic scanning on matroid 

k 

M"= V u O, 
i = 1  

with partitioned independent set Uk= 1 1i- x n sp(I~). 

THEOREM 5.4. Given M = fgk with a partitioned base B, a top clump can be found 
in time O(kn log n) and space O(m). 

PROOF. Use the cyclic scanning implementation of the Test Step. In M" the ith 
matroid has Ili-1 u Ill = O(n) elements. The static-base circuit routine for ~* uses 
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time O(m + n log n) for a graph with n vertices and m edges [GS]. So each of the 
k matroids composing M" uses O(n log n) time, giving the time bound. []  

The rest of this section proves some useful facts about the matroid sum 
M = Vk= 1 Mi on S and its corresponding sum M'. We first relate the bases of M 
and M'. 

Start with the case k = 2. B1, B 2 is an extremal pair of bases if B~ is a base of 
Mi, i = 1, 2, and their intersection is as small as possible. The bases of M and the 
extremal pairs correspond as follows: An extremal pair B1, B2 gives a partitioned 
independent set B1 t3 ( B  2 - B 0. A partitioned base B = 11 w 12 gives a pair of 
bases B1, B2 if we enlarge I i to B~ by adding elements of I3_ ~. (This can be done 
since B is a base.) This correspondence actually takes an extremal pair to a 
partitioned base and vice versa. To see this let nl be the rank of M~, let b be the 
size of a base of M, and let c be the cardinality of the intersection for an extremal 
pair. The constructions imply the relation b + c = nl + n2, which gives the desired 
conclusion. 

Next observe that an extremal pair B 1, B 2 of M corresponds to an extremal 
pair S -  B1, S -  B 2 of M'. This follows since if the first pair has intersection 
cardinality c, then de Morgan's  law shows the second pair has intersection 
cardinality m -- (nl + n2 - -  C). 

We have validated the following construction. 

THEOREM 5.5. Let  B = 11 kJ I 2 be a partitioned base for  M = M 1 v M 2. Enlarge 
I i to a base B i o f M  i by adding elements o f l a _  i. Then B' = (S - B1) ~ (B 1 - B2)  

is a partitioned base for  M'  = M* v M~. 

The construction generalizes to k > 2 as follows. Bases Bi, i =  1 , . . . ,  k, are 
extremal for M if Bi is a base of M~ and their intersection k (~=1 B~ is as small as 
possible. Let S denote the set S with each element e duplicated k - 2 times, i.e., 
there are a total of k - 1 copies of e. Let ~t  denote the corresponding matroid 
sum over g. The bases of 5~t and the extremal bases of M correspond, as above. 
The new relation is that if n~ is the rank of M~, b is the size of a base of )~t, and 

k C is the cardinality of the intersection for an extremal set, then b + c = ~ =  ~ ni. 
The extremal sets of M and the bases of M'  correspond in the obvious way. 

The relation is that if c is the cardinality of the intersection for an extremal set 
and d is the size of a base of M', then m = c + d. 

Now we relate several sets. Take M, M'  as above (k arbitrary). Let C be the set 
of all circuit elements in M. Choose any top clump L of M and define T as above. 
Clearly, C _ T. Similarly, for M'  define circuit elements C', top clump L', and set 
T';  C' _ T'. We first analyze the case k = 2. 

THEOREM 5.6. For k = 2, set T and C' are complements (in S); similarly, T'  and C 
are complements. 

PROOF. By duality it suffices to show the first relation. We show that an element 
e r T if and only if e ~ C'. Consider a base B of M. Clearly, e ~ T if and only if 
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B + ~ is independent in the matroid A3 with e duplicated. Equivalently, B can be 
partitioned into sets 11, 12 with e~I1 and Iz + e independent. Theorem 5.5 
shows this amounts to M' having a base not containing e. This is equivalent to 
e~ C'. [] 

The above results are what is needed for the applications in the next two sections. 
We conclude by generalizing Theorem 5.6 to arbitrary k. 

THEOREM 5.7. For k >_ 2, sets T and C' are disjoint, as are T' and C. 

PROOF. We prove the first relation; the second follows by duality. Consider any 
element e e T. Recall the correspondence between bases of A4, extremal bases of 
M, and bases of M'. Clearly, any base of ~ contains at most one copy of e. Thus 
e is not in the intersection set of any extremal bases. This is equivalent to e in 
every base of M'. Thus e ~ C'. [] 

The last two theorems generalize previous work. Bruno and Weinberg [BW2] 
define the (augmented) k-minor ofa  matroid N as the minimal (maximal) set X _~ S 
maximizing I X [ -  kp(X, N). Clumps generalize these notions in the following 
sense. If M = N k, then C (T) is the (augmented) k-minor of N [Wes]. For the case 
k = 2, Kishi and Kajitani [KK]  introduced the principal partition (Dz, Gz, H2) of 
a graph G. Bruno and Weinberg generalized the principal partition to an arbitrary 
matroid N, showing S partitions into the 2-minor of N, the 2-minor of N*, and 
the rest of S; further, G 2 is the 2-minor of matroid fr Hz is the 2-minor of matroid 
~r and Dz is the remaining elements. Theorem 5.6 generalizes this to an arbitrary 
matroid sum with two component matroids, implying that S partitions into C, C' 
and the remaining elements; further, in the special case M = N v N, C is the 
2-minor of N and C' is the 2-minor of N*. 

6. Frameworks and Rigidity. This section discusses rigidity problems that arise 
in the study of frameworks modeled by graphs. A number of these problems, listed 
in Section 1, are equivalent to problems treated in Section 3. Here we discuss some 
less-obvious applications. Specifically for two-dimensional bar-and-joint frame- 
works, efficient algorithms are given to test a framework for redundant bars and 
to compute the number of degrees of freedom. An efficient algorithm is given to 
test for k-irreducibility, a notion relating to stresses in a bar-and-body framework 
of arbitrary dimension. The algorithms of this section are based on top clumps 
and a related notion, preclumps. 

We briefly summarize bar-and-joint frameworks and related concepts; a com- 
plete discussion is in [LY], see also [R]. A bar-and-joint framework consists of 
rigid bars connected with universal joints, in some dimension space R d. It is in 
generic position if the coordinates of the joints (points) are algebraically in- 
dependent. A framework corresponds to a graph G = (V, E) (vertices correspond 
to the joints, edges correspond to the bars). If a framework is in generic position 
in the plane, its rigidity properties are completely determined by its graph alone. 
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Laman [Lam] and Lov~sz and Yemini [LY] describe the graph properties that 
correspond to various rigidity properties. We present algorithms for the two most 
important of these. 

The first property, generic independence, is the absence of redundant bars (for 
a planar framework). Put another way, a set of edges A is generic independent if 
each edge of A takes away one degree of freedom of motion (a more precise 
definition is in [LY]; also see below). Lovfisz and Yemini show that A is generic 
independent if and only if t A' I _< 21V(A')I - 3 for every nonempty set A' _ A. (This 
generalizes Laman's theorem [Lam], which is stated below.) As an example, the 
subgraph obtained from Figure l(b) by deleting edge 78 is generic independent; 
this can be verified by observing that its only clump is ~ and then using the 
following result. 

A set of elements is clumpless for a matroid sum M if it does not contain a 
nonempty clump of M. A set A is generic independent if and only if it is clumpless 
for ~ v f#. To see this, note that a set A is independent in ~ v ~ if and only if 
I A'I < 21V(A')I - 2 for every nonempty A' __. A. (This follows easily from Lemma 
5.1.) A connected clump of ff v ff is an independent set A with IAI = 21V(A)I - 2. 
Since a set contains a clump if and only if it contains a connected clump, the 
desired condition follows. 

This gives a way to test if a graph is generic independent: check m < 2n - 3; if 
so check it is independent in fr v if; if so use the partitioned base found in this 
check to test if the top clump is empty. Implementing this with the procedures of 
Theorems 3.1 and 5.4 gives the following. 

THEOREM 6.1. A graph can be tested for generic independence in time 
O(nx/~ log n + m) and space O(m). 

The second rigidity property is the number of degrees of freedom. Intuitively a 
framework has d degrees of freedom if it has d independent nontrivial motions. 
(Any planar framework has three independent trivial motions--translation in the 
x and y directions and rotation. These are not counted as degrees of freedom.) 
Let f(A) denote the number of degrees of freedom of a set of edges A; f(E) is the 
number of degrees of freedom of the framework G. For any set of edges A of a 
planar framework, f (A)= 2 n -  3 -  IBI, where B is a maximum cardinality 
generic-independent subset of A [LY]. (Hence for a generic-independent set A, 
f(A) = 2n - 3 - I AI, justifying the intuitive definition above.) Thus computing the 
number of degrees of freedom of a planar framework is equivalent to finding a 
maximum cardinality generic-independent set. 

The generic-independent sets form a matroid, the rigidity matroid ~t(G) (~, when 
G is understood) [LY]. Thus our problem amounts to finding a base of ~.  As in 
Section 3, the algorithm builds up a base by considering edges one by one, adding 
those that preserve generic independence and rejecting the others. To make this 
efficient we need another concept to facilitate rejecting edges. In what follows sp(A) 
denotes the span of A in the graphic matroid fr (not ~). 

A set of edges P is a preclump if it is generic independent and has I PI = 
21V(P)I - 3. (Some preclumps in Figure l(b) are the subgraph induced by vertices 
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1, . . . ,  4, and the subgraphs induced by 4 , . . . ,  8 or 1 . . . . .  8 if we delete edge 78 from 
both.) This corresponds to the main notion in Laman's theorem [Lam] which 
amounts to the fact that P is a preclump if and only if P is minimally rigid, i.e., 
when placed in generic position P is rigid but removing any bar makes it nonrigid. 

Clearly, P is a preclump if and only if it is clumpless in f# v ~# and IPI = 
21V(P)I - 3. (As a trivial example, any single edge forms a preclump.) A preclump 
has a property similar to clumps: if e esp(P) -  P, then P + e is not generic 
independent. Also a preclump is connected--as an independent set of f~ v f#, P 
partitions into a spanning tree of V(P) and a spanning forest of V(P) with two trees. 

Let P1, P2 be preclumps contained in a generic independent set. In general their 
union is not a preclump. This is so even for two preclumps with a common vertex. 
(Thus a given vertex can be in many preclumps.) However, if P1 and P2 have two 
or more common vertices, then P1 u P2 is a preclump. To prove this we need 
only check that IPa w P2I = 21V(P1 w P 2 ) I -  3. Construct a new edge e joining 
two common vertices (if this edge already exists, e is a new edge parallel to it). In 
the matroid sum ~ v ~7, p1 w P2 + e is independent and, for i = 1, 2, Pi + e is a 
clump (since e s sp(Pi)). Thus the union of the clumps, P~ w P2 + e, is a connected 
clump. Hence P1 u P2 has the desired number of edges. In what follows we use 
only a special case of this principle: if P1 and P2 have a common edge, then 
P1 w P2 is a preclump. 

Now we give our algorithm to find a maximum cardinality generic-independent 
set B. Let M be the matroid ff v fq. The algorithm maintains a partition of the 
edges of B into preclumps. Initially both B and its edge partition are empty. The 
algorithm executes the following steps for each edge e in turn. 

Preclump Test Step. If some preclump (of the current edge partition of B) 
contains both vertices of e, reject e and continue by processing the next edge. 

Independence Test Step. Let )~ denote matroid M with e duplicated by ~. If 
B + e + ~ is independent in M, then add e to B, make e a singleton preclump of 
B, and continue by processing the next edge. 

New Preclump Step. Reject e. Merge all preclumps containing an edge of 
C(~, B + e, J r / ) -  {e, ~} into one new set of the edge partition. Continue by 
processing the next edge. 

Now we prove that the algorithm is correct. This amounts to showing that B 
is always generic independent, an edge e is rejected only if B + e is not independent, 
and the edge partition is maintained according to its definition. 

Consider the Preclump Test Step. Clearly, e ~ sp(P') for some preclump P' _ B. 
Thus P' + e is not generic independent and e should be rejected. 

Consider the Independence Test Step. If B + e + ~ is independent in M, then 
clearly B + e does not have a clump containing e. Thus B + e is clumpless (since 
B is clumpless). Hence adding e to B preserves indePendence. 

Finally consider the New Preclump Step. In this step B + e + ~ is dependent 
in )~. By Lemma 5.1, C(~, B + e, M ) -  ~ is a clump in M. Hence e should be 
rejected, and C(~, B + e, M) - {e, ~} is a preclump. This implies the merging in 
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this step is correct, since the union of preclumps of B sharing an edge is a preclump. 
We conclude the entire algorithm is correct. 

The algorithm is implemented as follows. It maintains a partition of B into two 
forests F i, i = 1, 2. The Independence Test and updating this partition are done 
using cyclic scanning. 

The other main data structure is for the preclumps. Recall that the preclumps 
partition the edges of B (but not the vertices). The partition is maintained using 
an algorithm for disjoint set merging [Tar]. Each edge of B is in a unique set, its 
preclump. In addition each preclump P stores its "root," defined as follows. For 
each forest Fi, i = 1, 2, root each tree of Fi at an arbitrary vertex. Recall that P 
is split by the Fi into two forests spanning V(P)--a spanning tree of V(P) in Fj 
(j = 1 or 2) and a forest of two trees in F3_ j. The root of P is the root of the 
spanning tree. 

The Preclump Test for an edge e = uv is implemented by performing the 
following test, for i = 1, 2. Define eu as the edge from u to its parent in F~ (e, is 
undefined if u is the root of a tree in F3. Define ev similarly. Then u and v are in 
a common preclump if eu and ev are in the same set, or the set containing eu has 
root v, or the set containing e~ has root u. If neither test for i = 1, 2 indicates a 
common preclump, then u and v are not in a common preclump. 

Correctness of this implementation follows from the fact that if a preclump P 
contains both u and v, then the test is passed for the index i where F~ contains 
the spanning tree of P. 

Now we show that the time is O(nZ). Note that an efficient set-merging algorithm 
performs O(m)find operations and O(n) union operations in time O(m~(m, n)) which 
is within this bound [Tar]. 

An execution of the Preclump Test Step uses O(1) time plus the time for O(1) 
finds (these operations compute set names for the test). This gives total time O(m) 
plus O(m) fnds. 

Next observe that each time the Independence Test Step is executed, either B 
is enlarged or at least two preclumps are merged (in the New Preclump Step). 
Thus the Independence Test Step and New Preclump Step are executed O(n) times. 

The Independence Test Step is done with cyclic scanning which uses O(n) time. 
If e is added to B, the partition of B into forests is updated, along with the preorder 
numberings and names of preclump sets, all in O(n) time. If e is rejected, recall 
that cyclic scanning marks the fundamental circuit C(~, B + e, ~r). The New 
Preclump Step merges preclumps by union operations, maintaining appropriate 
set names. This gives O(n) unions total. 

THEOREM 6.2. A maximum cardinality generic-independent set can be found in time 
O(n 2) and space O(m). 

Observe that the above algorithm also finds the bridges of the rigidity matroid 
~ :  Call a preclump of the algorithm's edge partition trivial if it consists of a single 
edge, else nontrivial. Then the bridges of ~ are precisely the edges in trivial 
preclumps. This follows from two observations: In the New Preclump Step, 
C(~, B + e, if1) -- ~ = C(e, B, ~), so the nontrivial preclumps consist of only edges 
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in fundamental circuits (of N). In the Preclump Test Step if e is rejected, its 
fundamental circuit is already contained in a nontrivial preclump of the algorithm. 
Thus the nontrivial preclumps are precisely the edges in fundamental circuits. 

As an application, [S] calls a graph edge birigid if i t  has maximum rank 2n - 3 
in N and no bridges. Thus our algorithm can test if a graph is edge birigid. 

Another application is to find a maximum weight base of N. Clearly, it suffices 
to use the above algorithm, considering the edges of G in order of nonincreasing 
cost. Thus a maximum weight base of N can be found in time O(n 2 + m log m). 

A bar-and-body framework consists of rigid bars attached to rigid bodies with 
universal joints. Let G = (V, E) be a multigraph representing a bar-and-body 
framework in generic position. White and Whiteley [WW] call a bar-and-body 
framework k-irreducible if and only if [El = k(I gl - 1) and IE'] < k(] V'I - 1) for 
every nonempty proper subgraph (V', E'). The intuitive meaning of this property 
is that any stress put on a k-irreducible structure (in n-space, where k = n(n + 1)/2) 
propagates to all bars in the structure. There seems to be no obvious algorithm 
to test k-irreducibility (White and Whiteley do not give one). 

Clearly, a bar-and-body framework is k-irreducible if and only if fgk has a unique 
nonempty clump, E. This can be tested as follows. 

k-forest Step. Solve the k-forest problem for G. If G does not partition into k 
spanning trees it is not k-irreducible. 

Top Clump Step. Remove any edge e from G and compute the top clump of 
G - e. If the top clump is nonempty, G is not k-irreducible. 

Circuit Step. Create a new edge ~ parallel to e. Compute the fundamental circuit 
C = C(~, E, fg-k). If C -- ~ ----- E, then G is k-irreducible else it is not. 

Correctness of this algorithm is proved as follows. Suppose it reaches the Circuit 
Step. So E is a clump in ffk and E - e is clumpless. Thus any clump contains e. 
The smallest clump containing e is C - 6. This justifies the Circuit Step. 

The time is estimated as follows. The k-forest Step runs in time O(k3/Znx//~) by 
Theorem 3.1. The Top Clump Step uses time O(kn log n) by Theorem 5.4. The 
Circuit Step, using cyclic scanning, runs in time O(kn). 

THEOREM 6.3. A graph can be tested for k-irreducibility in time O(k3/2nx~ ') and 
space O(m). 

7. The Shannon Switching Game. This section analyzes the structure of the 
Shannon switching game in terms of top clumps and preclumps. This leads to 
efficient algorithms for two types of queries. 

A Shannon switching game is specified by a triplet G, u, v where G = (V, E) is an 
undirected graph with u, v ~ V. Two players join and cut are to take turns claiming 
an edge of G. Initially each edge is unclaimed. Each edge can be claimed just once. 
Join wins if his edges contain a path from u to v. Cut wins if he prevents join 
from doing so. Any Shannon switching game is either a join game (join can win 
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against all possible strategies of cut), a cut game (cut can win against all possible 
strategies of join), or a neutral game (whoever plays first can win). In all three 
cases it is easy to execute a winning strategy if we are given two appropriate trees 
or cotrees [Well. (The reader may enjoy showing that, using dynamic trees, the 
winning strategy can be executed in time O(log n) per move for join and O(log z n) 
for cut. Our original solution achieving this time for cut used topology trees IF];  
Bob Tarjan pointed out the elegant solution using dynamic trees.) 

We introduce the problem of Shannon switching game queries: Fix the graph G. 
A classification query consists of two vertices u, v. The answer classifies the game 
G, u, v as join, cut, or neutral. A tree query outputs the trees or cotrees that enable 
the winning strategy to be played. 

Previous work analyzes the Shannon switching game by concentrating on a 
single query; changing u or v necessitates rerunning the algorithm. Bruno and 
Weinberg I-B], [BW1] allow changing u and v and give an efficient solution, but 
uv is restricted to being an edge of G and it cannot be claimed--it  is a 
"nonplayable" edge. Our algorithm works for any pair u, v. Furthermore, it takes 
advantage of a fixed graph--after  the first query the algorithm is significantly 
faster. 

We analyze the game using two cases: first, uv ~ E but is nonplayable; then the 
"natural"  case of no nonplayable edges (i.e., either uv ~ E and is playable or uv r E). 
The nonplayable case may be considered an artifact of our analysis (although it 
is the case that is considered by other researchers). 

Consider the nonplayable case. Throughout the discussion of this case fix uv as 
a nonplayable edge of E. Let M = f# v f# and M' = fr v fr Let C be the union 
of all circuits in M and let C' be the union of all circuits in M'. 

The analysis of the Shannon switching game as developed collectively in [-Le], 
[-E2], and [BW1] (see also [-Law]) solves the nonplayable case. We restate the 
results in terms of clumps. The condition for G, u, v to be a join game is that there 
is a clump L in M such that uv ~ sp(L, M)  - L; equivalently, uv ~ C (recall Lemma 
5.1). Cut and neutral games are similar: The condition for G, u, v to be a cut game 
is that there is a clump L' in M' such that uv ~ sp(L', M') - L'; equivalently, uv ~ C'. 
The condition for G, u, v to be a neutral game is that G, u, v is not a join game and 
there is a clump L in M containing uv; equivalently, G, u, v is not a cut game and 
there is a clump L' in M' containing uv. (If it is not immediately clear why the 
three alternatives are mutually exclusive, recall Theorem 5.6.) In each case a 
winning strategy can be executed if we have the above clump L (L') as a partitioned 
independent set. 

LEMMA 7.1. Let  G be a f ixed graph. Assume uv is always an edge o f  G but is not 
playable. Then a sequence o f  classification (tree) queries G, u, v can be answered in 

O ( n x / ~  ) preprocessing time, O(m) space, and O(1) (O(n)) query time. 

PROOF. Consider classification queries. Clearly, once the sets C and C' are known, 
a query can be answered in O(1) time (and O(m) space). The sets are found as 
follows. Compute a base B of M using Theorem 3.1. The edges labeled in 
unsuccessful searches of cyclic scanning form the set C (see Lemma 5.1). Next 
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compute the top clump L of B. Finally compute C' using the relation C ' =  
E - sp(L, M)  = E - (L w C), which follows from Theorem 5.6. 

This preprocessing uses time O(nx /~ '  ). In proof, by Theorem 3.1 B and C 

are found in time O(nx /~ '  ). By Theorem 5.4, L is found in time O(n log n). 
Next consider tree queries. The preprocessing consists of finding base B and 

circuit elements C for M, as above. In doing this some additional information is 
recorded: each edge e ~ B n C is labeled with a "cocircuit edge" f that can replace 
it in B, i.e., B -  e + f is a base. (In constructing B, edge e was labeled in an 
unsuccessful search from some edge jr, since e ~ C. Hence the preprocessing can 
record the desired label f for e.) 

Now consider a tree query u, v. Suppose uv ~ C so the game is join. Let e be 
the cocircuit edge of uv if uv ~ B, otherwise e = uv. Attempt to add uv to B using 
cyclic scanning. The search is unsuccessful and marks a clump L of B. If uv ~s B, L 
spans uv, so output L. If uv E B, L - uv + e is a clump that spans uv, so output it. 
(Note that in both cases the clump is returned as a partitioned independent set.) 

Now suppose uv q~ C. Thus the game is cut or neutral; also clearly uv ~ B. Attempt 
to add a copy ~ to B using cyclic scanning. If the search fails it marks a clump 
L containing uv. The game is neutral; output L to answer the query for the join 
strategy of the neutral game. If the search succeeds we will show below that the 
game is cut. For  both cut and neutral games we must output an appropriate clump 
of M'. We show how to do this in time O(m). Then we reduce the time to the desired 
bound O(n). 

The search gives a partitioned base 11 ~ 12 of M (ignore the copy ~--f). Use it to 
find a base B' for M', following Theorem 5.5. Note that the extremal pair of 
Theorem 5.5 is found in time O(n), from which B' is constructed in time O(m). Then 
find the top clump L' of B' using the relation 

(3 )  L'  = B '  - c .  

This holds since L' = B' n T'; now apply Theorem 5.6. Using (3), L' is found in 
time O(m). Note that L' is found as a partitioned independent set. The algorithm 
outputs L'. To see this is correct note that if the original search succeeded, then 
uvg~ B'. Thus uv ~ C', the game is cut, uv ~ sp(L', M')  and L' can be output. If the 
original search failed, then the game is neutral. Then since uv is in some clump of 
M' but not C', it is a bridge and in every top clump of M'. In particular L' can 
be output. 

Now we reduce the time to O(n). L' has O(n) elements, since (3) shows each 
element of L' is a bridge of M, and M has at most 2n - 2 bridges. We need only 
avoid explicitly constructing the base B' (which can have | elements). Note 
from (3) and Theorem 5.5 that L' = (S -- B 1 - -C)  u (B 1 - B 2 - -  C ) .  The first set 
can be constructed by examining S - C rather than all of C. This allows L' to be 
easily found in time O(n). [] 

Now we reduce the "natural"  case for queries to the nonplayable case. Consider 
a sequence of games G, u, v where G is fixed and uv is arbitrary (and playable if 
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it is in G). This game is equivalent to the game G + uv, u, v with uv nonplayable. 
(If uv is an edge of G, the graph G + uv corresponds to adding a second copy of 
uv. In the following discussion uv refers to this second copy.) We shall discuss tree 
queries for this case (classification queries use just a subpart of the algorithm 
described). In the rest of this section let 

where ~uv is the graphic matroid of G + uv. 
The preprocessing consists of finding the base B and circuit elements C for 

matroid M. 
A classification query for uv is processed as follows. Attempt to add uv to B 

using cyclic scanning. Observe that the search fails if and only if the game is join. 
(If the search succeeds the game is not join since B + uv is a base of Muv, and 
clearly uv is a bridge of Mu,, not a circuit element.) If the search fails output the 
clump of M,~ that was marked by cyclic scanning. Otherwise attempt to add a 
second copy ~ to B + uv using cyclic scanning. Observe that this second search 
fails if and only if the game is neutral. (If the search succeeds the game is cut 
because B + uv is a base of M,v and uv is not in its top clump, i.e., uv ~ C' by 
Theorem 5.6. Note also that if uv is originally in G this search must fail, i.e., the 
game cannot be cut.) If the second search fails output the clump of M,v that was 
marked by cyclic scanning. This answers the classification query for a neutral game 
for join. 

Now for cut games and for the cut strategy for neutral games, we follow the 
lemma to output an appropriate clump of M',~: Use the partitioned independent 
set (from after the second search) to find a base B' of M',,. (Note that B' contains 
the nonplayable edge uv if and only if the game is neutral. Also note that if uv 
was originally in G, the game is neutral and B' also contains the original edge uv.) 
Mark the top clump L' of B' in O(n) time following the procedure of the lemma. 
(To do this observe that the set of circuit elements in M~v is C, the set computed 
in preprocessing. The reason is that uv is not a circuit element in Mu,, since the 
game is not join.) Note that uv ~ L' if and only if the game is neutral. Hence L' 
can be returned. 

THEOREM 7.1. Let  G be a f ixed graph, and let u, v range over arbitrary pairs o f  
vertices. Then a sequence of  classification or tree queries G, u, v can be answered in 

O(nx/-~ ) preprocessin# time, O(m) space, and O(n) query time. 

Now we give an algorithm with faster query time. We shall see that part of the 
structure of the Shannon switching game is determined by the rigidity matroid ~ ,  
more specifically by the partition of a base A of ~ into maximal preclumps. Note 
that the partition of a base A of ~ into maximal preclumps is well defined, since 
the union of preclumps of A that share an edge is a preclump. 

The following algorithm achieves O(1) time per classification query. Assume the 
query u, v is "natural," i.e., no nonplayable edges (otherwise Lemma 7.1 applies). 
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Preprocessing Step. Find a maximum cardinality generic-independent set A for 
G. Find all maximal preclumps P in A. Enlarge A to a base B for M. Find the 
top clump L of B in M. 

Query Step. If uv ~ sp(L, ~)  the game is join. Otherwise if uv ~ sp(P, f#) for some 
maximal preclump P of A the game is neutral. Otherwise the game is cut. 

The correctness of the algorithm is proved as follows. If uv ~ sp(L, if), then uv 
is in a circuit of Muv. Hence G + uv, u, v, where uv is not playable, is a join game, 
and the algorithm is correct. If uv ~ sp(L, f#) but uv ~ sp(P, f#) for a maximal 
preclump P of A, then B + uv is independent in M,v and P + uv is a clump 
contained in B + uv. Thus uv is in the top clump of B + uv. Hence G + uv, u, v, 
where uv is not playable, is a neutral game, and the algorithm is correct. If 
uv ~ sp(Q, if) for Q = L or any maximal preclump of A, then uv is not in the span 
of any top clump in M,~. Hence G + uv, u, v, where uv is not playable, is a cut game. 
Correctness follows. 

Consider next the implementation of the Preprocessing Step, starting with 
finding all maximal preclumps in A. For an edge e ~ A, let ~ be a new copy of e. 
Let L be the top clump of A + & Then the maximal preclump containing e is 
L - & (This follows from the definition of top clump and the fact that {e, ~} forms 
a clump. As an example, if the top clump is {e, ~}, then (e} is a maximal preclump.) 
Hence to find the maximal preclump containing e, run cyclic scanning to add ~ to 
A; then use Theorem 5.4 to find the top clump of A + & The time for n top clump 
computations is O(n 2 log n). This dominates, giving total time O(n 2 log n) to find 
the maximal preclumps. 

The rest of the Preprocessing Step can be done in time O(n 2) as follows. By 
Theorem 6.2, A can be computed in time O(n2). Similarly, B and L are found in 
time O(n2). The last part of this step is to preprocess the top clump and preclumps 
for the Query Step. For the top clump this amounts to marking its connected 
components. This uses time O(n). For the preclumps we use the data structure 
based on the paritition of edges by preclumps, described for the algorithm of 
Theorem 6.2. This uses time O(n2). Note that there is no need to use the set-merging 
algorithm in this data structure, since the preclumps do not change. Thus the f ind 
operation in the Query Step uses 0(1) time. 

THEOREM 7.2. Let  G be a f i xed  graph and let u, v be arbitrary. Then a sequence 
of  classification queries G, u, v can be answered in O(n 2 log n) preprocessing time, 
O(m) space, and O(1) time per query. 
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