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List of symbols 
a = rad ius  of  the  r ing  wi re ;  d------ aVC2a. 
A i  = quan t i t y  def ined by  [13a]. 
b = rad ius  of  c u r v a t u r e  at r = 0 of the  inne r  

men i scus .  

C2a = (~2 --  0a) gtY2a. 
f = Harkins-Jordan factor.  
/= = m a x i m u m  equ i l i b r i um force of d e t a c h m e n t .  
g = gravi ty .  
h = h e i g h t  of  the  r i ng ;  h -- hV-ff~2a. 
ri = r - coord ina te  of the  i m e n i s c u s ;  f~ ~ r~VC~a. 
R = rad ius  of  the  r i n g ; / 2  -- RVC~72a, 
v = v o l u m e  of the  l iquid  ra ised:  9 -= v C~/2. 
V = m a x i m u m  v; P =- r / g ' a / 2  

- - ~ 2 3  " 

z0 = h e i g h t  of  the  inne r  m e n i s c u s  at r = 0, 

~o =- z0V~-~. 
zi = z - coo rd ina t e  of  the  i men i s cus ,  Zi -= z~VC~.2~. 

~rgg /~ 

fie = shape  pa r ame t e r  of  the  i men i scus .  
y2a = interfacial  t e n s i o n  (23 interface).  
,~t = a quan t i t y  d e f n e d  by [12]. 
91 = dens i ty  of  the  phase  i. 
¢~ = s lope ang le  of  the  i m e n i s c u s  profile.  
~0i = ang le  b e t w e e n  the  l ines d r a w n  f r o m  the  center  

of  the  r ing  wire ,  ver t ical ly  d o w n w a r d s  and  to 
the  i con tac t  line. 

~ o  t&r : 

1. T h e  subsc r ip t  c deno te s  va lues  at the  con tac t  line. 
2. A bar  ove r  a s y m b o l  des igna tes  a d i mens i on l e s s  

quant i ty .  
3. i = 1 refers to the  inne r  m e n i s c u s ;  i = 2, the  ou t e r  

men i scus .  

Introduction 

Of the many methods of measuring the 
surface and interfacial tension of liquids, that 
based on the ring tensiometer is probably the 
most widely used. By measuring the maximum 
equilibrium force /v r e@red  to detach a 

circular ring from a liquid surface, the surface 
tension 72a can be determined using the 
relation 

y2a 4 ~ R  f V ' a [1] 

R and a are the respective radii of the ring and 
the wire (fig. 1). The dimensionless quant i tyf  
is the Narkins and Jordan factor (1) which 
allows for the thickness of the wire and which 
is unity in the limit a = 0 and R + oo; it is a 
function of the dimensionless parameters 
Ra/V and R,la, where V is the volume of the 
liquid raised above the flat level of the liquid 
surface when the maximum (or critical) force 
F is reached. At mechanical equilibrium, 
F = ( ~ -  ~a)gV, where ~o2 is the density 
of the liquid, Ca is the density'of the fluid (a 
gas or another liquid) above the liquid, and g 
is gravity. If v is the volume of the liquid 
raised as the ring is gradually displaced 
vertically, V is therefore the largest equilib- 
rium v attainable. As the ring is raised beyond 
this critical state, v begins to decrease and the 
ring detaches from the liquid surface. 

Values of f were determined experimentally 
by [qarkins and Jordan (1) to embrace an 
extensive range of y2a. Freud and Freud (2) 
subsequently calculated f theoretically and 
found good agreement with the IT[arkins- 
Jordan numerical values and thereby made the 
ring method absolute. The HarkinsJordan 
tabulations of f are available for the ranges, 
R a / V = 0 . 3  to 3.5 and R/a = 3 0  to 80. 
Extensions of these ranges have been made in 
order to use the method in tiquid/liquid 
systems, up to R a / v  = 7.5 for systems with 
low 7~a but with a large density difference 
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! i +  r 
Fig. 1. A half section of a circular ring and the  inner 
and outer  menisci at tached to it 

across the interface (3), and down to 0.045 for 
systems with large y 2a but with a small density 
difference (4); these extensions were made by 
extrapolating the HarkinsJordan values, and 
were supported by limited experimental meas- 
urements. 

The main purpose of the present study is to 
extend the range of the theoretical values off .  
In our analysis, we make use of our general 
theory (5) of the stability of axisymmetric 
particles at liquid interfaces in which the 
method of identifying the characteristic equi- 
librium states of a solid body at liquid inter- 
faces is given. The method permits accurate 
and efficient calculations of the factor f for a 
wider range of parameter values than the 

previous methods. The theoretical calculations 
also provide us with interesting supplemen- 
tary information, some of which can be used to 
increase the accuracy of the ring method. 

The rigorous theoretical treatment presented 
here reaffirms the meaning of the maximum 
equilibrium force F measured, which Harkins 
and Jordan precisely defined but still appears 
to be misunderstood (6). It is not the force 
immediately before the ring detaches from 
the fluid interface; the ring may be displaced 
beyond the position of maximum force jv 
while still in equilibrium, until a second 
position is reached at which the inner and 
outer menisci approach one another so closely 
that the thin film intervening them ruptures. 
An example of how the pulling force changes 
as the ring is displaced vertically, is shown in 
fig. 2, where equilibrium is maintained beyond 
the position of the maximum force t v . Similar 
behavior of a sphere displaced through an 
interface has been predicted and observed (7). 

We also examine the validity of the approx- 
imation that, if the radius of the ring is large 
compared to the dimensions of the menisci, 
the ring may be considered as a straight 
circular cylinder using the theoretical treat- 
ment of Princen and Mason (8). Cram and 

Fig. 2. A typical measured 
force-displacement curve, for 
the air/water interface (R/a= 
53.9; 2~R=6.020 cm; ~o2-- 
Qa = 1.0 gr/ml; Ra/V= 0.940; 
?2a = 71.9 dyne/cm) 
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Haynes (9), using the approximation, studied 
the effect of the finite contact angle the fluid 
menisci make with the ring surface. As shown 
in Section IV, this approximation proves to 
be a poor one unless corrections are made for 
the azimuthal curvature of the ring. 

To treat the problem theoretically in the 
simplest mathematical form, we use the follow- 
ing dimensionless variables combining various 
physical parameters: 

- -  r 7 / - ~ 3 / 2  =- RVC2a, d =- aVC~a, V - ~v-2a  and 
/ . ~ 3 / 2  

~ P I J 2 3  

where 

C~a =- (Q2 -- ~a) gtY~a , 

] /2~2a being the conventional capillary con- 
stant (10). The factor f is then expressed as a 
function of ~ a / p  _= R a / V  and R/a =- R/a: 

f P ' ~  v [la] 

To determine theoretically the maximum 
( =  V) as a function of /~ and d, we must 
calculate ~ as the dimensionless height of the 
ring center, ~ -= h V ~ a  ~ is gradually increased. 
This requires the equilibrium shapes of the 
inner and outer menisci attached to the ring. 
Since this can only be done by numerical 
means (11, 12), the theoretical calculation of 
the correction factors for the entire useful 
range of R a / v  with meaningful accuracy 
demands prohibitive time and effort. This 
difficulty can be partly resolved by deriving 
analytically the condition at the state of the 
maximum volume, as described in the next 
Section. The volume ~ then need not be 
calculated at every position of the ring as it is 
displaced, thus leading to a substantial reduc- 
tion in the numerical calculations. 

In Section II, we first describe the conditions 
for mechanical equilibrium of a ring at a fluid 
interface, and then derive the condition neces- 
sary to attain the maximum volume V. In 
Section III, we calculate V for a ring of given 

and d, and then the factor f for the range of 
R a / V  = 0.025 to 20.0 and R/a = 30 to 80. 
We also present, as functions of R a / V  and R/a, 
the shape parameters which identify the shapes 
of the inner and outer menisci attached to the 
ring at the critical state and the locations of the 

inner and outer contact lines on the surface of 
the ring wire in the critical state. T o  avoid the 
possibility__that the ring detaches before 
reaching V because of instability of the 
menisci or the rupture of the thin film, we 
calculate and compare ~ and ~ for given 1~ and 
d, (i) when V is attained; (ii) when the maxi- 
mum equilibrium ~ is attained; (iii) when the 
inner and outer menisci come into contact 
with each other. To construct the tables of f 
for the region R a / V  > 5.0, an approximation 
as discussed in Section IV was used. In Section 
V we compare our results with the earlier 
correction factors and discuss means of improv- 
ing the accuracy of the method. 

Equilibrium of a ring at liquid interface 

When a circular ring of radii R and a is 
maintained horizontal at a fluid interface, the 
axisymmetric profiles of the inner and outer 
menisci formed around the ring may be 
described by their respective heights zffr)  
and z2(r) from the flat level of the interface 
at distance r from the axis of symmetry (fig. 1). 
The equilibrium meniscus shapes are governed 
by the Young-Laplace equation of capillarity. 
When expressed in the dimensionless, para- 
metric forms h = e~(¢i) and ~ = ~i(¢0, the 

equa t ions  describing meniscus shapes are (12) 

af~ e~ cos 4~ 8{i & sin ¢i 

3¢~ ~ -- sin 4~ 8¢i ~ i  -- sin ¢/ 

[2a, b] 

where ¢~ is the angle between the axis of sym- 
metry and the normal to the surface of the 
inner (i = 1) meniscus or of the outer (i = 2) 
meniscus. The definition of the slope angle 
¢2 for the outer meniscus profile is chosen as 
shown in fig. 1, so that the above equations 
hold for both inner (i = 1) and outer (i = 2) 
menisci, and only the boundary conditions 
differ from each other (11, 12). 

The solutions of eq. [2a, b] for the inner 
meniscus shapes are a family of curves of a 
single parameter introduced by Bashforth and 
Adams (11) 

where b is the radius of curvature at the lowest 
point (r = 0) of the meniscus. The shape 
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parameter is related to the height z0 of the 
point by (10) 

An extensive and widely used tabulation of 
the solutions, the r- and z-coordinates of the 
curves as functions of ¢2 and /3~, is available 
(11)2). The solutions of eq. [2a, b] for the 
outer meniscus shapes are again a family of 
curves of a single shape parameter. Huh and 
Scriven (12) chose f.~ at ¢~ = 359.5 ° as the 
shape parameter, which we may call fiz here; 
an extensive tabulation of these solutions is 
available (12). 

The ring method requires that the inner and 
outer menisci meet the ring surface to make a 
zero angle of contact with it, so that we 
obtain at the lines of meniscus contact from 
the geometry (fig. 1) 

= &c ÷ d sin 4~ ,  [3] 

/J = g:ic - d cos ¢ic, i = 1,2 [4] 

where fic and {ic are the dimensionless coordi- 
nates of the contact line circle where the i 
meniscus meets the ring surface, and ¢~ is the 
slope angle of the meniscus at the contact line. 
The coordinates should be the solutions of 
eq. [2a, b]. Eliminating h from eq. [4], we get 
for /~ and d, 

&csin 4~ c -- f ~,csin 42 c 
= sin¢~c - -  sin¢lc ' [5] 

d = 

f 2 c  - -  f 2 e  Z 2 c  - -  Z2c 

sin ¢ ~ - -  sin 4 ~ -- c o s 4 ~ c  - c o s 4 , ~  " 

[61 
The second equality of eq. [6] yields 

:~2c - -  ~ 1 c  
- -  tan 1 (¢ zc q- ¢2c) [7] 

f 2 c  - -  r 2 e  

to provide the geometrical relation which two 
sets of values, (¢i; fi, Z0, i = 1, 2, which are 
solutions of eq: [2a, b], must satisfy on the 
ring surface. 

The dimensionless volume of the liquid 
raised above the { = 0 plane can be calculated 
as (2) 

1) See also jr. t ~. Padday, in: ~. Matijevic (Ed.), 
Surface and Colloid Science, Vol. 1, 151 (New York 
1969). 

= 2:~[(1 -- 1de cos¢ic)&~ sin¢~o 

q- (R -- I d  sin¢ie)d~c sin¢~c 

+ I z ~ ; ' 4 ~  + ~aa cosa4ic] ~ [81 

where 

[ ]I -= [ ]i=1- [ ]/=2 . 

An equilibrium state of a ring of given/~ and d 
is determined, by locating two sets of values, 
(¢i; fi, ~i), i = 1 , 2 ,  which are solutions of 
eq. [2a, b] and satisfy eqs. [5] and [6] at the 
contact line for a given/~. The dimensionless 
volume 9 then follows from eq. [8]. For a ring 
of given/~ and d, h thus determines ~ uniquely, 
and the parameters f12 and f12 are also determin- 
ed to provide unique shapes of the menisci; 
alternatively, we may say that ~ and h are 
functions of /31 since, given the value of 
/32, P and/5 are fixed. 

The maximum ~ is calculated by considering 
to vary continuously, with accompanying 

variations of /31 and F. When ~ attains a 
maximum, we have (fig. 2) 

- d~/~#2 - 0 ,  or d ~  = 0 if A~; ~ 0 d~ 

where ¢ of eq. [8] is the function of the 
variables, ¢i¢(fii), fic[¢~c(fiO, /3i] and <,c 
[¢ic(fiO,/3@ i = 1 , 2 ,  and /32 is in turn a func- 
tion of /31. Differentiating ~ with respect to 
/32, we get 

d~ { Ofic 
-- 0 = 2~z (1 ½d 2 cos ¢i~) sin¢~c 04i 

q- (R -- Id sin4~c)d sin¢ie O¢i 

+ (1 q- d{i~)f~e cos4io q- (fie sin4ie 

-- Idcos2¢lc)~ ~ sin¢~c dfi~ dfi2 

Oei~ dfii 
-{- (1 -- ½d 2 cos4ic ) sin¢ic 

a& d/31 

~- (R -- Id sin4ic)d sin¢lc Ofi~ dfl2 _,., 

[9] 

where O&c/O¢i and 0~c/3¢i may be expressed 
in terms of (¢~c; f~c, tic) by eq. [2a, b]. 

At  the lines of contact, conditions [3] and 
[4] must apply whatever the value of f12, so 

38 



570 Colloid and Polymer Science, V o l .  253 • No. 7 

that they may be differentiated with respect 
to //1 to yield 

( 3e. ) d¢~o d//~ 
0 = \ 3¢, + ~ cos¢,~ d& d//~ 

+ 3//~ d& ' i = 1,2, [10] 

\ 0~, + dsin¢,c d//, d//1 

+ 3//, d//~ = 0  [111 

It is convenient (5) to express the variations 
of e,~ and ~,~ in/ / ,  in terms of a newly-defined 
quantity: 

1 _/tan¢,/_O_Zi / 3#' ] 
\ 3//, / 3//, ! 

;*(+*,//*) = i 1 2 ]  

tan¢t -- \ 3//, / 3//, ! 

From eqs. [9] to [12], we can eliminate 
3hc/Sfi~, 8~ic/3fi~, d¢ic/d//~, i = 1,2, and d//2/d//1, 
and the condition of the maximum ~ can be 
expressed in terms of 2i,: 

[-&d~ = 0 [13] 

where 

A~ =- (cos¢~& q- sin¢0 cos¢~(fi~t 
-2 
ri : d \ 

stay,,; 2 ' [13a] 

and the subscript c denotes values at the con- 
tact line. This is the condition at the state of the 
maximum volume ~ = V. As & and gi are 
known as functions of// i  and ¢i (11, 12), & may 
be calculated; however,  it proves to be more 
efficient (5) to differentiate eq. [2a,bJ with 
respect to ///, and to obtain a differential 
equation for 2i in terms of ¢i by eliminating 
the resulting 3e/8//i and 3~/8//,: 

\ 0~, q- ~* + sin¢i (f~ 

-2-2 q- cos¢~)2, + (r, Z~ -- 2 &~i sine, 

-~ 2 sin2¢, -- e~ cos¢O = 0 [14] 

in which e, and {~ are the solutions of eq. 
[2a, b]. Integrating eq. [14] with respect to 

¢~, we can obtain Ai for the desired values of 
(¢,,/3,). The methods of integrating eq. [14] 
for 2t are discussed elsewhere (5, 13), and will 
be used without  further elaboration in the 
next section where the detailed method of 
numerical calculation of the maximum volume 
V is discussed. 

As pointed out earlier, the equilibrium of 
the ring at the interface may be maintained 
beyond the position of maximum force 
(fig. 2). It is of interest to know the maximum 
equilibrium height of the ring at the inter- 
face, and to see how much it exceeds that for 
the maximum force. At the maximum height, 
the following should hold (5): 

dV - -  dv/d/ /1 - -  O, o r -~ f l  1 = 0 i f  d / / T  • 0 . 

[151 

Combining eqs. [10] and [11] with eq. [15], 
we get as the condition for the maximum 

(fic'~c f'ic d) 
sin¢ic + 

× cos¢,c OtiS'- -- sin¢ic Ofit ] = 0, i = 1,2. 

[161 

Since the terms in the first bracket do not 
vanish in general, those in the second do, 
which is equivalent to the condition 

2ic -,- 0% i = 1,2. [17] 

We see that eq. [17] is the condition for the 
limit of stability for the equilibrium meniscus 
formed around a solid whose position in 
space is fixed (13). Condition [17] may be 
satisfied either by the inner (i : 1 )  or by the 
outer meniscus (i =2),  and when one becomes 
unstable, it should lead to the detachment 
of the ring even though the other meniscus 
is stable. From the solutions of eq. [14], we 
can examine whether or not a particular state 
of the ring at the interface satisfies eq. [17], 
and thus reaches the maximum height in 
accordance with eq. [15]. Unlike the case of the 
sphere (5, 7), however,  a further consideration 
is necessary: the possibility that the two 
menisci approach one another so closely that 
the thin film intervening them ruptures, before 
the menisd instability occurs (8, 14). When  
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the equilibrium state of eq. [15] is established, 
we should therefore examine whether or not 
the inner and outer meniscus curves either 
intersect or touch one another: if so, the 
height obtained by eq. [15] is meaningless, 
because the thin film intervening the two 
menisci can rupture before this height is 
attained. 

Numerica l  calculations and results 

To calculate the maximum ~ for a ring of 
given R and d, we must find two sets of values, 
(¢4; e4,~4; 24), i = 1 , 2 ,  which are solutions of 
eqs. [2a, b] and [14] and satisfy eqs. [5], [6] 
and [13] at the contact lines; ~ is calculated 
from eq. [8]. These being difficult tasks to 
perform, we adopt a scheme in which we 
attempt to find the two sets, (¢4; &,~.4; ,t4), 
i = 1 , 2 ,  which are solutions of eqs. [2a,b] 
and [14], and satisfy only the geometrical 
condition [7] and the maximum-volume con- 
dition [13]. In so doing we define a state 
of the maximum ~ for the yet-unknown values 
of R and d, which we calculate from eqs. 
[5] and [6]. We do this for a sufficiently large 
number  of the sets, (¢4; &,~4; 24) to warrant 
the interpolation of the maximum volume P 
for the desired .~ and d. 

Table 1. Generation of the data points for A0 = --0.1 

To satisfy the maximum-volume condition 
[13], we observe that A i  of eq. [13a] depends 
only on (¢4; &,~4; 2~) of one meniscus and not 
on the dimensions of the ring and the other 
meniscus. When we numerically integrate 
the differential equations [2a,b] and [14] for 
(¢i; &,~4; 24), therefore, we can store in the 
computer  the values of (¢4; &,Z0 at the uni- 
form interval of A, .  The method of integra- 
tion and its accuracy are discussed elsewhere 
(5); the method is adopted here without  
modification. 

For a fixed A4 = A 0 ,  a multitude of the sets 
(¢4; f4,Z0&=A0 are thus generated for various 
values of /34. Any pair of sets (¢1; el,~*)az=a0 
and (¢e; e2,~2)a2=A0 of the same Ao will then 
satisfy eq. [13]. For  the set (¢1; el,{1)Al=A0 
of a particular ill, we can find the correspond- 
ing set, which together with it satisfies eq. 
[7], among the multitude of the sets (¢z; 
e~,~2) of the same A0. In actuality, this re- 
quires the interpolations of the values (¢2), 
(f2) and ({2) for different/32's; a standard IBM 
subroutine for the Aitken--Lagrange inter- 
polation is employed, taking 6 closest data 
points and with t h e  upper error bounds of 
10 -7. The pair of sets (¢4; &,Z0A~=~0, i = 1 , 2 ,  
thus obtained define a state of the maximum 
V. The corresponding /~, ~ and P can 

f12 ¢2 r2 ~2 Data fll ¢ i  7, Zl 
Point 
No. 

4.865 102.1542 1.104652 1.128586 1 5.15 34.23825 1.095008 
4.880 102.3395 1.115449 1.133098 2 5.27 33.87368 1.096913 
4.985 102.5251 1.126291 1.137589 3 5.35 33.63698 1.098139 
4.910 102.7109 1.137180 1.142059 4 5.41 33.46265 1.099036 
4.925 102.8970 1.148115 1.146510 5 5.46 33.31943 1.099769 
4.940 103.0832 1.159093 1.150939 6 5.50 33.20615 1.100346 
4.955 103.2696 1.170117 1.155349 7 5.54 33.09402 1.100916 
4.970 103 .4562  1.181185 1.159738 8 5 . 5 7  3 3 . 0 1 0 6 8  1.101339 

1.191616 
1.178551 
1.170075 
1.163837 
1.158715 
1.154665 
1.150658 
1.147680 

Data ¢~ f~ ~2 R/a Ra /v  f 
Point No. 

1 103.0339 1.156185 1.149769 28.07126 0.1220391 
2 102.8494 1.145317 1.145373 35.28240 0.1231746 
3 102.7280 1.138178 1.142468 42.49902 0.1239452 
4 102.6453 1.133335 1.140479 49.48456 0.1245161 
5 102.5770 1.129338 1.138832 57.28068 0.1249953 
6 102.5048 1.125093 1.137104 68.30782 0.1254175 
7 102.4740 1.123316 1.136342 75.36951 0.1257585 
8 102.4508 1.121973 1.135768 81.74408 0.1260150 

1.228253 
1.246109 
1.258142 
1.266715 
1.273888 
1.280906 
1.285060 
1.288196 

38* 
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Fig. 3. /~ as a function of Ra/t/and R/a. 
The applicable ranges of the factor f 
which are obtained experimentally and 
available in the literature, are shown 

be calculated from eqs. [5], [6], and [8], 
respectively. 

The  results of the operation performed by 
the computer  for the particular value of 
A0 = --0.1 are listed in table 1 to illustrate 
this process. For  50 values of A0 ranging 
from --0.002 to --40.0, operations similar 
to that of Table 1 have been performed, each 
generating 8 data points. F rom the total of 
400 data points accordingly produced,  a table 
of the f a c t o r f a s  a function of Ra/V  and R/a 
has been constructed using the interpolation 
subroutine. The range of Ra/V  and R/a of 
the 97-page tabulation, which is not  included 
here*), is 

R/a = 30(1)80, and 

R a / V  = 0.025(0.001)0.040(0.002)0.100(0.005) 

0.30(0.01)0.60(0.02)2.00(0.05)5.00, 

where the intervening quantities in paren- 
theses indicate the intervals of values tabulated. 
An additional tabulation o f f  was constructed, 
using the approximate solutions discussed 
in the next Section, for the range of the same 
R/a and 

Ra/V  = 5.1(0.1)20.0"). 

*) See NAPS document deposit for 97 pages 
of tabulation. Order from ASIS/NAPS c/o Microfiche 
Publications, 305 tg. 46th St., New York, N.Y. 10017, 
citing the reference of this paper. Remit in advance $ 
1.50 for a microfiche or $ 15.05 for a photocopy. This 
includes a tabulation of ~ for the menisci in contact as 
a function of /~ and R/a, as discussed later. 

In fig. 3, the parameter ranges of our calcula- 
tions are compared to the ranges available 

i n  the literature. Fig. 4(a) shows f i n  the range 
of R a / V = 0 . 0 2 5  to 0.4; 4(b) in the range 
0.4 to 4.6; and 4(c) 1.3 to 10. 

Since we know (/~, ~+; r+, 4+), i -  1,2, for 
a given set of (R, d, V),  we can calculate, 
in addition to f ,  various supplementary data 
on the state of the ring at the liquid interface, 
which can be used to increase the accuracy of 
the ring method. Fig. 3 shows R as a function 
of Ra/Vand  R/a, and may be used to find the 
approximate value of Ra/V  before starting a 
measurement if ?~a is roughly known. Fig. 
5 (a) shows the shape parameter/~l of the inner 
meniscus and its dimensionless height ~0 
at f = 0  as functions of R a / V  and R/a. Fig. 
5(b) shows the shape parameter fie(f2 at 
~= =359.5  °) of the outer meniscus as a func- 
tion of R a / v  and R/a. These two figures 
identify the shapes of the inner and outer 
menisci attached to the ring of given R and a 
in the critical state. Fig. 6 (a) shows the location 
of the contact line circle where the inner 
meniscus meets the ring surface at the critical 
state, as a function of Ra/V  and R/a. The  
location is expressed in terms of Wl, the angle 
between the lines drawn from the center of 
the ring wire, vertically downwards and to the 
contact line (fig. 1). Fig. 6(b) shows the loca- 
tion ~02 of the contact line circle where the outer 
meniscus meets the ring surface in the critical 
state. As described in Section V, figs. 6(a) 
and (b) are of use in judging if the attachment 
of the support  wire to the ring wire interferes 
with the contact lines on the surface of the 
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Fig. 4(a). The factor f in 
the range of Ra/V=0.025 
to 0.4 and R/a = 30 80 to 
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Fig. 4(b). The factor f in the range of 
Ra/V=0.4 to 4.5 and R/a=30 80 to 
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Fig. 6(b). The location ~02 of the contact line circle 
where the outer meniscus meets the ring surface at 
the critical state, as a function of R s / v  and R/a 

r ing  wi re  m a i n t a i n i n g  axial  s y m m e t r y  in the  
cri t ical  state. 

Ju s t  as eq. [13] de t e rmines  the  m a x i m u m  
for  a r ing  o£ g i v e n  /~ and & eq. [17] de ter -  

mines  the  m a x i m u m  /~ for  g iven  /~ and  a, 
p r o v i d e d  the th in  film b e t w e e n  the  inner  
and  o u t e r  menisc i  does  n o t  r u p t u r e  at  a 
smal le r  }5. T o  calculate  the  m a x i m u m  ~, we  

find a set (~bi; &,~i; ~ = oo) f r o m  the  so lu t ions  
of eqs. [2a,b] and  [14], and  a t t e m p t  to  f ind 
(~bj; ej,~j) £or the  o t h e r  meniscus  ( j •  i) w h i c h  
t o g e t h e r  w i th  the  a b o v e  set, sat isfy eq. [•7]. 
In  so d o i n g  w e  def ine a state of  the  m a x i m u m  
]~ a c c o r d i n g  to  eq. [15] for  the  y e t - u n k n o w n  
va lues  of /~' and  & w h i c h  we  ca lcula te  f r o m  
eqs. [5] and  [6]. H a v i n g  ca lcu la ted  ~ a c c o r d i n g  
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to eq. [15], we must establish whether  or not  
the inner and outer meniscus curves for the 
height either intersect or touch one another. 
F rom such calculations in the range of _R 1.9 
to 5.2 and R/a = 30 to 80, we have found that 
the inner and outer meniscus curves always 
intersect one another.  The  ring will therefore 
detach f rom the interface by rupture of the 
intervening film before this height is attained. 
This will occur when surface active agents are 
absent; when they are present so that the 
interracial tensions are variable (i. e. the film 
is elastic) one cannot predict when rupture 
will occur (14). We have also found that for 
the entire range of our calculations, the two 
meniscus curves neither intersect nor  touch 
one another  at the maximum V. 

The  ring height at the rhpture can be 
calculated theoretically, if we assume that the 
rupture occurs at the instant when the inner 
and outer menisci come into contact with 
each other. The  ring height when the menisci 
make contact is calculated, first by locating 
for a given inner meniscus the outer meniscus 
which just touches it, wi thout  regard to the 
presence of the ring, and then by "fi t t ing" 
the rings between the two menisci above the 
point  of contact (fig. 7). For  12 profiles of the 
inner meniscus (fl, = 1 0 ' - - 8 ×  106), the cor- 
responding profiles of the outer meniscus 
which comes into contact are calculated nu- 
merically. The profile curves are obtained, as 
before (5), by integrating eqs. [2a, b] using the 
Runge-Kutta method,  which is available as a 
standard subroutine programmed in the IBM 
S 360 computer.  The  integration increment of 

A¢i = 0.5 ° and the upper  error bounds of 
10 -9 are again adopted. The  value of f12 for a 
given fll is listed in table 2, each pair of 
menisci being separated at the distance A < 
0.002. The outer meniscus profiles whose value 
of f12 deviates ± 0.001 from the listed fi2, 
resulted in greater separation of the inner and 
outer menisci. Table 2 also provides the 
coordinates of the point  on the outer meniscus 
which is closest to the inner meniscus, which 
may be considered to be the approximate 
location of the contact point with the accuracy 
of A. It will be noted that the height of the 
contact points is approximately constant at 1/2, 
suggesting that there may be a simple physical 
explanation; however,  we have been unable 
to find any. 

Table 2. The inner and outer  menisci in contact and 
the approximate location of the contact  point  

fl* fie 52(deg.) f2 g2 A 

10 5.685 239.0  1.7887 1.4161 0.0010 
20 6.224 245.6  2.2090 1.4182 0.0014 
50 6.851 250.9  2.7368 1.4169 0.0006 

100 7.299 253.5  3.1310 1.4159 0.0012 
200 7.738 255.5 3.5267 1.4152 0.0017 
500 8.289 257.4 4.0334 1.4150 0.0020 

1000 8.699 258.6  4.4156 1.4146 0.0006 
5000 9.631 260.5  5.2970 1.4145 0.0004 

10 a 10.026 261.2  5.6744 1.4144 0.0004 
106 11.312 262.8  6.9144 1.4143 0.0007 
100 12.571 263.9  8.1400 1.4143 0.0002 

8× 106 13.693 264.6  9.2386 1.4140 0.0006 

zl ~_ Min imum distance between the menisci of the 
listed fll and fie. 
The coordinates designate the point  on the outer 
meniscus which is closest to the inner meniscus. 

Fig. 7. The inner  and outer  menisci in 
contact,  and the "f i t t ing"  of the rings 
between the menisci above the contact  
point  

I /  
,8, = I0/r 20 50 I00 200 500 I000 

0 I 2 3 4 



576 Colloid and Polymer Science, Vo/. 253 • ~\"b. 7 

2.5- 

2 . O -  

1 . 5 -  

I , O -  

60 

T 40 

2 0  

i I kRlo = SO / / 

30 

MAXIMUM 

,N 

////:¢-.:'-"- y 
~ / *  {MAXIMUM HEIGHT) 

[ _ I [ I 
2 5 4 5 

Fig. 8. Comparison of ~ for the maximum 17, for the 
ring height according to eq. [15], and for menisci 
in contact 

I I I I 

R/Q= 
(MAXIMUM HEIGHT) 30 

MENISCI IN CONTACT 

MAXIMUM FORCE 

- ~ 50 -- 

BO 

I I _ _  I I I 
2 3 4 5 6 

Fig. 9. Comparison of }5 for the maximum I7, for the 
ring height according to eq. [15], and for menisci in 
contact 

After the profiles in contact are calculated, 
the rings are "fi t ted" in between the two 
menisci to provide ~ and ~ as functions of /~ 
and R/a. Fig. 8 compares ~ for the maximum 
V, for the ring height according to eq. [15], 
and for the menisci in contact. Fig. 9 compares 

for the three states. As a matter of interest, 
we have constructed a tabulation of ~ for the 
menisci in contact as a function of R and R/a, 
in the ranges of 

R/a = 30(1) 80 and 

/~ = 2.1(0.1)5.0(0.2)9.0, 

where the intervening quandfites in paren- 
theses again indicate the intervals of values 
tabulated. This tabulation has been deposited 
with the tabulation of f .  

Approx ima te  solut ions  for large R3/ I  7 

When R a / v  > 5.0, the ring radius is so 
large compared to the dimensions of the inner 
and outer menisci that their shape deviates 
only slightly from that of the cylindrical 
meniscus [e.g., eqs. (29) and (30) of Ref. (10)], 
whose principal curvature in the azimuthal 
direction vanishes. At A0 = --40, fil ranges 
from 3.41 × 106 for R/a=30(Ra/V=4.816)  
to 4.78× 106 for R/a=80 (Ra/ V =  5.714). 
However, the effect of the azimuthal curvature 
is not negligible: the surface profiles of the 
inner and outer menisci, though almost of the 
cylindrical meniscus, are not symmetric with 
respect to the vertical line drawn through the 
center of the ring wire, as we can observe by 
comparing figs. 6(a) and 6(b). Thus, for R a / V  
= 4.816 and R/a = 30, the inner contact line 
circle locates at Wl -~ 276.2° while the outer 
contact line circle stays at 1O~ _ 75.4 °. Were 
the menisci truly cylindrical, this would have 
been at 102 _ 360 ° - 2 7 6 . 2  ° ~_ 83.8 °. 

To treat such systems, we employ the ap- 
proximate solutions for the equilibrium shapes 
of axisymmetric menisci whose azimuthal 
curvature is much smaller than the meridional 
curvature. The approximate solution derived 
by Rayleigh (15) for the shape of large sessile 
drops builds on the solution for the cylindrical 
surface the correction arising from the contri- 
bution of the small azimuthal curvature~ 

2 
Z-L4 -- sin~ q- (--1)~ 3~ 

× [ 1 - - c o s a ( ~ ) ]  = 0 ,  i = 1 ,  2 [18] 

which we may use for the inner meniscus 
shape (i = 1). With the change of the sign 
indicated (i = 2), the equation should also 
hold for the outer meniscus. The value of ~ 
can be obtained by differentiating the above 
equation with respect to fi~, and inserting eq. 
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[12] for 2+: 

_2_ --1)~[1 ri Z~COS~b~ + ( - - c ° s a ( ~ )  ] sinai 

++s++ < +++[, +s+(¢)]+s+, 
i = 1, 2 .  [19] 

The  method of obtaining the maximum ,? is the 
same as before, except that eqs. [18] and [19] 
are used instead of eqs. [2a, b] and [14] nu- 
merically integrated, to calculate (~+; &, ~,  2 0. 

The  results of the calculations, which list f 
as a function of R a / v  = 5.1 to 20.0 at the 
interval of 0.1, and R/a = 30 to 80 at the 
interval of 1, are included in the deposited 
tables. Table 3 compares the approximate 
solution with the exact values in the range of 
R a / v  = 4.5 to 5.0. We note that in view of 
the simplicity of eq. [18], the numerical 
computations are considerably shortened. The  
agreement becomes poorer  as the radius ratio 
R/a becomes smaller, because of the increasing 
effect of the azimuthal curvature of the ring. 

Table 3. Comparison of the approximate and exact 
values o f f  

R/a Ra/v Approximate Exact % Deviation 

30 4.5 0.7396 0.7387 +0.12% 
4.7 0.7355 0.7346 +0.12% 
5.0 0.7297 0.7292 +0.07% 

60 4.5 0.8510 0.8505 +0.06% 
4.7 0.8478 0.8476 +0.02% 
5.0 0.8434 0.8431 +0.04% 
4.5 0.8850 0.8850 0.00% 
4.7 0.8829 0.8823 +0.07% 
5.0 0.8792 0.8787 +0.06% 

80 

Discussion 
We compare in table 4 (a) our  results with 

40 3.5 0.8063 
the values of the f a c t o r f  obtained experimen- 5.5 0.7645 
tally byHarkins and Jordan (1). The results are in 7.5 0.7302 
good agreement, the largest deviation being 54 3.5 0.852 
about  1.1%, but  generally less than 0.4%, and 4.5 0.835 

5.5 0.821 their results are consistently lower than ours. 7.5 0.797 
We believe that their values are indeed lower 60 3.5 0.8672 
than the true values, because Fox and Chris- 5.5 0.8389 
man (3) with their experiments made the same 7.5 0.8168 
observation as we did. Table 5 compares the 
surface tension values they obtained by the 
capillary-rise method  and by the ring method.  0.05 1.4756 
The  values o f f  of Harkins and Jordan are shown 0.10 1.2507 

0.30 1.0166 to provide the surface tension values always 40 0 . 0 5  1.4849 
lower than those f rom the capillary-rise 0.10 1.2639 
method;  when our  results are used, the values 0.30 1.0397 
by the two methods prove  to agree very well. 60 0 . 0 5  1.4940 
The  values o f f  obtained by Fox and Chrisman 0.10 1.2767 

0.30 1.0612 for R a / V > 3 . 5  are compared with our  
results in table 4 (b). They  show good agree- 
ment  for  R/a = 54, for which they performed 
their experiments, but  the extrapolation of the 
results to the radius ratio other than 54 is poor.  
Table 4 (c) compares for  R a / V  < 0.30 the 
values o f f  obtained by Zuidema and Waiers (4) 

Table 4. Comparison with previous values of f 

(a) Comparison with Harkins and Jordan (1) 
R/a Ra/V H.J. Present %Difference 
30 0.3 1.012 1.0155 --0.34% 

1.0 0.8734 0 .8737 --0.03% 
3.5 0.7542 0.7621 -- 1.04% 

40 0.3 1.038 1.0425 --0.43% 
1.0 0.9047 0.9091 --0.48% 
3.5 0.8057 0 .8107 --0.62% 

60 0.4 1.022 1.0289 --0.67% 
1.0 0.9438 0 .9472 --0.36o/o 
3.5 0.8668 0.8676 --0.09% 

80 1.6 0.9365 0.9413 -0.51% 
3.5 0.8974 0 .8993 --0.21% 

(b) Comparison with Fox and Chrisman (3) 
U.C. Present 

0 .8107 --0.540/o 
0.7723*) --1.01% 
0.7442*) -- 1.88% 
0.8542 --0.26% 
0.8358 -0.10% 
0.8210") 0.00% 
0.7959*) +0.14% 
0.8676 --0.05% 
0.8363*) +0.31% 
0.8125") +0.53% 

(c) Comparison with Zuidema and Waters 
Z.W. Present 

30 

(4) 

1.4965 -- 1.40% 
1.2946 --3.39% 
1.0155 +0.18% 
1.5175 --2.15% 
1.3181 --4.12% 
1.0425 --0.27% 
1.5401 --2.99% 
1.3422 --4.88% 
1.0705 --0.87% 

*) Approximate solution which differs from the 
exact value at most +0.15%. 

with ours. Near R a / v = 0 . 3 0 ,  the lower 
limit of the Harkins-Jordan tabulation, their 
results agree well with ours. If R a / V  deviates 
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Table 5. Experimental data of Fox and Chrisman (3) 

Compound Ra/V capillary- ring*J') o{) Differ- 
rise*) ence 

Water 0.92 72.75 (a) 72.57 - 0.25 % 
(b) 72.75 0.00 % 

Benzene 1.93 28.86 (a) 28.76 -- 0.35 % 
(b) 28.86 0.00% 

Hexadecane 1.80 27.60 (a) 27.44 - 0.58 °/o 
(b) 27.54 -0 ,22% 

Hexadeca- 
methylhept- 
asiloxane 3.14 18.61 (a) 18.53 - 0,43 % 

(b) 18.59 --0.11% 

*) Surface tension in dynes/cm at 20 °C. 
t) (a) using the correction factors of Harkins and 

Jordan (1); (b) using those of this paper. The radius 
ratio of the ring used is R/a = 54. 

much from 0.30, their results however  are 
very poor,  the deviation f rom our results 
being as high as 5%. 

When the interfadal tension of an immis- 
cible liquid/liquid system is measured, and 
the upper liquid completely wets the ring 
surface rather than the lower one, the down- 
ward force necessary to detach the ring from 
the interface must be measured rather than the 
upward force, but  otherwise the procedure is 
identical. This is because the system has a 
bilateral symmetry with respect to the hori- 
zontal plane, z = 0 (5). Some commercial 
rings cannot be displaced downwards to 
overcome the maximum force of detachment 
by their own weight, and require an elaborate 
accessary for the purpose. If a ring made of a 
thick wire is chosen (or a dead weight is 
attached to the ring with some commercial 
rings), such an accessary may not  be needed. 
When a rough estimate of y2a is available for 
a system, fig. 3 can be used to determine for 
a given R the maximum equilibrium force of 
detachment which should be overcome. F rom 
the R calculated using approximate y ~ a, R a /V  
is read and V is subsequently calculated; the 
maximum force to be overcome is (~2 -- ~a) 
gV. It should be remembered that the point  of 
zero force should be established in the phase 
into which the ring is pulled. 

The  difficulty in using the ring method to 
measure the interfacial tension of immiscible 
liquid/liquid systems is illustrated by the 
experimental data presented by Harkins and 
Jordan (1). As shown in table 6, several values 

of f obtained by them via interfacial-tension 
measurements deviate more from our results 
than those via surface-tension measurements. 
As Harkins and Jordan noted, it is difficult to 
assure that one of the liquids completely wets 
the ring surface making zero angle of contact (16) 
as assumed. Cram and Haynes (9) show from 
approximate calculations that the effect of a 
low contact angle on the surface and inter- 
facial tension measurements is probably small 
(less than 1% for contact angles up to 10°), 
but  the effect sharply increases as the contact 
angle becomes larger. We believe that extension 
of the sphere method of measuring surface and 
interfacial tensions (7) may resolve this 
difficulty. One quick way of knowing whether  
or not the ring surface is completely wetted by 
one of the liquids, would be to displace the 
ring slowly f rom the interface into the liquid 
phase which is believed to wet its surface. If 
the liquid makes zero angle of contact with 
the ring surface, no force will be required to 
detach it f rom the interface and to bring it 
into the liquid phase. 

Table 6. Comparison of f with Harkins and Jordan (1) 
for small Ra/V 

R/a Ra/V H. J. Present % Differ- 
ence 

(a) Interfacial Tension Measurements 

38.72 0.0689 1.449 1.4267 +1.57% 
43.04 0.2083 1.134 1.1210 +1.16% 
52.45 0.0997 1.352 1.3400 +0.90% 
67.17 0.1308 1.283 1.2677 +1.21% 

(b) Surface Tension Measurements 

30 0.24 1.056 1.0585 --0.24% 
0.26 1.039 1.0421 --0.30% 

40 0.20 1.119 1.1250 --0.53% 
0.24 1.078 1.0845 --0.60% 

Another  source of error when an inter- 
facial tension is measured by the ring method 
is the size of the vessel containing the test 
liquids. As the small R a / y  signifies a large 
interfacial deformation for a given ring, a 
large vessel is accordingly required, to guar- 
antee the flat level of the interface at large 
distance f rom the ring center. A study of the 
wall effect similar to the work  of van Zeggeren 
et aL (17) is desirable. When a rough estimate 
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of y2a is available for a system, the minimum 
vessel size for a given R can be approximately 
calculated from figs. 3 and 5(b). From _8, 
Ra/V  is read using fig. 3; from Ra/v,  fi2 is 
read using fig. 5(b). Since/32 is defined (12) as 
the dimensionless radial distance ee where the 
outer meniscus assumes the slope angle of ¢2 = 
359.5 ° (or 0.5°), if we can be certain that the 
interface is fiat at ~ =/32, we may safely say 
that the effect of the finite size of the vessel is 
negligible. Therefore, we may say that the 
minimum radius of the vessel should be at 
least /32/VC~a2a and the interface there should 
be flat. We suspect that the low values of f 
obtained by Harkins and Jordan (1) resulted 
from using too small a container. Formation 
of the interface concave toward the phase into 
which the ring is pulled, will result in the 
force measurement higher, and the value of f 
lower than the correct one (18). 

A minor error may also be introduced due 
to the welding of the ring to the support wire 
connecting it to the balance. Fig. 6(a) shows 
that, for small Ra/V, the contact line circle for 
the inner meniscus stays near the top portion 
of the ring wire. This will permit the inner 
meniscus to creep up the surface of the support 
wire, as shown schematically in fig. 10. Along 
the portion of the contact line which creeps 
up the support wire, the interracial tension 
pull is practically vertical since the liquid wets 
the wire; while along the remaining portion on 
the ring wire, the vertical component is small, 
e.g., sinipl = sin 190 ° -- --0.174 for Ra/V  = 
0.027, as we can calculate from fig. 6 (a). Since 
the support wire usually has the same radius 
as the ring wire, the length of such distortion 

~ Support wire 

I - - '  ~ i  \ - .  / Inner Contact line 

Fig. 10. Creeping-up of the inner meniscus along the 
surface of the support  wire, when Ra/V is small 

would be about 4a out of the total length of 
the contact line of about 4hR. This error can 
be eliminated by choosing a ring made of a 
thick wire but with thin support wires. 

Since the equilibrium of ring at the inter- 
face may be maintained beyond the position 
of maximum force (fig. 2), it will be of interest 
to know the force at the moment the ring 
detaches from the interface. Its precise deter- 
mination however appears to be a difficult 
task: if the ring is completely free to move, 
we expect the maximum force to be the 
detachment force; if the ring is held fixed at 
each moment as it is slowly raised, it may be 
the force when the inner and outer menisci 
approach and touch, although this should be 
confirmed experimentally. In practice, the 
ring is neither completely free to move, nor 
held fixed in space : beyond the position of the 
maximum force, the ring will probably move 
sufficiently fast that true static equilibrium 
never exists. The rupture of the thin film be- 
tween the inner and outer menisci may also 
occur before they touch; at the other limit, the 
viscous thinning of the film may be slow 
enough to delay rupture (14). 

If the ring is not horizontal, additional 
errors will be introduced. This may be avoided 
experimentally by employing a flexible support. 
When the ring is slightly tilted, we may then 
determine, modifying the derivation made in 
the earlier work (5), whether or not the torque 
accordingly produced has the effect of restoring 
the ring to the horizontal, as we would intu- 
itively expect. For a particular case, Harkins 
and Jordan (1) showed experimentally that the 
decrease in the maximum force due to tilting 
is proportional to the square of the angle of 
tilt. This aspect of the problem warrants 
further theoretical study by those interested 
in precision absolute ring tensiometry. 
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Sl/77122zary 

The Harkhls-Jordaz correction factors which make 
the ring method an accurate and absolute method of 
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measuring surface and interracial tensions, are calcu- 
ated theoretically and made available in a tabulated 
form. The applicable range of the numerical tabulation 
far exceeds the range of those available in the literature 
which have been obtained experimentally. With the 
tabulation, the ring method may be used to measure 
the interracial tensions of liquid systems in which the 
density difference across the interface is very small and 
the interracial tension is large, or in which the density 
difference is large and the tension is small. The theo- 
retical calculations also provide information on the 
state of the ring at the liquid interface which may be 
used to increase accuracy of the ring method. 

Zusammenfassung 

Die Harkins-Jordan Korrektionsfaktoren, die die 
Ringmethode als eine genaue und absolute Methode 
zur Bestimmung von Oberfl~chen- und Grenzfl~chen- 
spannungen m6glich machen, sind theoretisch be- 
rechnet und tabuliert worden. Der anwendbare 
Bereich dieser numerischen Tafeln iiberschreitet bei 
weitem den Bereich jener, die in der Literatur vor- 
vorhanden und experimentell bestimmt worden sind. 
Mit diesen Tafeln kann man die Ringmethode an- 
wenden fi~r die Grenzfl~ichenspannungsmessungen 
fltissiger Systeme, in denen der Dichteunterschied 
beiderseits der Grenzfl~tche sehr gering und die 
Grenzfl~ichenspannung sehr groB ist, oder in denen der 
Dichteunterschied grol3 und die Spannung klein ist. 
Die theoretischen Berechnungen dariiber hinaus infor- 
mieren tiber die Lage des Ringes an der ft~dssigen 
Grenzfl~iche, woraus eine erh6hte Genauigkeit der 
Ringmethode abgeleitet werden kann. 
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