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A Proof of the Gilbert-Pollak Conjecture on the 
Steiner Ratio 

D.-Z. D u  I and  F. K. H w a n g  2 

Abstract. Let P be a set of n points on the euclidean plane. Let L~(P) and L,,(P) denote the lengths 
of the Steiner minimum tree and the minimum spanning tree on P, respectively. In 1968, Gilbert and 
Pollak conjectured that for any P, Ls(P) > (Xf3/2)Lm(P). We provide a proof for their conjecture in 
this paper. 
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1. Introduction.  Cons ide r  a set P of n po in ts  on the eucl idean plane. A shor tes t  
ne twork  in te rconnect ing  P mus t  be a tree, which is cal led a Steiner minimum tree 
and  deno ted  by SMT(P). An SMT(P) m a y  conta in  vertices not  in P. Such vertices 
are called Steiner points, while vertices in P are cal led regular points. C o m p u t i n g  
SMT(P) has been shown to be an N P - h a r d  p rob l e m [6]. Therefore,  it meri ts  the 
s tudy of a p p r o x i m a t e  solutions.  A spann ing  tree on P is jus t  a tree with vertex 

set P. A shor tes t  spanning  tree on P is also called a minimum spanning tree on P, 
d e n o t e d  by MST(P). The Steiner ratio is defined to be 

p = inf{L~(P)/L.,(P)IP}, 

where L~(P) and  L,,(P) are lengths of SMT(P) and  MST(P), respectively.  Since 
compu t ing  MST(P) is fast, MST(P) can be used as an a p p r o x i m a t e  so lu t ion  of 
SMT(P). In  this case, the Steiner ra t io  is a measure  for the per formance  of  MST(P) 
as an app rox ima t ion .  Gi lbe r t  and  Po l l ak  [73 conjec tured  p = x/3/2,  and  verified 
it for n = 3. The  conjecture  was then verified by  Po l l ak  [11] for n = 4, by  Du, 
Hwang,  and  Yao  [5]  for n = 5, and  by  Rubins te in  and  T h o m a s  [13] for n = 6. 
Along  ano the r  line, the lower  b o u n d  of p for general  n has been pushed  up from 
0.5 (by M o o r e  as repor ted  in [7]) to 0.57 by  G r a h a m  and  H w a n g  [8],  to 0.74 by  
Chung  and  H w a n g  [3],  to 0.8 by  D u  and  H w a n g  [4],  and  to 0.824 by  Chung  and  
G r a h a m  [2]. In  ei ther  the small  n exact  result  or  t he  general  n lower  b o u n d  case, 
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the lack of further progress was caused by a fast growth of computation load. In 

this paper, we will prove p = .,/3/2 without requiring much computation. 
It is well known [7] that an SMT(P)  must satisfy the following conditions: 

(1) All leaves are regular points. 
(2) Any two edges meet at an angle of at least 120 ~ . 
(3) Every Steiner point has degree exactly three. 

Conditions (2) and (3) together imply that every Steiner point is incident to exactly 
three edges; any two of them must meet at an angle of 120 ~ . 

A tree interconnecting P and satisfying (1), (2), and (3) is called a Steiner tree 
(ST). Its topology (the graph structure of the network) is called a Steiner topology. 
An S T  for n points can contain at most n - 2 Steiner points. If an S T  has exactly 
n - 2 Steiner points, then it is called a full S T  and its topology a full topology. 
Any S T  T can be decomposed into an edge-disjoint union of smaller full ST's, 
which are called full subtrees of T. The topologies of full subtrees are called full 
subtopologies of the topology of T. 

2. Inner Spanning Trees. An S T  T can be determined by its topology t and at 
most 2n - 3 parameters, including all edge lengths of T and all angles at regular 
points of degree 2 in T. When writing all parameters into a vector x, the S T  T is 
denoted by t(x). Usually, every edge length is positive. However, for simplicity of 
discussion, we allow the edge length to be zero; in this case, t(x) can be seen as a 
limiting S T  with topology t and usual parameter  vector y as y goes to x. Note 
that, throughout this paper, a parameter  vector is said to exist for a point set and 
a topology if either an S T  with the topology for the point set exists or its limit 
exists. 

Consider a full topology t and a full S T  T of topology t. Let S 1--'Sk be 
a path in T. The path is said to be convex if it contains only one or two segments 
or if for any i = 1 . . . . .  k - 3 ,  the segment SIS~+3 does not cross the piece 
S i S i  + 1 Si + 2 Si + 3 of the path. Two regular points are said to be adjacent in t if there 
is a convex path connecting them in T. For  a Steiner topology t, two regular 
points are said to be adjacent if they are adjacent in a full subtopology of t. Given 
a full topology t and a parameter  vector x, connecting every pair of adjacent 
regular points in t(x), we obtain a polygon. If this polygon is simple, i.e., not 
self-intersecting, then it bounds an area containing the tree t(x). This area is called 
the characteristic area of t at point x. If the polygon is not simple, then there must 
exist a pair of adjacent regular points A and B such that the segment AB intersects 
the tree t(x). In this case, we put the tree t(x) into a spiral surface (Figure 1) such 
that the segment AB does not intersect the tree t(x) and such that AB and the 
convex path between A and B form a simple closed polygon bounding a simply 
connected region. The characteristic area of t at x is now defined to be the union 
of such regions. So, in general, the characteristic area is on a Riemann surface 
rather than a plane. All segments between adjacent regular points form a simple 
polygon on such a surface, bounding the characteristic area. For  a Steiner topology 
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A 
Fig. 1 

t not necessarily full, the characteristic area C(t; x) of t at t can be defined in a 
similar way. Clearly, it is the union of characteristic areas of full subtopologies of t. 

Given a Steiner topology t and a parameter  vector x, the set of regular points 
on tree t(x) is denoted by P(t; x). A spanning tree on P(t; x) is called an inner 
spanning tree for t at x if it lies in the area C(t; x). It is important  to remember 
that the vertices of an inner spanning tree for t at x all lie on the boundary of 
C(t; x). It  should also be noticed that we may have C(t; x) r C(t' ; x') for t(x) = t'(x'). 
However, for a full S T  T, there exists a unique pair of a topology t and a parameter  
vector x such that T = t(x). Thus, there is no confusion when we talk about  a 
characteristic area or an inner spanning tree for a full ST. 

Let l(T) denote the length of the tree T. In this paper, we will show the following 
theorem: 

THEOREM 1. For any Steiner topology t and parameter vector x, there is an inner 

spanning tree N for t at x such that l(t(x)) >_ (xf3/2)l(N). 

Clearly, the Gilber t-Pol lak conjecture is a corollary of the above theorem. 
Sometimes, we speak about  the inner spanning tree without mentioning an 

topology t and a parameter  vector x when the intended t and x are clear. An inner 
spanning tree is called a minimum inner spanning tree if it has the minimum length 
over all inner spanning trees for the given topology at the given point. 

Given a Steiner topology t, let Xt be the set of parameter  vectors x such that 
l(t(x)) = 1. Note that if a component  xl of x is an angle then x i is restricted by 
120 ~ < x~ < 240 ~ It  is easy to see that Xt is a compact set. Let L~(x) denote the 
length of the minimum inner spanning tree for t(x). An important  property is given 
in the following lemma. 

LEMMA 1. Lt(x ) is a continuous function with respect to x. 

Before proving Lemma 1, let us introduce some more notation. For  a topology 
s of spanning tree, denote by s(t; x) the spanning tree on the point set P(t; x) with 
topology s. For each Steiner topology t and each parameter  vector x, let 
I(t; x)(MI(t; x)) be the set of spanning tree topologies s such that s(t; x) is an (a 
minimum) inner spanning tree for t at x. Lemma 1 is a consequence of the following 
two lemmas. 

LEMMA 2. I f  m ~ MI(t;  x), then there exists a neighborhood of  x such that for any 
point y in the neighborhood, m ~ I(t; y). 
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PROOF. For  contradiction, suppose such a neighborhood does not exist. Then, 
there is a sequence of points Yk converging to x such that m ~ I(t; Yk). Thus, every 
re(t; Yk) has at least one edge not in the characteristic area C(t; Yk). Since the number 
of edges ls finite in re(t; x), there exists a subsequence of re(t; Yk) each of which 
contains an edge not in C(t; x), but these edges converge to an edge AB in re(t; x). 
It is easy to see that AB is on the boundary of the area C(t; x) and that A and B 
are not adjacent. (An edge between two adjacent regular points always lies in the 
characteristic area.) Since all vertices in an inner spanning tree lie on the boundary 
of C(t; x), there is a regular point lying in the interior of the segment AB, 
contradicting the minimality of m(t; x). [] 

LEMMA 3. For every x, there is a neghborhood of  x such that for any y in the 
neighborhood, MI(t;  y) ~_ MI(t; x). 

PROOF. For  contradiction, suppose that there is a sequence of points Yk conver- 
ging to x such that for each Yk, a spanning tree topology mk exists such that 
m k ~ MI(t;  yk)\MI(t; x). Since the number of spanning tree topologies is finite, there 
is a subsequence of points Yk' such that for any Yk', mk. = m for a certain spanning 
tree topology m. We can also assume that this subsequence lies inside of the 
neighborhood of x as described in Lemma 2. Thus, for each k', l(m(t; Yk')) < 
l(m'(t; Yk')) for all m' ~ MI(t;  x) since by Lemma 2 m'(t; Yk') ~ I(t; Yk')" Letting k' ~ ~ ,  
we obtain that l(m(t; x)) <_ l(m'(t; x)) for all m' ~ MI(t;  x). Since m (~ MI(t;  x), re(t; x) 
must not be an inner spanning tree. It follows that there exists a neighborhood 
of x such that for any point y in the neighborhood, re(t; y) is not an inner spanning 
tree for t(y), contradicting the existence of the subsequence of points Yk.. 

PROOF OF LEMMA 1. By Lemma 3, there is a neighborhood of x in which Lt(y ) = 
minm~ut(t;x ) l(m(t; y)). Thus, it is continuous at x. []  

Define a function f ~ : X t ~ R  by setting f ( x ) =  1 - ( x / 3 / 2 ) L , ( x ) ( =  l ( t (x) ) -  
(x/3/2)Lr(x)). By Lemma 1, f~(x) is continuous and hence reaches the minimum i n  
X r Let F(t) denote the minimum value of f ( x )  over all x E X t. Note that every 
S T  is similar to an S T  with length one. Thus, Theorem 1 holds iff for any Steiner 
topology t, F(t) > O. 

We prove Theorem 1 by contradiction. Suppose that Theorem 1 is not true and 
that n is the smallest number of points such that Theorem 1 does not hold. Let 
F(t*) be the minimum of F(t) over all Steiner topologies t. Then, F(t*) < 0. Some 
important properties of t* are given in the following two lemmas. 

LEMMA 4. t* is a full topology. 

PROOF. If t* is not a full topology, then for every x ~ Xt.,  the S T  t*(x) can be 
decomposed into edge-disjoint union of several S T  T~'s. Let T~ = ti(x(i)) where tl 
is the corresponding full subtopology of t and x(i) is t h e  parameter which T~ 
has under topology t~. Since every T~ has less than n regular points, we can 
apply Theorem 1 to find an inner spanning tree m~ for t~ at x(i) such that l(T~) > 
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(x/3/2)l(mi). Note that Ui C(ti; x(i)) c_ C(t; x). So, the union m of mi is an inner 
spanning tree for t* at x. Moreover, 

l(t*(x)) = ~" l(T~) >_ (,~f 3/2)l(mi) = = (x/3/2)l(m). 
i 

Therefore, for any x e Xt,, f ( x )  >_ O. Thus, F(t*) >_ 0, contradicting F(t*) < O. D 

Since t* is a full topology, every component of the parameter vector x in Xt, is 
an edge length of the S T  t*(x). A full topology t is said to be a companion of t* if 
two regular points are adjacent in t i f f  they are adjacent in t*. A point x ~ X~, is 
called a minimum point if ft,(x) = F(t*). 

LEMMA 5. Let x be a minimum point. Then, x > 0, that is, every component of x 
i s positive. 

PROOF. Suppose to the contrary that x has zero components. If there is a zero 
component corresponding to the length of an edge incident to a regular point, 
then a contradiction can be derived by an argument similar to that given in the 
proof of Lemma 4. So, all zero components are lengths of edges between Steiner 
points. In this case, it is easy to find a full topology t satisfying the following 
conditions (see Figure 2): 

(1) t is a companion of t*. 
(2) There is a tree T interconnecting the n points in the set P(t*; x), with the full 

topology t and with length less than l(t*(x)). 

If the S T  of topology t for the point set P(t*; x) exists, then there exists a 
parameter vector y such that P(t; y) = P(t*; x). Let h = l(t*(x))/l(t(y)). Clearly, h > 1 
since l(t(y))<_ l (T )<  l(t*(y)). Note that t(hy) is similar to t(y). Hence, f ( h y ) =  

1 - (~3/2)Lt(hy) = 1 - (x/3/2)hLt(y) = 1 - (x~/2)hLt,(x) < f,,(x) = F(t*). Since 
hy ~ Xt,  we have F(t) < ft(hy) < F(t*), contradicting the minimality of F(t*). 

If the S T  of topology t for the point set P(t*; x) does not exist, then we cannot 
use the above argument directly since ft(Y) is undefined. (Remember that F(t*) is 
a minimum over all Steiner topologies. So even though T is a shorter tree, there 
is no contradiction to the minimality of F(t*).) Now, we consider any tree of 
topology t interconnecting all regular points. Such a tree can be determined by 
edge lengths and angles at every Steiner point. Write the lengths into a length 

Fig. 2 
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Fig. 3 

vector y and the angles into an angle vector 0. Such a tree can be denoted by 
t(y, 0). Constructing the characteristic area for t at (y, 0) bY connecting every 
adjacent pair of regular points, we can define the inner spanning tree and the 
minimum inner spanning tree for t at (y, 0) in a similar way. Let Lt(y, O) denote 
the length of the minimum inner spanning tree for t at (y, 0). We can show the 
continuity of Lt(y, O) by an argument similar to that in Lemmas 1-3. Restrict all 
angles to be in between 0 ~ and 360 ~ and the sum of any three angles at the same 
Steiner point to equal 360 ~ Let Yt be the set of vectors (y, 0) with the described 
restrictions on 0 and the restrictions ~ Yi = 1 and y > 0 on y. Then Yt is compact. 

So, the function 9 defined by g,(y, 0) = 1 - (x/~/2)Lt(y, O) reaches its minimum in 
Y~. We denote this minimum value by G(t). By an argument similar to that in the 
last paragraph, we can prove that G(t) < F(t*). 

Now, suppose that 9t(Y, O) = G(t). Let us study properties of the tree t(y, 0). First, 
we claim that two nonzero edges corresponding to two adjacent edges in t form 
an angle of at least 120 ~ . In fact, if there are two such edges with an angle of less 
than 120 ~ then we can find a tree t(y', 0') such that l(t(y', 0')) < l(t(y, 0)) (see Figure 
3). This will imply a contradiction to the minimality of G(t). Next, we claim that 
y has a zero component. Indeed, if y has no zero component,  then t(y, O) must be 
a full S T  and hence G(t) = F(t). This leads to F(t) < F(t*), a contradiction. 

Consider the subgraph of t induced by edges corresponding to zero components 
of y. If every connected component  of the subgraph having an edge contains a 
regular point, then we decompose the tree t(y, O) into edge-disjoint union of several 
smaller full ST's. By an argument similar to that given in the proof  of Lemma 4, 
we can find a full topology t' with fewer regular points such that G(t') < 0. If there 
exists such a component  which contains no regular point, then in a way as shown 
in Figure 2, we can find a full topology t', which is a companion of t, such that 
G(t') < G(t). Repeating the above argument, we will obtain infinitely many full 
topologies with at most n regular points, contradicting the finiteness of the number 
of full topologies. []  

3. Convexity. In this section, we present a key lemma. It is Lemma 7 that is 
obtained from the convexity of the length of a spanning tree with respect to the 
parameter  vector. 

LEMMA 6. Let t be a full topoloyy and s a spannin9 tree topology. Then l(s(t; x)) 
is a convex function with respect to x. 
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PROOF. Let A and B be two regular  points  of the full topo logy  t. We first show 
that  the distance between A and B, d(A, B) is a convex function of x. 

Find the pa th  in t(x) which connects the points  A and B. Suppose the pa th  has 
k edges with lengths xl . ,  . . . .  xk, and with directions el . . . .  , ek, respectively, where 
e 1 . . . . .  e k are uni tary  vectors in the order  f rom A to B. It  is easy to see that  
d(A, B) = [Ix~,el  + "'" + Xk, ekl] where [h' [1 is the euclidean n o r m  and is a convex 
norm.  Note  that  the par t  inside the n o r m  is linear with respect to x. Thus,  d(A, B) 
is a convex function with respect to x. 

Since the sum of convex function is also a convex function, it follows immediate ly  
f rom the above  that  l(s(t; x)) is a convex function of x. [ ]  

L e m m a  5 tells us that  every m i n i m u m  point  is an interior point  of  the simplex 
Xt,. The  next l emma gives another  impor t an t  p roper ty  of a m in imum point. 

LEMMA 7. Suppose that x is a minimum point and that y is a point in Xt. satisfying 
MI(t*; x) ~_ MI(t*;  y). Then, y is also a minimum point. 

PROOF. Fo r  any m in MI(t*,  x), define A(m) = {z e Xt,  ll(m(t*; z)) <_ Lt,(x)}. By 
L e m m a  6, A(m) is a convex region. We first claim that  the union of all A(m) for 
m in MI(t*; x) covers a ne ighborhood  of x. In fact, if such a union does not  cover 
any ne ighborhood  of x, then in every ne ighborhood  of x, we can find a point  z 
such that  min{l(m(t*; z))lm e MI(t*;  x)} > Lt,(x). However ,  by L e m m a  3, we know 
that  for z sufficiently close to x, Lt,(z) = min{l(m(t*; z))lm ~ MI(t*;  x)}. Thus,  there 
exists z in Xt, such that  Lt,(z) > Lr,(x), so that  f , ( z )  < f , (x) ,  contradict ing that  
f , , (x)  = F( t*) .  

Now,  we show that  f~.(y) = F(t*). Suppose  to the cont ra ry  that  ft.(Y) > F(t*). 
Note  that  mI(t*;  x) ~_ MI(t*;  y). Thus, for every m e mI( t*;  x), l(m(t*; y)) < L,.(x). 
We claim tha t  for all posit ive number  c, the point  x + c(x - y) is not  in A(m) for 
every m ~ MI(t*; x). In fact, if the point  x + c(x - y) for some positive c is in A(m), 
then the point  x as an interior point  of the segment  [y, z] where z = x + c(x - y) 
can be writ ten as x = 2y + (1 - 2)z and where 0 < 2 = c/(1 + c) < 1. By L e m m a  
6, we have 

l(m(t*; x)) <<_ )J(m(t*; y)) + (1 - )Ol(m(t*; z)) 

< Lt,(x), 

contradict ing that  m ~ MI(t*;  x). Finally, the fact that  x + e(x - y) for all c > 0 is 
not  in every A(m) for m ~ MI(t*;  x) contradicts  that  the union of all A(m)'s covers 
a ne ighborhood  of x. [ ]  

Let  x be a m i n i m u m  point.  Let y be a pa rame te r  vector  for t* but  not  necessarily 
in Xt,,  such that  MI(t*; x) ~_ MI(t*; y) and l(m(t*; x)) = l(m(t*; y)) for m ~ MI(t*;  x). 
We remark  that  y is also a m i n i m u m  point. To  see this, note that  there always 
exists a positive number  h such that  h y e X t , .  By L e m m a  7, we have that  
Lt,(x ) = Lt,(hy ) = h. L,,(y). Thus, h = 1, so that  y e Xt,. Therefore,  y is a m i n i m u m  
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Fig. 4 

point by using Lemma 7 again. In the next section, we will use this remark in 
some proofs. 

4. Critical Structure. Let t be a full topology and x a parameter vector. Denote 
by F(t; x) the union of minimum inner spanning trees for t(x). The following two 
lemmas are essentially variations of the lemmas for minimum spanning trees given 
by Rubinstein and Thomas [12]. They are helpful for determining the structure 
of F(t; x). 

LEMMA 8. Two minimum inner spanning trees can never cross, i.e., edges meet only 
at vertices. 

PROOF. Suppose that AB and CD are two edges crossing at the point E (see 
Figure 4) and they belong to two minimum inner spanning trees W and U, 
respectively. Without loss of generality, assume that EA has a smallest length 
among the four segments EA, EB, EC, and ED. Removing the edge CD from the 
tree U, the remaining tree has two connected components containing C and D, 
respectively. Without loss of generality, assume that A is in the connected 
component containing C. Note that I(AD) < I(EA) + I(ED) <_ l(CD). If the edge AD 
lies in the characteristic area, then using AD to connect the two components, we 
will obtain an inner spanning tree with length less than that of U, contradicting 
the minimality of U. If the edge AD does not lie in the characteristic area, there 
must exist some regular points lying inside of the triangle EAD. Consider the 
convex hull of those regular points and the two points A and D. The boundary of 
the convex hull other'than the edge AD must lie in the characteristic area. This 
boundary contains a path from A to D. In this path, there exist two adjacent 
vertices which belong to different connected components of U\ CD. Connecting 
two such adjacent vertices, we can also obtain an inner spanning tree with length 
less than that of U, a contradiction. (Note: The distance of two points in a triangle 
is bounded by the longest edge of the triangle and hence bounded by the sum of 
any two edges of the triangle.) [] 

From Lemma 8, we can see that F(t; x) divides the characteristic area C(t; x) 
into smaller areas each of which is bounded by a polygon with vertices all being 
regular points. Such a polygon is called a polygon of F(t; x), if it is a subgraph of 
r(t; x). 
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LEMMA 9. Every polygon of F(t; x) has at least two equal longest edges. 

PROOF. Suppose to the contrary that F(t; x) has a polygon Q with the unique 
longest edge e. Let m be the minimum inner spanning tree containing e. For  every 
edge e' of Q not in m, the union of m and e' contains a cycle. If this cycle contains 
e, then adding e' and deleting e, we will obtain an inner spanning tree with length 
less than m, contradicting the minimality of m. Thus, such a cycle does not 
contain e. Hence, for every edge e' in Q not in m, m has a path connecting two 
endpoints of e' and not passing e. These paths and "e form a cycle in m, a 
contradiction. []  

When t is a full topology, the characteristic area of t(x) is bounded by a polygon 
of n edges. Partitioning the area into n - 2 triangles by adding n - 3 diagonals, 
we will obtain a network with n vertices and 2n - 3 edges. This network will be 
called a triangulation of C(t; x). Let us first ignor the full ST t(x) and consider the 
relationship between the vertex set and the length of edges. Note that in the 
previous discussion, when we say that a set P of points is given, we really mean 
that the distance between every two points in the set is given, that is, relative 
positions between those points have been given. With this understanding, we make 
the following observations: 

(1) The vertex set (Le., the set of regular points, P(t; x)) can be determined by 
2n - 3 edge lengths of the network. 

(2) The 2n - 3 edge-lengths are independent variables, that is, the network could 
vary by changing any edge-length and fixing all others. 

Note that every F(t; x) can be embedded in some triangulation of C(t; x). Thus, 
all edge-lengths in F(t; x) are independent. 

A F(t; x) is said to have a critical structure if F(t; x) partitions C(t; x) into exactly 
n - 2 equilateral triangles. Such a structure has the property that any perturbation 
would change the set of topologies of minimum inner spanning tree. A F(t; x) with 
a critical structure is also said to be critical. 

LEMMA 10. Any minimum point x with the maximum number of minimum inner 
spannin 9 trees has a critical F(t*; x). 

PROOF. If F(t*; x) is not critical, then one of the following must occur: 

(a) F(t*; x) has a free edge, an edge not on any polygon of F(t*; x). , 
(b) F(t*; x) has a polygon of more than three edges. 
(c) (a) and (b) do not occur, but F(t*; x) has a nonequilateral triangle. 

We will show that in each case, the number of minimum inner spanning trees 
can be increased. First, assume that (a) occurs. Embedding F(t*; x) into a 
triangulation of C(t*; x) we can find a triangle containing the free edge e. Let e' 
be an edge of the triangle not in F(t*; x) such that in a minimum inner spanning 
tree containing e, removing e and adding e' will result in another inner spanning 
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tree. (Such an edge e' must exist for, if the triangle has only one edge not in F(t*; x) 
then this edge must have the desired property; if the triangle has two edges not 
in F(t*; x), then the one which lies between the two connected components of the 
minimum inner spanning tree after removing e meets the requirement.) Clearly, 
l(e) < l(e'). Now we decrease the length of e' and fix all other edge-lengths in the 
triangulation. Let I be the length of the shrinking e'. At the beginning, l = I(e'). At 
the end, l = l(e) < l(e'). For each l, denote by P(l) the corresponding set of regular 
points. Then P(l(e')) = P(t*, x). Consider the set L of all l s [l(e), l(e')] satisfying the 
condition that there is a minimum point y such that P(1) = P(t*; y). Since the set 
of minimum points is a closed set and contains the point x, the set L is nonempty 
and closed. Therefore, there exists a minimal element t* in L. Let m ~ Ml(t*; x) 
and m'e MI(t*; y). Since both x and y are minimum points for t*, l(m(t*; x)) = 
l(m'(t*; y)). Furthermore, since e is a free edge, decreasing e' does not effect the 
length of any edge in F(t*;x). Hence, m~MI(t*;  y) and MI(t*; x ) c  MI(t*; y). 
Suppose MI(t*; y) = MI(t*; x). Clearly, l* # l(e) since, when l* = l(e), dropping e 
and adding e' will give one more minimum inner spanning tree. By Lemma 5, y 
has no component being zero. This means that there exists a neighborhood of I* 
such that for l in it, the ST  of full topology t* exists for the point set P(/). Thus, 
there exists an 1 < l* such that P(1) = P(t*; z) for some length vector z. From the 
proof of Lemma 1, we know that there exists a neighborhood of y such that for 
y' in it, MI(t*;y')~_ MI(t*;y). Thus, z can be chosen also to satisfy that 
MI(t*; z) ~ mI(t*; y). Note that for every m, m' E MI(t*; x), l(m(t*; z)) = l(m'(t*; z)) 
and that MI( t*;y )= MI(t*;x). It follows that MI( t* ;z )=  Ml(t*;x).  By the 
remark we made at the end of Section 3, z is also a minimum point, a contradiction 
to the assumption that l* is minimum. Therefore, Ml(t*; x) c MI(t*; y) and l(t*; x) 
is not critical. 

For the other two cases, we can give similar proofs by decreasing the length of 
an edge not in F(t*; x) in case (b) and by increasing the length of all shortest edges 
in F(t*; x) in case (c). [] 

Now, in order to derive a contradiction to F(t*) < 0, it suffices to show that 
for any ST  t(x) with critical F(t; x), Theorem 1 holds for t(x). 

Note that a critical F(t; x) contains n -  2 equilateral triangles which form a 
framework fixing all regular points. Let a be the length of an edge of the equilateral 
triangles in the F(t; x). If we divide the plane into a union of disjoint equilateral 
trangles with edge length a, then all regular points in a critical F(t; x) can be placed 
on the lattice points. The following lemma is easy to prove. 

LEMMA 11. The minimum spanning tree for n lattice points has length at least 
(n - 1)a. For the point set P(t; x) with critical F(t; x), the minimum inner spannin9 
tree has length exactly (n - 1)a. 

PROOF. The first part is obvious. The second part follows immediately from the 
fact that any minimum inner spanning tree is a minimum spanning tree of the 
graph F(t; x). [] 
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Fig. 5 

By Lemma 11, we can see that for the point set P(t; x) with critical F(t; x), every 
minimum inner spanning tree is a minimum spanning tree in the plane. Thus, to 
show that Theorem 1 holds for t(x), it suffices to verify the truth of Gilbert-Pollak 
conjecture for the point set P(t; x) with critical F(t; x). 

5. Minimum Hexagonal Trees. We now study a different kind of trees. Given 
three directions (Figure 5) each two of which meet an an angle of 120 ~ a shortest 
network interconnecting a given set P of points and having edges all parallel to 
the three directions is called a minimum hexagonal tree on P. Let Lh(P) denote the 
length of the minimum hexagonal tree for P. Weng [15] showed the following 
lemma. For  convenience of the reader, we also include a proof here. 

LEMMA 12. L~(P) >_ (x/3/2)Lh(P). 

PROOF. First, we note that if a triangle ABC has the angle at A not less than 

120 ~ then l(BC) > (x/3/2)(I(AB) + I(AC)). (For a proof, see [4] and [11].) Now, 
each edge of the Steiner minimum tree can be replaced by two edges meeting 
at an angle of 120 ~ and parallel to the given directions. Therefore, the lemma 
holds. [] 

Let the three directions of a hexagonal tree be parallel to the edges in the critical 
F(t; x), respectively. Let Tbe  a minimum hexagonal tree for a given set P of points. 
A point on T but not in P is called a junction if the point is incident to at least 
three lines. Since only three possible slopes exist for lines, there are exactly three 
lines meeting at a junction. In a hexagonal tree, an edge is a path between two 
vertices (regular points or junctions). Thus, an edge can contain several straight 
segments. An edge is called a straight edge if it contains only one straight segment, 
and is called a nonstraight edge if it is not a straight edge. Any two segments 
adjacent to each other in an edge meet at an angle of 120 ~ since if they meet at 
an angle of 60 ~ then we can shorten the edge easily. Note that an edge with more 
than two straight segments can always be replaced by an edge with at most two 
straight segments. Thus, we assume in the following that every edge has at most 
two straight segments. When we talk about an edge of a junction, its first segment 
is the segment incident to the junction. The other segment, if it exists, is the second 
segment of the edge. A hexagonal tree for n points is said to be full if it contains 
exactly n - 2 junctions. Any hexagonal tree can be decomposed into edge-disjoint 
union of smaller full hexagonal trees. Such a full hexagonal tree will be said to be 
a full hexagonal subtree of the hexagonal tree. 
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Consider a minimum hexagonal tree. Suppose a junction has two nonstraight 
edges. Then these two edges have segments in the same direction. Flip the edges 
if necessary to line up these two segments, then the second segments of these two 
edges as well as the first segment of the third edge are three segments each lying 
completely on one side of the line just constructed. Therefore one side has the 
majority of the three segments and we can move the line either to shorten the tree 
or to decrease the number of nonstraight edges. Hence, there exists a minimum 
hexagonal tree such that each of its junctions has at most one nonstraight edge. 

In the next lemma, we consider the lattice which divides the plane into 
equilateral triangles. Given three directions parallel to the edges of  the equilaterals, 
we study hexagonal trees for lattice points. 

LEMMA 13. For any set of n lattice points, there is a minimum hexagonal tree whose 
junctions are all lattice points. 

PROOF. Suppose that the lemma is false. Then there exists a set of points such 
that every minimum hexagonal tree contains a junction which is not a lattice 
point. Call such a set bad. Let P be a smallest bad set. Then every minimum 
hexagonal tree for P must be full with no junction on a lattice point. (Otherwise, 
a smaller bad set exists.) Consider a minimum hexagonal tree T with the property 
that each of its junctions has at most one nonstraight edge. Note that there exists 
a junction J which is adjacent to two regular points A and B, or T contains a 
cycle. Let C be the third vertex adjacent to J. If C is a regular point, then it is 
easy to show that J is a lattice point, or J can be moved to a lattice point since 
at least two of the three edges JA, JB and JC are straight. Hence, C is a junction. 
We will show that J is a lattice point, for otherwise one of the following two 
things can happen: a junction can be moved to a regular point, or to another 
junction. Since the latter movement  cannot last forever and two junctions joining 
together would result in a shortening of the tree, we obtain a contradiction. 

Let us first consider the case that both edges A J  and JB are straight. If AJ  and 
JB are in different directions, then J is a lattice point. Hence, they are in the same 
direction. Let e be a line through C parallel to AB. If C has a nonstraight edge 
with an endpoint lying on the AB side of e, then we can shorten the tree. If C has 
a straight edge overlapping e, then we can move edge JC such that either J or C 
meets a regular point or a junction other than J and C. Hence, we may assume 
that the two vertices adjacent to C are on the other side of e away from AB. Now, 
we can move C further away from J (Figure 6). 

A J B A J B 

Fig. 6 
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Second, we consider the case that AJ is a straight edge and JB is a nonstraight 
edge with a segment in the same direction as AJ. Flip JB, if necessary, to line up 
the two first segments of AJ and JB. Let BD be the first segment of JB. Then D 
must be a lattice point. Now, we can use D to replace B and go back to the first case. 

Third, if AJ is a straight edge and JB is a nonstraight edge without a segment 
in the same direction as A J, then J can be moved either to A or to a lattice point 
(Figure 7). Since other cases are symmetric to the above three cases, the lemma is 
proved. [] 

Consider the lattice containing the critical F(t; x). Since all regular points are 
lattice points, by Lemma 13, there is a minimum hexagonal tree with junctions 
all being lattice points. By Lemma 11, the length of the minimum hexagonal tree 
is at least (n - 1)a, the length of a minimum spanning tree. Note that a minimum 
spanning tree, in this case, is a hexagonal tree. Thus, a minimum spanning tree is 
also a minimum hexagonal tree. By Lemma 12, we have 

L~(P) _> (~f 3/2)Lh(P) = (,,/3/2)Lm(P). 

Theorem 1 is proved. 

6. A Remark on Characteristic Area. When the full ST t(x) has two nonadjacent 
edges crossing each other, it is hard to determine the surface on which the 
characteristic area is defined. Here, we give an alternative treatment. 

First, we notice that for any two edges on t(x), we can give a system of linear 
inequalities to describe the sufficient and necessary condition for these two edges 
to intersect each other. For  example, suppose that A I . . -A  7 is a convex path in 
t(x) and xl = d(Ai, Ai+l). Then A1A 2 and A 6 A  7 intersect each other i ffx 1 + x 2 > 
X 4 "q- X 5 ~ X 2 a n d  x 6 -~- x 5 ~ x 2 + x 3 ~ x 5 . 

Thus, if we delete the x, at which t(x) has nonadjacent edges intersecting, from 
Xt, then the closure g ,  of remaining points is still a polytope, but not necessarily 
convex. Note that for any point x in the interior o f )~  t(x) cannot have nonadjacent 
edges intersecting. However, for x on the boundary o f ~ ,  t(x) can have nonadjacent 
edges intersecting; this happens only if there is a regular point touching an edge 
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or another regular point. We now describe how to modify previous arguments to 
accommodate the changes in boundary and in convexity when Xt (Xt,) is replaced 

by 32 t 0~t,). 
Lemmas 1-4 remain unchanged. For  the proof Of Lemma 5; we need to consider 

the new boundary. Note that if x is an new boundary point, then t(x) has a regular 
point touching an edge or another regular point. In the former case, we can 
decompose t(x) at the touching point to obtain two trees each with less than n 
regular points. In the latter case, we can reduce the number of regular points by 
one. In either case, an contradiction is achieved by an argument similar to the 
one used in the proof of Lemma 4. 

Lemma 6 is alright. But Lemma 7 has to be modified as follows. 

LEMMA 7'. Suppose that x is a minimum point and that y is a point in Xt* such 
that the segment [x, y] c Xt* and MI(t*; x) ~_ Ml(t*; y). Then y is also a minimum 
point. 

In proof of Lemma 7, we keep X~. in the definition of A(m) so that A(m) is still 
convex. In the remark at the end of Section 3, we require y to satisfy that for any 
w in Ix, y] t*(w) exists and does not have nonadjacent edges intersecting. Finally, 
we claim that in the proof of Lemma 8, we can choose z so close to y such that 
for any w in [y, z] t(x) exists and does not have nonadjacent edges intersecting. 
So, we have no trouble for the current case to work. 

7. Discussions. The method used in this paper can also be applied to determining 
Steiner ratio in other normed plane or space. For  example, the following theorem 
can be obtained in a similar way. 

THEOREM 2. In the plane with Lp-norm Ilxllv = ( I x l l "  + ]x2lP) 1/p, the Steiner ratio 
is achieved by the vertex set of a network which is a union of n -  2 equilateral 
triangles where n is the number of vertices of the network. 

Liu and Du [10] showed that for 1 < p < ~ ,  properties of minimum Steiner 
trees in the Lp-plane are similar to those in the euclidean plane. They believe that 
the Steiner ratio will be achieved by four points when p # 2. In fact, for p = 1, 
Hwang [9] has proved that the Steiner ratio is 2/3, which is achieved by four 
points and cannot be achieved by three points. 

In a space of dimension more than two, the critical structure is more compli- 
cated. For  example, in three-dimensional euclidean space, all polytopes with only 
equilaterally triangular facets are candidates. Recently, W. D. Smith [14] showed 
that in the euclidean space of dimension d, 3 ~ d _< 9, the Steiner ratio is not 
achieved by the vertex set of regular simplex as conjectured in [ t ] .  This suggests 
that determining the Steiner ratio in higher-dimensional space is much more 
difficult but an interesting topic for further research. 
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