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Limiting Distributions of the Number of Pure Strategy Nash 
Equilibria in N-Person Games 1 

By I. Y. Powers  2 

Abstract: We study the number of pure strategy Nash equilibria in a "random" n-person non- 
cooperative game in which all players have a countable number of strategies. We consider both the 
cases where all players have strictly and weakly ordinal preferences over their outcomes. For both 
cases, we show that the distribution of the number of pure strategy Nash equilibria approaches 
the Poisson distribution with mean 1 as the numbers of strategies of two or more players go to 
infinity. We also find, for each case, the distribution of the number of pure strategy Nash equilibria 
when the number of strategies of one player goes to infinity, while those of the other players remain 
finite. 

1 Introduction 

The Nash equilibrium (N.E.) solution concept (Nash (1951)) is often used to solve 
n-person non-cooperative games because of the appealing notion of stability that 
it embodies. A N.E. solution specifies strategies for all players, such that each player 
achieves his most preferred payoff, given the N.E. strategies adopted by the other 
players. Any n-person game in which each player has a countable number of 
strategies can be represented in matrix form, as in the following example, for n = 2: 

Player 1 
1 (21,32) (24,11) 

2 (12,46) (28,45) 

3 (14,38) (30,39) 

Player 2 

2 3 

(43,56) (31,27) 

(56,34) (18,54) 

(25,30) (42,10) 

payoffs in dollars 

This paper is a revised version of the first part of the author's Ph. D. dissertation at Yale 
University. The author thanks Martin Shubik for suggesting the problem, and Michael R. 
Powers for his technical assistance. 

Imelda Yeung Powers, 842 Mandy Lane, Camp Hill, PA 17011, U.S.A. 
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In this game, s k (k = 1, 2) denotes the strategy of  Player k, and the ordered pairs 
denote, componentwise, the payoffs of  Players 1 and 2. A careful examination of 
the payoffs reveals that, in this example, the only pure strategy N.E. solution is 
s 1 = 3 a n d s  2 = 4. 

In a non-cooperative matrix game, the number of  pure strategy N.E. can be as 
small as zero or as large as the total number of  possible outcomes. In any case, it 
is of  fundamental importance to know, at least approximately, how many pure 
strategy N.E. exist in a particular game. However, this number is not always readily 
identified, especially in "large" n-person games where n is greater than 2, where the 
numbers of  strategies of  the players are very large, and where the payoffs are arrang- 
ed in a seemingly unstructured manner. 

We propose to attack this problem by studying the probability distributions of  
the number of  pure strategy N.E. in " r andom"  n-person games where the payoffs 
of  the various players are modeled as random variables. We focus on n-person games 
in which each player has a countable number of pure strategies, both because it is 
often impractical to use mixed strategies, and because many people are uncomfor-  
table using them. Once we adhere only to pure strategies, all that is important  is the 
ordinality of  the payoffs; thus, it suffices to study only ordinal games. 

In our study of random n-person games, we have found that, under reasonable 
assumptions, it is difficult to obtain explicit expressions for the probability distribu- 
tion of  the number of  N.E. when the numbers of  strategies of  all n players are finite. 
In Powers (1986), an explicit solution is given for the case where n = 2. 

Earlier research provides some results for limiting cases where the numbers of  
strategies of  certain players go to infinity. Goldberg, Goldman,  and Newman (1968) 
found that the probability that a two-person cardinal game has at least one pure 
strategy N.E. converges to 1-e -1 ( =  0.6321) as the numbers of  strategies of  both 
players go to infinity. Dresher (1970) extended this result to n-person games by show- 
ing that the probability that an n-person cardinal game has at least one pure strategy 
N.E. also converges to 1-e -1 as the numbers of  strategies of  two or more players go 
to infinity. These researchers modeled the payoffs of  their cardinal games as random 
variables drawn from a continuous distribution, so that for each player, the pro- 
bability is 1 that all of  his payoffs are distinct. This work is thus equivalent to the 
study of strictly ordinal games, i.e., games where there are no ties among the payoffs 
of  any player, and does not address weakly ordinal games, i.e., games where ties 
among the payoffs of  a player are permitted. 

We have found it desirable to identify the complete probability distributions 
underlying these earlier results. It is also useful to broaden the scope of  research by 
studying the number of  N.E. in weakly ordinal games, because individuals often 
have only a weak preference ordering over all of  the possible outcomes of  an event. 
It is intuitively clear that there should be more N.E. in weakly ordinal games, but 
it is not immediately evident how much of an increase is caused by the weak 
preferences. 

In this paper, we first study the distribution of the number of  N.E. in a random 
n-person strictly ordinal game as the numbers of  strategies of  one, two, or more 
players go to infinity. We then extend our results to weakly ordinal games, and study 
the corresponding limiting distributions. Compared to the results for strictly or- 
dinal games, we find that ties in the payoffs of  some players in the weakly ordinal 
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games increase the expected number of  N.E. when the numbers of  strategies of  all 
players are finite, or if  only one player has an infinite number  of  strategies. However, 
the distribution of  the number of  N.E. approaches the same distribution as in the 
n-person strictly ordinal game when the numbers of  strategies of  two or more players 
go to infinity. 

2 General Model 

We begin by describing our model for a random n-person strictly ordinal game. Con- 
sider an n-person strictly ordinal game with Players 1,2 ..... n, where Player k has m k 

strategies and every player has a strictly ordinal preference over all of  the 
M (= H rnk) possible outcomes. We assume that: a) for each player, the ordinal 
payoffs associated with the Mpossible  outcomes are the result of  a random drawing 
of  M numbers from 1,2 ..... M without replacement (where, without loss of  generali- 
ty, we use the convention that the higher the number associated with an outcome, 
the more the player prefers it); and b) the ordinal payoffs o f  the n players are 
statistically independent of  one another. We shall also consider an analogous model 
for the weakly ordinal game by varying assumption (a) so that for each player, the 
ordinal payoffs associated with the M possible outcomes are the result of  a random 
drawing of  M numbers from 1,2 . . . . .  M with replacement. 

We note that assumption (b) is appropriate for games in which the player's 
evaluations of  the outcomes are independent of  one another. Both assumptions (a) 
and (b) are natural and simple suppositions to make when trying to estimate the 
number of  N.E. in an apparently unstructured n-person game. Using our model, 
we are able to obtain a number of  results that are both mathematically interesting 
from a combinatorial  viewpoint, and of  value to researchers seeking the number of  
N.E. in "large" n-person games. We would also like to note that not all of  our results 
require assumptions (a) and (b), and all o f  them still hold if assumptions (a) is relax- 
ed appropriately, as discussed later. 

I f  we let s k denote Player k 's  strategy and Pk(Sl ,  s 2 ..... s k ..... s n)  denote his 
ordinal payoff  for the outcome (s 1, s 2 .... , s k ......  Sn), then the outcome 
(sl ' ,  s2', .... sl~ .. . . .  Sn') is a N.E. if and only i f  Pk (S l ' ,  s2', .... sl~ ..... Sn') = Max 

s k 

{Pk (st ' ,  s2' ..... Sk ..... s n')} for all k. In this paper we study the distribution of  X, 
the number  of  N.E., as the numbers of  strategies of  different players go to infinity. 
We present results for both strictly and weakly ordinal games. 
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3 N-Person Strictly Ordinal Games 

In the n-person strictly ordinal game, we first observe that if we fix the strategies 
of  any n-1 players, then there is at most one N.E. associated with that combination 
of  fixed strategies, because all of  the players have strictly ordinal preferences. 
Hence, the maximum number of  possible N.E., i.e., Max{X}, is given by 
Min { H m k,  1-I m k . . . . .  YI m k }. Applying assumptions (a) and (b) of  our 

k r  k r  k ~ n  

model, we note that E[X] = total number of  outcomes x P ( a  given outcome is a 
N.E.) = YI m k x (1/II  ink )  = 1. 

Now let us consider all of  the possible combinations of  strategies of  players 
1, 2 ..... n-l, and call each of  them a "compound  strategy." I f  we match each of the 

1-I m k compound strategies with the corresponding best response of player n, 
k ~ n  
then we may find that several compound strategies of  Players 1, 2 . . . . .  n-1 are 
associated with the same strategy of  Player n. Consider performing this matching 
when Players 1, 2 . . . . .  n-1 all have finite numbers of  strategies, but Player n has an 
arbitrarily large number of  strategies that are all equally likely to be the best response 
for any compound strategy of Players 1, 2 . . . . .  n-l, and all of  the best responses are 
independent of  one another. Intuitively, the probability should approach 1 that each 
compound strategy of  Players 1, 2 ..... n-1 is associated with a distinct strategy of 
Player n, because it is unlikely that among the very large number of  strategies of  
Player n, the finite number ( 1-I i nk )  of best responses do not come from distinct 
strategies, k :~ n 

Given that all of  the N.E. of  a game must come from the outcomes that already 
have the best responses of  Player n, it follows that the probability that any one of  
these outcomes is a N.E. is equal to the probability that Players 1, 2 ..... n-l 's  ordinal 
payoffs are all greatest in that outcome, i.e., 1/FI m k .  Thus, if we let the 

k-~n 
number of  strategies of  Player n go to infinity while keeping the numbers of  
strategies of  the other players finite, then we identify the existence of  a N.E. as a 
Bernoulli event with probability 1 / I I  i n k ,  and quickly see that the limiting 

k ~ n  
distribution of  the number of  N.E. is a binomial random variable with parameters 

I I m  k and 1 / I I  m k . Formal proof  of  the above result can be found in Powers 
k ~ n  k ~ n  

(1986). 
Of  course, we would also like to know the distribution of  the number of  N.E. 

as the numbers of  strategies of  two or more players go to infinity simultaneously. 
This problem would be easy if we knew that this limiting distribution exists (see, for 
example, Gelbaum and Olmsted (1964)). I f  this were the case, then we could first 
let m n go to infinity, and then let H m k go to infinity. Using the result that 

k ~ n  
we just noted for the case when only Player n has an infinite number of  strategies, 
we would conclude that the distribution of the number of  N.E. when Yi m k goes 

k-~n 
to infinity must be the Poisson distribution with mean 1 (by the DeMoivre-Laplace 
limit theorem). Unfortunately, we do not know that this limit exists, and so we can- 
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not  take advantage o f  the earlier result. However, we can apply a useful result o f  
Chen (1975) to show that  the limiting distr ibution is indeed Poisson with mean 1. 

Consider  n individuals, Players 1, 2, ..., n, where Player k has m k strategies, and 
each player has strictly ordinal preferences over the M (=  H m k )  outcomes o f  the 
game. Wi thout  loss o f  generality, we assume that  m 1 _< m 2 _< ... _< m n. Let  s = 
(s 1, s 2 ,:.., Sn) and pk(s)  denote Player k ' s  ordinal payof f  for the ou tcome s. We 
assume that,  for each k = 1, 2 . . . . .  n, t hepk(s )  are all independently obtained by 
a r andom drawing o f  M numbers  f rom I to M without  replacement, and we define 
the following indicator functions: 

Ik(S 1, s 2 . . . . .  Sk' ,  .... s n)  = 1 

I(s) = II Ik(s ). 

= 0  

i f  Pk (S l ,  s2 . . . . .  Sk' ,  .... s n)  

= M a x  {Pk(S1, s 2 . . . . .  s k . . . . .  Sn) } 
sk 

otherwise, and 

With this notat ion,  we present the following result. 

Theorem L" In  an n-person strictly ordinal game, the probabili ty distribution o f  the 
number  o f  N.E.  approaches the Poisson distribution with mean 1 as the numbers  
o f  strategies o f  two or  more  players approach  infinity. 

Proof" Let X d e n o t e  the number  o f  N.E. Then, by definition, X = r. I(s), where the 
I(s) are Bernoulli r andom variables with mean  1 /M.  Clearly, I(s) and I ( s ' )  are depen- 
dent if less than two o f  the elements o f  s and s '  are different, and independent  other- 
wise. For any s, let B(s) = {s' : less than two elements o f  s '  and s are different}. Fur- 
thermore,  let b 1 = Z E E[ I ( s ) ]E[ I ( s ' ) ] ,  and b 2 = E Z E[I (s ) I (s ' ) ] .  

s s '  @ B(s) s s :~ s '  E B(s) 

Then b 1 = M [ Z ( m k - 1 ) + l ]  x (1 /M 2) and b 2 = M[Z(mk-1 ) ]  x Oo 

Since Lim b I = Lim b 2 = 0, it follows f rom Chen (1975) that, as 
mn_l , m n ~  00 mn_l ,m n -  o~ 

mn_ 1 and m n go to infinity, X dist; p, where P - Poisson (1). Because this result 

holds for all m 1, m2, ..., mn_2, it must  also hold as any or  all o f  them approach  
infinity. �9 

We observe that  for the Poisson distribution with mean 1, P ( X  > O) = 0.6321. 
Thus,  a N.E. is not  so rare when the numbers  o f  strategies o f  two or  more players 
go to infinity. 

4 N - P e r s o n  W e a k l y  O r d i n a l  G a m e s  

We now proceed to describe our  model  for the n-person weakly ordinal game. We 
use the same nota t ion  as that  in the n-person strictly ordinal game, but consider n 
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players who may have weakly ordinal preferences over all o f  the possible outcomes.  
Again,  wi thout  loss o f  generality, we assume that  m 1 < m 2 ___ ... _< mn, and let 
(s 1, s 2 . . . . .  s n) denote, componentwise,  the strategies chosen by Players 1, 2 . . . . .  n. 
We also assume that,  independent  o f  the payoffs o f  the other  players, the payoffs 
o f  each Player k are obtained by a r andom drawing o f  M ( = I I m k )  numbers  with 
replacement. 

This model  o f  a r andom n-person weakly ordinal game is a natural extension 
of  our  model  o f  a r andom n-person strictly ordinal game. The drawing with replace- 
ment  simulates the possibility o f  ties among  a player's payoffs. Let Z be the number  
o f  N.E. in this weakly ordinal game. We know that,  given the strategies o f  the rest 
o f  the players, there is possibly more than  one "max ima l  ou tcome"  (best response) 
for each player. Since N.E. can be formed f rom these maximal  outcomes,  we an- 
ticipate a greater number  o f  N.E. in this game than in the strictly ordinal game, and 
this is conf i rmed by the following lemma. 

Lemma 1." In an n-person weakly ordinal game, the expected number  o f  N.E. is 
greater than or equal to 1. 

Proof." For k = 1, 2 . . . . .  n, fix the strategies o f  all but  Player k, and consider the one 
or  more maximal  outcomes o f  Player k. Identify one o f  these outcomes as the 
"des ignated"  maximal  ou tcome and the rest, if any, as "undes igna ted"  maximal 
outcomes.  Then define, for all k = 1, 2 . . . . .  n, 

1 
Ik(S) = [ 0 

if s gives Player k a designated maximal  outcome 
otherwise 

1 
Jk(S) = [ 0 

if s gives Player k an undesignated maximal  outcome 
otherwise, 

and let 

I(s) = I I  Ik(S) 

J(s) = I I  [Ik(S)+Jk(S)] -- I I  [Ik(S)]. 

We recognize that  
I(s) = X,  a r andom variable with the same distribution as the number  o f  N.E. 

in the strictly ordinal game, and we know that  E[X] = 1 (from section 3). Let us 
also define Z J(s) = Y. Since Y is a non-negative r andom variable, it follows that  
E[Y] >_ O. We can see that  Z = X + Y, and so E[Z] = E [X]+E[Y]  >_ 1. 

I 

Consider  an n-person weakly ordinal game in which the number  o f  strategies 
o f  Player n goes to infinity while the numbers  o f  strategies o f  the other  players re- 
main  finite. Given any c o m p o u n d  strategy chosen by Players 1, 2, ..., k-l, k + 1 . . . . .  n, 
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the probability that all of  the m k ordinal payoffs are distinct for Player 
k ( k  = 1, 2 . . . . .  n-l) goes to 1, because Player k 's  finite m k ordinal payoffs are drawn 
with replacement from an arbitrarily large collection of numbers: 1, 2 . . . . .  M. Thus, 
in the limit, there is only one maximal outcome for Player k when the strategies of  
the rest of  the players are fixed, and this is similar to the strictly ordinal n-person 
game. However, this similarity exists only for Players k, where k :g n. For Player n, 
there is, with positive probability, more than one maximal outcome in the limit when 
the strategies of  the rest of  the players are fixed, because, in this case, an infinite 
number of  ordinal payoffs, mn,  is drawn from M numbers, where M is just a finite 
constant times mn.  

This result changes the nature of  the problem dramatically, and leads to a dif- 
ferent limiting distribution from the corresponding strictly ordinal case. In Powers 
(1986), it is shown that ~o Z (t), the moment  generating function associated with this 
limiting distribution, is 

{[1/(1-e-1/M')]'[e(et. "l)/M'2 - e-1/M']} M ' ,  w h e r e M '  = m 1 • m 2 • ... • mn_ 1. 

Although it is not possible to extract the probability distribution function from this 
moment  generating function, we can easily find the first moment ,  E [ Z ]  = so Z '  (0) 
= 1 / [ M '  (1-e-1/m')], as well as higher moments.  

I f  we let more than one player have an infinite number of  strategies (or 
equivalently, let M '  go to infinity), then E [ Z ]  approaches 1. (Note that this does 
not prove that E[Z]  approaches I as the numbers of  strategies of  two or more players 
go to infinity s imul taneously . )  This suggests that no extra N.E. are contributed by 
the undesignated maximal outcomes. Although this may seem odd at first glance, 
it is actually quite apparent.  

For k = 1, 2, ..., n, consider Player k ' s  m k ordinal payoffs given a particular 
compound strategy chosen by the rest of  the players. Since these m k ordinal payoffs 
are drawn from M num ber s  with replacement, and M approaches infinity at a faster 
rate than m k, it follows that the probability that Player k 's  m k ordinal payoffs are 
all distinct (i.e., that there is only one maximal outcome) goes to 1. We note that this 
is true for allplayers,  and that this structure is similar to the structure of  the n-person 
strictly ordinal game. Hence, we would expect that as the numbers of  strategies of  
two or more players go to infinity, the probability distribution of the number of  
N.E. in an n-person weakly ordinal game also approaches the Poisson distribution 
with mean 1. The following lemma is needed to establish this result formally in 
Theorem 2. 

L e m m a  2: In an n-person weakly ordinal game, the expected number of  N.E. 
approaches 1 as the numbers of  strategies of  two or more players go to infinity. 

Proof:  E [ Z ]  = r. E[ l (s)+J(s)]  = ~ H P ( I k ( S ) + J k ( S )  = 1) 
s s k 

= (Y Imk) I - I  {(I-Imk)-mk [(Hmk)mk-1 + (Flmk-1)mk-1 + (Hmk-2)m#- i  + . . . +  

( I I m  k - (Hmk-1))mk-1]}. 

Let r be the number  of  players with an infinite number of  strategies, where 2 _< r 
_< n, and let m = mn_(r_l) = ... = mn_ 1 = m n. Let  v be the index for Players 
1, 2 . . . . .  n-r, and let N = H m  v, so that M = N m  r. Then E [ Z ]  
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= N 1-I{(Nmr)'mv [(Nmr)mv "1 + (Nmr-l)mv -1 + (Nmr-2)mv -1 +. . .+ (Nm r -  

(Nmr-1))mv-1]} �9 mr{(Nmr) "m [(Nmr) m-1 + (Nmr-1) m-1 + (Nmr-2) m-1 +. . .+ 

(Nmr_(Nmr_l ) )m-1 ]}r 

Nmr-1 
= N i l  [(Nmr) -1 �9 ~ (1-i/(Nmr))mv -1] �9 

v i=0 

Nmr-1 
[(1/(Nmr-1)) 

i=0 

L im E[Z]  
m ~  

(1-i/(Nmr))m'l] r, and 

Nmr-1 
= N [ I I  f l  (l_u)mv-1 du] �9 Lim [(1/Nmr-1)) 

v m - ~  i=0 

(where u is jus t  a d u m m y  variable)  

( l_i / (Nmr)  )m-1 ]r 

Nmr-1 
= N O ~ N ) "  Lim [(1/(Nmr-1)) E (1-i/(Nmr))m-1] r. 

m - ~  i=0 

Nmr-1 
Now, [(1/(Nmr'l)) ~ (1-i/(Nmr))m-l] r 

i=0 

Nmr-1 
< [(1/(Nmr-1)) ~ (e-i/(Nmr))m-1] r 

i=0 

o o  

< [(1/(Nmr-1)) ~ (e-i/(Nmr))m-1] r 
i=0 

= [(1/(Nmr-1)) �9 1/(1-e-(m-1)/(Nmr))] r 

= [( I /N)  �9 m-(r'l)/(1-e-(m-1)/(Nmr))]r. 

Using L ' H 6 p i t a l ' s  rule, we f ind tha t  L im [m-(r-1)/(1-e-(m-1)/(NmO)] = N. 
m - ~  

Thus,  L im E[Z]  _< 1. Together  with L e m m a  1, we see tha t  L im E[Z]  = 1. 

Theorem 2: In an  n-person  weakly  ord ina l  game,  the p robab i l i t y  d i s t r ibu t ion  o f  the  
number  o f  N.E.  approaches  the  Poisson d i s t r ibu t ion  with mean  1 as the  numbers  
o f  strategies o f  two or  more  players go to infinity.  
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Proof" Let  m be defined as in the proof  of  Lemma 2. Then the following are true: 

Lim E [ X ]  = 1 
/ ' F / ~  Oo 

Lim E [ Z ]  = 1 

(from the discussion in section 3) and 

(from Lemma 2). 

Since E [ Z ]  = E [ X ]  + E[Y] ,  we conclude that Lim E [ Y ]  = O. 
m-oo 

Using Markov's inequality and the fact that Y > 0, we see that for all e > 0, 
Lim P ( I Y - 0 I  >-- e) _< Lim E [ Y ] / e ,  
m--~  m--~  
which implies that Lim P( I  Y -  O[ >_ ~) = 0 

m ~  
a n d L i m  P ( I  Y -  O I > e) = O. 

m ~ o o  

It then follows that 

y prob_. 0, 

dist. 
and so Y - 0. 

We know from Theorem 1 in section 3 that X dist; p, where P - Poisson (1). 

Since Z = X + Y, X dist;~ p, and Y dist. 0, we conclude by standard con- 

vergence theory (see, for example, Chung (1974)) that Z dist;, p. 

5 Relaxation of Assumptions 

We recall that two simplifying assumptions were made in our models for both the 
strictly and weakly ordinal games. They are in essence: a) the complete symmetry 
of the ordinal payoffs across outcomes for each player, and b) the independence of 
different player's ordinal payoffs. 

In our analysis of  the number of  N.E. in n-person strictly ordinal games, we 
took advantage only of the symmetry across outcomes for each Player k, given any 
compound strategy chosen by all of  the other players. Therefore, Theorem 1 still 
holds if the ordinal payoffs of Player k, given each compound strategy, are drawn 
randomly without replacement from a sample of  m k or more distinct integers. 

In the case of  n-person weakly ordinal games, if the ordinal payoffs of Player 
k, given any compound strategy chosen by the other players, are drawn randomly 
with replacement from a sample of  [Max{mk}] a distinct integers, where a is greater 
than 1, then Theorem 2 still holds. In all cases, a relaxation of  assumption (a) is 
possible in that we need for each player only symmetry among the ordinal payoffs 
of  his outco{nes for a given compound strategy chosen by the other players, and the 
number of  possible rankings of  the outcomes by the players to go to infinity at the 
proper rate. 
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6 Conclusion 

In this paper ,  we have considered the number  o f  N.E.  in r a n d o m  n-person  non-  
coopera t ive  games in mat r ix  form.  Because we have chosen to s tudy  only pure 
s t rategy N.E. ,  it suff iced to conduc t  our  s tudy in terms o f  ord ina l  games.  U n d e r  two 
very s imple assumpt ions ,  we ob ta ined  interest ing results concern ing  the number  o f  
N.E.  in s tr ict ly and weakly  ord ina l  games.  Specifically,  we found  l imit ing probabi l i -  
ty d i s t r ibu t ions  o f  the number  o f  N.E.  as the  numbers  o f  strategies o f  some players 
go to infinity. Unde r  our  assumpt ions ,  the  results indicate  tha t  pure  s t rategy N.E.  
are not  at  all u n c o m m o n  in the class o f  n -person  games,  and  tha t  we should  not  ex- 
pect  many  more  N.E.  in weakly  o rd ina l  games than  in str ict ly o rd ina l  games  if  two 
or  more  players have very large numbers  o f  strategies.  
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