
On the Foundations of Game Theory: 
The Case of Non-Archimedean Utilities 

By PETER C. FISHBURN 1) 

Abstract: Contrary to what appears to have become an accepted part of the folklore of game theory, 
a finite two-person zero-sum game with non-Archimedean utilities may have no equilibrium-point 
solution, and either one or both players may have no "minimax" strategy. Even when both players 
have "minimax" strategies, such a game may lack an equilibrium point. 

1. Introduction 

In concluding his exposition of HAUSNER'S multidimensional (lexicographic, 
non-Archimedean) expected utility theory [-HAUSNER], THRALL [-p. 186] says that 
"This discussion illustrates the fact that non-Archimedean utilities are perfectly 

satisfactory for game theory". This viewpoint has been perpetuated in a number  

of later writings, examples being [AUMANN, p. 453], [FERGUSON, pp. 20--21] 
and [LUCE and RAIFFA, p. 27], and appears to have become an accepted fact in 
the folklore of game theory. 

The purpose of this note is to show that, even in the simplest case of finite 
two-person zero-sum games, the actual state of affairs with non-Archimedean 

utilities is vastly different from the wellknown results [LucE and RAIFFA, NASH, 
VON NEUMANN-MORGENSTERN] under Archimedean or VON NEUMANN-MORGEN- 
STERN utilities. In particular, a non-Archimedean finite two-person zero-sum 

game may have no stable solution (equilibrium point), either one or both players 

may have no "minimax" strategy, and even when both players have "minimax" 
strategies the game may have no equilibrium point. 

The fourth section proves these assertions. The next section outlines the non- 

Archimedean utility theory. Section 3 presents some definitions involved in the 
present investigation and discusses an example to show what can happen under 

non-Archimedean utilities. The paper concludes with a brief discussion of the 
results. 

2. Lexicographic Expected Utility 

Throughout,  we assume that there are two players with n and m pure strategies 
respectively. K = {(i,j): i = 1 . . . .  ,n and j  = 1 . . . .  ,m} is the set o fnm pure-strategy 
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pairs. We shall let X be the set of probability vectors x = (xl . . . . .  x,) that characterize 
player l's mixed strategies: xi > 0 for all i, and S xi = 1. Similarly, Y is the set 
of probability vectors y = (Yl . . . . .  Yr,) that characterize player 2's mixed strategies. 

With ~ the preference-or-indifference relation for player 1 on the set of prob- 
ability distributions on K, we assume that ~ is a weak order (transitive and 
connected, or complete). Strict preference (>-) and indifference (,-~) are defined 
in the usual way: p >- q iff not (q ~ p), p ,~ q iff p ~ q and q ~ p. 

We assume further that the independence axioms (including "strong" versions) 
of expected-utility theory hold for ~ ,  but do not assume that the VON NEUMANN- 

MORGENSTERN Archimedean axiom holds. (In our terms, the latter says that 
if p >- q and q >- r then there are c~, fi strictly between 0 and 1 for which c~p + 
( 1  - ~)r >- q and q >- tip + (1 - fl)r.) The structure of expected-utility under 
these axioms is discussed by CHIPMAN [1971], FISHBURN [1971b], HAUSNER, 

and THRALL. In particular, using an observation in FISHBURN [1971a, p. 575], 
it follows from the weak order and independence axioms and from the finiteness 
of K that there exist a finite number of real-valued functions u7 . . . .  ,uN on K 
such that, with 

u (x, y) = (Si,j ul(i,j) xi yj . . . . .  Zi,j uN (i,j) xi y j), (1) 

> L u  X' .,x (x,y) ~ (x',y') iff u(x,y)  _ ( , y )  (2) 

for all (x,y) and (x',y') in X x Y,, where >Z is the usual lexicographic order on 

N-dimensional Euclidean space; (a~ . . . . .  as) >_~'(bi,...,bN) iff ak = bk for all 
k or ak > bk for the smallest k for which ak # bk. 

Because (1) is a vector bilinear form with the noted constraints on x and y, 
u (x,y) can be lexicographically maximized or minimized over one variable with 
the other held fixed. Fo r  example, rain u (x, y) is determined as follows. Let Vk (x,j) = 

Y 
s SO that 

u(x,y)  = (Sjvl(x, j)yj ,  ... ,S jvN(x, j )y j ) .  

Proceeding on the basis of >L, determine all y in Y that minimize Z~vl(x,j)y~. 
The set Yt of minimizing y will be the set of all vectors in Y with zero components 
for the j  for which there is a j '  with vl(x,j ')  < v~(x,j). I71 is therefore a nonempty 
polytope in Y. If Y1 has only one element (there is a unique smallest v~(x,j)), 
this element is the overall lexicographic minimizer. If Y~ has more than one 
element, we then determine the set of y in Y1 that minimize Sjv2(x,j)yj .  Call 
this set I12. It is a nonempty polytope in Yx. If It2 has only one element, it is the 
overall lexicographic minimizer. If Y2 has more than one element, continue in 
the obvious way. 

Thus, min u(x,y) and max u(x,y)  exist in all cases. However, as we shall note 
r 

in the next section, there may be no x s X that lexicographically maximizes 
min u(x,y). Section 4 presents an example where neither max m i n u ( x , y )  nor 

y x y 
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rain max u(x,y) exists. This is in sharp contrast  to the Archimedean theory, for 
y x 

which N = 1 in (1), where these double extrema always exist. 

3. Definitions and Example 

For  simplicity, we shall assume that our  finite two-person game is zero-sum. 
This means that player 2's preference-or-indifference order  is the dual of ~ ,  
which permits the vector utilities of player 2 to be taken as the negatives of the 

vector utilities of player 1. 
Under  the zero-sum condition,  we are most  interested in maximin strategies 

for player 1 and minimax strategies for player 2 (with respect to player l 's utilities). 
Formally,  x is a maximin strategy for player 1 if and only if rain u (x,y) _> L min u (x', y) 

y Y 

for all x' in X. A n d y  is a minimax strategy for player 2 if and only if max u(x,y') >_L 
X 

max u (x, y) for all y' in Y 

We shall say that  (x, y) is an equil ibrium point  if and only if 

( x , y ' ) ~ ( x , y ) ~ ( x ' , y )  for all (x',y') in X x Y. 

As in the usual zero-sum theory, neither player can improve his position by 
depart ing from an equil ibrium strategy as long as his opponent  plays an equilib- 
r ium strategy. 

To illustrate the problems that can arise with non-Arch imedean  utilities, 
let (n,m) = (2,2) with the following two-dimensional  utilities on K for player 1: 

a 
Player  1 

1 - a  

Player  2 

p 1 - p  

(1,0) (0,0) 
(0,0) (0,1) 

We shall let (a,p) denote  the mixed-strategy pair in which x = (a,l  - a )  and 
y = (p, 1 - p). Then 

u(a,p) = (ap,(1 - a)(1 - p)) 

and (a,p) is an equil ibrium point  if and only if 

(aq,(1 - a)(1 - q)) _>L(ap,(1 - a)(1 - p)) _>L(bp,(l - b)(1 - p)) 

for all b and q in [0,1]. I f p  > 0, the r ight-hand _>L demands  a = 1; but i f a  = 1, 
the left-hand >L demands  p = 0. And if p = 0, the r ight-hand _>L demands  
a = 0, whereas if a = 0 then the left-hand _> L requires p = 1. 

Therefore  this game has no equil ibrium point. 
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Continuing with the example, we look for a maximin strategy for player 1. 
For the first step 

m i n u ( a , p ) - - ( O ' l - a )  if a > 0  
v (0,0) if a = 0 .  

Since the first components are uniformly zero, only the second components are 
involved in maximizing over a. However, because of the discontinuity at a = 0, 
there is no value of a in [0,1] that maximizes rain u(a,p). Hence player 1 has no p 
maximin strategy. 

On the other hand, player 2 has a minimax strategy, since 

(p,0) if p > 0  
maxa u(a,p)-(O,1)  if p = 0  

and p = 0 minimizes max u(a,p). Hence p = 0 is player 2's unique minimax 
a 

strategy. 
However, due to the lack of an equilibrium point, we can still find ourselves 

going in circles, as in the pure strategy cycles of Archimedean zero-sum games 
with no pure-strategy equilibrium. If player 2 plays his minimax strategy, player 1 
can do best with a = 0, obtaining a utility of (0,1). But if player 1 takes a - 0, 
player 2's best strategy is p = 1. And so forth. 

4. Theorems 

We shall now summarize some general results for the non-Archimedean 
theory. Throughout this section, all games are assumed to be finite two-person 
zero-sum games, with utilities for player 1 satisfying (1) and (2). The first theorem 
shows that some aspects of the Archimedean theory carry over to the non- 
Archimedean case. 

Theorem I : 
If (x,y) is an equilibrium point then x is a maximin strategy for player 1 and 

y is a minimax strategy for player 2. Moreover, all equilibrium points are inter- 
changable and equivalent: that is, if (x,y) and (x*,y*)are equilibrium points 
then (x,y*) and (x*,y) are equilibrium points and (x,y) ~ (x*,y*). 

The following theorems present the results that distinguish the non-Archimedean 
case from the Archimedean case. 

Theorem 2: 
There are games where player 1 has a maximin strategy, player 2 has a minimax 

strategy, and there is no equilibrium point. 

Theorem 3: 
There are games in which player 1 has a maximin strategy and player 2 has 

no minimax strategy; there are games in which player 1 has no maximin strategy 
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and player 2 has a min imax  strategy;  there are games in which player 1 has no 

max imin  strategy and  player  2 has  no min imax  strategy. 

Theo rem 1 is p roved  in the usual fashion. Fo r  the first part,  let (x,y) be an 
equil ibrium point, with u(x,y') >_ L U(x,y) >L U(x',y) for all x' in X and y' in Y. 
Then rain u (x,y') = u (x,y). If  x were not  a maximin  strategy for player 1, then 

y'  

there would be an x' in X such that  minu(x ' ,y ' )>Lminu(x,y ' )= u(x,y). In 
y' f 

particular,  u (x',y) > z u (x, y), which cont rad ic t s ,  u (x, y) > L U (X', y). Hence  x is 

a maximin  strategy for player  1. The  p roof  that  y is a min imax  strategy for player 2 
is similar. 

Secondly, if bo th  (x,y) and (x*,y*) are equil ibrium points then u(x,y')>>_L 
U(x,y) >Lu(x',y) and u(x*,y') >Zu(x*,y*) >Lu(x',y*) for all x' in X and y' in Y. 

In part icular,  u(x,y*) >L U(x,y) >Z U(x*,y) >L U(x*,y*) >L U(x,y*), SO that  

(x,y*) ~ (x,y) ,,~ (x*,y) ~ (x*,y*) by (2). It follows f rom weak order  for ~ that  

(x,y') ~ (x,y*) ~ (x',y*) and (x*,y') ~ (x*,y) ~ (x',y) for all x '  in X and y' in Y, 
so that  (x,y*) and (x*,y) are equi l ibr ium points. 

To  prove  T h e o r e m  2, consider the (n,m) = (2, 2) game where player l 's  two- 
d imensional  utilities are as follows: 

Player  2 

p 1 - p  

a (1,1) (0,1) 
Player  1 

1 - a (0,0) (1,0) 

Using the no ta t ion  as in the preceding example,  

u(a,p) = (ap + (1 - a)(l  - p),a) 

so that  (a,p) is an equi l ibr ium point  if and only if 

(aq + (1 - a)(1 - q),a) >_L(ap + (1 -- a)(1 -- p),a) >_L(bp + (1 -- b)(1 - p),b) 

for all b and q in [-0,1]. The  r igh t -hand  > L  requires 

a =  I if p>_ 1/2 

a = 0  if p < l / 2 .  

But the left-hand > z  requires p = 0 if a = 1, and p = 1 if a = 0. Hence  there 
is no equi l ibr ium point.  

However ,  player  1 has a max imin  strategy since 

(a,a) if a <  1/2 
minu(a,p) = (1/2,1/2) if a = 1/2 

P 
( 1 - a , a )  if a >  1/2 
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and a = 1/2 maximizes this; and player 2 has a minimax strategy since 

( l - p , O )  if p < 1 / 2  

max u(a,p) = (1/2,1) if p = 1/2 
a 

(p, 1) if p >  1/2 

and p = 1/2 minimizes this. Hence (a,p) = (1/2,1/2) is a joint "minimax" strategy 
pair. But it is not an equilibrium, as just proved, and if one player sticks to his 
"minimax" strategy then the other can gain by departing from his "minimax". 

The example of the preceding section suffices for the first two parts of Theorem 3. 
For the final assertion we use an (n,m) = (2, 3) game with the following three- 
dimensional utilities: 

P 

a (1,0,0) 
1 - a (0,0,0) 

With x = (a, 1 - a) and y = (p,q,r), 

For player 1, 

q r 

(o,o,0) (o,1,1) 
(0,1,1) (o, 1,o) 

u(x,y) = (ap, r + (1 - a)q, ar + (1 - a)q). 

m i n u ( x , y ) = ( 0 ' l - a ' 1 - a )  if a > 0  
y (0,0,0) if a = 0  

and there is no a which maximizes min u(x,y). For player 2, 
Y 

(p,r,r) if p > 0  
max u (x, y) = (0,1, q) if p = 0 a n d q > 0  

x 

(0,1,1) if p = q = 0  

and there is no y = (p,q,r) that minimizes this. (To minimize over y we consider 
the cases where p = 0, but there is no minimizing y for these cases.) 

Hence player I has no maximin strategy and player 2 has no minimax strategy. 

5. Discussion 

Some years ago, THRALL presented an argument that convinced many people 
(myself included) that non-Archimedean utilities could give the same types of 
results in game theory that obtain with Archimedean or unidimensional utilities. 
However, as shown in this paper, we have been under an illusion: without the 
Archimedean assumption, very little remains of the standard solution theory. 
This is true even when all the non-Archimedean axioms of traditional expected- 
utility theory are adopted, however unpalatable some of these may be to some 
people. 

The perseverance of this illusion may be due to a widespread uncritical acceptance 

of the Archimedean axiom. Indeed, a "so what" reaction to this paper may be 
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forthcoming from persons who find nothing amiss with that axiom. On the other 
hand, examples in the literature (e.g., CHIPMAN [p. 221], FISHBURN [1970, p. 110], 
and THRALL) suggest to others that the Archimedean assumption may be in- 
applicable in some situations. 

The impression remains that game theory without the Archimedean axiom 
is rather barren. 
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