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Metal cutting plays an important role in manufacturing indus- 
tries. Optimisation of  cutting parameters represents a key 
component in machining process planning. In this paper, a 
neural network based approach to multiple-objective optimiz- 
ation of  cutting parameters is presented. First, the problem of 
determining the optimum machining parameters is formulated 
as a multiple-objective optimization problem. Then, neural 
networks are proposed to represent manufacturers' preference 
structures. To demonstrate the procedure and performance of 
the neural network approach, an illustrative example is discussed 
in detail. 
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1. Introduction 

Since the Industrial Revolution, metal cutting has been a 
major machining process in manufacturing industries. One 
problem that confronted the manufacturing industries for 
nearly a century was the establishment of efficient metal 
cutting conditions for machining operations. Because of 
the dependency of machining process outputs upon cutting 
conditions, decisions on cutting conditions have a great 
influence on production rate, operation cost, and product 
quality. With wide applications of computer numerical control 
(CNC) and keen competition among manufacturers, the 
optimisation of cutting conditions becomes increasingly 
important. 

There has been a considerable amount of research on 
machining process optimisation problems. In 1907, F. W. 
Taylor [1] recognised the problem of economic machining in 
the metal-cutting field in his seminal work. The majority of 
the pioneering work was concerned with the mechanism of 
chip formation and the emphasis was on the study of forces 
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acting between cutting tools and workpieces. As the volume 
of machining operations increased, researchers began to 
investigate the cutting parameters that could improve pro- 
duction efficiency in machining processes. Quantitative 
methods for optimisation of machining operations based on 
a single objective such as minimisation of costs and maximis- 
ation of profit or production rate have been developed. 
Many paradigms have been proposed for single-objective 
optimisation of machining operations using various techniques 
such as differential calculus [2], regression analysis [3], linear 
programming [2], geometric programming [2, 4, 5], stochastic 
programming [6] and computer simulation [7]. 

In many real-world applications, manufacturers frequently 
face decision scenarios where multiple objectives have to 
be optimised simultaneously. These objectives are often 
conflicting and non-commensurate. The conflict arises when 
there is an improvement to one objective to the detriment of 
other objectives. The non-commensuration occurs when these 
objectives cannot be compared in the same scale or unit. 
In turning operations, for example, consider three non- 
commensurate objectives: minimising operation cost, maximis- 
ing production rate, and maximising cutting quality. An 
increase in feedrate could result in an increase in production 
rate, but an increase in operation cost in terms of excessive 
tool wear and a decrease in cutting quality in terms of poor 
surface finish. 

While the major efforts of previous work were concentrated 
on optimisation of a single objective, various multi-objective 
optimisation approaches have been proposed in recent years 
for optimising machining operations. Philipson and Ravindran 
[2, 8] apply goal programming techniques for machining 
process optimisation with multiple objectives. Ghiassi et al. 
[9] apply multiple-objective linear programming techniques 
and Mitwasi et al. [10] apply weighting techniques and 
interactive techniques such as the Zionts- Wallenius method 
for planning machining operations. Malakooti and Deviprasad 
[11] and Malakooti [12] develop other interactive approaches 
to multiple criteria decision making for metal cutting. 

One major drawback of interactive approaches to machining 
process optimisation is that interactions with manufacturers 
are necessary for almost every different part. In an open job- 
shop production system, the lot size of manufactured items 
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is usually small and product mix is usually diverse. Further- 
more, in the dynamic global economy, the time-varying market 
value makes labour and material costs fluctuate. The diversity 
of product mix and the uncertainty of market value make 
interactive approaches to machining process planning inef- 
ficient owing to the extensive and frequent interactions with 
manufacturers for planning machining process. A global 
approach based on a preference model such as a multiattribute 
value function that represents a manufacturer's overall prefer- 
ence is more desirable. 

During the past several years, artificial neural networks 
have manifested significant potential for solving complex 
problems. The application areas include, but are not limited 
to, associative memory, signal processing, pattern recognition, 
modelling, and optimisation, robotics and control. Recently, 
neural networks have been applied to some areas related to 
metal cutting. For example, Rangwala and Dornfeld [13] 
apply neural networks for learning and optimisation of 
machining operations. Rangwala and Dornfeld [14], Burke 
and Rangwala [15] propose neural network paradigms for 
tool wear monitoring. 

In this paper, a multi-objective optimisation approach based 
on neural networks is presented for planning single-pass 
single-point turning operations. The purpose of this study is 
to demonstrate the potential of neural networks for machining 
process optimisation. The motivation of this study is to 
assess manufacturers' underlying value systems, via supervised 
learning of neural networks, that integrates multiple objectives 
into a single one. 

The rest of this paper is organised as follows. In Section 
2, a turning operation is formulated as a constrained multi- 
objective optimisation problem with three non-commensurate 
and conflicting objectives: production rate, operation cost, 
and cutting quality. All these objectives were represented as 
functions of cutting parameters such as cutting speed, feedrate, 
and depth of cut. In Section 3, a neural network approach is 
proposed for assessing a manufacturer's implicit multiattribute 
value function. A neural-network-based approach to cutting 
parameter optimisation for determining the most advantageous 
cutting conditions is described. The results of a simulation 
study are also discussed in detail. 

2. The Cutting Parameter Optimisation 
Problem 

2.1 Planning Scenario 

In metal cutting, there are many factors related to process 
planning for machining operations. These factors can be 
classified as type of machining operations (turning, facing, 
milling, etc.), parameters of machine tools (rigidity, horse- 
power, etc.), parameters of cutting tools (material, geometry, 
etc.), parameters of cutting conditions (cutting speed, feed 
rate, depth of cut, etc.) and characteristics of workpieces 
(material, geometry, etc.). Among these factors cutting 
parameters (speed, feed rate, and depth of cut) are evidently 
dominating ones in a machining operation. 

In turning operations, the cutting speed v is defined as the 
rate at which the uncut surface of the workpiece passes the 
cutting edge of the tool. The feedrate f is the distance moved 
by the tool in an axial direction at each revolution of the 
workpiece. The depth of cut d is the thickness of metal 
removed from the workpiece measured in a radial direction. 

For a given machining operation, determination of the 
optimum cutting conditions involves a conflict between max- 
imising the metal removal rate and minimising the tool wear. 
By increasing the feedrate or spindle speed, the metal removal 
rate and hence the production rate can be increased; but this 
results in excessive tool wear, frequent tool changes and 
increased production costs. Therefore, there is an optimum 
set of cutting speed, feedrate and depth of cut which balances 
these conflicts and stays within constraints such as power 
consumption. The machining process optimisation is to deter- 
mine the most advantageous cutting condition. That is, to 
determine optimal machine parameters such as v (cutting 
speed, f (feedrate), and d (depth of cut) to optimise specified 
objectives such as production rate, operation cost, and cutting 
quality. 

2.2 Objective Functions 

The full development of machining process planning is based 
on optimisation of the economic criteria subject to technical 
and managerial constraints. The economic criteria are the 
objectives of machining operations in terms of costs, time, 
and quality. 

The objectives considered in this paper are production rate 
to be maximised, operation cost to be minimised, and cutting 
quality to be maximised. 

1. Production rate. Production rate is usually measured by 
the total time required to produce one item of product 
(Tp). It is a function of metal removal rate (MRR) and 
tool life (TL) [16]; i.e. 

Tp = Ts + V(1 + Tc/TL)/MRR + T~ (1) 

where Ts, To, Ti and V are tool set-up time, tool 
change time, tool idle time, and volume to be removed 
respectively. To a certain operation, Ts, To, T~, and V 
are constant, hence Tp is a function of MRR and TL. 

(i) Metal removal rate (MRR). By analytical derivation, 
MRR can be expressed as the product of cutting speed, 
feedrate, and depth of cut; i.e., 

MRR = 1000 vfd (2) 

(ii) Tool life (TL).  The tool life is measured by the 
mean time between tool changes or resharpenings. 
The relationship between the tool life and machining 
parameters is given by the well-known Taylor's expanded 
tool-life equation [2, 17, 18]; 

TL = K T / ( V " - r f f ~ T  dVT) (3) 

where KT, aT, 13T, and ~'T are non-negative constant 
parameters. This is an empirical formula and the constants 
are to be estimated statistically. 
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Rate Cost "Quality 

Attributes: MRR TL SR 

Cutting 
Parameters  v f d 

Fig. 1. A hierarchical structure of the objectives, attributes, and 
cutting parameters. 

2. Operation cost. Operation cost can be expressed as cost 
per part (Cp). There are two terms in operation cost 
related to machining parameters: tool life TL and time 
per piece Tp [16]. 

Cp = (C,/TL + Ct + Co)Tp (4) 

where Ct, C~ and Co are tool cost, labour cost, and 
overhead cost respectively. To a certain operation C,, C~ 
and Co are independent of machining parameters. 

3. Cutting quality. There are many different methods for 
measuring cutting quality in terms of surface roughness 
and surface integrity, etc. The most important measure 
to be addressed is surface roughness. Two standard 
measurements for surface roughness (SR) are peak-to- 
valley height (i.e. the root-to-crest roughness value) and 
arithmetic centre-line average (ACLA) value which is 
based on a centre-line parallel to the general direction 
of the profile such that the areas of the profile above 
and below the centre-line are equal. The arithmetic 
centre-line average Hp can be approximately expressed 
in some range as follows [9]: 

Hp = SR = Ksv% f~s d~s (5) 

where Ks, as, 13s, and ~/s are constants pertaining to 
specific tool-workpiece combination. 

Based on the above discussion, a hierarchical structure of 
the objectives, attributes, and cutting parameters is depicted 
in Fig. 1. 

2.3 Constraints 

There are a number of factors such as power availability that 
constrain the cutting parameters. These factors originate 
usually from technical specifications and managerial consider- 
ations. The constraints considered in this study are summaxised 
as follows: 

.1. Explicit bounds on cutting parameters. Owing ,'to "dae 
limited capacity of machine tools and consideration for 
the safety of operators, the cutting parameters are usually 
constrained within lower and upper bounds. 

V,r.in ~ l/ ~ Urea x (6) 

fmin <--- f <-- f max (7) 

dmin <: d -< dma x (8)  

2. Implicit constraints due to machine capacity and workpiece 
characteristics. Given a machine tool, its capacity is 
normally specified by its manufacturer. The machine 
capacity usually is represented by cutting power, cutting 
force, and so on. Similarly, given a workpiece material, 
its operating characteristics are dictated by its physical 
and mechanical properties. 

(i) Cutting power and force. Cutting power (P) and force 
(F) are respectively the power and force used during a 
machining operation. The power consumption can be 
expressed as a function of cutting force and the cutting 
speed, i.e. 

Fv 
P -  6122.45~ (9) 

where -q is the mechanical efficiency and F is given 
empirically by the following formula [2, 19]: 

F = KFfl3F d~F (10) 

Substitute equation (10) into equation (9), we have 

P = Kv vf~F d vF ( 11 ) 

where Kp = Kv/6122.45~. 
Thus the constraints on cutting power and force are 

respectively, 

P(v,f ,a) <_ Pm~ (12) 

F(v,f ,d) <- Fm~, (13) 

(ii) Cutting temperature. The cutting temperature refers 
to the temperature on the internal surfaces of tool and 
workpiece caused by abrasion and thermal build-up. 
Cutting temperature can be empirically described as an 
exponential function of cutting parameters [16, 20, 21]. 

0 = Kov%f~od% (14) 

where K0, ae, 130, and ~e are also constants, during 
normal operations, pertaining to specific tool-workpiece 
combination. 

Because high temperature will result in excessive tool 
wear and low surface integrity, interface temperature is 
usually constrained by an upper bound; i.e. 

O(v,f,d) <- Om~ (15) 

In summary, the cutting parameter optimization problem 
can be formulated as the following multi-objective optimisation 
problem: 

min Tp(v,f,d) (16) 

min Cp(v,Ld) (17) 

rain Hp(v,f,d) (18) 

subject to eonstraints (2), (3), (6)-(15). 
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3. A Cutting Parameter Optimisation 
Approach 

3.1 Underlying Motivation 

In the presence of the multiplicity of the non-commensurate 
and conflicting objectives, ideal solutions that optimise all 
objectives are rare and can be precluded. To evaluate the 
contribution and interaction of the multiple objectives and 
obtain a global perspective of a manufacturer's value system, 
it is often desirable to assess a multiattribute value function 
that represents the manufacturer's overall preference. A 
multiattribute value function is defined as a real-valued 
function that assigns a real value to each multiattribute 
alternative, according to the decision maker's preferential 
order, such that a more preferable alternative is associated 
with a larger value index than a less preferable alternative. 
One global approach to determination of the most desirable 
cutting parameters is by maximisation of the manufacturer's 
implicit multiattribute value function. Fig. 2 illustrates the 
proposed approach to cutting parameter optimisation for 
machining operation planning. The left-hand side of the block 
diagram is an objective entity concerning the data generation 
and objective formulation processes. The fight-hand side is 
mainly subjective where the multiple objectives are mapped 
to a scalar value index that quantifies a manufacturer's overall 
preference. 

The objective part of the optimisation approach shown in 
Fig. 2 can be modelled using a statistical method such as the 
least squares estimator [9, 16] using data generated from 
experiment or production. The main challenge in multiple- 
objective optimisation approaches to machining process 
optimisation lies in the difficulties in deciphering manufac- 
turers' preferences. The currently dominant approaches to 
preference assessment rely on decomposition of a multiattri- 
bute value function into simple components based on some 
independence assumptions [22, 23]. The common decomposed 
multiattribute value functions are additive, multilinear, and 
multiplicative functions. Since in general or complex settings, 
a manufacturer's preference may not satisfy any independence 
assumptions, the decomposition approaches are not universally 
applicable. 

Since the seminal work of Rumerhart et al. [24], supervised 
learning of artificial neural networks has been popularised. 
The essence of a supervised learning of neural networks is to 
construct their internal representations based on a finite set 

Machining 
Operations Machinab i l i ty  

Da tabase  

[ 
Preference Empirical 

Estimation Assessment 
{ } 

Cutting I Object ive  Criteria Multiattribute / Value Paramete r s  Value 
F u n c t i o n s  Function [ 

l 
Analytical 
Derivation 

Fig. 2. A block diagram of the proposed approach to cutting parameter 
optimisation. 

of training samples. Feed-forward neural networks, exem- 
plified by the popular multilayer perceptron [24], have been 
proved to be universal approximators [25] and demonstrated 
to be applicable for modelling complex systems [26]. Wang 
and Malakooti [27] propose a feedforward neural network 
for multiple criteria decision making. Wang [28], Wang and 
Bender [29] discuss connectionist paradigms for representing 
decision makers' preference structures. These studies have 
laid a solid basis for developing a neural-network-based mutli- 
objective approach to machining process optimisation. 

The motivation of this study is to represent the manufac- 
turers' preference structures using neural networks via super- 
vised learning. Specifically, we are interested in modelling 
manufacturers' implicit multiattribute value functions based 
on feedforward neural networks. Since multilayer neural 
networks are capable of approximating any functions, multi- 
layer neural networks should also be able to represent any 
manufacturers' preference structures. 

3.2 Modelling Procedure 

In this context, the preference assessment process begins with 
determining a set of non-dominated sample alternatives and 
eliciting preferential information on these samples from the 
manufacturer concerned. A set of non-dominated alternatives 
is the set of alternatives in which each alternative is better 
than all the other alternatives in terms of at least one objective 
(criterion). The preference elicitation involves presenting a 
set of objective function values (criteria) associated with the 
samples for the manufacturers to evaluate. The elicited 
preferential information is in the form of holistic ratings. 
These samples paired with corresponding rating indices 
constitute a training set and a testing set as a basis for 
supervised learning. A feedforward neural network is to be 
trained based on the training set for representing the 
manufacturer's multiattribute value function. The testing set 
is to be used to verify and validate the resultant neural 
network from supervised learning. If the testing result is not 
satisfactory, e.g. the mean square testing error exceeds a 
prespecified tolerance level, then the neural network has to 
be retrained with a different starting weight configuration 
or larger training set. A constructed neural-network-based 
preference model represents the manufacturer's trade-offs 
among the objectives and long- or medium-range manufactur- 
ing strategies. After a neural-network-based multiattribute 
value function is constructed, if a migration of the manufac- 
turer's preference is detected, a preference tracking is also 
needed. Since the preferences of manufacturers usually vary 
slowly in normal circumstances, the preference tracking based 
on an existing neural network configuration usually takes 
much less effort than completely retraining a neural network. 

In assessing a multiattribute value function, the objectives 
(Tp, Cp and Ho), instead of attributes (MRR and TL), are 
to be used as arguments of the multiattribute value function. 
The main reasons for using objectives as arguments are 
twofold. First, if a multiattribute value function is assessed 
with objectives as arguments, then the differences in the time 
coefficients and volumes to be removed in equation (1) for 
different parts and the fluctuation of cost coefficients in 



equation (4) will have no effect on the multiattribute 
value function, in view of the fact that the preferences of 
manufacturers usually vary much slower than product mixes 
and costs. Therefore, the assessed multiattribute value function 
will be robust to the diversity of product mix and perturbation 
of labour and material costs. Consequently, changing products 
and updating cost coefficients will not entail reassessing the 
multiattribute value function. Secondly, the production rate 
and operation cost are more meaningful and comparable than 
material removal rate and tool life for manufacturers from a 
managerial point of view. The cognitive burden, hence the 
likelihood and magnitude of biases, can be substantially 
reduced in the preferential information eliciting phase. 

For assessing multiattribute value functions, we can use the 
popular multilayer architecture of feedforward neural network. 
According to our preceding discussion, three objectives, Tp, 
Cp, and Ho, are used as inputs to a multilayer neural network. 
If the values of Tp, C o and Ho are not in the same scale, the 
training data have to be normalised to avoid numerical 
imbalance. Since a neural network is to represent a real- 
valued mutliattribute value function, one output neuron is 
needed. To train the multilayer neural network, we propose 
using the adaptive learning algorithm [26]. Preference assess- 
ment approaches using different preference models, different 
neural network architectures, and different learning algorithms 
can be found in [27, 28]. 

Once a multiattribute value function is assessed and 
validated, the neural-network-based mutliattribute value func- 
tion will be used to decipher the manufacturer 's overall 
preference and the multiobjective optimisation problem will 
be reduced to a single-objective maximisation problem as 
follows. 

max y[ Tp(v J, d), Cp(v de, d), Hp(v~f,d) ] (19) 
v,f,d 

subject to constrains (2), (3), (6) - (15) ,  where y is the output 
variable of the neural network. The most advantageous 
cutting parameters can be determined using a conventional 
mathematical programming technique. 

Since the majority of conventional mathematical program- 
ming techniques rely heavily on the gradient of the objective 
function, the gradient of neural network output y with respect 
to cutting parameters (v,f,d), [Oy/Ov,Oy/Of, Oy/Od], is derived 
as follows. Since Tp, Cp and Hp are inputs to the neural 
network xa, x2 and x3 respectively, according to the chain 
rule, 

Oy _ Oy OTp_ + Oy OCp + O fly OHp (20) 
Ov Oxl Ov Ox2 Ov Ox3 Ov 

Oy aCC~_ Oy OHp 0y = 0_y OTp + + (21) 
Of Oxl Of Ox2 Of OX3 Of 

Oy _ Oy OT_T_e + Oy OC P oy Ogp (22) 
Od Oxl Od Ox2 Od + Ox3 Od 

The partial derivatives of Tp, Cp and Hp with respect to v, 
f and d can be easily derived from equations (1)- (5) .  The 
partial derivatives of the neural network output y with respect 
to the neural network input x, Oy/Oxl, Oy/Oxz, Oy/Ox3, are 
further derived based on the chain rule as follows. 
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Let L be the number  of hidden layers, vq and uq be the 
output and input of the j th neuron in the ith hidden layer 
respectively, wl] ) be the connection weight between the ith 
neuron in the lth hidden layer and the j th neuron in the 
( l + l ) t h  hidden layer (the j th input xj if l = L),  and l = 0 
for output layer (i.e. VL+I.j = Xj and y = %1). Let the 
activation function be the sigmoid function v = f (u )  = 1/[1 
+ e x p ( - u ) ] .  Thus df(u)/du = f (u)[1- f (u)] .  

For p = 1,2,3; 

Oy _ Oy Oum _ y(1 - y) S'z., '~llc~ Ovaldx__~, 
Oxp Oum Oxp i 

_ av,i a V l l a U , i = v u ( l _ v , , ) 2 w ~ } , a x p  ' 
OXp aUli aXp J 

OVLk -- OVLk OULk VLk (1 , tL) -- VLk ) Wkp . Oxp bulk Oxp 

3.3 An Illustrative Example 

To demonstrate the detailed implementation procedure and 
operating characteristics of the proposed approach to machin- 
ing operation optimisation, an illustrative example based on 
hypothetical data is discussed as follows. 

Illustrative Example. Consider turning ferrous alloy bars 
using coated carbide tools on a CNC lathe. For simplicity, 
let us assume that the constant parameters in the objective 
functions and constraints have been estimated based on the 
data on tool life, surface roughness, cutting force and cutting 
temperature. 

Ts = 0.12 min, Tc = 0.26 min, Ti = 0.04 min, 

V = 231376 mm 3 

Ct = $13.55, C~ = $0.31/min, Co = $0.08/min, ~ = 36% 

KT = 1575134.21, Ot x = 1.70, ~ T  = 1.55, '~x = 1.22 

Ks = 1.17, as = -0 .25,  I~s = 0.72, "?s = 0.23 

KF = 1.38, ctF = 0.00, 13F = 1.18, 3F = 1.26 

K0 = 26.23, c~e = 0.36, 130 = 0.24, ~'e = 0.11 

V,,in = 4.0 m/rain, Vm~ = 90.0 m/min 

fmin = 0.5 mm/rev,fm~, = 75.0 mm/rev 

dmi~ = 1.0 mm, dm~, = 5.0 mm 

Fm~ = 20 kg, Pm~ = 2kW, 0m~ = 290~ 

Accordingly, the three objective functions and constraints are 
as follows. 

min Tp = 0.16 + 231276 (1 + 0.26/TL)/MRR 

min C o = (13.55/TL + 0.39)Tp 

min Hp = 1.17v-~ ~ d ~ 

s.t. TL = 1575134.21v-l7~ -155 d -1"22 

MRR = lO00vfd 
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Table 1. Randomized samples for training neural network. 

No. v (m/min) f (mm/rev) d (ram) Tp (rain) Cp ($) np (p.m) 

1 6.111881 0.797555 2.340617 20.430643 7.975532 0.958805 
2 10.653035 27.179281 1.868801 0.588833 0.330964 12.030612 
3 111.394638 15.183218 3.801355 0.202165 1.892841 7.547976 
4 1 9 3 . 9 8 3 8 2 6  21.109150 2.777154 0.190553 5.062711 9.463449 
5 2 5 . 7 9 6 3 2 0  52.867474 3.257393 0.216332 1.009139 19.083168 
6 1 4 1 . 1 0 7 4 5 2  57.829784 4.310526 0.182252 22.716995 19.676325 
7 195.906494 16.957106 2.707206 0.194784 3.655530 8.081243 
8 1 6 6 . 1 8 1 4 5 8  34.327480 3.419019 0.184397 10.233696 13.472135 
9 1 3 6 . 3 3 4 3 6 6  45.478943 3.196722 0.184224 10.402867 16.562170 

10 148.004639 9.046708 2.624805 0.231045 1.048726 5.169560 
11 28.286631 50.844097 2.899594 0.219804 0.983298 18.520275 
12 102.220772 42.819256 2.377972 0.191523 4.253696 15.950535 
13 8 8 . 6 1 5 6 1 6  52.608829 1.654805 0.198683 3.083999 18.552305 
14 1 1 1 . 6 6 3 2 0 0  48.912273 3.493606 0.183709 9.225237 17.523003 
15 4 .610370 59.541870 2.075716 0.567123 0.311246 21.517080 
16 9 6 . 2 1 4 7 2 9  29.491058 2.507248 0.199857 2.432417 12.209506 
17 1 2 0 . 2 2 6 6 9 2  45.760475 2.119297 0.190375 5.345912 16.677811 
18 38.113590 60.887737 2.179968 0.211269 1.419678 20.961664 
19 7 0 . 7 8 0 6 0 2  31.148212 1.961699 0.219263 1.322238 12.777899 
20 86.796715 4.571932 2.976379 0.358359 0.382672 3.196595 

Table 2. Randomized samples for testing neural network. 

No. v (m/min) f (mm/rev) d (mm) T r (min) Cp ($) H o (ttm) 

21 1 9 8 . 9 3 3 9 2 9  27.133503 2.619678 0.188141 7.138271 11.332766 
22 53.806206 57.360561 4.557482 0.184487 4.776284 19.942099 
23 1 6 5 . 6 5 0 4 3 6  47.683140 3.860317 0.182980 19.426577 17.069653 
24 39.035248 42.439301 2.535691 0.219843 1.081714 16.156595 
25 47.562119 52.460052 3.657186 0.192039 2.718086 18.746376 
26 110.875824 10.291863 3.098087 0.230185 0.963589 5.705383 
27 59.684071 59.715828 3.073794 0.189221 3.862165 20.485807 
28 2 1 . 3 1 0 0 9 9  69.956314 4.556017 0.198743 1.504644 23.436327 
29 62.699303 25.650303 3.470901 0.206849 1.490136 11.137486 
30 21.694632 73.623108 4.461654 0.197318 1.618100 24.305748 
31 1 2 8 . 1 6 7 6 0 3  58.333340 2.014679 0.187811 8.014126 19.837660 
32 117.248085 10.463531 3.456862 0.219656 1.160988 5.767294 
33 5 1 . 4 6 2 3 8 7  41.477966 2.978210 0.202322 1.800933 15.804641 
34 20.376232 64.044113 3.908536 0.209531 1.090228 22.012451 
35 61.173374 51.565098 2.238563 0.199851 2.335288 18.422596 
36 74.943329 57.154560 4.909787 0.181290 8.913015 19.759130 
37 188.191406 18.840860 2.641407 0.193986 3.879806 8.725019 
38 69.993225 66.923538 4.825312 0.180893 9.892230 22.166725 
39 173.176300 19.980728 2.247108 0.198483 3.116219 9.117090 
40 74.961639 4.409421 2.288614 0.467856 0.352066 3.123517 

F = 1 .38f  H8 d 1-26 

P = 0.000626vf L 18 d I. 26 

0 = 26.23v~ ~ d T M  

4.0_< v_< 90.0 

0.5 -<f-< 75.0 

1.0 <_ d_< 5.0 

F--- < 20 

P - < 2  

0 -< 290 

In order to assess the manufacturers 's  implicit multiattribute 
value function, the preferential information has to be elicited. 
Listed in Tables 1 and 2 are, respectively, twenty training 
and testing samples. The cutting data were generated randomly 
within the specified lower and upper  bounds,  under the 
condition that the associated objective values are non- 
dominated. In this example, we assume that the manufacturer ' s  
implicit multiattribute value function is v (Tp ,  Cp, Hp) = 0.42 
exp( -0 .22Tp)  + 0.36 exp( -0 .32Cp)  + 0.17 e x p ( - 0 . 2 6 H p )  + 
0.05/(1 + 1.22Tp C o Ho). The assumed multiattribute value 
function is used, only for the simulation purpose,  to provide 
preferential data on behalf of the manufacturer  and evaluate 
the performance of the trained neural network. Based on the 
implicit multiattribute value function, preferential ratings 
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Table 3. Preferential data given by the manufacture~ and neural network. 

No. v [Tp, Cp, HoI y (Tp, C~, np)  v - y No. v [rp, Cp, H, ]  y (Tp, Cp, Hp) v - y 

1 0.165490 0.165510 -0.000020 21 0.451121 0.451335 -0.000214 
2 0.713190 0.713435 -0.000245 22 0.484552 0.483774 0.000778 
3 0.633116 0.631448 0.001668 23 0.406823 0.407930 -0.001107 
4 0.492632 0.491931 0.000701 24 0.666175 0.666702 -0.000527 
5 0.670540 0.669414 0.001126 25 0.558644 0.559181 -0.000537 
6 0.405262 0.404750 0.000512 26 0.721960 0.716091 0.005869 
7 0.541169 0.541706 -0.000537 27 0.510904 0.509831 0.001073 
8 0.423601 0.423983 -0.000382 28 0.630082 0.629462 0.000620 
9 0.419769 0.419912 -0.000143 29 0.643813 0.643100 0.000713 

10 0.720663 0.722399 -0.001736 30 0.621741 0.620783 0.000958 
11 0.672864 0.671789 0.001075 31 0.433018 0.434730 -0.001712 
12 0.500614 0.499743 0.000871 32 0.704319 0.702822 0.001497 
13 0.540952 0.541394 -0.000442 33 0.613048 0.615990 -0.002942 
14 0.425296 0.426046 -0.000750 34 0.662616 0.660686 0.001930 
15 0.706115 0.706117 -0.000002 35 0.578212 0.580130 -0.001918 
16 0.580404 0.580410 -0.000006 36 0.426607 0.427705 -0.001098 
17 0.472367 0.472279 0.000088 37 0.529609 0.528000 0.001609 
18 0.635985 0.637361 -0.001376 38 0.420349 0.421417 -0.001068 
19 0.651213 0.652430 -0.001217 39 0.557094 0.554118 0.002976 
20 0.813291 0.812391 0.000900 40 0.806748 0.811319 -0.004571 

v[Tp, Cp, Hp] assumpt ive ly  provided  by the  manu fac t u r e r  for 
the genera ted  t ra ining and  tes t ing data  are listed in the  second 
and  sixth co lumns  of  Table  3. 

The  i n p u t - o u t p u t  samples  1-20 listed in Tables  1 and  3 
were used as t raining samples .  A mul t i layer  neura l  ne twork  
with four  h idden neu rons  in one  h idden  layer was t ra ined 
using an adapt ive learning a lgor i thm with line search  capability. 
The  initial connect ion  weights  and  biasing thesholds  of  the 
neural  ne twork  were gene ra ted  at r a n d o m  uniformly over  
interval (0, 1). Af t e r  50000 epochs ,  the  m e a n  square  t raining 
error  was reduced  to 0.5 x 10 -7. Fig. 3 i l lustrates the 
mono tone  decrease  of  the m e a n  square  t raining error  versus  
epoch within a t ime window. Fig. 4 depicts  the  t ra ined neura l  
ne twork that  is to be used to represen t  the  manufac tu re r ' s  
preference ,  where  the  values  on the  synapt ic  links are 
connect ion weights  and  values  inside the  circles are biasing 
thresholds  for cor responding  neurons .  T he  t ra ined neura l  

0.020 

0.015 

0.010 

E r r o r  

0.005 

0.000 . . . . . . . . .  I . . . . . . . .  [ . . . . . . . . .  l . . . . . . .  ] . . . . . . . . .  ] 

0 200 400 600 800 ~ 000 
Epoch 

Fig. 3. Mean square training error versus epoch in the supervised 
learning. 

ne twork  was tested based  on the  i n p u t - o u t p u t  samples  21-40.  
The  m e a n  square  test ing error  is 2.5 x 10 -7 and  the  t ra ined  
neural  ne twork  was considered valid. The  third and  seven th  
co lumns  of Table  3 record the  ou tpu t  of  the  t ra ined neura l  
ne twork  for t raining samples  and  test ing samples  respectively.  
The  four th  and e ighth  co lumns  record the  dif ferences  be tween  
expected and actual ou tpu t s  of  the  t ra ined neura l  ne twork  
for all samples .  

Based  on the  cons t ruc ted  mul t i layer  neura l  ne twork ,  a 
commercia l  software package  was used to obta in  the  opt imal  
cutt ing pa rame te r s  s tar ted with an arbi trary initial solut ion.  
Table  4 records  the  o p t i m u m  cutt ing pa rame te r s  and  corre-  

~ ~ . _ . ~ 1 . 2 2 4 7 8 2  
~.~ / ~ 

-0.16862! "/.~3 

0.418732 ~ ~ ~06090 

F~.  4. Const~cted multflayer neural network as a p r e ~ r e n ~  rep- 
resentation. 
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Table 4. Optimum cutting parameters, objective functions values, and process outputs. 

Basis v (m/min) f (mm/rev) d (mm) Tp (min) Cp ($) Hp (Ixm) 

v [Tp, Cr,, Hp] 90.000000 1.728503 5.000000 0.459051 0.317014 0.815663 
y [Tp, Cr,, Hp] 90.000000 1.728491 5.000000 0.459053 0.317013 0.815659 

Basis MMR (mm3/min) TL (rain) F (kg) P (kW) 0 ("C) 

v [Tp, Cp, Hp] 777826.196634 45.078891 20.000000 0 .816670 180.406892 
y [Tp, Cp, Hp] 777820.742366 45.079381 19.999924 0 .816663 180.406589 

sponl;ling values of objective functions and process outputs 
based on maximising both the assumed implicit multiattribute 
value function v[Tp,(v,f,d), Cp(v,f,d), Hp(v,f,d) and the 
trained neural network y[ Tp(v,f,d), Cp(v,f,d), Hp(v,f,d)]. 
Clearly, the neural-network-based optimisation approach pro- 
vides a sufficiently accurate approximation to the true optimal 
solution. 

4. Concluding Remarks 

In this paper, a neural-network-based approach to cutting 
parameter optimisation for planning machining operations has 
been described. The proposed approach possesses many 
desirable features. It provides a global measure of a manufac- 
turer's preference, hence relaxes the need for frequent and 
intensive interactions with the manufacturer to determine the 
optimum cutting parameters. It provides a robust represen- 
tation due to the fault-tolerant nature of neural networks. It 
provides an automated paradigm for optimisation of cutting 
parameters since the proposed approach is easy to computerise. 
Although global preference modelling via supervised leaning 
may be computationally intensive, the proposed approach is 
more advantageous than interactive approaches, specially for 
the job-shop production systems where product mix is diverse 
and dynamic. Future work could be directed to application 
of other preference models and neural networks to machining 
process optimisation, implementation of the proposed 
approach to real-world problems, and extension of the 
proposed approach to adaptive control of machining operations 
for on-line adjustment of cutting parameters based on infor- 
mation from sensors. 
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Nomenclature 

v cutting speed (m/min) 

f feed rate per revolution (mm/rev) 

d depth of cut per pass (mm) 

T o total operation time per part (min) 

T, set-up time per part (min) 

T, tool change time (min) 

T. idle time per part (min) 

C o cost per part ($) 

C, cost of tool per piece ($) 

Ct labor cost per unit time ($/min) 

C,, overhead per unit time ($/min) 

V volume to be removed per part (ram :~) 

MRR metal removal rate (mm'/min) 

TL tool life (min) 

SR surface roughness (~m) 

Hp arithmetic centre-line average (~m) 

P cutting power (kW) 

F cutting force (kg) 

0 interface temperature (~ 


